Future of Department of Defense Cloud Computing Amid Cultural Confusion
2013-03-01
enterprise cloud - computing environment and transition to a public cloud service provider. Services have started the development of individual cloud - computing environments...endorsing cloud computing . It addresses related issues in matters of service culture changes and how strategic leaders will dictate the future of cloud ...through data center consolidation and individual Service provided cloud computing .
Enhancing Security by System-Level Virtualization in Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei
Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.
Design and Implement of Astronomical Cloud Computing Environment In China-VO
NASA Astrophysics Data System (ADS)
Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu
2017-06-01
Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.
CSNS computing environment Based on OpenStack
NASA Astrophysics Data System (ADS)
Li, Yakang; Qi, Fazhi; Chen, Gang; Wang, Yanming; Hong, Jianshu
2017-10-01
Cloud computing can allow for more flexible configuration of IT resources and optimized hardware utilization, it also can provide computing service according to the real need. We are applying this computing mode to the China Spallation Neutron Source(CSNS) computing environment. So, firstly, CSNS experiment and its computing scenarios and requirements are introduced in this paper. Secondly, the design and practice of cloud computing platform based on OpenStack are mainly demonstrated from the aspects of cloud computing system framework, network, storage and so on. Thirdly, some improvments to openstack we made are discussed further. Finally, current status of CSNS cloud computing environment are summarized in the ending of this paper.
Research on Influence of Cloud Environment on Traditional Network Security
NASA Astrophysics Data System (ADS)
Ming, Xiaobo; Guo, Jinhua
2018-02-01
Cloud computing is a symbol of the progress of modern information network, cloud computing provides a lot of convenience to the Internet users, but it also brings a lot of risk to the Internet users. Second, one of the main reasons for Internet users to choose cloud computing is that the network security performance is great, it also is the cornerstone of cloud computing applications. This paper briefly explores the impact on cloud environment on traditional cybersecurity, and puts forward corresponding solutions.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
Applications integration in a hybrid cloud computing environment: modelling and platform
NASA Astrophysics Data System (ADS)
Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang
2013-08-01
With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.
Exploiting GPUs in Virtual Machine for BioCloud
Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon
2013-01-01
Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment. PMID:23710465
Exploiting GPUs in virtual machine for BioCloud.
Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon
2013-01-01
Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.
Are Cloud Environments Ready for Scientific Applications?
NASA Astrophysics Data System (ADS)
Mehrotra, P.; Shackleford, K.
2011-12-01
Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.
On the Modeling and Management of Cloud Data Analytics
NASA Astrophysics Data System (ADS)
Castillo, Claris; Tantawi, Asser; Steinder, Malgorzata; Pacifici, Giovanni
A new era is dawning where vast amount of data is subjected to intensive analysis in a cloud computing environment. Over the years, data about a myriad of things, ranging from user clicks to galaxies, have been accumulated, and continue to be collected, on storage media. The increasing availability of such data, along with the abundant supply of compute power and the urge to create useful knowledge, gave rise to a new data analytics paradigm in which data is subjected to intensive analysis, and additional data is created in the process. Meanwhile, a new cloud computing environment has emerged where seemingly limitless compute and storage resources are being provided to host computation and data for multiple users through virtualization technologies. Such a cloud environment is becoming the home for data analytics. Consequently, providing good performance at run-time to data analytics workload is an important issue for cloud management. In this paper, we provide an overview of the data analytics and cloud environment landscapes, and investigate the performance management issues related to running data analytics in the cloud. In particular, we focus on topics such as workload characterization, profiling analytics applications and their pattern of data usage, cloud resource allocation, placement of computation and data and their dynamic migration in the cloud, and performance prediction. In solving such management problems one relies on various run-time analytic models. We discuss approaches for modeling and optimizing the dynamic data analytics workload in the cloud environment. All along, we use the Map-Reduce paradigm as an illustration of data analytics.
State of the Art of Network Security Perspectives in Cloud Computing
NASA Astrophysics Data System (ADS)
Oh, Tae Hwan; Lim, Shinyoung; Choi, Young B.; Park, Kwang-Roh; Lee, Heejo; Choi, Hyunsang
Cloud computing is now regarded as one of social phenomenon that satisfy customers' needs. It is possible that the customers' needs and the primary principle of economy - gain maximum benefits from minimum investment - reflects realization of cloud computing. We are living in the connected society with flood of information and without connected computers to the Internet, our activities and work of daily living will be impossible. Cloud computing is able to provide customers with custom-tailored features of application software and user's environment based on the customer's needs by adopting on-demand outsourcing of computing resources through the Internet. It also provides cloud computing users with high-end computing power and expensive application software package, and accordingly the users will access their data and the application software where they are located at the remote system. As the cloud computing system is connected to the Internet, network security issues of cloud computing are considered as mandatory prior to real world service. In this paper, survey and issues on the network security in cloud computing are discussed from the perspective of real world service environments.
Project #OA-FY14-0126, January 15, 2014. The EPA OIG is starting fieldwork on the Council of the Inspectors General on Integrity and Efficiency (CIGIE) Cloud Computing Initiative – Status of Cloud-Computing Environments Within the Federal Government.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Retrieving and Indexing Spatial Data in the Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Wang, Sheng; Zhou, Daliang
In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.
ERIC Educational Resources Information Center
Pike, Ronald E.; Pittman, Jason M.; Hwang, Drew
2017-01-01
This paper investigates the use of a cloud computing environment to facilitate the teaching of web development at a university in the Southwestern United States. A between-subjects study of students in a web development course was conducted to assess the merits of a cloud computing environment instead of personal computers for developing websites.…
Bigdata Driven Cloud Security: A Survey
NASA Astrophysics Data System (ADS)
Raja, K.; Hanifa, Sabibullah Mohamed
2017-08-01
Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.
ERIC Educational Resources Information Center
Conn, Samuel S.; Reichgelt, Han
2013-01-01
Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…
Securing the Data Storage and Processing in Cloud Computing Environment
ERIC Educational Resources Information Center
Owens, Rodney
2013-01-01
Organizations increasingly utilize cloud computing architectures to reduce costs and energy consumption both in the data warehouse and on mobile devices by better utilizing the computing resources available. However, the security and privacy issues with publicly available cloud computing infrastructures have not been studied to a sufficient depth…
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
ERIC Educational Resources Information Center
Islam, Muhammad Faysal
2013-01-01
Cloud computing offers the advantage of on-demand, reliable and cost efficient computing solutions without the capital investment and management resources to build and maintain in-house data centers and network infrastructures. Scalability of cloud solutions enable consumers to upgrade or downsize their services as needed. In a cloud environment,…
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.
Cianfrocco, Michael A; Leschziner, Andres E
2015-05-08
The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.
Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239
Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.
National electronic medical records integration on cloud computing system.
Mirza, Hebah; El-Masri, Samir
2013-01-01
Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.
Using a Cloud-Based Computing Environment to Support Teacher Training on Common Core Implementation
ERIC Educational Resources Information Center
Robertson, Cory
2013-01-01
A cloud-based computing environment, Google Apps for Education (GAFE), has provided the Anaheim City School District (ACSD) a comprehensive and collaborative avenue for creating, sharing, and editing documents, calendars, and social networking communities. With this environment, teachers and district staff at ACSD are able to utilize the deep…
Scheduling multimedia services in cloud computing environment
NASA Astrophysics Data System (ADS)
Liu, Yunchang; Li, Chunlin; Luo, Youlong; Shao, Yanling; Zhang, Jing
2018-02-01
Currently, security is a critical factor for multimedia services running in the cloud computing environment. As an effective mechanism, trust can improve security level and mitigate attacks within cloud computing environments. Unfortunately, existing scheduling strategy for multimedia service in the cloud computing environment do not integrate trust mechanism when making scheduling decisions. In this paper, we propose a scheduling scheme for multimedia services in multi clouds. At first, a novel scheduling architecture is presented. Then, We build a trust model including both subjective trust and objective trust to evaluate the trust degree of multimedia service providers. By employing Bayesian theory, the subjective trust degree between multimedia service providers and users is obtained. According to the attributes of QoS, the objective trust degree of multimedia service providers is calculated. Finally, a scheduling algorithm integrating trust of entities is proposed by considering the deadline, cost and trust requirements of multimedia services. The scheduling algorithm heuristically hunts for reasonable resource allocations and satisfies the requirement of trust and meets deadlines for the multimedia services. Detailed simulated experiments demonstrate the effectiveness and feasibility of the proposed trust scheduling scheme.
Smart learning services based on smart cloud computing.
Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik
2011-01-01
Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.
Smart Learning Services Based on Smart Cloud Computing
Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik
2011-01-01
Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048
Identification of Program Signatures from Cloud Computing System Telemetry Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Nicole M.; Greaves, Mark T.; Smith, William P.
Malicious cloud computing activity can take many forms, including running unauthorized programs in a virtual environment. Detection of these malicious activities while preserving the privacy of the user is an important research challenge. Prior work has shown the potential viability of using cloud service billing metrics as a mechanism for proxy identification of malicious programs. Previously this novel detection method has been evaluated in a synthetic and isolated computational environment. In this paper we demonstrate the ability of billing metrics to identify programs, in an active cloud computing environment, including multiple virtual machines running on the same hypervisor. The openmore » source cloud computing platform OpenStack, is used for private cloud management at Pacific Northwest National Laboratory. OpenStack provides a billing tool (Ceilometer) to collect system telemetry measurements. We identify four different programs running on four virtual machines under the same cloud user account. Programs were identified with up to 95% accuracy. This accuracy is dependent on the distinctiveness of telemetry measurements for the specific programs we tested. Future work will examine the scalability of this approach for a larger selection of programs to better understand the uniqueness needed to identify a program. Additionally, future work should address the separation of signatures when multiple programs are running on the same virtual machine.« less
Trusted computing strengthens cloud authentication.
Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba
2014-01-01
Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.
Trusted Computing Strengthens Cloud Authentication
2014-01-01
Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model. PMID:24701149
Adopting Cloud Computing in the Pakistan Navy
2015-06-01
administrative aspect is required to operate optimally, provide synchronized delivery of cloud services, and integrate multi-provider cloud environment...AND ABBREVIATIONS ANSI American National Standards Institute AWS Amazon web services CIA Confidentiality Integrity Availability CIO Chief...also adopted cloud computing as an integral component of military operations conducted either locally or remotely. With the use of 2 cloud services
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-01-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic. PMID:26451333
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic.
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-09-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic.
CloudMan as a platform for tool, data, and analysis distribution.
Afgan, Enis; Chapman, Brad; Taylor, James
2012-11-27
Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions.
A Systematic Literature Mapping of Risk Analysis of Big Data in Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Bee Yusof Ali, Hazirah; Marziana Abdullah, Lili; Kartiwi, Mira; Nordin, Azlin; Salleh, Norsaremah; Sham Awang Abu Bakar, Normi
2018-05-01
This paper investigates previous literature that focusses on the three elements: risk assessment, big data and cloud. We use a systematic literature mapping method to search for journals and proceedings. The systematic literature mapping process is utilized to get a properly screened and focused literature. With the help of inclusion and exclusion criteria, the search of literature is further narrowed. Classification helps us in grouping the literature into categories. At the end of the mapping, gaps can be seen. The gap is where our focus should be in analysing risk of big data in cloud computing environment. Thus, a framework of how to assess the risk of security, privacy and trust associated with big data and cloud computing environment is highly needed.
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
A Semantic Based Policy Management Framework for Cloud Computing Environments
ERIC Educational Resources Information Center
Takabi, Hassan
2013-01-01
Cloud computing paradigm has gained tremendous momentum and generated intensive interest. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this dissertation, we mainly focus on issues related to policy management and access…
GATE Monte Carlo simulation in a cloud computing environment
NASA Astrophysics Data System (ADS)
Rowedder, Blake Austin
The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.
Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud
Cianfrocco, Michael A; Leschziner, Andres E
2015-01-01
The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16–480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM. DOI: http://dx.doi.org/10.7554/eLife.06664.001 PMID:25955969
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.
2017-12-01
Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
Cloud computing for comparative genomics
2010-01-01
Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems. PMID:20482786
Cloud computing for comparative genomics.
Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J
2010-05-18
Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.
A Hybrid Cloud Computing Service for Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.
2016-12-01
Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.
Integration of High-Performance Computing into Cloud Computing Services
NASA Astrophysics Data System (ADS)
Vouk, Mladen A.; Sills, Eric; Dreher, Patrick
High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).
ERIC Educational Resources Information Center
Venkatesh, Vijay P.
2013-01-01
The current computing landscape owes its roots to the birth of hardware and software technologies from the 1940s and 1950s. Since then, the advent of mainframes, miniaturized computing, and internetworking has given rise to the now prevalent cloud computing era. In the past few months just after 2010, cloud computing adoption has picked up pace…
HPC on Competitive Cloud Resources
NASA Astrophysics Data System (ADS)
Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff
Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.
Web N.0, the New Development Trend of Internet
NASA Astrophysics Data System (ADS)
Sun, Zhiguo; Wang, Wensheng
This article analyzes the Internet basic theory, the network foundation environment and the user behavior change and so on, Which analyzes the development tendency of existing partial Internet products in the future Internet environment. The article also hot on the concept of cloud computing, Demonstrates the relation between Cloud Computing and Web 2.0 from the angle of Cloud-based end-user applications, The possibly killing application in the future was discussed.
CloudMan as a platform for tool, data, and analysis distribution
2012-01-01
Background Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. Results CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. Conclusions With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions. PMID:23181507
ERIC Educational Resources Information Center
Liao, Yuan
2011-01-01
The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…
On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat
NASA Astrophysics Data System (ADS)
Hua, H.
2016-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.
Yokohama, Noriya
2013-07-01
This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.
NASA Technical Reports Server (NTRS)
Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian
2012-01-01
Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.
NASA Astrophysics Data System (ADS)
Xiong, Ting; He, Zhiwen
2017-06-01
Cloud computing was first proposed by Google Company in the United States, which was based on the Internet center, providing a standard and open network sharing service approach. With the rapid development of the higher education in China, the educational resources provided by colleges and universities had greatly gap in the actual needs of teaching resources. therefore, Cloud computing of using the Internet technology to provide shared methods liked the timely rain, which had become an important means of the Digital Education on sharing applications in the current higher education. Based on Cloud computing environment, the paper analyzed the existing problems about the sharing of digital educational resources in Jiangxi Province Independent Colleges. According to the sharing characteristics of mass storage, efficient operation and low input about Cloud computing, the author explored and studied the design of the sharing model about the digital educational resources of higher education in Independent College. Finally, the design of the shared model was put into the practical applications.
A Comprehensive Review of Existing Risk Assessment Models in Cloud Computing
NASA Astrophysics Data System (ADS)
Amini, Ahmad; Jamil, Norziana
2018-05-01
Cloud computing is a popular paradigm in information technology and computing as it offers numerous advantages in terms of economical saving and minimal management effort. Although elasticity and flexibility brings tremendous benefits, it still raises many information security issues due to its unique characteristic that allows ubiquitous computing. Therefore, the vulnerabilities and threats in cloud computing have to be identified and proper risk assessment mechanism has to be in place for better cloud computing management. Various quantitative and qualitative risk assessment models have been proposed but up to our knowledge, none of them is suitable for cloud computing environment. This paper, we compare and analyse the strengths and weaknesses of existing risk assessment models. We then propose a new risk assessment model that sufficiently address all the characteristics of cloud computing, which was not appeared in the existing models.
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.
2014-12-01
The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.
The AIST Managed Cloud Environment
NASA Astrophysics Data System (ADS)
Cook, S.
2016-12-01
ESTO is currently in the process of developing and implementing the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to ESTO-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs will allow them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE will facilitate infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.
The AMCE (AIST Managed Cloud Environment)
NASA Astrophysics Data System (ADS)
Cook, S.
2017-12-01
ESTO has developed and implemented the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to SMD-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs allows them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE facilitates infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.
Bio and health informatics meets cloud : BioVLab as an example.
Chae, Heejoon; Jung, Inuk; Lee, Hyungro; Marru, Suresh; Lee, Seong-Whan; Kim, Sun
2013-01-01
The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains.
Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.
2011-01-01
This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).
The HEPiX Virtualisation Working Group: Towards a Grid of Clouds
NASA Astrophysics Data System (ADS)
Cass, Tony
2012-12-01
The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D. T.; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Background Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. Results We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. Conclusions CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/. PMID:24897343
Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.
Cloud Computing - A Unified Approach for Surveillance Issues
NASA Astrophysics Data System (ADS)
Rachana, C. R.; Banu, Reshma, Dr.; Ahammed, G. F. Ali, Dr.; Parameshachari, B. D., Dr.
2017-08-01
Cloud computing describes highly scalable resources provided as an external service via the Internet on a basis of pay-per-use. From the economic point of view, the main attractiveness of cloud computing is that users only use what they need, and only pay for what they actually use. Resources are available for access from the cloud at any time, and from any location through networks. Cloud computing is gradually replacing the traditional Information Technology Infrastructure. Securing data is one of the leading concerns and biggest issue for cloud computing. Privacy of information is always a crucial pointespecially when an individual’s personalinformation or sensitive information is beingstored in the organization. It is indeed true that today; cloud authorization systems are notrobust enough. This paper presents a unified approach for analyzing the various security issues and techniques to overcome the challenges in the cloud environment.
Now and Next-Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Computing
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed “cloud computing”) has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows. PMID:23248640
Exploring the Strategies for a Community College Transition into a Cloud-Computing Environment
ERIC Educational Resources Information Center
DeBary, Narges
2017-01-01
The use of the Internet has resulted in the birth of an innovative virtualization technology called cloud computing. Virtualization can tremendously improve the instructional and operational systems of a community college. Although the incidental adoption of the cloud solutions in the community colleges of higher education has been increased,…
Cloud Computing E-Communication Services in the University Environment
ERIC Educational Resources Information Center
Babin, Ron; Halilovic, Branka
2017-01-01
The use of cloud computing services has grown dramatically in post-secondary institutions in the last decade. In particular, universities have been attracted to the low-cost and flexibility of acquiring cloud software services from Google, Microsoft and others, to implement e-mail, calendar and document management and other basic office software.…
ERIC Educational Resources Information Center
Ibrahim, Sara
2017-01-01
The insider security threat causes new and dangerous dimensions in cloud computing. Those internal threats are originated from contractors or the business partners' input that have access to the systems. A study of trustworthiness and transparency might assist the organizations to monitor employees' activity more cautiously on cloud technologies…
Oh, Jeongsu; Choi, Chi-Hwan; Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo
2016-01-01
High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology-a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in JAVA and is freely available at http://clustomcloud.kopri.re.kr.
Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo
2016-01-01
High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology–a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in JAVA and is freely available at http://clustomcloud.kopri.re.kr. PMID:26954507
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Fisher, W.; Yoksas, T.
2014-12-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high student expectations. These changes are upending traditional approaches to accessing and using data and software. It is clear that Unidata's products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our initial efforts to deploy a subset of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.
Meng, Bowen; Pratx, Guillem; Xing, Lei
2011-12-01
Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm. Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. An ultrafast, reliable and scalable 4D CBCT∕CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment.
Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment
Meng, Bowen; Pratx, Guillem; Xing, Lei
2011-01-01
Purpose: Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT/CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. Methods: In this work, we accelerated the Feldcamp–Davis–Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT/CT reconstruction algorithm. Results: Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10−7. Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. Conclusions: An ultrafast, reliable and scalable 4D CBCT/CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment. PMID:22149842
Trust Model to Enhance Security and Interoperability of Cloud Environment
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Ping, Lingdi
Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.
NASA Astrophysics Data System (ADS)
Aneri, Parikh; Sumathy, S.
2017-11-01
Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
Towards an Approach of Semantic Access Control for Cloud Computing
NASA Astrophysics Data System (ADS)
Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai
With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.
High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away
NASA Astrophysics Data System (ADS)
Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.
2012-09-01
By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data, and so the costs of running applications vary widely according to how they use resources. The cloud is well suited to processing CPU-bound (and memory bound) workflows such as the periodogram code, given the relatively low cost of processing in comparison with I/O operations. I/O-bound applications such as Montage perform best on high-performance clusters with fast networks and parallel file-systems. Science-driven Cyberinfrastructure: Montage has been widely used as a driver application to develop workflow management services, such as task scheduling in distributed environments, designing fault tolerance techniques for job schedulers, and developing workflow orchestration techniques. Running Parallel Applications Across Distributed Cloud Environments: Data processing will eventually take place in parallel distributed across cyber infrastructure environments having different architectures. We have used the Pegasus Work Management System (WMS) to successfully run applications across three very different environments: TeraGrid, OSG (Open Science Grid), and FutureGrid. Provisioning resources across different grids and clouds (also referred to as Sky Computing), involves establishing a distributed environment, where issues of, e.g, remote job submission, data management, and security need to be addressed. This environment also requires building virtual machine images that can run in different environments. Usually, each cloud provides basic images that can be customized with additional software and services. In most of our work, we provisioned compute resources using a custom application, called Wrangler. Pegasus WMS abstracts the architectures of the compute environments away from the end-user, and can be considered a first-generation tool suitable for scientists to run their applications on disparate environments.
Detecting Distributed SQL Injection Attacks in a Eucalyptus Cloud Environment
NASA Technical Reports Server (NTRS)
Kebert, Alan; Barnejee, Bikramjit; Solano, Juan; Solano, Wanda
2013-01-01
The cloud computing environment offers malicious users the ability to spawn multiple instances of cloud nodes that are similar to virtual machines, except that they can have separate external IP addresses. In this paper we demonstrate how this ability can be exploited by an attacker to distribute his/her attack, in particular SQL injection attacks, in such a way that an intrusion detection system (IDS) could fail to identify this attack. To demonstrate this, we set up a small private cloud, established a vulnerable website in one instance, and placed an IDS within the cloud to monitor the network traffic. We found that an attacker could quite easily defeat the IDS by periodically altering its IP address. To detect such an attacker, we propose to use multi-agent plan recognition, where the multiple source IPs are considered as different agents who are mounting a collaborative attack. We show that such a formulation of this problem yields a more sophisticated approach to detecting SQL injection attacks within a cloud computing environment.
Cloud4Psi: cloud computing for 3D protein structure similarity searching.
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-10-01
Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
Cloudbus Toolkit for Market-Oriented Cloud Computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian
This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.
A Novel Cost Based Model for Energy Consumption in Cloud Computing
Horri, A.; Dastghaibyfard, Gh.
2015-01-01
Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716
A novel cost based model for energy consumption in cloud computing.
Horri, A; Dastghaibyfard, Gh
2015-01-01
Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.
Directly executable formal models of middleware for MANET and Cloud Networking and Computing
NASA Astrophysics Data System (ADS)
Pashchenko, D. V.; Sadeq Jaafar, Mustafa; Zinkin, S. A.; Trokoz, D. A.; Pashchenko, T. U.; Sinev, M. P.
2016-04-01
The article considers some “directly executable” formal models that are suitable for the specification of computing and networking in the cloud environment and other networks which are similar to wireless networks MANET. These models can be easily programmed and implemented on computer networks.
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.
2016-12-01
The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.
Realistic natural atmospheric phenomena and weather effects for interactive virtual environments
NASA Astrophysics Data System (ADS)
McLoughlin, Leigh
Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physically-based simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation..
A high performance scientific cloud computing environment for materials simulations
NASA Astrophysics Data System (ADS)
Jorissen, K.; Vila, F. D.; Rehr, J. J.
2012-09-01
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
Speeding Up Geophysical Research Using Docker Containers Within Multi-Cloud Environment.
NASA Astrophysics Data System (ADS)
Synytsky, R.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.; Starovoit, Y. O.
2016-12-01
How useful are the geophysical observations in a scope of minimizing losses from natural disasters today? Does it help to decrease number of human victims during tsunami and earthquake? Unfortunately it's still at early stage these days. It's a big goal and achievement to make such observations more useful by improving early warning and prediction systems with the help of cloud computing. Cloud computing technologies have proved the ability to speed up application development in many areas for 10 years already. Cloud unlocks new opportunities for geoscientists by providing access to modern data processing tools and algorithms including real-time high-performance computing, big data processing, artificial intelligence and others. Emerging lightweight cloud technologies, such as Docker containers, are gaining wide traction in IT due to the fact of faster and more efficient deployment of different applications in a cloud environment. It allows to deploy and manage geophysical applications and systems in minutes across multiple clouds and data centers that becomes of utmost importance for the next generation applications. In this session we'll demonstrate how Docker containers technology within multi-cloud can accelerate the development of applications specifically designed for geophysical researches.
Phenomenology tools on cloud infrastructures using OpenStack
NASA Astrophysics Data System (ADS)
Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.
2013-04-01
We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.
Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment
Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon
2013-01-01
Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906
Secure encapsulation and publication of biological services in the cloud computing environment.
Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon
2013-01-01
Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.
Hybrid cloud and cluster computing paradigms for life science applications
2010-01-01
Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982
Hybrid cloud and cluster computing paradigms for life science applications.
Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey
2010-12-21
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
High-performance scientific computing in the cloud
NASA Astrophysics Data System (ADS)
Jorissen, Kevin; Vila, Fernando; Rehr, John
2011-03-01
Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.
Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing
NASA Astrophysics Data System (ADS)
Tang, Jingyin; Matyas, Corene J.
2018-02-01
Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.
Environments for online maritime simulators with cloud computing capabilities
NASA Astrophysics Data System (ADS)
Raicu, Gabriel; Raicu, Alexandra
2016-12-01
This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.
Enterprise Cloud Architecture for Chinese Ministry of Railway
NASA Astrophysics Data System (ADS)
Shan, Xumei; Liu, Hefeng
Enterprise like PRC Ministry of Railways (MOR), is facing various challenges ranging from highly distributed computing environment and low legacy system utilization, Cloud Computing is increasingly regarded as one workable solution to address this. This article describes full scale cloud solution with Intel Tashi as virtual machine infrastructure layer, Hadoop HDFS as computing platform, and self developed SaaS interface, gluing virtual machine and HDFS with Xen hypervisor. As a result, on demand computing task application and deployment have been tackled per MOR real working scenarios at the end of article.
Dynamic VM Provisioning for TORQUE in a Cloud Environment
NASA Astrophysics Data System (ADS)
Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.
2014-06-01
Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.
A review on the state-of-the-art privacy-preserving approaches in the e-health clouds.
Abbas, Assad; Khan, Samee U
2014-07-01
Cloud computing is emerging as a new computing paradigm in the healthcare sector besides other business domains. Large numbers of health organizations have started shifting the electronic health information to the cloud environment. Introducing the cloud services in the health sector not only facilitates the exchange of electronic medical records among the hospitals and clinics, but also enables the cloud to act as a medical record storage center. Moreover, shifting to the cloud environment relieves the healthcare organizations of the tedious tasks of infrastructure management and also minimizes development and maintenance costs. Nonetheless, storing the patient health data in the third-party servers also entails serious threats to data privacy. Because of probable disclosure of medical records stored and exchanged in the cloud, the patients' privacy concerns should essentially be considered when designing the security and privacy mechanisms. Various approaches have been used to preserve the privacy of the health information in the cloud environment. This survey aims to encompass the state-of-the-art privacy-preserving approaches employed in the e-Health clouds. Moreover, the privacy-preserving approaches are classified into cryptographic and noncryptographic approaches and taxonomy of the approaches is also presented. Furthermore, the strengths and weaknesses of the presented approaches are reported and some open issues are highlighted.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan; Fisher, Ward; Yoksas, Tom
2015-04-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high expectations from students who have grown up with smartphones and tablets. These changes are upending traditional approaches to accessing and using data and software. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable in the form of downloadable Unidata-in-a-box virtual images, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our ongoing efforts to deploy a suite of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
Legal issues in clouds: towards a risk inventory.
Djemame, Karim; Barnitzke, Benno; Corrales, Marcelo; Kiran, Mariam; Jiang, Ming; Armstrong, Django; Forgó, Nikolaus; Nwankwo, Iheanyi
2013-01-28
Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project.
2010-05-01
Figure 2: Cloud Computing Deployment Models 13 Figure 3: NIST Essential Characteristics 14 Figure 4: NASA Nebula Container 37...Access Computing Environment (RACE) program, the National Aeronautics and Space Administration’s (NASA) Nebula program, and the Department of...computing programs: the DOD’s RACE program; NASA’s Nebula program; and Department of Transportation’s CARS program, including lessons learned related
ERIC Educational Resources Information Center
Sclater, Niall
2010-01-01
Elearning has grown rapidly in importance for institutions and has been largely facilitated through the "walled garden" of the virtual learning environment. Meanwhile many students are creating their own personal learning environments by combining the various Web 2.0 services they find most useful. Cloud computing offers new…
Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.
2015-01-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363
Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L
2015-02-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Secure Dynamic access control scheme of PHR in cloud computing.
Chen, Tzer-Shyong; Liu, Chia-Hui; Chen, Tzer-Long; Chen, Chin-Sheng; Bau, Jian-Guo; Lin, Tzu-Ching
2012-12-01
With the development of information technology and medical technology, medical information has been developed from traditional paper records into electronic medical records, which have now been widely applied. The new-style medical information exchange system "personal health records (PHR)" is gradually developed. PHR is a kind of health records maintained and recorded by individuals. An ideal personal health record could integrate personal medical information from different sources and provide complete and correct personal health and medical summary through the Internet or portable media under the requirements of security and privacy. A lot of personal health records are being utilized. The patient-centered PHR information exchange system allows the public autonomously maintain and manage personal health records. Such management is convenient for storing, accessing, and sharing personal medical records. With the emergence of Cloud computing, PHR service has been transferred to storing data into Cloud servers that the resources could be flexibly utilized and the operation cost can be reduced. Nevertheless, patients would face privacy problem when storing PHR data into Cloud. Besides, it requires a secure protection scheme to encrypt the medical records of each patient for storing PHR into Cloud server. In the encryption process, it would be a challenge to achieve accurately accessing to medical records and corresponding to flexibility and efficiency. A new PHR access control scheme under Cloud computing environments is proposed in this study. With Lagrange interpolation polynomial to establish a secure and effective PHR information access scheme, it allows to accurately access to PHR with security and is suitable for enormous multi-users. Moreover, this scheme also dynamically supports multi-users in Cloud computing environments with personal privacy and offers legal authorities to access to PHR. From security and effectiveness analyses, the proposed PHR access scheme in Cloud computing environments is proven flexible and secure and could effectively correspond to real-time appending and deleting user access authorization and appending and revising PHR records.
The direction of cloud computing for Malaysian education sector in 21st century
NASA Astrophysics Data System (ADS)
Jaafar, Jazurainifariza; Rahman, M. Nordin A.; Kadir, M. Fadzil A.; Shamsudin, Syadiah Nor; Saany, Syarilla Iryani A.
2017-08-01
In 21st century, technology has turned learning environment into a new way of education to make learning systems more effective and systematic. Nowadays, education institutions are faced many challenges to ensure the teaching and learning process is running smoothly and manageable. Some of challenges in the current education management are lack of integrated systems, high cost of maintenance, difficulty of configuration and deployment as well as complexity of storage provision. Digital learning is an instructional practice that use technology to make learning experience more effective, provides education process more systematic and attractive. Digital learning can be considered as one of the prominent application that implemented under cloud computing environment. Cloud computing is a type of network resources that provides on-demands services where the users can access applications inside it at any location and no time border. It also promises for minimizing the cost of maintenance and provides a flexible of data storage capacity. The aim of this article is to review the definition and types of cloud computing for improving digital learning management as required in the 21st century education. The analysis of digital learning context focused on primary school in Malaysia. Types of cloud applications and services in education sector are also discussed in the article. Finally, gap analysis and direction of cloud computing in education sector for facing the 21st century challenges are suggested.
Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.
This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elasticmore » Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.« less
ProteoCloud: a full-featured open source proteomics cloud computing pipeline.
Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart
2013-08-02
We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com. Copyright © 2012 Elsevier B.V. All rights reserved.
Protecting genomic data analytics in the cloud: state of the art and opportunities.
Tang, Haixu; Jiang, Xiaoqian; Wang, Xiaofeng; Wang, Shuang; Sofia, Heidi; Fox, Dov; Lauter, Kristin; Malin, Bradley; Telenti, Amalio; Xiong, Li; Ohno-Machado, Lucila
2016-10-13
The outsourcing of genomic data into public cloud computing settings raises concerns over privacy and security. Significant advancements in secure computation methods have emerged over the past several years, but such techniques need to be rigorously evaluated for their ability to support the analysis of human genomic data in an efficient and cost-effective manner. With respect to public cloud environments, there are concerns about the inadvertent exposure of human genomic data to unauthorized users. In analyses involving multiple institutions, there is additional concern about data being used beyond agreed research scope and being prcoessed in untrused computational environments, which may not satisfy institutional policies. To systematically investigate these issues, the NIH-funded National Center for Biomedical Computing iDASH (integrating Data for Analysis, 'anonymization' and SHaring) hosted the second Critical Assessment of Data Privacy and Protection competition to assess the capacity of cryptographic technologies for protecting computation over human genomes in the cloud and promoting cross-institutional collaboration. Data scientists were challenged to design and engineer practical algorithms for secure outsourcing of genome computation tasks in working software, whereby analyses are performed only on encrypted data. They were also challenged to develop approaches to enable secure collaboration on data from genomic studies generated by multiple organizations (e.g., medical centers) to jointly compute aggregate statistics without sharing individual-level records. The results of the competition indicated that secure computation techniques can enable comparative analysis of human genomes, but greater efficiency (in terms of compute time and memory utilization) are needed before they are sufficiently practical for real world environments.
Virtual Business Operating Environment in the Cloud: Conceptual Architecture and Challenges
NASA Astrophysics Data System (ADS)
Nezhad, Hamid R. Motahari; Stephenson, Bryan; Singhal, Sharad; Castellanos, Malu
Advances in service oriented architecture (SOA) have brought us close to the once imaginary vision of establishing and running a virtual business, a business in which most or all of its business functions are outsourced to online services. Cloud computing offers a realization of SOA in which IT resources are offered as services that are more affordable, flexible and attractive to businesses. In this paper, we briefly study advances in cloud computing, and discuss the benefits of using cloud services for businesses and trade-offs that they have to consider. We then present 1) a layered architecture for the virtual business, and 2) a conceptual architecture for a virtual business operating environment. We discuss the opportunities and research challenges that are ahead of us in realizing the technical components of this conceptual architecture. We conclude by giving the outlook and impact of cloud services on both large and small businesses.
CERN Computing in Commercial Clouds
NASA Astrophysics Data System (ADS)
Cordeiro, C.; Field, L.; Garrido Bear, B.; Giordano, D.; Jones, B.; Keeble, O.; Manzi, A.; Martelli, E.; McCance, G.; Moreno-García, D.; Traylen, S.
2017-10-01
By the end of 2016 more than 10 Million core-hours of computing resources have been delivered by several commercial cloud providers to the four LHC experiments to run their production workloads, from simulation to full chain processing. In this paper we describe the experience gained at CERN in procuring and exploiting commercial cloud resources for the computing needs of the LHC experiments. The mechanisms used for provisioning, monitoring, accounting, alarming and benchmarking will be discussed, as well as the involvement of the LHC collaborations in terms of managing the workflows of the experiments within a multicloud environment.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-07-24
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.
Integration of Cloud resources in the LHCb Distributed Computing
NASA Astrophysics Data System (ADS)
Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel
2014-06-01
This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.
An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.
2015-07-01
Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.
Airborne Cloud Computing Environment (ACCE)
NASA Technical Reports Server (NTRS)
Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz
2011-01-01
Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.
A Framework for Collaborative and Convenient Learning on Cloud Computing Platforms
ERIC Educational Resources Information Center
Sharma, Deepika; Kumar, Vikas
2017-01-01
The depth of learning resides in collaborative work with more engagement and fun. Technology can enhance collaboration with a higher level of convenience and cloud computing can facilitate this in a cost effective and scalable manner. However, to deploy a successful online learning environment, elementary components of learning pedagogy must be…
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
A service based adaptive U-learning system using UX.
Jeong, Hwa-Young; Yi, Gangman
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques.
A Service Based Adaptive U-Learning System Using UX
Jeong, Hwa-Young
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832
Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing
NASA Technical Reports Server (NTRS)
Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane
2012-01-01
Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.
A computational- And storage-cloud for integration of biodiversity collections
Matsunaga, A.; Thompson, A.; Figueiredo, R. J.; Germain-Aubrey, C.C; Collins, M.; Beeman, R.S; Macfadden, B.J.; Riccardi, G.; Soltis, P.S; Page, L. M.; Fortes, J.A.B
2013-01-01
A core mission of the Integrated Digitized Biocollections (iDigBio) project is the building and deployment of a cloud computing environment customized to support the digitization workflow and integration of data from all U.S. nonfederal biocollections. iDigBio chose to use cloud computing technologies to deliver a cyberinfrastructure that is flexible, agile, resilient, and scalable to meet the needs of the biodiversity community. In this context, this paper describes the integration of open source cloud middleware, applications, and third party services using standard formats, protocols, and services. In addition, this paper demonstrates the value of the digitized information from collections in a broader scenario involving multiple disciplines.
A cloud computing based platform for sleep behavior and chronic diseases collaborative research.
Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui
2014-01-01
The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.
Dynamic Extension of a Virtualized Cluster by using Cloud Resources
NASA Astrophysics Data System (ADS)
Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter
2012-12-01
The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.
Multi-Dimensional Optimization for Cloud Based Multi-Tier Applications
ERIC Educational Resources Information Center
Jung, Gueyoung
2010-01-01
Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these…
Prediction based proactive thermal virtual machine scheduling in green clouds.
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.
Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
NASA Astrophysics Data System (ADS)
Chakravarthy, Srinivas R.; Rumyantsev, Alexander
2018-03-01
Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.
NASA Astrophysics Data System (ADS)
Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock
2017-01-01
The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.
Survey on Security Issues in File Management in Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Gupta, Udit
2015-06-01
Cloud computing has pervaded through every aspect of Information technology in past decade. It has become easier to process plethora of data, generated by various devices in real time, with the advent of cloud networks. The privacy of users data is maintained by data centers around the world and hence it has become feasible to operate on that data from lightweight portable devices. But with ease of processing comes the security aspect of the data. One such security aspect is secure file transfer either internally within cloud or externally from one cloud network to another. File management is central to cloud computing and it is paramount to address the security concerns which arise out of it. This survey paper aims to elucidate the various protocols which can be used for secure file transfer and analyze the ramifications of using each protocol.
Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.
Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu
2015-01-01
The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.
Secure data sharing in public cloud
NASA Astrophysics Data System (ADS)
Venkataramana, Kanaparti; Naveen Kumar, R.; Tatekalva, Sandhya; Padmavathamma, M.
2012-04-01
Secure multi-party protocols have been proposed for entities (organizations or individuals) that don't fully trust each other to share sensitive information. Many types of entities need to collect, analyze, and disseminate data rapidly and accurately, without exposing sensitive information to unauthorized or untrusted parties. Solutions based on secure multiparty computation guarantee privacy and correctness, at an extra communication (too costly in communication to be practical) and computation cost. The high overhead motivates us to extend this SMC to cloud environment which provides large computation and communication capacity which makes SMC to be used between multiple clouds (i.e., it may between private or public or hybrid clouds).Cloud may encompass many high capacity servers which acts as a hosts which participate in computation (IaaS and PaaS) for final result, which is controlled by Cloud Trusted Authority (CTA) for secret sharing within the cloud. The communication between two clouds is controlled by High Level Trusted Authority (HLTA) which is one of the hosts in a cloud which provides MgaaS (Management as a Service). Due to high risk for security in clouds, HLTA generates and distributes public keys and private keys by using Carmichael-R-Prime- RSA algorithm for exchange of private data in SMC between itself and clouds. In cloud, CTA creates Group key for Secure communication between the hosts in cloud based on keys sent by HLTA for exchange of Intermediate values and shares for computation of final result. Since this scheme is extended to be used in clouds( due to high availability and scalability to increase computation power) it is possible to implement SMC practically for privacy preserving in data mining at low cost for the clients.
OpenID connect as a security service in Cloud-based diagnostic imaging systems
NASA Astrophysics Data System (ADS)
Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter
2015-03-01
The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John
2015-04-01
We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted service with Wakari and Microsoft Azure being notable examples. Cloud-hosting of the Notebook allows the same familiar Python interface to be retained but backed by Cloud Computing attributes of scalability, elasticity and resource pooling. This combination makes it a powerful solution to address the needs of long-tail science users of Big Data: an intuitive interactive interface with which to access powerful compute resources. IPython Notebook can be hosted as a single user desktop environment but the recent development by the IPython community of JupyterHub enables it to be run as a multi-user hosting environment. In addition, IPython.parallel allows the exposition of parallel compute infrastructure through a Python interface. Applying these technologies in combination, a collaborative research environment has been developed for OPTIRAD on the UK JASMIN/CEMS facility's private cloud (http://jasmin.ac.uk). Based on this experience, a generic virtualised solution is under development suitable for use by the wider environmental science community - on both JASMIN and portable to third party cloud platforms.
GES DISC Data Recipes in Jupyter Notebooks
NASA Astrophysics Data System (ADS)
Li, A.; Banavige, B.; Garimella, K.; Rice, J.; Shen, S.; Liu, Z.
2017-12-01
The Earth Science Data and Information System (ESDIS) Project manages twelve Distributed Active Archive Centers (DAACs) which are geographically dispersed across the United States. The DAACs are responsible for ingesting, processing, archiving, and distributing Earth science data produced from various sources (satellites, aircraft, field measurements, etc.). In response to projections of an exponential increase in data production, there has been a recent effort to prototype various DAAC activities in the cloud computing environment. This, in turn, led to the creation of an initiative, called the Cloud Analysis Toolkit to Enable Earth Science (CATEES), to develop a Python software package in order to transition Earth science data processing to the cloud. This project, in particular, supports CATEES and has two primary goals. One, transition data recipes created by the Goddard Earth Science Data and Information Service Center (GES DISC) DAAC into an interactive and educational environment using Jupyter Notebooks. Two, acclimate Earth scientists to cloud computing. To accomplish these goals, we create Jupyter Notebooks to compartmentalize the different steps of data analysis and help users obtain and parse data from the command line. We also develop a Docker container, comprised of Jupyter Notebooks, Python library dependencies, and command line tools, and configure it into an easy to deploy package. The end result is an end-to-end product that simulates the use case of end users working in the cloud computing environment.
Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.
2015-12-01
Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.
NASA Astrophysics Data System (ADS)
Cayirci, Erdal; Rong, Chunming; Huiskamp, Wim; Verkoelen, Cor
Military/civilian education training and experimentation networks (ETEN) are an important application area for the cloud computing concept. However, major security challenges have to be overcome to realize an ETEN. These challenges can be categorized as security challenges typical to any cloud and multi-level security challenges specific to an ETEN environment. The cloud approach for ETEN is introduced and its security challenges are explained in this paper.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-01-01
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient. PMID:28737733
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.
Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration
Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin
2010-01-01
This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235
OpenID Connect as a security service in cloud-based medical imaging systems.
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-04-01
The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.
Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques
NASA Astrophysics Data System (ADS)
Bhadauria, Rohit; Sanyal, Sugata
2012-06-01
Cloud Computing holds the potential to eliminate the requirements for setting up of high-cost computing infrastructure for IT-based solutions and services that the industry uses. It promises to provide a flexible IT architecture, accessible through internet for lightweight portable devices. This would allow multi-fold increase in the capacity or capabilities of the existing and new software. In a cloud computing environment, the entire data reside over a set of networked resources, enabling the data to be accessed through virtual machines. Since these data-centers may lie in any corner of the world beyond the reach and control of users, there are multifarious security and privacy challenges that need to be understood and taken care of. Also, one can never deny the possibility of a server breakdown that has been witnessed, rather quite often in the recent times. There are various issues that need to be dealt with respect to security and privacy in a cloud computing scenario. This extensive survey paper aims to elaborate and analyze the numerous unresolved issues threatening the cloud computing adoption and diffusion affecting the various stake-holders linked to it.
Auspice: Automatic Service Planning in Cloud/Grid Environments
NASA Astrophysics Data System (ADS)
Chiu, David; Agrawal, Gagan
Recent scientific advances have fostered a mounting number of services and data sets available for utilization. These resources, though scattered across disparate locations, are often loosely coupled both semantically and operationally. This loosely coupled relationship implies the possibility of linking together operations and data sets to answer queries. This task, generally known as automatic service composition, therefore abstracts the process of complex scientific workflow planning from the user. We have been exploring a metadata-driven approach toward automatic service workflow composition, among other enabling mechanisms, in our system, Auspice: Automatic Service Planning in Cloud/Grid Environments. In this paper, we present a complete overview of our system's unique features and outlooks for future deployment as the Cloud computing paradigm becomes increasingly eminent in enabling scientific computing.
Strategic Implications of Cloud Computing for Modeling and Simulation (Briefing)
2016-04-01
of Promises with Cloud • Cost efficiency • Unlimited storage • Backup and recovery • Automatic software integration • Easy access to information...activities that wrap the actual exercise itself (e.g., travel for exercise support, data collection, integration , etc.). Cloud -based simulation would...requiring quick delivery rather than fewer large messages requiring high bandwidth. Cloud environments tend to be better at providing high-bandwidth
e-Collaboration for Earth observation (E-CEO): the Cloud4SAR interferometry data challenge
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele; Boissier, Enguerran; Brito, Fabrice; Aas, Christina; Lavender, Samantha; Ribeiro, Rita; Farres, Jordi
2014-05-01
The e-Collaboration for Earth Observation (E-CEO) project addresses the technologies and architectures needed to provide a collaborative research Platform for automating data mining and processing, and information extraction experiments. The Platform serves for the implementation of Data Challenge Contests focusing on Information Extraction for Earth Observations (EO) applications. The possibility to implement multiple processors within a Common Software Environment facilitates the validation, evaluation and transparent peer comparison among different methodologies, which is one of the main requirements rose by scientists who develop algorithms in the EO field. In this scenario, we set up a Data Challenge, referred to as Cloud4SAR (http://wiki.services.eoportal.org/tiki-index.php?page=ECEO), to foster the deployment of Interferometric SAR (InSAR) processing chains within a Cloud Computing platform. While a large variety of InSAR processing software tools are available, they require a high level of expertise and a complex user interaction to be effectively run. Computing a co-seismic interferogram or a 20-years deformation time series on a volcanic area are not easy tasks to be performed in a fully unsupervised way and/or in very short time (hours or less). Benefiting from ESA's E-CEO platform, participants can optimise algorithms on a Virtual Sandbox environment without being expert programmers, and compute results on high performing Cloud platforms. Cloud4SAR requires solving a relatively easy InSAR problem by trying to maximize the exploitation of the processing capabilities provided by a Cloud Computing infrastructure. The proposed challenge offers two different frameworks, each dedicated to participants with different skills, identified as Beginners and Experts. For both of them, the contest mainly resides in the degree of automation of the deployed algorithms, no matter which one is used, as well as in the capability of taking effective benefit from a parallel computing environment.
Thundercloud: Domain specific information security training for the smart grid
NASA Astrophysics Data System (ADS)
Stites, Joseph
In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.
Performance implications from sizing a VM on multi-core systems: A Data analytic application s view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Horey, James L; Begoli, Edmon
In this paper, we present a quantitative performance analysis of data analytics applications running on multi-core virtual machines. Such environments form the core of cloud computing. In addition, data analytics applications, such as Cassandra and Hadoop, are becoming increasingly popular on cloud computing platforms. This convergence necessitates a better understanding of the performance and cost implications of such hybrid systems. For example, the very rst step in hosting applications in virtualized environments, requires the user to con gure the number of virtual processors and the size of memory. To understand performance implications of this step, we benchmarked three Yahoo Cloudmore » Serving Benchmark (YCSB) workloads in a virtualized multi-core environment. Our measurements indicate that the performance of Cassandra for YCSB workloads does not heavily depend on the processing capacity of a system, while the size of the data set is critical to performance relative to allocated memory. We also identi ed a strong relationship between the running time of workloads and various hardware events (last level cache loads, misses, and CPU migrations). From this analysis, we provide several suggestions to improve the performance of data analytics applications running on cloud computing environments.« less
NASA Technical Reports Server (NTRS)
Chaudhary, Aashish; Votava, Petr; Nemani, Ramakrishna R.; Michaelis, Andrew; Kotfila, Chris
2016-01-01
We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.
Analytics and Visualization Pipelines for Big Data on the NASA Earth Exchange (NEX) and OpenNEX
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Votava, P.; Nemani, R. R.; Michaelis, A.; Kotfila, C.
2016-12-01
We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.
Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962
High-Resiliency and Auto-Scaling of Large-Scale Cloud Computing for OCO-2 L2 Full Physics Processing
NASA Astrophysics Data System (ADS)
Hua, H.; Manipon, G.; Starch, M.; Dang, L. B.; Southam, P.; Wilson, B. D.; Avis, C.; Chang, A.; Cheng, C.; Smyth, M.; McDuffie, J. L.; Ramirez, P.
2015-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as SWOT and NISAR where data volumes and data throughput rates are order of magnitude larger than present day missions. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. We present our experiences on deploying a hybrid-cloud computing science data system (HySDS) for the OCO-2 Science Computing Facility to support large-scale processing of their Level-2 full physics data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer ~10X costs savings but with an unpredictable computing environment based on market forces. We will present how we enabled high-tolerance computing in order to achieve large-scale computing as well as operational cost savings.
A lightweight distributed framework for computational offloading in mobile cloud computing.
Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul
2014-01-01
The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.
A Lightweight Distributed Framework for Computational Offloading in Mobile Cloud Computing
Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul
2014-01-01
The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC. PMID:25127245
NASA Astrophysics Data System (ADS)
Watari, S.; Morikawa, Y.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Kato, H.; Shimojo, S.; Murata, K. T.
2010-12-01
In the Solar-Terrestrial Physics (STP) field, spatio-temporal resolution of computer simulations is getting higher and higher because of tremendous advancement of supercomputers. A more advanced technology is Grid Computing that integrates distributed computational resources to provide scalable computing resources. In the simulation research, it is effective that a researcher oneself designs his physical model, performs calculations with a supercomputer, and analyzes and visualizes for consideration by a familiar method. A supercomputer is far from an analysis and visualization environment. In general, a researcher analyzes and visualizes in the workstation (WS) managed at hand because the installation and the operation of software in the WS are easy. Therefore, it is necessary to copy the data from the supercomputer to WS manually. Time necessary for the data transfer through long delay network disturbs high-accuracy simulations actually. In terms of usefulness, integrating a supercomputer and an analysis and visualization environment seamlessly with a researcher's familiar method is important. NICT has been developing a cloud computing environment (NICT Space Weather Cloud). In the NICT Space Weather Cloud, disk servers are located near its supercomputer and WSs for data analysis and visualization. They are connected to JGN2plus that is high-speed network for research and development. Distributed virtual high-capacity storage is also constructed by Grid Datafarm (Gfarm v2). Huge-size data output from the supercomputer is transferred to the virtual storage through JGN2plus. A researcher can concentrate on the research by a familiar method without regard to distance between a supercomputer and an analysis and visualization environment. Now, total 16 disk servers are setup in NICT headquarters (at Koganei, Tokyo), JGN2plus NOC (at Otemachi, Tokyo), Okinawa Subtropical Environment Remote-Sensing Center, and Cybermedia Center, Osaka University. They are connected on JGN2plus, and they constitute 1PB (physical size) virtual storage by Gfarm v2. These disk servers are connected with supercomputers of NICT and Osaka University. A system that data output from the supercomputers are automatically transferred to the virtual storage had been built up. Transfer rate is about 50 GB/hrs by actual measurement. It is estimated that the performance is reasonable for a certain simulation and analysis for reconstruction of coronal magnetic field. This research is assumed an experiment of the system, and the verification of practicality is advanced at the same time. Herein we introduce an overview of the space weather cloud system so far we have developed. We also demonstrate several scientific results using the space weather cloud system. We also introduce several web applications of the cloud as a service of the space weather cloud, which is named as "e-SpaceWeather" (e-SW). The e-SW provides with a variety of space weather online services from many aspects.
3D Viewer Platform of Cloud Clustering Management System: Google Map 3D
NASA Astrophysics Data System (ADS)
Choi, Sung-Ja; Lee, Gang-Soo
The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].
Signal and image processing algorithm performance in a virtual and elastic computing environment
NASA Astrophysics Data System (ADS)
Bennett, Kelly W.; Robertson, James
2013-05-01
The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.
Cloud Computing and Its Applications in GIS
NASA Astrophysics Data System (ADS)
Kang, Cao
2011-12-01
Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)
Unidata Cyberinfrastructure in the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Young, J. W.
2016-12-01
Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers, Python scientific libraries, scripts, and workflows; * Exploring end-to-end modeling and prediction capabilities in the cloud; * Partnering with NOAA and public cloud vendors (e.g., Amazon and OCC) on the NOAA Big Data Project to harness their capabilities and resources for the benefit of the academic community.
Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che
2014-01-16
To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.
2014-01-01
Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926
OpenID Connect as a security service in cloud-based medical imaging systems
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-01-01
Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682
Range wise busy checking 2-way imbalanced algorithm for cloudlet allocation in cloud environment
NASA Astrophysics Data System (ADS)
Alanzy, Mohammed; Latip, Rohaya; Muhammed, Abdullah
2018-05-01
Cloud computing considers as a new business paradigm and a popular platform over the last few years. Many organizations, agencies, and departments consider responsible tasks time and tasks needed to be accomplished as soon as possible. These agencies counter IT issues due to the massive arise of data, applications, and solution scopes. Currently, the main issue related with the cloud is the way of making the environment of the cloud computing more qualified, and this way needs a competent allocation strategy of the cloudlet, Thus, there are huge number of studies conducted with regards to this matter that sought to assign the cloudlets to VMs or resources by variety of strategies. In this paper we have proposed range wise busy checking 2-way imbalanced Algorithm in cloud computing. Compare to other methods, it decreases the completion time to finish tasks’ execution, it is considered the fundamental part to enhance the system performance such as the makespan. This algorithm was simulated using Cloudsim to give more opportunity to the higher VM speed to accommodate more Cloudlets in its local queue without considering the threshold balance condition. The simulation result shows that the average makespan time is lesser compare to the previous cloudlet allocation strategy.
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-07
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.
Human face recognition using eigenface in cloud computing environment
NASA Astrophysics Data System (ADS)
Siregar, S. T. M.; Syahputra, M. F.; Rahmat, R. F.
2018-02-01
Doing a face recognition for one single face does not take a long time to process, but if we implement attendance system or security system on companies that have many faces to be recognized, it will take a long time. Cloud computing is a computing service that is done not on a local device, but on an internet connected to a data center infrastructure. The system of cloud computing also provides a scalability solution where cloud computing can increase the resources needed when doing larger data processing. This research is done by applying eigenface while collecting data as training data is also done by using REST concept to provide resource, then server can process the data according to existing stages. After doing research and development of this application, it can be concluded by implementing Eigenface, recognizing face by applying REST concept as endpoint in giving or receiving related information to be used as a resource in doing model formation to do face recognition.
Toward a web-based real-time radiation treatment planning system in a cloud computing environment.
Na, Yong Hum; Suh, Tae-Suk; Kapp, Daniel S; Xing, Lei
2013-09-21
To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are identical to PC-based IMRT and VMAT plans, confirming the reliability of the cloud computing platform. This cloud computing infrastructure has been established for a radiation treatment planning. It substantially improves the speed of inverse planning and makes future on-treatment adaptive re-planning possible.
Toward a web-based real-time radiation treatment planning system in a cloud computing environment
NASA Astrophysics Data System (ADS)
Hum Na, Yong; Suh, Tae-Suk; Kapp, Daniel S.; Xing, Lei
2013-09-01
To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an ‘on-demand’ basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture’s constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm2) from the Varian TrueBeamTM STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are identical to PC-based IMRT and VMAT plans, confirming the reliability of the cloud computing platform. This cloud computing infrastructure has been established for a radiation treatment planning. It substantially improves the speed of inverse planning and makes future on-treatment adaptive re-planning possible.
The structure of the clouds distributed operating system
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.
1989-01-01
A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data and fault-tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vang, Leng; Prescott, Steven R; Smith, Curtis
In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.
2012-03-01
by using a common communication technology there is no need to develop a complicated communications plan and generate an ad - hoc communications...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Maintaining an accurate Common Operational Picture (COP) is a strategic requirement for...TERMS Android Programming, Cloud Computing, Common Operating Picture, Web Programing 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT
Large-scale parallel genome assembler over cloud computing environment.
Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong
2017-06-01
The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.
Developing cloud-based Business Process Management (BPM): a survey
NASA Astrophysics Data System (ADS)
Mercia; Gunawan, W.; Fajar, A. N.; Alianto, H.; Inayatulloh
2018-03-01
In today’s highly competitive business environment, modern enterprises are dealing difficulties to cut unnecessary costs, eliminate wastes and delivery huge benefits for the organization. Companies are increasingly turning to a more flexible IT environment to help them realize this goal. For this reason, the article applies cloud based Business Process Management (BPM) that enables to focus on modeling, monitoring and process management. Cloud based BPM consists of business processes, business information and IT resources, which help build real-time intelligence systems, based on business management and cloud technology. Cloud computing is a paradigm that involves procuring dynamically measurable resources over the internet as an IT resource service. Cloud based BPM service enables to address common problems faced by traditional BPM, especially in promoting flexibility, event-driven business process to exploit opportunities in the marketplace.
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce
Pratx, Guillem; Xing, Lei
2011-01-01
Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. PMID:22191916
Use of cloud computing technology in natural hazard assessment and emergency management
NASA Astrophysics Data System (ADS)
Webley, P. W.; Dehn, J.
2015-12-01
During a natural hazard event, the most up-to-date data needs to be in the hands of those on the front line. Decision support system tools can be developed to provide access to pre-made outputs to quickly assess the hazard and potential risk. However, with the ever growing availability of new satellite data as well as ground and airborne data generated in real-time there is a need to analyze the large volumes of data in an easy-to-access and effective environment. With the growth in the use of cloud computing, where the analysis and visualization system can grow with the needs of the user, then these facilities can used to provide this real-time analysis. Think of a central command center uploading the data to the cloud compute system and then those researchers in-the-field connecting to a web-based tool to view the newly acquired data. New data can be added by any user and then viewed instantly by anyone else in the organization through the cloud computing interface. This provides the ideal tool for collaborative data analysis, hazard assessment and decision making. We present the rationale for developing a cloud computing systems and illustrate how this tool can be developed for use in real-time environments. Users would have access to an interactive online image analysis tool without the need for specific remote sensing software on their local system therefore increasing their understanding of the ongoing hazard and mitigate its impact on the surrounding region.
Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.
Abouelhoda, Mohamed; Issa, Shadi Alaa; Ghanem, Moustafa
2012-05-04
Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis.The system can be accessed either through a cloud-enabled web-interface or downloaded and installed to run within the user's local environment. All resources related to Tavaxy are available at http://www.tavaxy.org.
Lee, Keonsoo; Rho, Seungmin; Lee, Seok-Won
2014-01-01
In mobile cloud computing environment, the cooperation of distributed computing objects is one of the most important requirements for providing successful cloud services. To satisfy this requirement, all the members, who are employed in the cooperation group, need to share the knowledge for mutual understanding. Even if ontology can be the right tool for this goal, there are several issues to make a right ontology. As the cost and complexity of managing knowledge increase according to the scale of the knowledge, reducing the size of ontology is one of the critical issues. In this paper, we propose a method of extracting ontology module to increase the utility of knowledge. For the given signature, this method extracts the ontology module, which is semantically self-contained to fulfill the needs of the service, by considering the syntactic structure and semantic relation of concepts. By employing this module, instead of the original ontology, the cooperation of computing objects can be performed with less computing load and complexity. In particular, when multiple external ontologies need to be combined for more complex services, this method can be used to optimize the size of shared knowledge.
Performance Evaluation of Resource Management in Cloud Computing Environments.
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price.
Performance Evaluation of Resource Management in Cloud Computing Environments
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price. PMID:26555730
Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond
2015-01-01
The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.
Data Center Consolidation: A Step towards Infrastructure Clouds
NASA Astrophysics Data System (ADS)
Winter, Markus
Application service providers face enormous challenges and rising costs in managing and operating a growing number of heterogeneous system and computing landscapes. Limitations of traditional computing environments force IT decision-makers to reorganize computing resources within the data center, as continuous growth leads to an inefficient utilization of the underlying hardware infrastructure. This paper discusses a way for infrastructure providers to improve data center operations based on the findings of a case study on resource utilization of very large business applications and presents an outlook beyond server consolidation endeavors, transforming corporate data centers into compute clouds.
Optimization of over-provisioned clouds
NASA Astrophysics Data System (ADS)
Balashov, N.; Baranov, A.; Korenkov, V.
2016-09-01
The functioning of modern applications in cloud-centers is characterized by a huge variety of computational workloads generated. This causes uneven workload distribution and as a result leads to ineffective utilization of cloud-centers' hardware. The proposed article addresses the possible ways to solve this issue and demonstrates that it is a matter of necessity to optimize cloud-centers' hardware utilization. As one of the possible ways to solve the problem of the inefficient resource utilization in heterogeneous cloud-environments an algorithm of dynamic re-allocation of virtual resources is suggested.
NASA Astrophysics Data System (ADS)
Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.
2010-12-01
Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage system performs as one disk). There are three supercomputers allocated on the cloud, one from Tokyo, one from Osaka and the other from Nagoya. One's simulation job data on any supercomputers are saved on the cloud data storage (same directory); it is a kind of virtual computing environment. The tiled display wall has 36 panels acting as one display; the pixel (resolution) size of it is as large as 18000x4300. This size is enough to preview or analyze the large-scale computer simulation data. It also allows us to take a look of multiple (e.g., 100 pictures) on one screen together with many researchers. In our talk we also present a brief report of the initial results using the OneSpaceNet for Global MHD simulations as an example of successful use of our science cloud; (i) Ultra-high time resolution visualization of Global MHD simulations on the large-scale storage and parallel processing system on the cloud, (ii) Database of real-time Global MHD simulation and statistic analyses of the data, and (iii) 3D Web service of Global MHD simulations.
NASA Astrophysics Data System (ADS)
Pierce, S. A.
2017-12-01
Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.
Application-oriented offloading in heterogeneous networks for mobile cloud computing
NASA Astrophysics Data System (ADS)
Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.
2018-04-01
Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-08
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.
A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm
Chen, Jui-Le; Yang, Chu-Sing
2013-01-01
The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result. PMID:23762864
A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation
Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas
2011-01-01
High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089
Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)
NASA Astrophysics Data System (ADS)
Nebert, D. D.; Huang, Q.; Yang, C.
2013-12-01
The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.
Behavior Life Style Analysis for Mobile Sensory Data in Cloud Computing through MapReduce
Hussain, Shujaat; Bang, Jae Hun; Han, Manhyung; Ahmed, Muhammad Idris; Amin, Muhammad Bilal; Lee, Sungyoung; Nugent, Chris; McClean, Sally; Scotney, Bryan; Parr, Gerard
2014-01-01
Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends. PMID:25420151
Behavior life style analysis for mobile sensory data in cloud computing through MapReduce.
Hussain, Shujaat; Bang, Jae Hun; Han, Manhyung; Ahmed, Muhammad Idris; Amin, Muhammad Bilal; Lee, Sungyoung; Nugent, Chris; McClean, Sally; Scotney, Bryan; Parr, Gerard
2014-11-20
Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends.
Framework Development Supporting the Safety Portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Steven Ralph; Kvarfordt, Kellie Jean; Vang, Leng
2015-07-01
In a collaborating scientific research arena it is important to have an environment where analysts have access to a shared repository of information, documents, and software tools, and be able to accurately maintain and track historical changes in models. The new Safety Portal cloud-based environment will be accessible remotely from anywhere regardless of computing platforms given that the platform has available Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report discusses current development of a cloud-based web portal for PRA tools.
NASA Astrophysics Data System (ADS)
Kintsakis, Athanassios M.; Psomopoulos, Fotis E.; Symeonidis, Andreas L.; Mitkas, Pericles A.
Hermes introduces a new "describe once, run anywhere" paradigm for the execution of bioinformatics workflows in hybrid cloud environments. It combines the traditional features of parallelization-enabled workflow management systems and of distributed computing platforms in a container-based approach. It offers seamless deployment, overcoming the burden of setting up and configuring the software and network requirements. Most importantly, Hermes fosters the reproducibility of scientific workflows by supporting standardization of the software execution environment, thus leading to consistent scientific workflow results and accelerating scientific output.
An Adaptive Multilevel Security Framework for the Data Stored in Cloud Environment
Dorairaj, Sudha Devi; Kaliannan, Thilagavathy
2015-01-01
Cloud computing is renowned for delivering information technology services based on internet. Nowadays, organizations are interested in moving their massive data and computations into cloud to reap their significant benefits of on demand service, resource pooling, and rapid elasticity that helps to satisfy the dynamically changing infrastructure demand without the burden of owning, managing, and maintaining it. Since the data needs to be secured throughout its life cycle, security of the data in cloud is a major challenge to be concentrated on because the data is in third party's premises. Any uniform simple or high level security method for all the data either compromises the sensitive data or proves to be too costly with increased overhead. Any common multiple method for all data becomes vulnerable when the common security pattern is identified at the event of successful attack on any information and also encourages more attacks on all other data. This paper suggests an adaptive multilevel security framework based on cryptography techniques that provide adequate security for the classified data stored in cloud. The proposed security system acclimates well for cloud environment and is also customizable and more reliant to meet the required level of security of data with different sensitivity that changes with business needs and commercial conditions. PMID:26258165
An Adaptive Multilevel Security Framework for the Data Stored in Cloud Environment.
Dorairaj, Sudha Devi; Kaliannan, Thilagavathy
2015-01-01
Cloud computing is renowned for delivering information technology services based on internet. Nowadays, organizations are interested in moving their massive data and computations into cloud to reap their significant benefits of on demand service, resource pooling, and rapid elasticity that helps to satisfy the dynamically changing infrastructure demand without the burden of owning, managing, and maintaining it. Since the data needs to be secured throughout its life cycle, security of the data in cloud is a major challenge to be concentrated on because the data is in third party's premises. Any uniform simple or high level security method for all the data either compromises the sensitive data or proves to be too costly with increased overhead. Any common multiple method for all data becomes vulnerable when the common security pattern is identified at the event of successful attack on any information and also encourages more attacks on all other data. This paper suggests an adaptive multilevel security framework based on cryptography techniques that provide adequate security for the classified data stored in cloud. The proposed security system acclimates well for cloud environment and is also customizable and more reliant to meet the required level of security of data with different sensitivity that changes with business needs and commercial conditions.
CE-ACCE: The Cloud Enabled Advanced sCience Compute Environment
NASA Astrophysics Data System (ADS)
Cinquini, L.; Freeborn, D. J.; Hardman, S. H.; Wong, C.
2017-12-01
Traditionally, Earth Science data from NASA remote sensing instruments has been processed by building custom data processing pipelines (often based on a common workflow engine or framework) which are typically deployed and run on an internal cluster of computing resources. This approach has some intrinsic limitations: it requires each mission to develop and deploy a custom software package on top of the adopted framework; it makes use of dedicated hardware, network and storage resources, which must be specifically purchased, maintained and re-purposed at mission completion; and computing services cannot be scaled on demand beyond the capability of the available servers.More recently, the rise of Cloud computing, coupled with other advances in containerization technology (most prominently, Docker) and micro-services architecture, has enabled a new paradigm, whereby space mission data can be processed through standard system architectures, which can be seamlessly deployed and scaled on demand on either on-premise clusters, or commercial Cloud providers. In this talk, we will present one such architecture named CE-ACCE ("Cloud Enabled Advanced sCience Compute Environment"), which we have been developing at the NASA Jet Propulsion Laboratory over the past year. CE-ACCE is based on the Apache OODT ("Object Oriented Data Technology") suite of services for full data lifecycle management, which are turned into a composable array of Docker images, and complemented by a plug-in model for mission-specific customization. We have applied this infrastructure to both flying and upcoming NASA missions, such as ECOSTRESS and SMAP, and demonstrated deployment on the Amazon Cloud, either using simple EC2 instances, or advanced AWS services such as Amazon Lambda and ECS (EC2 Container Services).
2014-09-01
becoming a more and more prevalent technology in the business world today. According to Syal and Goswami (2012), cloud technology is seen as a...use of computing resources, applications, and personal files without reliance on a single computer or system ( Syal & Goswami, 2012). By operating in...cloud services largely being web-based, which can be retrieved through most systems with access to the Internet ( Syal & Goswami, 2012). The end user can
Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds
NASA Astrophysics Data System (ADS)
Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel
2014-06-01
The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.
NASA Astrophysics Data System (ADS)
Casu, F.; Bonano, M.; de Luca, C.; Lanari, R.; Manunta, M.; Manzo, M.; Zinno, I.
2017-12-01
Since its launch in 2014, the Sentinel-1 (S1) constellation has played a key role on SAR data availability and dissemination all over the World. Indeed, the free and open access data policy adopted by the European Copernicus program together with the global coverage acquisition strategy, make the Sentinel constellation as a game changer in the Earth Observation scenario. Being the SAR data become ubiquitous, the technological and scientific challenge is focused on maximizing the exploitation of such huge data flow. In this direction, the use of innovative processing algorithms and distributed computing infrastructures, such as the Cloud Computing platforms, can play a crucial role. In this work we present a Cloud Computing solution for the advanced interferometric (DInSAR) processing chain based on the Parallel SBAS (P-SBAS) approach, aimed at processing S1 Interferometric Wide Swath (IWS) data for the generation of large spatial scale deformation time series in efficient, automatic and systematic way. Such a DInSAR chain ingests Sentinel 1 SLC images and carries out several processing steps, to finally compute deformation time series and mean deformation velocity maps. Different parallel strategies have been designed ad hoc for each processing step of the P-SBAS S1 chain, encompassing both multi-core and multi-node programming techniques, in order to maximize the computational efficiency achieved within a Cloud Computing environment and cut down the relevant processing times. The presented P-SBAS S1 processing chain has been implemented on the Amazon Web Services platform and a thorough analysis of the attained parallel performances has been performed to identify and overcome the major bottlenecks to the scalability. The presented approach is used to perform national-scale DInSAR analyses over Italy, involving the processing of more than 3000 S1 IWS images acquired from both ascending and descending orbits. Such an experiment confirms the big advantage of exploiting large computational and storage resources of Cloud Computing platforms for large scale DInSAR analysis. The presented Cloud Computing P-SBAS processing chain can be a precious tool in the perspective of developing operational services disposable for the EO scientific community related to hazard monitoring and risk prevention and mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasenkamp, Daren; Sim, Alexander; Wehner, Michael
Extensive computing power has been used to tackle issues such as climate changes, fusion energy, and other pressing scientific challenges. These computations produce a tremendous amount of data; however, many of the data analysis programs currently only run a single processor. In this work, we explore the possibility of using the emerging cloud computing platform to parallelize such sequential data analysis tasks. As a proof of concept, we wrap a program for analyzing trends of tropical cyclones in a set of virtual machines (VMs). This approach allows the user to keep their familiar data analysis environment in the VMs, whilemore » we provide the coordination and data transfer services to ensure the necessary input and output are directed to the desired locations. This work extensively exercises the networking capability of the cloud computing systems and has revealed a number of weaknesses in the current cloud system software. In our tests, we are able to scale the parallel data analysis job to a modest number of VMs and achieve a speedup that is comparable to running the same analysis task using MPI. However, compared to MPI based parallelization, the cloud-based approach has a number of advantages. The cloud-based approach is more flexible because the VMs can capture arbitrary software dependencies without requiring the user to rewrite their programs. The cloud-based approach is also more resilient to failure; as long as a single VM is running, it can make progress while as soon as one MPI node fails the whole analysis job fails. In short, this initial work demonstrates that a cloud computing system is a viable platform for distributed scientific data analyses traditionally conducted on dedicated supercomputing systems.« less
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure
NASA Astrophysics Data System (ADS)
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-01
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.
1991-01-01
Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.
Motion/imagery secure cloud enterprise architecture analysis
NASA Astrophysics Data System (ADS)
DeLay, John L.
2012-06-01
Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.
Adventures in Private Cloud: Balancing Cost and Capability at the CloudSat Data Processing Center
NASA Astrophysics Data System (ADS)
Partain, P.; Finley, S.; Fluke, J.; Haynes, J. M.; Cronk, H. Q.; Miller, S. D.
2016-12-01
Since the beginning of the CloudSat Mission in 2006, The CloudSat Data Processing Center (DPC) at the Cooperative Institute for Research in the Atmosphere (CIRA) has been ingesting data from the satellite and other A-Train sensors, producing data products, and distributing them to researchers around the world. The computing infrastructure was specifically designed to fulfill the requirements as specified at the beginning of what nominally was a two-year mission. The environment consisted of servers dedicated to specific processing tasks in a rigid workflow to generate the required products. To the benefit of science and with credit to the mission engineers, CloudSat has lasted well beyond its planned lifetime and is still collecting data ten years later. Over that period requirements of the data processing system have greatly expanded and opportunities for providing value-added services have presented themselves. But while demands on the system have increased, the initial design allowed for very little expansion in terms of scalability and flexibility. The design did change to include virtual machine processing nodes and distributed workflows but infrastructure management was still a time consuming task when system modification was required to run new tests or implement new processes. To address the scalability, flexibility, and manageability of the system Cloud computing methods and technologies are now being employed. The use of a public cloud like Amazon Elastic Compute Cloud or Google Compute Engine was considered but, among other issues, data transfer and storage cost becomes a problem especially when demand fluctuates as a result of reprocessing and the introduction of new products and services. Instead, the existing system was converted to an on premises private Cloud using the OpenStack computing platform and Ceph software defined storage to reap the benefits of the Cloud computing paradigm. This work details the decisions that were made, the benefits that have been realized, the difficulties that were encountered and issues that still exist.
Provenance based data integrity checking and verification in cloud environments
Haq, Inam Ul; Jan, Bilal; Khan, Fakhri Alam; Ahmad, Awais
2017-01-01
Cloud computing is a recent tendency in IT that moves computing and data away from desktop and hand-held devices into large scale processing hubs and data centers respectively. It has been proposed as an effective solution for data outsourcing and on demand computing to control the rising cost of IT setups and management in enterprises. However, with Cloud platforms user’s data is moved into remotely located storages such that users lose control over their data. This unique feature of the Cloud is facing many security and privacy challenges which need to be clearly understood and resolved. One of the important concerns that needs to be addressed is to provide the proof of data integrity, i.e., correctness of the user’s data stored in the Cloud storage. The data in Clouds is physically not accessible to the users. Therefore, a mechanism is required where users can check if the integrity of their valuable data is maintained or compromised. For this purpose some methods are proposed like mirroring, checksumming and using third party auditors amongst others. However, these methods use extra storage space by maintaining multiple copies of data or the presence of a third party verifier is required. In this paper, we address the problem of proving data integrity in Cloud computing by proposing a scheme through which users are able to check the integrity of their data stored in Clouds. In addition, users can track the violation of data integrity if occurred. For this purpose, we utilize a relatively new concept in the Cloud computing called “Data Provenance”. Our scheme is capable to reduce the need of any third party services, additional hardware support and the replication of data items on client side for integrity checking. PMID:28545151
Provenance based data integrity checking and verification in cloud environments.
Imran, Muhammad; Hlavacs, Helmut; Haq, Inam Ul; Jan, Bilal; Khan, Fakhri Alam; Ahmad, Awais
2017-01-01
Cloud computing is a recent tendency in IT that moves computing and data away from desktop and hand-held devices into large scale processing hubs and data centers respectively. It has been proposed as an effective solution for data outsourcing and on demand computing to control the rising cost of IT setups and management in enterprises. However, with Cloud platforms user's data is moved into remotely located storages such that users lose control over their data. This unique feature of the Cloud is facing many security and privacy challenges which need to be clearly understood and resolved. One of the important concerns that needs to be addressed is to provide the proof of data integrity, i.e., correctness of the user's data stored in the Cloud storage. The data in Clouds is physically not accessible to the users. Therefore, a mechanism is required where users can check if the integrity of their valuable data is maintained or compromised. For this purpose some methods are proposed like mirroring, checksumming and using third party auditors amongst others. However, these methods use extra storage space by maintaining multiple copies of data or the presence of a third party verifier is required. In this paper, we address the problem of proving data integrity in Cloud computing by proposing a scheme through which users are able to check the integrity of their data stored in Clouds. In addition, users can track the violation of data integrity if occurred. For this purpose, we utilize a relatively new concept in the Cloud computing called "Data Provenance". Our scheme is capable to reduce the need of any third party services, additional hardware support and the replication of data items on client side for integrity checking.
Cloud-based Jupyter Notebooks for Water Data Analysis
NASA Astrophysics Data System (ADS)
Castronova, A. M.; Brazil, L.; Seul, M.
2017-12-01
The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.
BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2.
Lee, Hyungro; Yang, Youngik; Chae, Heejoon; Nam, Seungyoon; Choi, Donghoon; Tangchaisin, Patanachai; Herath, Chathura; Marru, Suresh; Nephew, Kenneth P; Kim, Sun
2012-09-01
MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research. However, the ability to conduct genome-wide microRNA-mRNA (gene) integration currently requires sophisticated, high-end informatics tools, significant expertise in bioinformatics and computer science to carry out the complex integration analysis. In addition, increased computing infrastructure capabilities are essential in order to accommodate large data sets. In this study, we have extended the BioVLAB cloud workbench to develop an environment for the integrated analysis of microRNA and mRNA expression data, named BioVLAB-MMIA. The workbench facilitates computations on the Amazon EC2 and S3 resources orchestrated by the XBaya Workflow Suite. The advantages of BioVLAB-MMIA over the web-based MMIA system include: 1) readily expanded as new computational tools become available; 2) easily modifiable by re-configuring graphic icons in the workflow; 3) on-demand cloud computing resources can be used on an "as needed" basis; 4) distributed orchestration supports complex and long running workflows asynchronously. We believe that BioVLAB-MMIA will be an easy-to-use computing environment for researchers who plan to perform genome-wide microRNA-mRNA (gene) integrated analysis tasks.
NASA Astrophysics Data System (ADS)
Meertens, C. M.; Boler, F. M.; Ertz, D. J.; Mencin, D.; Phillips, D.; Baker, S.
2017-12-01
UNAVCO, in its role as a NSF facility for geodetic infrastructure and data, has succeeded for over two decades using on-premises infrastructure, and while the promise of cloud-based infrastructure is well-established, significant questions about suitability of such infrastructure for facility-scale services remain. Primarily through the GeoSciCloud award from NSF EarthCube, UNAVCO is investigating the costs, advantages, and disadvantages of providing its geodetic data and services in the cloud versus using UNAVCO's on-premises infrastructure. (IRIS is a collaborator on the project and is performing its own suite of investigations). In contrast to the 2-3 year time scale for the research cycle, the time scale of operation and planning for NSF facilities is for a minimum of five years and for some services extends to a decade or more. Planning for on-premises infrastructure is deliberate, and migrations typically take months to years to fully implement. Migrations to a cloud environment can only go forward with similar deliberate planning and understanding of all costs and benefits. The EarthCube GeoSciCloud project is intended to address the uncertainties of facility-level operations in the cloud. Investigations are being performed in a commercial cloud environment (Amazon AWS) during the first year of the project and in a private cloud environment (NSF XSEDE resource at the Texas Advanced Computing Center) during the second year. These investigations are expected to illuminate the potential as well as the limitations of running facility scale production services in the cloud. The work includes running parallel equivalent cloud-based services to on premises services and includes: data serving via ftp from a large data store, operation of a metadata database, production scale processing of multiple months of geodetic data, web services delivery of quality checked data and products, large-scale compute services for event post-processing, and serving real time data from a network of 700-plus GPS stations. The evaluation is based on a suite of metrics that we have developed to elucidate the effectiveness of cloud-based services in price, performance, and management. Services are currently running in AWS and evaluation is underway.
NASA Astrophysics Data System (ADS)
Wang, Xi Vincent; Wang, Lihui
2017-08-01
Cloud computing is the new enabling technology that offers centralised computing, flexible data storage and scalable services. In the manufacturing context, it is possible to utilise the Cloud technology to integrate and provide industrial resources and capabilities in terms of Cloud services. In this paper, a function block-based integration mechanism is developed to connect various types of production resources. A Cloud-based architecture is also deployed to offer a service pool which maintains these resources as production services. The proposed system provides a flexible and integrated information environment for the Cloud-based production system. As a specific type of manufacturing, Waste Electrical and Electronic Equipment (WEEE) remanufacturing experiences difficulties in system integration, information exchange and resource management. In this research, WEEE is selected as the example of Internet of Things to demonstrate how the obstacles and bottlenecks are overcome with the help of Cloud-based informatics approach. In the case studies, the WEEE recycle/recovery capabilities are also integrated and deployed as flexible Cloud services. Supporting mechanisms and technologies are presented and evaluated towards the end of the paper.
Dynamic Optical Networks for Future Internet Environments
NASA Astrophysics Data System (ADS)
Matera, Francesco
2014-05-01
This article reports an overview on the evolution of the optical network scenario taking into account the exponential growth of connected devices, big data, and cloud computing that is driving a concrete transformation impacting the information and communication technology world. This hyper-connected scenario is deeply affecting relationships between individuals, enterprises, citizens, and public administrations, fostering innovative use cases in practically any environment and market, and introducing new opportunities and new challenges. The successful realization of this hyper-connected scenario depends on different elements of the ecosystem. In particular, it builds on connectivity and functionalities allowed by converged next-generation networks and their capacity to support and integrate with the Internet of Things, machine-to-machine, and cloud computing. This article aims at providing some hints of this scenario to contribute to analyze impacts on optical system and network issues and requirements. In particular, the role of the software-defined network is investigated by taking into account all scenarios regarding data centers, cloud computing, and machine-to-machine and trying to illustrate all the advantages that could be introduced by advanced optical communications.
Construction of a Digital Learning Environment Based on Cloud Computing
ERIC Educational Resources Information Center
Ding, Jihong; Xiong, Caiping; Liu, Huazhong
2015-01-01
Constructing the digital learning environment for ubiquitous learning and asynchronous distributed learning has opened up immense amounts of concrete research. However, current digital learning environments do not fully fulfill the expectations on supporting interactive group learning, shared understanding and social construction of knowledge.…
A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.
Wang, Lujia; Liu, Ming; Meng, Max Q-H
2017-02-01
Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.
Static Memory Deduplication for Performance Optimization in Cloud Computing.
Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan
2017-04-27
In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.
Static Memory Deduplication for Performance Optimization in Cloud Computing
Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan
2017-01-01
In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible. PMID:28448434
BigData and computing challenges in high energy and nuclear physics
NASA Astrophysics Data System (ADS)
Klimentov, A.; Grigorieva, M.; Kiryanov, A.; Zarochentsev, A.
2017-06-01
In this contribution we discuss the various aspects of the computing resource needs experiments in High Energy and Nuclear Physics, in particular at the Large Hadron Collider. This will evolve in the future when moving from LHC to HL-LHC in ten years from now, when the already exascale levels of data we are processing could increase by a further order of magnitude. The distributed computing environment has been a great success and the inclusion of new super-computing facilities, cloud computing and volunteering computing for the future is a big challenge, which we are successfully mastering with a considerable contribution from many super-computing centres around the world, academic and commercial cloud providers. We also discuss R&D computing projects started recently in National Research Center ``Kurchatov Institute''
Data distribution method of workflow in the cloud environment
NASA Astrophysics Data System (ADS)
Wang, Yong; Wu, Junjuan; Wang, Ying
2017-08-01
Cloud computing for workflow applications provides the required high efficiency calculation and large storage capacity and it also brings challenges to the protection of trade secrets and other privacy data. Because of privacy data will cause the increase of the data transmission time, this paper presents a new data allocation algorithm based on data collaborative damage degree, to improve the existing data allocation strategy? Safety and public cloud computer algorithm depends on the private cloud; the static allocation method in the initial stage only to the non-confidential data division to improve the original data, in the operational phase will continue to generate data to dynamically adjust the data distribution scheme. The experimental results show that the improved method is effective in reducing the data transmission time.
Reducing Time to Science: Unidata and JupyterHub Technology Using the Jetstream Cloud
NASA Astrophysics Data System (ADS)
Chastang, J.; Signell, R. P.; Fischer, J. L.
2017-12-01
Cloud computing can accelerate scientific workflows, discovery, and collaborations by reducing research and data friction. We describe the deployment of Unidata and JupyterHub technologies on the NSF-funded XSEDE Jetstream cloud. With the aid of virtual machines and Docker technology, we deploy a Unidata JupyterHub server co-located with a Local Data Manager (LDM), THREDDS data server (TDS), and RAMADDA geoscience content management system. We provide Jupyter Notebooks and the pre-built Python environments needed to run them. The notebooks can be used for instruction and as templates for scientific experimentation and discovery. We also supply a large quantity of NCEP forecast model results to allow data-proximate analysis and visualization. In addition, users can transfer data using Globus command line tools, and perform their own data-proximate analysis and visualization with Notebook technology. These data can be shared with others via a dedicated TDS server for scientific distribution and collaboration. There are many benefits of this approach. Not only is the cloud computing environment fast, reliable and scalable, but scientists can analyze, visualize, and share data using only their web browser. No local specialized desktop software or a fast internet connection is required. This environment will enable scientists to spend less time managing their software and more time doing science.
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-01
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343
Delivering Unidata Technology via the Cloud
NASA Astrophysics Data System (ADS)
Fisher, Ward; Oxelson Ganter, Jennifer
2016-04-01
Over the last two years, Docker has emerged as the clear leader in open-source containerization. Containerization technology provides a means by which software can be pre-configured and packaged into a single unit, i.e. a container. This container can then be easily deployed either on local or remote systems. Containerization is particularly advantageous when moving software into the cloud, as it simplifies the process. Unidata is adopting containerization as part of our commitment to migrate our technologies to the cloud. We are using a two-pronged approach in this endeavor. In addition to migrating our data-portal services to a cloud environment, we are also exploring new and novel ways to use cloud-specific technology to serve our community. This effort has resulted in several new cloud/Docker-specific projects at Unidata: "CloudStream," "CloudIDV," and "CloudControl." CloudStream is a docker-based technology stack for bringing legacy desktop software to new computing environments, without the need to invest significant engineering/development resources. CloudStream helps make it easier to run existing software in a cloud environment via a technology called "Application Streaming." CloudIDV is a CloudStream-based implementation of the Unidata Integrated Data Viewer (IDV). CloudIDV serves as a practical example of application streaming, and demonstrates how traditional software can be easily accessed and controlled via a web browser. Finally, CloudControl is a web-based dashboard which provides administrative controls for running docker-based technologies in the cloud, as well as providing user management. In this work we will give an overview of these three open-source technologies and the value they offer to our community.
Cloud@Home: A New Enhanced Computing Paradigm
NASA Astrophysics Data System (ADS)
Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco
Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).
Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support
2012-01-01
Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis. The system can be accessed either through a cloud-enabled web-interface or downloaded and installed to run within the user's local environment. All resources related to Tavaxy are available at http://www.tavaxy.org. PMID:22559942
NASA Astrophysics Data System (ADS)
Li-Chee-Ming, J.; Armenakis, C.
2014-11-01
This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and store data to secure computing environments in the cloud. While the RCE's capabilities have been demonstrated with terrestrial robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor environments by small UAMS. The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping accuracies using the data obtained by the sUAMS. Testing was performed with an Aeryon Scout quadcopter. It flew over York University, up to approximately 40 metres above the ground. The quadcopter was equipped with a single-frequency GPS receiver providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to about 3 degrees, and an FPV (First Person Viewing) camera. Video images captured from the onboard camera were processed using VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE. The 3D virtual building model of York University was used as a known environment to georeference the point cloud generated from the sUAMS' sensor data. The estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS' autopilot solution, derived from the onboard GPS and AHRS. The paper presents the proposed approach and the results, along with their accuracies.
Unidata cyberinfrastructure in the cloud: A progress report
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan
2016-04-01
Data services, software, and committed support are critical components of geosciences cyber-infrastructure that can help scientists address problems of unprecedented complexity, scale, and scope. Unidata is currently working on innovative ideas, new paradigms, and novel techniques to complement and extend its offerings. Our goal is to empower users so that they can tackle major, heretofore difficult problems. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. To realize the above vision, Unidata is working toward: * Providing access to many types of data from a cloud (e.g., TDS, RAMADDA and EDEX); * Deploying data-proximate tools to easily process, analyze and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Fostering partnerships with NOAA and public cloud vendors (e.g., Amazon) to harness their capabilities and resources for the benefit of the academic community.
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj
2016-04-01
Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.
Research on elastic resource management for multi-queue under cloud computing environment
NASA Astrophysics Data System (ADS)
CHENG, Zhenjing; LI, Haibo; HUANG, Qiulan; Cheng, Yaodong; CHEN, Gang
2017-10-01
As a new approach to manage computing resource, virtualization technology is more and more widely applied in the high-energy physics field. A virtual computing cluster based on Openstack was built at IHEP, using HTCondor as the job queue management system. In a traditional static cluster, a fixed number of virtual machines are pre-allocated to the job queue of different experiments. However this method cannot be well adapted to the volatility of computing resource requirements. To solve this problem, an elastic computing resource management system under cloud computing environment has been designed. This system performs unified management of virtual computing nodes on the basis of job queue in HTCondor based on dual resource thresholds as well as the quota service. A two-stage pool is designed to improve the efficiency of resource pool expansion. This paper will present several use cases of the elastic resource management system in IHEPCloud. The practical run shows virtual computing resource dynamically expanded or shrunk while computing requirements change. Additionally, the CPU utilization ratio of computing resource was significantly increased when compared with traditional resource management. The system also has good performance when there are multiple condor schedulers and multiple job queues.
Hydrodynamics and Water Quality forecasting over a Cloud Computing environment: INDIGO-DataCloud
NASA Astrophysics Data System (ADS)
Aguilar Gómez, Fernando; de Lucas, Jesús Marco; García, Daniel; Monteoliva, Agustín
2017-04-01
Algae Bloom due to eutrophication is an extended problem for water reservoirs and lakes that impacts directly in water quality. It can create a dead zone that lacks enough oxygen to support life and it can also be human harmful, so it must be controlled in water masses for supplying, bathing or other uses. Hydrodynamic and Water Quality modelling can contribute to forecast the status of the water system in order to alert authorities before an algae bloom event occurs. It can be used to predict scenarios and find solutions to reduce the harmful impact of the blooms. High resolution models need to process a big amount of data using a robust enough computing infrastructure. INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is an European Commission funded project that aims at developing a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The project addresses the development of solutions for different Case Studies using different Cloud-based alternatives. In the first INDIGO software release, a set of components are ready to manage the deployment of services to perform N number of Delft3D simulations (for calibrating or scenario definition) over a Cloud Computing environment, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator, AAI (Authorization, Authentication) and OneData (Distributed Storage System). Moreover, the Future Gateway portal based on Liferay, provides an user-friendly interface where the user can configure the simulations. Due to the data approach of INDIGO, the developed solutions can contribute to manage the full data life cycle of a project, thanks to different tools to manage datasets or even metadata. Furthermore, the cloud environment contributes to provide a dynamic, scalable and easy-to-use framework for non-IT experts users. This framework is potentially capable to automatize the processing of forecasting applying periodic tasks. For instance, a user can forecast every month the hydrodynamics and water quality status of a reservoir starting from a base model and supplying new data gathered from the instrumentation or observations. This interactive presentation aims to show the use of INDIGO solutions in a particular forecasting use case and to inspire others in the use of a Cloud framework for their applications.
Key Lessons in Building "Data Commons": The Open Science Data Cloud Ecosystem
NASA Astrophysics Data System (ADS)
Patterson, M.; Grossman, R.; Heath, A.; Murphy, M.; Wells, W.
2015-12-01
Cloud computing technology has created a shift around data and data analysis by allowing researchers to push computation to data as opposed to having to pull data to an individual researcher's computer. Subsequently, cloud-based resources can provide unique opportunities to capture computing environments used both to access raw data in its original form and also to create analysis products which may be the source of data for tables and figures presented in research publications. Since 2008, the Open Cloud Consortium (OCC) has operated the Open Science Data Cloud (OSDC), which provides scientific researchers with computational resources for storing, sharing, and analyzing large (terabyte and petabyte-scale) scientific datasets. OSDC has provided compute and storage services to over 750 researchers in a wide variety of data intensive disciplines. Recently, internal users have logged about 2 million core hours each month. The OSDC also serves the research community by colocating these resources with access to nearly a petabyte of public scientific datasets in a variety of fields also accessible for download externally by the public. In our experience operating these resources, researchers are well served by "data commons," meaning cyberinfrastructure that colocates data archives, computing, and storage infrastructure and supports essential tools and services for working with scientific data. In addition to the OSDC public data commons, the OCC operates a data commons in collaboration with NASA and is developing a data commons for NOAA datasets. As cloud-based infrastructures for distributing and computing over data become more pervasive, we ask, "What does it mean to publish data in a data commons?" Here we present the OSDC perspective and discuss several services that are key in architecting data commons, including digital identifier services.
CLON: Overlay Networks and Gossip Protocols for Cloud Environments
NASA Astrophysics Data System (ADS)
Matos, Miguel; Sousa, António; Pereira, José; Oliveira, Rui; Deliot, Eric; Murray, Paul
Although epidemic or gossip-based multicast is a robust and scalable approach to reliable data dissemination, its inherent redundancy results in high resource consumption on both links and nodes. This problem is aggravated in settings that have costlier or resource constrained links as happens in Cloud Computing infrastructures composed by several interconnected data centers across the globe.
Innovating in the Cloud: Exploring Cloud Computing to Solve IT Challenges
ERIC Educational Resources Information Center
Sheard, Reed
2010-01-01
When the author was brought on as CIO of Westmont College in October 2008, the president, Board of Trustees, and campus environment made it clear that technology needed a major overhaul to meet the college's growing requirements. Also, these changes needed to happen without significantly increasing the IT budget or staff. Marketing Charts…
NASA Astrophysics Data System (ADS)
Furht, Borko
In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.
ATLAS user analysis on private cloud resources at GoeGrid
NASA Astrophysics Data System (ADS)
Glaser, F.; Nadal Serrano, J.; Grabowski, J.; Quadt, A.
2015-12-01
User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.
Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments
Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361
Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.
Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.
Hybrid glowworm swarm optimization for task scheduling in the cloud environment
NASA Astrophysics Data System (ADS)
Zhou, Jing; Dong, Shoubin
2018-06-01
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
Architectural Principles and Experimentation of Distributed High Performance Virtual Clusters
ERIC Educational Resources Information Center
Younge, Andrew J.
2016-01-01
With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader scientific computing community is considering the use of clouds for their scientific computing needs. This is due to the relative scalability, ease of use, advanced user environment customization abilities, and the many novel computing paradigms available for…
The Czech National Grid Infrastructure
NASA Astrophysics Data System (ADS)
Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.
2017-10-01
The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.
An adaptive process-based cloud infrastructure for space situational awareness applications
NASA Astrophysics Data System (ADS)
Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce
2014-06-01
Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.
Cloud computing: a new business paradigm for biomedical information sharing.
Rosenthal, Arnon; Mork, Peter; Li, Maya Hao; Stanford, Jean; Koester, David; Reynolds, Patti
2010-04-01
We examine how the biomedical informatics (BMI) community, especially consortia that share data and applications, can take advantage of a new resource called "cloud computing". Clouds generally offer resources on demand. In most clouds, charges are pay per use, based on large farms of inexpensive, dedicated servers, sometimes supporting parallel computing. Substantial economies of scale potentially yield costs much lower than dedicated laboratory systems or even institutional data centers. Overall, even with conservative assumptions, for applications that are not I/O intensive and do not demand a fully mature environment, the numbers suggested that clouds can sometimes provide major improvements, and should be seriously considered for BMI. Methodologically, it was very advantageous to formulate analyses in terms of component technologies; focusing on these specifics enabled us to bypass the cacophony of alternative definitions (e.g., exactly what does a cloud include) and to analyze alternatives that employ some of the component technologies (e.g., an institution's data center). Relative analyses were another great simplifier. Rather than listing the absolute strengths and weaknesses of cloud-based systems (e.g., for security or data preservation), we focus on the changes from a particular starting point, e.g., individual lab systems. We often find a rough parity (in principle), but one needs to examine individual acquisitions--is a loosely managed lab moving to a well managed cloud, or a tightly managed hospital data center moving to a poorly safeguarded cloud? 2009 Elsevier Inc. All rights reserved.
Radar characteristics of cloud-to-ground lightning producing storms in Florida
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Goodman, S. J.
1991-01-01
The interrelation between cloud-to-ground lightning, convective rainfall, and the environment in Central Florida storms is examined. The rain flux, storm area, and ground discharge rates are computed within the outlined area. Time-height cross sections of maximum dBZ values at each level for two storms are shown. The multicellular nature of these storms is readily apparent. The cloud-to-ground lightning activity occurs mainly where high reflectivity values (30-40 dBZ) extend above 7 km.
Providing Assistive Technology Applications as a Service Through Cloud Computing.
Mulfari, Davide; Celesti, Antonio; Villari, Massimo; Puliafito, Antonio
2015-01-01
Users with disabilities interact with Personal Computers (PCs) using Assistive Technology (AT) software solutions. Such applications run on a PC that a person with a disability commonly uses. However the configuration of AT applications is not trivial at all, especially whenever the user needs to work on a PC that does not allow him/her to rely on his / her AT tools (e.g., at work, at university, in an Internet point). In this paper, we discuss how cloud computing provides a valid technological solution to enhance such a scenario.With the emergence of cloud computing, many applications are executed on top of virtual machines (VMs). Virtualization allows us to achieve a software implementation of a real computer able to execute a standard operating system and any kind of application. In this paper we propose to build personalized VMs running AT programs and settings. By using the remote desktop technology, our solution enables users to control their customized virtual desktop environment by means of an HTML5-based web interface running on any computer equipped with a browser, whenever they are.
Cloudbursting - Solving the 3-body problem
NASA Astrophysics Data System (ADS)
Chang, G.; Heistand, S.; Vakhnin, A.; Huang, T.; Zimdars, P.; Hua, H.; Hood, R.; Koenig, J.; Mehrotra, P.; Little, M. M.; Law, E.
2014-12-01
Many science projects in the future will be accomplished through collaboration among 2 or more NASA centers along with, potentially, external scientists. Science teams will be composed of more geographically dispersed individuals and groups. However, the current computing environment does not make this easy and seamless. By being able to share computing resources among members of a multi-center team working on a science/ engineering project, limited pre-competition funds could be more efficiently applied and technical work could be conducted more effectively with less time spent moving data or waiting for computing resources to free up. Based on the work from an NASA CIO IT Labs task, this presentation will highlight our prototype work in identifying the feasibility and identify the obstacles, both technical and management, to perform "Cloudbursting" among private clouds located at three different centers. We will demonstrate the use of private cloud computing infrastructure at the Jet Propulsion Laboratory, Langley Research Center, and Ames Research Center to provide elastic computation to each other to perform parallel Earth Science data imaging. We leverage elastic load balancing and auto-scaling features at each data center so that each location can independently define how many resources to allocate to a particular job that was "bursted" from another data center and demonstrate that compute capacity scales up and down with the job. We will also discuss future work in the area, which could include the use of cloud infrastructure from different cloud framework providers as well as other cloud service providers.
Distributed Hydrologic Modeling Apps for Decision Support in the Cloud
NASA Astrophysics Data System (ADS)
Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.
2013-12-01
Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it requires the use of additional software. In particular, there are at least three elements that are needed: a geospatially enabled database, a map server, and geoprocessing toolbox. We recommend a software stack for geospatial web application development comprising: MapServer, PostGIS, and 52 North with Python as the scripting language to tie them together. Another hurdle that must be cleared is managing the cloud-computing load. We are using HTCondor as a solution to this end. Finally, we are creating a scripting environment wherein developers will be able to create apps that use existing hydrologic models in our system with minimal effort. This capability will be accomplished by creating a plugin for a Python content management system called CKAN. We are currently developing cyberinfrastructure that utilizes this stack and greatly lowers the investment required to deploy cloud-based modeling apps. This material is based upon work supported by the National Science Foundation under Grant No. 1135482
76 FR 34965 - Cybersecurity, Innovation, and the Internet Economy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... disrupt computing systems. These threats are exacerbated by the interconnected and interdependent architecture of today's computing environment. Theoretically, security deficiencies in one area may provide... does the move to cloud-based services have on education and research efforts in the I3S? 45. What is...
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2016-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.
Improving Individual Acceptance of Health Clouds through Confidentiality Assurance.
Ermakova, Tatiana; Fabian, Benjamin; Zarnekow, Rüdiger
2016-10-26
Cloud computing promises to essentially improve healthcare delivery performance. However, shifting sensitive medical records to third-party cloud providers could create an adoption hurdle because of security and privacy concerns. This study examines the effect of confidentiality assurance in a cloud-computing environment on individuals' willingness to accept the infrastructure for inter-organizational sharing of medical data. We empirically investigate our research question by a survey with over 260 full responses. For the setting with a high confidentiality assurance, we base on a recent multi-cloud architecture which provides very high confidentiality assurance through a secret-sharing mechanism: Health information is cryptographically encoded and distributed in a way that no single and no small group of cloud providers is able to decode it. Our results indicate the importance of confidentiality assurance in individuals' acceptance of health clouds for sensitive medical data. Specifically, this finding holds for a variety of practically relevant circumstances, i.e., in the absence and despite the presence of conventional offline alternatives and along with pseudonymization. On the other hand, we do not find support for the effect of confidentiality assurance in individuals' acceptance of health clouds for non-sensitive medical data. These results could support the process of privacy engineering for health-cloud solutions.
Improving Individual Acceptance of Health Clouds through Confidentiality Assurance
Fabian, Benjamin; Zarnekow, Rüdiger
2016-01-01
Summary Background Cloud computing promises to essentially improve healthcare delivery performance. However, shifting sensitive medical records to third-party cloud providers could create an adoption hurdle because of security and privacy concerns. Objectives This study examines the effect of confidentiality assurance in a cloud-computing environment on individuals’ willingness to accept the infrastructure for inter-organizational sharing of medical data. Methods We empirically investigate our research question by a survey with over 260 full responses. For the setting with a high confidentiality assurance, we base on a recent multi-cloud architecture which provides very high confidentiality assurance through a secret-sharing mechanism: Health information is cryptographically encoded and distributed in a way that no single and no small group of cloud providers is able to decode it. Results Our results indicate the importance of confidentiality assurance in individuals’ acceptance of health clouds for sensitive medical data. Specifically, this finding holds for a variety of practically relevant circumstances, i.e., in the absence and despite the presence of conventional offline alternatives and along with pseudonymization. On the other hand, we do not find support for the effect of confidentiality assurance in individuals’ acceptance of health clouds for non-sensitive medical data. These results could support the process of privacy engineering for health-cloud solutions. PMID:27781238
Detecting Abnormal Machine Characteristics in Cloud Infrastructures
NASA Technical Reports Server (NTRS)
Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.
2011-01-01
In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.
Characteristics of middle and upper tropospheric clouds as deduced from rawinsonde data
NASA Technical Reports Server (NTRS)
Starr, D. D. O.; Cox, S. K.
1982-01-01
The static environment of middle and upper tropospheric clouds is characterized. Computed relative humidity with respect to ice is used to diagnose the presence of cloud layer. The deduced seasonal mean cloud cover estimates based on this technique are shown to be reasonable. The cases are stratified by season and pressure thickness, and the dry static stability, vertical wind speed shear, and Richardson number are computed for three layers for each case. Mean values for each parameter are presented for each stratification and layer. The relative frequency of occurrence of various structures is presented for each stratification. The observed values of each parameter and the observed structure of each parameter are quite variable. Structures corresponding to any of a number of different conceptual models may be found. Moist adiabatic conditions are not commonly observed and the stratification based on thickness yields substantially different results for each group.
GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.
Liu, Yangchuan; Tang, Yuguo; Gao, Xin
2017-12-01
The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.
Volunteer Clouds and Citizen Cyberscience for LHC Physics
NASA Astrophysics Data System (ADS)
Aguado Sanchez, Carlos; Blomer, Jakob; Buncic, Predrag; Chen, Gang; Ellis, John; Garcia Quintas, David; Harutyunyan, Artem; Grey, Francois; Lombrana Gonzalez, Daniel; Marquina, Miguel; Mato, Pere; Rantala, Jarno; Schulz, Holger; Segal, Ben; Sharma, Archana; Skands, Peter; Weir, David; Wu, Jie; Wu, Wenjing; Yadav, Rohit
2011-12-01
Computing for the LHC, and for HEP more generally, is traditionally viewed as requiring specialized infrastructure and software environments, and therefore not compatible with the recent trend in "volunteer computing", where volunteers supply free processing time on ordinary PCs and laptops via standard Internet connections. In this paper, we demonstrate that with the use of virtual machine technology, at least some standard LHC computing tasks can be tackled with volunteer computing resources. Specifically, by presenting volunteer computing resources to HEP scientists as a "volunteer cloud", essentially identical to a Grid or dedicated cluster from a job submission perspective, LHC simulations can be processed effectively. This article outlines both the technical steps required for such a solution and the implications for LHC computing as well as for LHC public outreach and for participation by scientists from developing regions in LHC research.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.
2016-12-01
With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.
Game Theory Based Trust Model for Cloud Environment
Gokulnath, K.; Uthariaraj, Rhymend
2015-01-01
The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365
An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment
Muthurajan, Vinothkumar; Narayanasamy, Balaji
2016-01-01
Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584
An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.
Muthurajan, Vinothkumar; Narayanasamy, Balaji
2016-01-01
Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation.
HyspIRI Low Latency Concept and Benchmarks
NASA Technical Reports Server (NTRS)
Mandl, Dan
2010-01-01
Topics include HyspIRI low latency data ops concept, HyspIRI data flow, ongoing efforts, experiment with Web Coverage Processing Service (WCPS) approach to injecting new algorithms into SensorWeb, low fidelity HyspIRI IPM testbed, compute cloud testbed, open cloud testbed environment, Global Lambda Integrated Facility (GLIF) and OCC collaboration with Starlight, delay tolerant network (DTN) protocol benchmarking, and EO-1 configuration for preliminary DTN prototype.
Towards a Multi-Mission, Airborne Science Data System Environment
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.
2011-12-01
NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.
Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J.; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius
2016-01-01
The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data. PMID:28785418
Connor, Thomas R; Loman, Nicholas J; Thompson, Simon; Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius; Sheppard, Samuel K; Pallen, Mark J
2016-09-01
The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.
2010-04-29
Cloud Computing The answer, my friend, is blowing in the wind. The answer is blowing in the wind. 1Bingue ‐ Cook Cloud Computing STSC 2010... Cloud Computing STSC 2010 Objectives • Define the cloud • Risks of cloud computing f l d i• Essence o c ou comput ng • Deployed clouds in DoD 3Bingue...Cook Cloud Computing STSC 2010 Definitions of Cloud Computing Cloud computing is a model for enabling b d d ku
NASA Astrophysics Data System (ADS)
Perez Montes, Diego A.; Añel Cabanelas, Juan A.; Wallom, David C. H.; Arribas, Alberto; Uhe, Peter; Caderno, Pablo V.; Pena, Tomas F.
2017-04-01
Cloud Computing is a technological option that offers great possibilities for modelling in geosciences. We have studied how two different climate models, HadAM3P-HadRM3P and CESM-WACCM, can be adapted in two different ways to run on Cloud Computing Environments from three different vendors: Amazon, Google and Microsoft. Also, we have evaluated qualitatively how the use of Cloud Computing can affect the allocation of resources by funding bodies and issues related to computing security, including scientific reproducibility. Our first experiments were developed using the well known ClimatePrediction.net (CPDN), that uses BOINC, over the infrastructure from two cloud providers, namely Microsoft Azure and Amazon Web Services (hereafter AWS). For this comparison we ran a set of thirteen month climate simulations for CPDN in Azure and AWS using a range of different virtual machines (VMs) for HadRM3P (50 km resolution over South America CORDEX region) nested in the global atmosphere-only model HadAM3P. These simulations were run on a single processor and took between 3 and 5 days to compute depending on the VM type. The last part of our simulation experiments was running WACCM over different VMS on the Google Compute Engine (GCE) and make a comparison with the supercomputer (SC) Finisterrae1 from the Centro de Supercomputacion de Galicia. It was shown that GCE gives better performance than the SC for smaller number of cores/MPI tasks but the model throughput shows clearly how the SC performance is better after approximately 100 cores (related with network speed and latency differences). From a cost point of view, Cloud Computing moves researchers from a traditional approach where experiments were limited by the available hardware resources to monetary resources (how many resources can be afforded). As there is an increasing movement and recommendation for budgeting HPC projects on this technology (budgets can be calculated in a more realistic way) we could see a shift on the trends over the next years to consolidate Cloud as the preferred solution.
Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E.; Tkachenko, Valery; Torcivia-Rodriguez, John; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja
2016-01-01
The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure. The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu PMID:26989153
Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E; Tkachenko, Valery; Torcivia-Rodriguez, John; Voskanian, Alin; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja
2016-01-01
The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure.The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu. © The Author(s) 2016. Published by Oxford University Press.
GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.
Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun
2013-01-01
As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.
NASA Astrophysics Data System (ADS)
Lapshinsky, V. A.
2017-01-01
The article is devoted to the consideration of issues of functionality and application of educational portal as virtual learning environments and webinars as SaaS services. Examples of their use in educational and vocational guidance processes are presented. The prospects of transition from portal VLE to SaaS and cloud services are marked. Portal www.valinfo.ru with original learning management system has been used in the educational process since 2003 in the National Research Nuclear University MEPhI and in the Peoples' Friendship University of Russia. Supported courses: Computer Science, Computer Workshop, Networks, Information Technology, The Introduction to Nano-Engineer, Nanotechnology and Nanomaterials etc. For webinars as SaaS services, used the "virtual classroom," kindly provided by WebSoft Company.
Cuenca-Alba, Jesús; Del Cano, Laura; Gómez Blanco, Josué; de la Rosa Trevín, José Miguel; Conesa Mingo, Pablo; Marabini, Roberto; S Sorzano, Carlos Oscar; Carazo, Jose María
2017-10-01
New instrumentation for cryo electron microscopy (cryoEM) has significantly increased data collection rate as well as data quality, creating bottlenecks at the image processing level. Current image processing model of moving the acquired images from the data source (electron microscope) to desktops or local clusters for processing is encountering many practical limitations. However, computing may also take place in distributed and decentralized environments. In this way, cloud is a new form of accessing computing and storage resources on demand. Here, we evaluate on how this new computational paradigm can be effectively used by extending our current integrative framework for image processing, creating ScipionCloud. This new development has resulted in a full installation of Scipion both in public and private clouds, accessible as public "images", with all the required preinstalled cryoEM software, just requiring a Web browser to access all Graphical User Interfaces. We have profiled the performance of different configurations on Amazon Web Services and the European Federated Cloud, always on architectures incorporating GPU's, and compared them with a local facility. We have also analyzed the economical convenience of different scenarios, so cryoEM scientists have a clearer picture of the setup that is best suited for their needs and budgets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Research on multi-user encrypted search scheme in cloud environment
NASA Astrophysics Data System (ADS)
Yu, Zonghua; Lin, Sui
2017-05-01
Aiming at the existing problems of multi-user encrypted search scheme in cloud computing environment, a basic multi-user encrypted scheme is proposed firstly, and then the basic scheme is extended to an anonymous hierarchical management authority. Compared with most of the existing schemes, the scheme not only to achieve the protection of keyword information, but also to achieve the protection of user identity privacy; the same time, data owners can directly control the user query permissions, rather than the cloud server. In addition, through the use of a special query key generation rules, to achieve the hierarchical management of the user's query permissions. The safety analysis shows that the scheme is safe and that the performance analysis and experimental data show that the scheme is practicable.
Secure medical information sharing in cloud computing.
Shao, Zhiyi; Yang, Bo; Zhang, Wenzheng; Zhao, Yi; Wu, Zhenqiang; Miao, Meixia
2015-01-01
Medical information sharing is one of the most attractive applications of cloud computing, where searchable encryption is a fascinating solution for securely and conveniently sharing medical data among different medical organizers. However, almost all previous works are designed in symmetric key encryption environment. The only works in public key encryption do not support keyword trapdoor security, have long ciphertext related to the number of receivers, do not support receiver revocation without re-encrypting, and do not preserve the membership of receivers. In this paper, we propose a searchable encryption supporting multiple receivers for medical information sharing based on bilinear maps in public key encryption environment. In the proposed protocol, data owner stores only one copy of his encrypted file and its corresponding encrypted keywords on cloud for multiple designated receivers. The keyword ciphertext is significantly shorter and its length is constant without relation to the number of designated receivers, i.e., for n receivers the ciphertext length is only twice the element length in the group. Only the owner knows that with whom his data is shared, and the access to his data is still under control after having been put on the cloud. We formally prove the security of keyword ciphertext based on the intractability of Bilinear Diffie-Hellman problem and the keyword trapdoor based on Decisional Diffie-Hellman problem.
An Efficient Mutual Authentication Framework for Healthcare System in Cloud Computing.
Kumar, Vinod; Jangirala, Srinivas; Ahmad, Musheer
2018-06-28
The increasing role of Telecare Medicine Information Systems (TMIS) makes its accessibility for patients to explore medical treatment, accumulate and approach medical data through internet connectivity. Security and privacy preservation is necessary for medical data of the patient in TMIS because of the very perceptive purpose. Recently, Mohit et al.'s proposed a mutual authentication protocol for TMIS in the cloud computing environment. In this work, we reviewed their protocol and found that it is not secure against stolen verifier attack, many logged in patient attack, patient anonymity, impersonation attack, and fails to protect session key. For enhancement of security level, we proposed a new mutual authentication protocol for the similar environment. The presented framework is also more capable in terms of computation cost. In addition, the security evaluation of the protocol protects resilience of all possible security attributes, and we also explored formal security evaluation based on random oracle model. The performance of the proposed protocol is much better in comparison to the existing protocol.
An Overview of Cloud Computing in Distributed Systems
NASA Astrophysics Data System (ADS)
Divakarla, Usha; Kumari, Geetha
2010-11-01
Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.
Analysis on the security of cloud computing
NASA Astrophysics Data System (ADS)
He, Zhonglin; He, Yuhua
2011-02-01
Cloud computing is a new technology, which is the fusion of computer technology and Internet development. It will lead the revolution of IT and information field. However, in cloud computing data and application software is stored at large data centers, and the management of data and service is not completely trustable, resulting in safety problems, which is the difficult point to improve the quality of cloud service. This paper briefly introduces the concept of cloud computing. Considering the characteristics of cloud computing, it constructs the security architecture of cloud computing. At the same time, with an eye toward the security threats cloud computing faces, several corresponding strategies are provided from the aspect of cloud computing users and service providers.
Cloud-scale genomic signals processing classification analysis for gene expression microarray data.
Harvey, Benjamin; Soo-Yeon Ji
2014-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring inference though analysis of DNA/mRNA sequence data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological inference by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale classification analysis of microarray data using Wavelet thresholding in a Cloud environment to identify significantly expressed features. This paper proposes a novel methodology that uses Wavelet based Denoising to initialize a threshold for determination of significantly expressed genes for classification. Additionally, this research was implemented and encompassed within cloud-based distributed processing environment. The utilization of Cloud computing and Wavelet thresholding was used for the classification 14 tumor classes from the Global Cancer Map (GCM). The results proved to be more accurate than using a predefined p-value for differential expression classification. This novel methodology analyzed Wavelet based threshold features of gene expression in a Cloud environment, furthermore classifying the expression of samples by analyzing gene patterns, which inform us of biological processes. Moreover, enabling researchers to face the present and forthcoming challenges that may arise in the analysis of data in functional genomics of large microarray datasets.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Astrophysics Data System (ADS)
Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.
2011-12-01
Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly better performance than the local machine. Much of the difference was due to newer equipment in the Nebula than the legacy computer, which is suggestive of a potential economic advantage beyond elastic power, i.e., access to up-to-date hardware vs. legacy hardware that must be maintained past its prime to amortize the cost. In addition to a trade study of advantages and challenges of porting complex processing to the cloud, a tutorial was developed to enable further progress in utilizing the Nebula for Earth Science applications and understanding better the potential for Cloud Computing in further data- and computing-intensive Earth Science research. In particular, highly bursty computing such as that experienced in the user-demand-driven Giovanni system may become more tractable in a Cloud environment. Our future work will continue to focus on migrating more GES DISC's applications/instances, e.g. Giovanni instances, to the Nebula platform and making matured migrated applications to be in operation on the Nebula.
NASA Astrophysics Data System (ADS)
Kobayashi, M. I. N.; Inutsuka, S.; Kobayashi, H.; Hasegawa, K.
We formulate the evolution equation for the giant molecular cloud (GMC) mass functions including self-growth of GMCs through the thermal instability, self-dispersal due to massive stars born in GMCs, cloud-cloud collisions (CCCs), and gas resurrection that replenishes the minimum-mass GMC population. The computed time evolutions obtained from this formulation suggest that the slope of GMC mass function in the mass range <105.5 Mȯ is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC process modifies only the massive end of the mass function. Our results also suggest that most of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60 per cent contributes in inter-arm regions.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2017-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948
Enabling a Scientific Cloud Marketplace: VGL (Invited)
NASA Astrophysics Data System (ADS)
Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.
2013-12-01
The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org
Efficient and Flexible Climate Analysis with Python in a Cloud-Based Distributed Computing Framework
NASA Astrophysics Data System (ADS)
Gannon, C.
2017-12-01
As climate models become progressively more advanced, and spatial resolution further improved through various downscaling projects, climate projections at a local level are increasingly insightful and valuable. However, the raw size of climate datasets presents numerous hurdles for analysts wishing to develop customized climate risk metrics or perform site-specific statistical analysis. Four Twenty Seven, a climate risk consultancy, has implemented a Python-based distributed framework to analyze large climate datasets in the cloud. With the freedom afforded by efficiently processing these datasets, we are able to customize and continually develop new climate risk metrics using the most up-to-date data. Here we outline our process for using Python packages such as XArray and Dask to evaluate netCDF files in a distributed framework, StarCluster to operate in a cluster-computing environment, cloud computing services to access publicly hosted datasets, and how this setup is particularly valuable for generating climate change indicators and performing localized statistical analysis.
Arkas: Rapid reproducible RNAseq analysis
Colombo, Anthony R.; J. Triche Jr, Timothy; Ramsingh, Giridharan
2017-01-01
The recently introduced Kallisto pseudoaligner has radically simplified the quantification of transcripts in RNA-sequencing experiments. We offer cloud-scale RNAseq pipelines Arkas-Quantification, and Arkas-Analysis available within Illumina’s BaseSpace cloud application platform which expedites Kallisto preparatory routines, reliably calculates differential expression, and performs gene-set enrichment of REACTOME pathways . Due to inherit inefficiencies of scale, Illumina's BaseSpace computing platform offers a massively parallel distributive environment improving data management services and data importing. Arkas-Quantification deploys Kallisto for parallel cloud computations and is conveniently integrated downstream from the BaseSpace Sequence Read Archive (SRA) import/conversion application titled SRA Import. Arkas-Analysis annotates the Kallisto results by extracting structured information directly from source FASTA files with per-contig metadata, calculates the differential expression and gene-set enrichment analysis on both coding genes and transcripts. The Arkas cloud pipeline supports ENSEMBL transcriptomes and can be used downstream from the SRA Import facilitating raw sequencing importing, SRA FASTQ conversion, RNA quantification and analysis steps. PMID:28868134
Dynamic VMs placement for energy efficiency by PSO in cloud computing
NASA Astrophysics Data System (ADS)
Dashti, Seyed Ebrahim; Rahmani, Amir Masoud
2016-03-01
Recently, cloud computing is growing fast and helps to realise other high technologies. In this paper, we propose a hieratical architecture to satisfy both providers' and consumers' requirements in these technologies. We design a new service in the PaaS layer for scheduling consumer tasks. In the providers' perspective, incompatibility between specification of physical machine and user requests in cloud leads to problems such as energy-performance trade-off and large power consumption so that profits are decreased. To guarantee Quality of service of users' tasks, and reduce energy efficiency, we proposed to modify Particle Swarm Optimisation to reallocate migrated virtual machines in the overloaded host. We also dynamically consolidate the under-loaded host which provides power saving. Simulation results in CloudSim demonstrated that whatever simulation condition is near to the real environment, our method is able to save as much as 14% more energy and the number of migrations and simulation time significantly reduces compared with the previous works.
Chung, Chi-Jung; Kuo, Yu-Chen; Hsieh, Yun-Yu; Li, Tsai-Chung; Lin, Cheng-Chieh; Liang, Wen-Miin; Liao, Li-Na; Li, Chia-Ing; Lin, Hsueh-Chun
2017-11-01
This study applied open source technology to establish a subject-enabled analytics model that can enhance measurement statistics of case studies with the public health data in cloud computing. The infrastructure of the proposed model comprises three domains: 1) the health measurement data warehouse (HMDW) for the case study repository, 2) the self-developed modules of online health risk information statistics (HRIStat) for cloud computing, and 3) the prototype of a Web-based process automation system in statistics (PASIS) for the health risk assessment of case studies with subject-enabled evaluation. The system design employed freeware including Java applications, MySQL, and R packages to drive a health risk expert system (HRES). In the design, the HRIStat modules enforce the typical analytics methods for biomedical statistics, and the PASIS interfaces enable process automation of the HRES for cloud computing. The Web-based model supports both modes, step-by-step analysis and auto-computing process, respectively for preliminary evaluation and real time computation. The proposed model was evaluated by computing prior researches in relation to the epidemiological measurement of diseases that were caused by either heavy metal exposures in the environment or clinical complications in hospital. The simulation validity was approved by the commercial statistics software. The model was installed in a stand-alone computer and in a cloud-server workstation to verify computing performance for a data amount of more than 230K sets. Both setups reached efficiency of about 10 5 sets per second. The Web-based PASIS interface can be used for cloud computing, and the HRIStat module can be flexibly expanded with advanced subjects for measurement statistics. The analytics procedure of the HRES prototype is capable of providing assessment criteria prior to estimating the potential risk to public health. Copyright © 2017 Elsevier B.V. All rights reserved.
Infrastructure Systems for Advanced Computing in E-science applications
NASA Astrophysics Data System (ADS)
Terzo, Olivier
2013-04-01
In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.
Usage of Thin-Client/Server Architecture in Computer Aided Education
ERIC Educational Resources Information Center
Cimen, Caghan; Kavurucu, Yusuf; Aydin, Halit
2014-01-01
With the advances of technology, thin-client/server architecture has become popular in multi-user/single network environments. Thin-client is a user terminal in which the user can login to a domain and run programs by connecting to a remote server. Recent developments in network and hardware technologies (cloud computing, virtualization, etc.)…
Software Simplifies the Sharing of Numerical Models
NASA Technical Reports Server (NTRS)
2014-01-01
To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.
Integration of cloud-based storage in BES III computing environment
NASA Astrophysics Data System (ADS)
Wang, L.; Hernandez, F.; Deng, Z.
2014-06-01
We present an on-going work that aims to evaluate the suitability of cloud-based storage as a supplement to the Lustre file system for storing experimental data for the BES III physics experiment and as a backend for storing files belonging to individual members of the collaboration. In particular, we discuss our findings regarding the support of cloud-based storage in the software stack of the experiment. We report on our development work that improves the support of CERN' s ROOT data analysis framework and allows efficient remote access to data through several cloud storage protocols. We also present our efforts providing the experiment with efficient command line tools for navigating and interacting with cloud storage-based data repositories both from interactive sessions and grid jobs.
Beating the tyranny of scale with a private cloud configured for Big Data
NASA Astrophysics Data System (ADS)
Lawrence, Bryan; Bennett, Victoria; Churchill, Jonathan; Juckes, Martin; Kershaw, Philip; Pepler, Sam; Pritchard, Matt; Stephens, Ag
2015-04-01
The Joint Analysis System, JASMIN, consists of a five significant hardware components: a batch computing cluster, a hypervisor cluster, bulk disk storage, high performance disk storage, and access to a tape robot. Each of the computing clusters consists of a heterogeneous set of servers, supporting a range of possible data analysis tasks - and a unique network environment makes it relatively trivial to migrate servers between the two clusters. The high performance disk storage will include the world's largest (publicly visible) deployment of the Panasas parallel disk system. Initially deployed in April 2012, JASMIN has already undergone two major upgrades, culminating in a system which by April 2015, will have in excess of 16 PB of disk and 4000 cores. Layered on the basic hardware are a range of services, ranging from managed services, such as the curated archives of the Centre for Environmental Data Archival or the data analysis environment for the National Centres for Atmospheric Science and Earth Observation, to a generic Infrastructure as a Service (IaaS) offering for the UK environmental science community. Here we present examples of some of the big data workloads being supported in this environment - ranging from data management tasks, such as checksumming 3 PB of data held in over one hundred million files, to science tasks, such as re-processing satellite observations with new algorithms, or calculating new diagnostics on petascale climate simulation outputs. We will demonstrate how the provision of a cloud environment closely coupled to a batch computing environment, all sharing the same high performance disk system allows massively parallel processing without the necessity to shuffle data excessively - even as it supports many different virtual communities, each with guaranteed performance. We will discuss the advantages of having a heterogeneous range of servers with available memory from tens of GB at the low end to (currently) two TB at the high end. There are some limitations of the JASMIN environment, the high performance disk environment is not fully available in the IaaS environment, and a planned ability to burst compute heavy jobs into the public cloud is not yet fully available. There are load balancing and performance issues that need to be understood. We will conclude with projections for future usage, and our plans to meet those requirements.
Optical fibre multi-parameter sensing with secure cloud based signal capture and processing
NASA Astrophysics Data System (ADS)
Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed
2016-05-01
Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Spazier, J.; Reißland, S.
2014-12-01
Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the concept a whirl and to shape science's future. Further functionality, improvements and possible profound changes have to implemented successively based on the users' evolving needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthik, Rajasekar
2014-01-01
In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack withmore » Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.« less
Robotic disaster recovery efforts with ad-hoc deployable cloud computing
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Marsh, Ronald; Mohammad, Atif F.
2013-06-01
Autonomous operations of search and rescue (SaR) robots is an ill posed problem, which is complexified by the dynamic disaster recovery environment. In a typical SaR response scenario, responder robots will require different levels of processing capabilities during various parts of the response effort and will need to utilize multiple algorithms. Placing these capabilities onboard the robot is a mediocre solution that precludes algorithm specific performance optimization and results in mediocre performance. Architecture for an ad-hoc, deployable cloud environment suitable for use in a disaster response scenario is presented. Under this model, each service provider is optimized for the task and maintains a database of situation-relevant information. This service-oriented architecture (SOA 3.0) compliant framework also serves as an example of the efficient use of SOA 3.0 in an actual cloud application.
Cloud Computing for radiologists.
Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit
2012-07-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.
Cloud Computing for radiologists
Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit
2012-01-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560
Where Next for Marine Cloud Brightening Research?
NASA Astrophysics Data System (ADS)
Jenkins, A. K. L.; Forster, P.
2014-12-01
Realistic estimates of geoengineering effectiveness will be central to informed decision-making on its possible role in addressing climate change. Over the last decade, global-scale computer climate modelling of geoengineering has been developing. While these developments have allowed quantitative estimates of geoengineering effectiveness to be produced, the relative coarseness of the grid of these models (tens of kilometres) means that key practical details of the proposed geoengineering is not always realistically captured. This is particularly true for marine cloud brightening (MCB), where both the clouds, as well as the tens-of-meters scale sea-going implementation vessels cannot be captured in detail. Previous research using cloud resolving modelling has shown that neglecting such details may lead to MCB effectiveness being overestimated by up to half. Realism of MCB effectiveness will likely improve from ongoing developments in the understanding and modelling of clouds. We also propose that realism can be increased via more specific improvements (see figure). A readily achievable example would be the reframing of previous MCB effectiveness estimates in light of the cloud resolving scale findings. Incorporation of implementation details could also be made - via parameterisation - into future global-scale modelling of MCB. However, as significant unknowns regarding the design of the MCB aerosol production technique remain, resource-intensive cloud resolving computer modelling of MCB may be premature unless of broader benefit to the wider understanding of clouds. One of the most essential recommendations is for enhanced communication between climate scientists and MCB designers. This would facilitate the identification of potentially important design aspects necessary for realistic computer simulations. Such relationships could be mutually beneficial, with computer modelling potentially informing more efficient designs of the MCB implementation technique. (Acknowledgment) This work is part of the Integrated Assessment of Geoengineering Proposals (IAGP) project, funded by the Engineering and Physical Sciences Research Council and the Natural Environment Research Council (EP/I014721/1).
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing
NASA Astrophysics Data System (ADS)
Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.
2012-12-01
Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.
Cloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data
NASA Astrophysics Data System (ADS)
Evans, J. D.; Valente, E. G.
2010-12-01
We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for processing and serving near-real-time data from NPP and other sensors. A scalable architecture based on cloud computing ensures cost-effective, real-time processing and delivery of NPP and other data. Access via standard Web services maximizes its interoperability and usefulness.
Lagrangian condensation microphysics with Twomey CCN activation
NASA Astrophysics Data System (ADS)
Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna
2018-01-01
We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets
to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation, transport of super-droplets in the physical space, and the coupling between super-droplets and the Eulerian temperature and water vapor field are discussed in detail. Some of these are relevant to the original super-droplet methodology as well and to the ice phase modeling using the Lagrangian approach. As a computational example, the scheme is applied to an idealized moist thermal rising in a stratified environment, with the original super-droplet methodology providing a benchmark to which the new scheme is compared.
2012-05-01
cloud computing 17 NASA Nebula Platform • Cloud computing pilot program at NASA Ames • Integrates open-source components into seamless, self...Mission support • Education and public outreach (NASA Nebula , 2010) 18 NSF Supported Cloud Research • Support for Cloud Computing in...Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special Publication 800-145 • NASA Nebula (2010). Retrieved from
The EPOS Vision for the Open Science Cloud
NASA Astrophysics Data System (ADS)
Jeffery, Keith; Harrison, Matt; Cocco, Massimo
2016-04-01
Cloud computing offers dynamic elastic scalability for data processing on demand. For much research activity, demand for computing is uneven over time and so CLOUD computing offers both cost-effectiveness and capacity advantages. However, as reported repeatedly by the EC Cloud Expert Group, there are barriers to the uptake of Cloud Computing: (1) security and privacy; (2) interoperability (avoidance of lock-in); (3) lack of appropriate systems development environments for application programmers to characterise their applications to allow CLOUD middleware to optimize their deployment and execution. From CERN, the Helix-Nebula group has proposed the architecture for the European Open Science Cloud. They are discussing with other e-Infrastructure groups such as EGI (GRIDs), EUDAT (data curation), AARC (network authentication and authorisation) and also with the EIROFORUM group of 'international treaty' RIs (Research Infrastructures) and the ESFRI (European Strategic Forum for Research Infrastructures) RIs including EPOS. Many of these RIs are either e-RIs (electronic-RIs) or have an e-RI interface for access and use. The EPOS architecture is centred on a portal: ICS (Integrated Core Services). The architectural design already allows for access to e-RIs (which may include any or all of data, software, users and resources such as computers or instruments). Those within any one domain (subject area) of EPOS are considered within the TCS (Thematic Core Services). Those outside, or available across multiple domains of EPOS, are ICS-d (Integrated Core Services-Distributed) since the intention is that they will be used by any or all of the TCS via the ICS. Another such service type is CES (Computational Earth Science); effectively an ICS-d specializing in high performance computation, analytics, simulation or visualization offered by a TCS for others to use. Already discussions are underway between EPOS and EGI, EUDAT, AARC and Helix-Nebula for those offerings to be considered as ICS-ds by EPOS.. Provision of access to ICS-Ds from ICS-C concerns several aspects: (a) Technical : it may be more or less difficult to connect and pass from ICS-C to the ICS-d/ CES the 'package' (probably a virtual machine) of data and software; (b) Security/privacy : including passing personal information e.g. related to AAAI (Authentication, authorization, accounting Infrastructure); (c) financial and legal : such as payment, licence conditions; Appropriate interfaces from ICS-C to ICS-d are being designed to accommodate these aspects. The Open Science Cloud is timely because it provides a framework to discuss governance and sustainability for computational resource provision as well as an effective interpretation of federated approach to HPC(High Performance Computing) -HTC (High Throughput Computing). It will be a unique opportunity to share and adopt procurement policies to provide access to computational resources for RIs. The current state of discussions and expected roadmap for the EPOS-Open Science Cloud relationship are presented.
International Symposium on Grids and Clouds (ISGC) 2016
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2016 will be held at Academia Sinica in Taipei, Taiwan from 13-18 March 2016, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). The theme of ISGC 2016 focuses on“Ubiquitous e-infrastructures and Applications”. Contemporary research is impossible without a strong IT component - researchers rely on the existence of stable and widely available e-infrastructures and their higher level functions and properties. As a result of these expectations, e-Infrastructures are becoming ubiquitous, providing an environment that supports large scale collaborations that deal with global challenges as well as smaller and temporal research communities focusing on particular scientific problems. To support those diversified communities and their needs, the e-Infrastructures themselves are becoming more layered and multifaceted, supporting larger groups of applications. Following the call for the last year conference, ISGC 2016 continues its aim to bring together users and application developers with those responsible for the development and operation of multi-purpose ubiquitous e-Infrastructures. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities, Arts, and Social Sciences (HASS) Applications, Virtual Research Environment (including Middleware, tools, services, workflow, etc.), Data Management, Big Data, Networking & Security, Infrastructure & Operations, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC), etc.
Storing and using health data in a virtual private cloud.
Regola, Nathan; Chawla, Nitesh V
2013-03-13
Electronic health records are being adopted at a rapid rate due to increased funding from the US federal government. Health data provide the opportunity to identify possible improvements in health care delivery by applying data mining and statistical methods to the data and will also enable a wide variety of new applications that will be meaningful to patients and medical professionals. Researchers are often granted access to health care data to assist in the data mining process, but HIPAA regulations mandate comprehensive safeguards to protect the data. Often universities (and presumably other research organizations) have an enterprise information technology infrastructure and a research infrastructure. Unfortunately, both of these infrastructures are generally not appropriate for sensitive research data such as HIPAA, as they require special accommodations on the part of the enterprise information technology (or increased security on the part of the research computing environment). Cloud computing, which is a concept that allows organizations to build complex infrastructures on leased resources, is rapidly evolving to the point that it is possible to build sophisticated network architectures with advanced security capabilities. We present a prototype infrastructure in Amazon's Virtual Private Cloud to allow researchers and practitioners to utilize the data in a HIPAA-compliant environment.
Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing
NASA Astrophysics Data System (ADS)
Klems, Markus; Nimis, Jens; Tai, Stefan
On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.
On Using Home Networks and Cloud Computing for a Future Internet of Things
NASA Astrophysics Data System (ADS)
Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg
In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).
De Paris, Renata; Frantz, Fábio A.; Norberto de Souza, Osmar; Ruiz, Duncan D. A.
2013-01-01
Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern. PMID:23691504
IBM Cloud Computing Powering a Smarter Planet
NASA Astrophysics Data System (ADS)
Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu
With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.
NASA Astrophysics Data System (ADS)
Davis, Anthony; Diner, David; Yanovsky, Igor; Garay, Michael; Xu, Feng; Bal, Guillaume; Schechner, Yoav; Aides, Amit; Qu, Zheng; Emde, Claudia
2013-04-01
Remote sensing is a key tool for sorting cloud ensembles by dynamical state, aerosol environments by source region, and establishing causal relationships between aerosol amounts, type, and cloud microphysics-the so-called indirect aerosol climate impacts, and one of the main sources of uncertainty in current climate models. Current satellite imagers use data processing approaches that invariably start with cloud detection/masking to isolate aerosol air-masses from clouds, and then rely on one-dimensional (1D) radiative transfer (RT) to interpret the aerosol and cloud measurements in isolation. Not only does this lead to well-documented biases for the estimates of aerosol radiative forcing and cloud optical depths in current missions, but it is fundamentally inadequate for future missions such as EarthCARE where capturing the complex, three-dimensional (3D) interactions between clouds and aerosols is a primary objective. In order to advance the state of the art, the next generation of satellite information processing systems must incorporate technologies that will enable the treatment of the atmosphere as a fully 3D environment, represented more realistically as a continuum. At one end, there is an optically thin background dominated by aerosols and molecular scattering that is strongly stratified and relatively homogeneous in the horizontal. At the other end, there are optically thick embedded elements, clouds and aerosol plumes, which can be more or less uniform and quasi-planar or else highly 3D with boundaries in all directions; in both cases, strong internal variability may be present. To make this paradigm shift possible, we propose to combine the standard models for satellite signal prediction physically grounded in 1D and 3D RT, both scalar and vector, with technologies adapted from biomedical imaging, digital image processing, and computer vision. This will enable us to demonstrate how the 3D distribution of atmospheric constituents, and their associated microphysical properties, can be reconstructed from multi-angle/multi-spectral imaging radiometry and, more and more, polarimetry. Specific technologies of interest are computed tomography (reconstruction from projections), optical tomography (using cross-pixel radiation transport in the diffusion limit), stereoscopy (depth/height retrievals), blind source and scale separation (signal unmixing), and disocclusion (information recovery in the presence of obstructions). Later on, these potentially powerful inverse problem solutions will be fully integrated in a versatile satellite data analysis toolbox. At present, we can report substantial progress at the component level. Specifically, we will focus on the most elementary problems in atmospheric tomography with an emphasis on the vastly under-exploited class of multi-pixel techniques. One basic problem is to infer the outer shape and mean opacity of 3D clouds, along with a bulk measure of cloud particle size. Another is to separate high and low cloud layers based on their characteristically different spatial textures. Yet another is to reconstruct the 3D spatial distribution of aerosol density based on passive imaging. This suite of independent feasibility studies amounts to a compelling proofof- concept for the ambitious 3D-Tomographic Reconstruction of the Aerosol-Cloud Environment (3D-TRACE) project as a whole.
Cloud Computing Security Issue: Survey
NASA Astrophysics Data System (ADS)
Kamal, Shailza; Kaur, Rajpreet
2011-12-01
Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.
GTZ: a fast compression and cloud transmission tool optimized for FASTQ files.
Xing, Yuting; Li, Gen; Wang, Zhenguo; Feng, Bolun; Song, Zhuo; Wu, Chengkun
2017-12-28
The dramatic development of DNA sequencing technology is generating real big data, craving for more storage and bandwidth. To speed up data sharing and bring data to computing resource faster and cheaper, it is necessary to develop a compression tool than can support efficient compression and transmission of sequencing data onto the cloud storage. This paper presents GTZ, a compression and transmission tool, optimized for FASTQ files. As a reference-free lossless FASTQ compressor, GTZ treats different lines of FASTQ separately, utilizes adaptive context modelling to estimate their characteristic probabilities, and compresses data blocks with arithmetic coding. GTZ can also be used to compress multiple files or directories at once. Furthermore, as a tool to be used in the cloud computing era, it is capable of saving compressed data locally or transmitting data directly into cloud by choice. We evaluated the performance of GTZ on some diverse FASTQ benchmarks. Results show that in most cases, it outperforms many other tools in terms of the compression ratio, speed and stability. GTZ is a tool that enables efficient lossless FASTQ data compression and simultaneous data transmission onto to cloud. It emerges as a useful tool for NGS data storage and transmission in the cloud environment. GTZ is freely available online at: https://github.com/Genetalks/gtz .
T-Check in System-of-Systems Technologies: Cloud Computing
2010-09-01
T-Check in System-of-Systems Technologies: Cloud Computing Harrison D. Strowd Grace A. Lewis September 2010 TECHNICAL NOTE CMU/SEI-2010... Cloud Computing 1 1.2 Types of Cloud Computing 2 1.3 Drivers and Barriers to Cloud Computing Adoption 5 2 Using the T-Check Method 7 2.1 T-Check...Hypothesis 3 25 3.4.2 Deployment View of the Solution for Testing Hypothesis 3 27 3.5 Selecting Cloud Computing Providers 30 3.6 Implementing the T-Check
2010-07-01
Cloud computing , an emerging form of computing in which users have access to scalable, on-demand capabilities that are provided through Internet... cloud computing , (2) the information security implications of using cloud computing services in the Federal Government, and (3) federal guidance and...efforts to address information security when using cloud computing . The complete report is titled Information Security: Federal Guidance Needed to
ERIC Educational Resources Information Center
Alqallaf, Nadeyah
2016-01-01
The purpose of this study was to examine Kuwaiti mathematical elementary teachers' perceptions about their ability to integrate M-learning (mobile learning) into their current teaching practices and the major barriers hindering teachers' ability to create an M-learning environment. Furthermore, this study sought to understand teachers' perceptions…
NASA Astrophysics Data System (ADS)
Farroha, Bassam S.; Farroha, Deborah L.
2011-06-01
The new corporate approach to efficient processing and storage is migrating from in-house service-center services to the newly coined approach of Cloud Computing. This approach advocates thin clients and providing services by the service provider over time-shared resources. The concept is not new, however the implementation approach presents a strategic shift in the way organizations provision and manage their IT resources. The requirements on some of the data sets targeted to be run on the cloud vary depending on the data type, originator, user, and confidentiality level. Additionally, the systems that fuse such data would have to deal with the classifying the product and clearing the computing resources prior to allowing new application to be executed. This indicates that we could end up with a multi-level security system that needs to follow specific rules and can send the output to a protected network and systems in order not to have data spill or contaminated resources. The paper discusses these requirements and potential impact on the cloud architecture. Additionally, the paper discusses the unexpected advantages of the cloud framework providing a sophisticated environment for information sharing and data mining.
A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system
NASA Astrophysics Data System (ADS)
Toor, S.; Osmani, L.; Eerola, P.; Kraemer, O.; Lindén, T.; Tarkoma, S.; White, J.
2014-06-01
The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.
A cloud-based X73 ubiquitous mobile healthcare system: design and implementation.
Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhang, Xin; Zhang, Xueji
2014-01-01
Based on the user-centric paradigm for next generation networks, this paper describes a ubiquitous mobile healthcare (uHealth) system based on the ISO/IEEE 11073 personal health data (PHD) standards (X73) and cloud computing techniques. A number of design issues associated with the system implementation are outlined. The system includes a middleware on the user side, providing a plug-and-play environment for heterogeneous wireless sensors and mobile terminals utilizing different communication protocols and a distributed "big data" processing subsystem in the cloud. The design and implementation of this system are envisaged as an efficient solution for the next generation of uHealth systems.
eduCRATE--a Virtual Hospital architecture.
Stoicu-Tivadar, Lăcrimioara; Stoicu-Tivadar, Vasile; Berian, Dorin; Drăgan, Simona; Serban, Alexandru; Serban, Corina
2014-01-01
eduCRATE is a complex project proposal which aims to develop a virtual learning environment offering interactive digital content through original and integrated solutions using cloud computing, complex multimedia systems in virtual space and personalized design with avatars. Compared to existing similar products the project brings the novelty of using languages for medical guides in order to ensure a maximum of flexibility. The Virtual Hospital simulations will create interactive clinical scenarios for which students will find solutions for positive diagnosis and therapeutic management. The solution based on cloud computing and immersive multimedia is an attractive option in education because is economical and it matches the current working style of the young generation to whom it addresses.
Risk in the Clouds?: Security Issues Facing Government Use of Cloud Computing
NASA Astrophysics Data System (ADS)
Wyld, David C.
Cloud computing is poised to become one of the most important and fundamental shifts in how computing is consumed and used. Forecasts show that government will play a lead role in adopting cloud computing - for data storage, applications, and processing power, as IT executives seek to maximize their returns on limited procurement budgets in these challenging economic times. After an overview of the cloud computing concept, this article explores the security issues facing public sector use of cloud computing and looks to the risk and benefits of shifting to cloud-based models. It concludes with an analysis of the challenges that lie ahead for government use of cloud resources.
A Review Study on Cloud Computing Issues
NASA Astrophysics Data System (ADS)
Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti
2018-05-01
Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.
On the Design of Smart Homes: A Framework for Activity Recognition in Home Environment.
Cicirelli, Franco; Fortino, Giancarlo; Giordano, Andrea; Guerrieri, Antonio; Spezzano, Giandomenico; Vinci, Andrea
2016-09-01
A smart home is a home environment enriched with sensing, actuation, communication and computation capabilities which permits to adapt it to inhabitants preferences and requirements. Establishing a proper strategy of actuation on the home environment can require complex computational tasks on the sensed data. This is the case of activity recognition, which consists in retrieving high-level knowledge about what occurs in the home environment and about the behaviour of the inhabitants. The inherent complexity of this application domain asks for tools able to properly support the design and implementation phases. This paper proposes a framework for the design and implementation of smart home applications focused on activity recognition in home environments. The framework mainly relies on the Cloud-assisted Agent-based Smart home Environment (CASE) architecture offering basic abstraction entities which easily allow to design and implement Smart Home applications. CASE is a three layered architecture which exploits the distributed multi-agent paradigm and the cloud technology for offering analytics services. Details about how to implement activity recognition onto the CASE architecture are supplied focusing on the low-level technological issues as well as the algorithms and the methodologies useful for the activity recognition. The effectiveness of the framework is shown through a case study consisting of a daily activity recognition of a person in a home environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
...--Intersection of Cloud Computing and Mobility Forum and Workshop AGENCY: National Institute of Standards and.../intersection-of-cloud-and-mobility.cfm . SUPPLEMENTARY INFORMATION: NIST hosted six prior Cloud Computing Forum... interoperability, portability, and security, discuss the Federal Government's experience with cloud computing...
Embracing the Cloud: Six Ways to Look at the Shift to Cloud Computing
ERIC Educational Resources Information Center
Ullman, David F.; Haggerty, Blake
2010-01-01
Cloud computing is the latest paradigm shift for the delivery of IT services. Where previous paradigms (centralized, decentralized, distributed) were based on fairly straightforward approaches to technology and its management, cloud computing is radical in comparison. The literature on cloud computing, however, suffers from many divergent…
The Research of the Parallel Computing Development from the Angle of Cloud Computing
NASA Astrophysics Data System (ADS)
Peng, Zhensheng; Gong, Qingge; Duan, Yanyu; Wang, Yun
2017-10-01
Cloud computing is the development of parallel computing, distributed computing and grid computing. The development of cloud computing makes parallel computing come into people’s lives. Firstly, this paper expounds the concept of cloud computing and introduces two several traditional parallel programming model. Secondly, it analyzes and studies the principles, advantages and disadvantages of OpenMP, MPI and Map Reduce respectively. Finally, it takes MPI, OpenMP models compared to Map Reduce from the angle of cloud computing. The results of this paper are intended to provide a reference for the development of parallel computing.
NASA Astrophysics Data System (ADS)
Vijay Singh, Ran; Agilandeeswari, L.
2017-11-01
To handle the large amount of client’s data in open cloud lots of security issues need to be address. Client’s privacy should not be known to other group members without data owner’s valid permission. Sometime clients are fended to have accessing with open cloud servers due to some restrictions. To overcome the security issues and these restrictions related to storing, data sharing in an inter domain network and privacy checking, we propose a model in this paper which is based on an identity based cryptography in data transmission and intermediate entity which have client’s reference with identity that will take control handling of data transmission in an open cloud environment and an extended remote privacy checking technique which will work at admin side. On behalf of data owner’s authority this proposed model will give best options to have secure cryptography in data transmission and remote privacy checking either as private or public or instructed. The hardness of Computational Diffie-Hellman assumption algorithm for key exchange makes this proposed model more secure than existing models which are being used for public cloud environment.
Cloud computing basics for librarians.
Hoy, Matthew B
2012-01-01
"Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC
Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds
NASA Astrophysics Data System (ADS)
Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano
Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.
A Novel College Network Resource Management Method using Cloud Computing
NASA Astrophysics Data System (ADS)
Lin, Chen
At present information construction of college mainly has construction of college networks and management information system; there are many problems during the process of information. Cloud computing is development of distributed processing, parallel processing and grid computing, which make data stored on the cloud, make software and services placed in the cloud and build on top of various standards and protocols, you can get it through all kinds of equipments. This article introduces cloud computing and function of cloud computing, then analyzes the exiting problems of college network resource management, the cloud computing technology and methods are applied in the construction of college information sharing platform.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing.
Cole, Brian S; Moore, Jason H
2018-03-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing
Moore, Jason H.
2018-01-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416
A cloud-based workflow to quantify transcript-expression levels in public cancer compendia
Tatlow, PJ; Piccolo, Stephen R.
2016-01-01
Public compendia of sequencing data are now measured in petabytes. Accordingly, it is infeasible for researchers to transfer these data to local computers. Recently, the National Cancer Institute began exploring opportunities to work with molecular data in cloud-computing environments. With this approach, it becomes possible for scientists to take their tools to the data and thereby avoid large data transfers. It also becomes feasible to scale computing resources to the needs of a given analysis. We quantified transcript-expression levels for 12,307 RNA-Sequencing samples from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas. We used two cloud-based configurations and examined the performance and cost profiles of each configuration. Using preemptible virtual machines, we processed the samples for as little as $0.09 (USD) per sample. As the samples were processed, we collected performance metrics, which helped us track the duration of each processing step and quantified computational resources used at different stages of sample processing. Although the computational demands of reference alignment and expression quantification have decreased considerably, there remains a critical need for researchers to optimize preprocessing steps. We have stored the software, scripts, and processed data in a publicly accessible repository (https://osf.io/gqrz9). PMID:27982081
NASA Astrophysics Data System (ADS)
Dong, Yumin; Xiao, Shufen; Ma, Hongyang; Chen, Libo
2016-12-01
Cloud computing and big data have become the developing engine of current information technology (IT) as a result of the rapid development of IT. However, security protection has become increasingly important for cloud computing and big data, and has become a problem that must be solved to develop cloud computing. The theft of identity authentication information remains a serious threat to the security of cloud computing. In this process, attackers intrude into cloud computing services through identity authentication information, thereby threatening the security of data from multiple perspectives. Therefore, this study proposes a model for cloud computing protection and management based on quantum authentication, introduces the principle of quantum authentication, and deduces the quantum authentication process. In theory, quantum authentication technology can be applied in cloud computing for security protection. This technology cannot be cloned; thus, it is more secure and reliable than classical methods.
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012
Robotic Online Path Planning on Point Cloud.
Liu, Ming
2016-05-01
This paper deals with the path-planning problem for mobile wheeled- or tracked-robot which drive in 2.5-D environments, where the traversable surface is usually considered as a 2-D-manifold embedded in a 3-D ambient space. Specially, we aim at solving the 2.5-D navigation problem using raw point cloud as input. The proposed method is independent of traditional surface parametrization or reconstruction methods, such as a meshing process, which generally has high-computational complexity. Instead, we utilize the output of 3-D tensor voting framework on the raw point clouds. The computation of tensor voting is accelerated by optimized implementation on graphics computation unit. Based on the tensor voting results, a novel local Riemannian metric is defined using the saliency components, which helps the modeling of the latent traversable surface. Using the proposed metric, we prove that the geodesic in the 3-D tensor space leads to rational path-planning results by experiments. Compared to traditional methods, the results reveal the advantages of the proposed method in terms of smoothing the robot maneuver while considering the minimum travel distance.
An imperialist competitive algorithm for virtual machine placement in cloud computing
NASA Astrophysics Data System (ADS)
Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza
2017-05-01
Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists.
Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing.
Zhang, Nan; Yang, Xiaolong; Zhang, Min; Sun, Yan
2016-01-01
Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network.
Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing
Zhang, Min; Sun, Yan
2016-01-01
Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network. PMID:28030553
Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation
NASA Astrophysics Data System (ADS)
Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.
2017-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.
NASA Astrophysics Data System (ADS)
Wei, Wang; Chongchao, Pan; Yikai, Liang; Gang, Li
2017-11-01
With the rapid development of information technology, the scale of data center increases quickly, and the energy consumption of computer room also increases rapidly, among which, energy consumption of air conditioning cooling makes up a large proportion. How to apply new technology to reduce the energy consumption of the computer room becomes an important topic of energy saving in the current research. This paper study internet of things technology, and design a kind of green computer room environmental monitoring system. In the system, we can get the real-time environment data from the application of wireless sensor network technology, which will be showed in a creative way of three-dimensional effect. In the environment monitor, we can get the computer room assets view, temperature cloud view, humidity cloud view, microenvironment view and so on. Thus according to the condition of the microenvironment, we can adjust the air volume, temperature and humidity parameters of the air conditioning for the individual equipment cabinet to realize the precise air conditioning refrigeration. And this can reduce the energy consumption of air conditioning, as a result, the overall energy consumption of the green computer room will reduce greatly. At the same time, we apply this project in the computer center of Weihai, and after a year of test and running, we find that it took a good energy saving effect, which fully verified the effectiveness of this project on the energy conservation of the computer room.
NASA Astrophysics Data System (ADS)
Ghedira, H.; Eissa, Y.
2012-12-01
Global horizontal irradiance (GHI) retrievals at the surface of any given location could be used for preliminary solar resource assessments. More accurately, the direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) are also required to estimate the global tilt irradiance, mainly used for fixed flat plate collectors. Two different satellite-based models for solar irradiance retrievals have been applied over the desert environment of the United Arab Emirates (UAE). Both models employ channels of the SEVIRI instrument, onboard the geostationary satellite Meteosat Second Generation, as their main inputs. The satellite images used in this study have a temporal resolution of 15-min and a spatial resolution of 3-km. The objective of this study is to compare between the GHI retrieved using the Heliosat-2 method and an artificial neural network (ANN) ensemble method over the UAE. The high-resolution visible channel of SEVIRI is used in the Heliosat-2 method to derive the cloud index. The cloud index is then used to compute the cloud transmission, while the cloud-free GHI is computed from the Linke turbidity factor. The product of the cloud transmission and the cloud-free GHI denotes the estimated GHI. A constant underestimation is observed in the estimated GHI over the dataset available in the UAE. Therefore, the cloud-free DHI equation in the model was recalibrated to fix the bias. After recalibration, results over the UAE show a root mean square error (RMSE) value of 10.1% and a mean bias error (MBE) of -0.5%. As for the ANN approach, six thermal channels of SEVIRI were used to estimate the DHI and the total optical depth of the atmosphere (δ). An ensemble approach is employed to obtain a better generalizability of the results, as opposed to using one single weak network. The DNI is then computed from the estimated δ using the Beer-Bouguer-Lambert law. The GHI is computed from the DNI and DHI estimates. The RMSE for the estimated GHI obtained over an independent dataset over the UAE is 7.2% and the MBE is +1.9%. The results obtained by the two methods have shown that both the recalibrated Heliosat-2 and the ANN ensemble methods estimate the GHI at a 15-min resolution with high accuracy. The advantage of the ANN ensemble approach is that it derives the GHI from accurate DNI and DHI estimates. The DNI and DHI estimates are valuable when computing the global tilt irradiance. Also, accurate DNI estimates are beneficial for preliminary site selection for concentrating solar powered plants.
NASA Astrophysics Data System (ADS)
Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard
2014-05-01
Helix Nebula has established a growing public private partnership of more than 30 commercial cloud providers, SMEs, and publicly funded research organisations and e-infrastructures. The Helix Nebula strategy is to establish a federated cloud service across Europe. Three high-profile flagships, sponsored by CERN (high energy physics), EMBL (life sciences) and ESA/DLR/CNES/CNR (earth science), have been deployed and extensively tested within this federated environment. The commitments behind these initial flagships have created a critical mass that attracts suppliers and users to the initiative, to work together towards an "Information as a Service" market place. Significant progress in implementing the following 4 programmatic goals (as outlined in the strategic Plan Ref.1) has been achieved: × Goal #1 Establish a Cloud Computing Infrastructure for the European Research Area (ERA) serving as a platform for innovation and evolution of the overall infrastructure. × Goal #2 Identify and adopt suitable policies for trust, security and privacy on a European-level can be provided by the European Cloud Computing framework and infrastructure. × Goal #3 Create a light-weight governance structure for the future European Cloud Computing Infrastructure that involves all the stakeholders and can evolve over time as the infrastructure, services and user-base grows. × Goal #4 Define a funding scheme involving the three stake-holder groups (service suppliers, users, EC and national funding agencies) into a Public-Private-Partnership model to implement a Cloud Computing Infrastructure that delivers a sustainable business environment adhering to European level policies. Now in 2014 a first version of this generic cross-domain e-infrastructure is ready to go into operations building on federation of European industry and contributors (data, tools, knowledge, ...). This presentation describes how Helix Nebula is being used in the domain of earth science focusing on geohazards. The so called "Supersite Exploitation Platform" (SSEP) provides scientists an overarching federated e-infrastructure with a very fast access to (i) large volume of data (EO/non-space data), (ii) computing resources (e.g. hybrid cloud/grid), (iii) processing software (e.g. toolboxes, RTMs, retrieval baselines, visualization routines), and (iv) general platform capabilities (e.g. user management and access control, accounting, information portal, collaborative tools, social networks etc.). In this federation each data provider remains in full control of the implementation of its data policy. This presentation outlines the Architecture (technical and services) supporting very heterogeneous science domains as well as the procedures for new-comers to join the Helix Nebula Market Place. Ref.1 http://cds.cern.ch/record/1374172/files/CERN-OPEN-2011-036.pdf
Establishing a Cloud Computing Success Model for Hospitals in Taiwan.
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services. PMID:28112020
Implementation of cloud computing in higher education
NASA Astrophysics Data System (ADS)
Asniar; Budiawan, R.
2016-04-01
Cloud computing research is a new trend in distributed computing, where people have developed service and SOA (Service Oriented Architecture) based application. This technology is very useful to be implemented, especially for higher education. This research is studied the need and feasibility for the suitability of cloud computing in higher education then propose the model of cloud computing service in higher education in Indonesia that can be implemented in order to support academic activities. Literature study is used as the research methodology to get a proposed model of cloud computing in higher education. Finally, SaaS and IaaS are cloud computing service that proposed to be implemented in higher education in Indonesia and cloud hybrid is the service model that can be recommended.
Research on Key Technologies of Cloud Computing
NASA Astrophysics Data System (ADS)
Zhang, Shufen; Yan, Hongcan; Chen, Xuebin
With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.
The Many Colors and Shapes of Cloud
NASA Astrophysics Data System (ADS)
Yeh, James T.
While many enterprises and business entities are deploying and exploiting Cloud Computing, the academic institutes and researchers are also busy trying to wrestle this beast and put a leash on this possible paradigm changing computing model. Many have argued that Cloud Computing is nothing more than a name change of Utility Computing. Others have argued that Cloud Computing is a revolutionary change of the computing architecture. So it has been difficult to put a boundary of what is in Cloud Computing, and what is not. I assert that it is equally difficult to find a group of people who would agree on even the definition of Cloud Computing. In actuality, may be all that arguments are not necessary, as Clouds have many shapes and colors. In this presentation, the speaker will attempt to illustrate that the shape and the color of the cloud depend very much on the business goals one intends to achieve. It will be a very rich territory for both the businesses to take the advantage of the benefits of Cloud Computing and the academia to integrate the technology research and business research.
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration
2014-06-01
The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.
Cloud identification using genetic algorithms and massively parallel computation
NASA Technical Reports Server (NTRS)
Buckles, Bill P.; Petry, Frederick E.
1996-01-01
As a Guest Computational Investigator under the NASA administered component of the High Performance Computing and Communication Program, we implemented a massively parallel genetic algorithm on the MasPar SIMD computer. Experiments were conducted using Earth Science data in the domains of meteorology and oceanography. Results obtained in these domains are competitive with, and in most cases better than, similar problems solved using other methods. In the meteorological domain, we chose to identify clouds using AVHRR spectral data. Four cloud speciations were used although most researchers settle for three. Results were remarkedly consistent across all tests (91% accuracy). Refinements of this method may lead to more timely and complete information for Global Circulation Models (GCMS) that are prevalent in weather forecasting and global environment studies. In the oceanographic domain, we chose to identify ocean currents from a spectrometer having similar characteristics to AVHRR. Here the results were mixed (60% to 80% accuracy). Given that one is willing to run the experiment several times (say 10), then it is acceptable to claim the higher accuracy rating. This problem has never been successfully automated. Therefore, these results are encouraging even though less impressive than the cloud experiment. Successful conclusion of an automated ocean current detection system would impact coastal fishing, naval tactics, and the study of micro-climates. Finally we contributed to the basic knowledge of GA (genetic algorithm) behavior in parallel environments. We developed better knowledge of the use of subpopulations in the context of shared breeding pools and the migration of individuals. Rigorous experiments were conducted based on quantifiable performance criteria. While much of the work confirmed current wisdom, for the first time we were able to submit conclusive evidence. The software developed under this grant was placed in the public domain. An extensive user's manual was written and distributed nationwide to scientists whose work might benefit from its availability. Several papers, including two journal articles, were produced.
Toward a Big Data Science: A challenge of "Science Cloud"
NASA Astrophysics Data System (ADS)
Murata, Ken T.; Watanabe, Hidenobu
2013-04-01
During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science cloud, we named as OneSpaceNet (OSN), is the first open cloud system for scientists who are going to carry out their informatics for their own science. The science cloud is not for simple uses. Many functions are expected to the science cloud; such as data standardization, data collection and crawling, large and distributed data storage system, security and reliability, database and meta-database, data stewardship, long-term data preservation, data rescue and preservation, data mining, parallel processing, data publication and provision, semantic web, 3D and 4D visualization, out-reach and in-reach, and capacity buildings. Figure (not shown here) is a schematic picture of the NICT science cloud. Both types of data from observation and simulation are stored in the storage system in the science cloud. It should be noted that there are two types of data in observation. One is from archive site out of the cloud: this is a data to be downloaded through the Internet to the cloud. The other one is data from the equipment directly connected to the science cloud. They are often called as sensor clouds. In the present talk, we first introduce the NICT science cloud. We next demonstrate the efficiency of the science cloud, showing several scientific results which we achieved with this cloud system. Through the discussions and demonstrations, the potential performance of sciences cloud will be revealed for any research fields.
Dynamic Collaboration Infrastructure for Hydrologic Science
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.
2016-12-01
Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.
The Education Value of Cloud Computing
ERIC Educational Resources Information Center
Katzan, Harry, Jr.
2010-01-01
Cloud computing is a technique for supplying computer facilities and providing access to software via the Internet. Cloud computing represents a contextual shift in how computers are provisioned and accessed. One of the defining characteristics of cloud software service is the transfer of control from the client domain to the service provider.…
Cloud Computing. Technology Briefing. Number 1
ERIC Educational Resources Information Center
Alberta Education, 2013
2013-01-01
Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…
Can cloud computing benefit health services? - a SWOT analysis.
Kuo, Mu-Hsing; Kushniruk, Andre; Borycki, Elizabeth
2011-01-01
In this paper, we discuss cloud computing, the current state of cloud computing in healthcare, and the challenges and opportunities of adopting cloud computing in healthcare. A Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis was used to evaluate the feasibility of adopting this computing model in healthcare. The paper concludes that cloud computing could have huge benefits for healthcare but there are a number of issues that will need to be addressed before its widespread use in healthcare.
Future prospect 2012-2025 - How will our business change for the next 10 years -
NASA Astrophysics Data System (ADS)
Tanaka, Sakae
2013-04-01
The purpose of this lecture is to discuss about the "Future". How our business will change in the next 10 years? I believe the key is 3 mega-trends "Sustainability", "Cloud Computing" and "Life Innovation". With the development of social environment, the required business will change, too. The future would be invisible if you shut yourself up in your single industry. It is important to see various business fields horizontally, and recognize various key changes stereoscopically such as demographics, economy, technology, sense of value and lifestyle, when you develop mid-and-long term strategy. "Cloud" is silent, but the revolution of personal computing. It will bring the drastic changes in every industry. It will make "voice" and "moving image" possible to use as the interface to access your computer. Cloud computing will also make the client device more diversified and spread the application range widely. 15 years ago, the term "IT" was equivalent to "personal computer". Recently, it rather means to use smartphone and tablet device. In the next several years, TV and car-navigation system will be connected to broadband and it will become a part of personal computing. The meaning of personal computing is changing essentially year by year. In near future, the universe of computing will expand to the energy, medical and health-care, and agriculture etc. It passed only 20 years since we use "Computer" in a full scale operation. Recently, computer has start understanding our few words and talking in babble like a baby. The history of computing has just started.
TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling
NASA Astrophysics Data System (ADS)
Nelson, J.; Jones, N.; Ames, D. P.
2015-12-01
Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.
If It's in the Cloud, Get It on Paper: Cloud Computing Contract Issues
ERIC Educational Resources Information Center
Trappler, Thomas J.
2010-01-01
Much recent discussion has focused on the pros and cons of cloud computing. Some institutions are attracted to cloud computing benefits such as rapid deployment, flexible scalability, and low initial start-up cost, while others are concerned about cloud computing risks such as those related to data location, level of service, and security…
An automated cirrus classification
NASA Astrophysics Data System (ADS)
Gryspeerdt, Edward; Quaas, Johannes; Sourdeval, Odran; Goren, Tom
2017-04-01
Cirrus clouds play an important role in determining the radiation budget of the earth, but our understanding of the lifecycle and controls on cirrus clouds remains incomplete. Cirrus clouds can have very different properties and development depending on their environment, particularly during their formation. However, the relevant factors often cannot be distinguished using commonly retrieved satellite data products (such as cloud optical depth). In particular, the initial cloud phase has been identified as an important factor in cloud development, but although back-trajectory based methods can provide information on the initial cloud phase, they are computationally expensive and depend on the cloud parametrisations used in re-analysis products. In this work, a classification system (Identification and Classification of Cirrus, IC-CIR) is introduced. Using re-analysis and satellite data, cirrus clouds are separated in four main types: frontal, convective, orographic and in-situ. The properties of these classes show that this classification is able to provide useful information on the properties and initial phase of cirrus clouds, information that could not be provided by instantaneous satellite retrieved cloud properties alone. This classification is designed to be easily implemented in global climate models, helping to improve future comparisons between observations and models and reducing the uncertainty in cirrus clouds properties, leading to improved cloud parametrisations.
A cloud-based approach for interoperable electronic health records (EHRs).
Bahga, Arshdeep; Madisetti, Vijay K
2013-09-01
We present a cloud-based approach for the design of interoperable electronic health record (EHR) systems. Cloud computing environments provide several benefits to all the stakeholders in the healthcare ecosystem (patients, providers, payers, etc.). Lack of data interoperability standards and solutions has been a major obstacle in the exchange of healthcare data between different stakeholders. We propose an EHR system - cloud health information systems technology architecture (CHISTAR) that achieves semantic interoperability through the use of a generic design methodology which uses a reference model that defines a general purpose set of data structures and an archetype model that defines the clinical data attributes. CHISTAR application components are designed using the cloud component model approach that comprises of loosely coupled components that communicate asynchronously. In this paper, we describe the high-level design of CHISTAR and the approaches for semantic interoperability, data integration, and security.
Introducing the Cloud in an Introductory IT Course
ERIC Educational Resources Information Center
Woods, David M.
2018-01-01
Cloud computing is a rapidly emerging topic, but should it be included in an introductory IT course? The magnitude of cloud computing use, especially cloud infrastructure, along with students' limited knowledge of the topic support adding cloud content to the IT curriculum. There are several arguments that support including cloud computing in an…
Military clouds: utilization of cloud computing systems at the battlefield
NASA Astrophysics Data System (ADS)
Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai
2012-05-01
Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.
Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-01-01
Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313
Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-06-01
Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.
Identity-Based Authentication for Cloud Computing
NASA Astrophysics Data System (ADS)
Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao
Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.
Cloud Based Educational Systems and Its Challenges and Opportunities and Issues
ERIC Educational Resources Information Center
Paul, Prantosh Kr.; Lata Dangwal, Kiran
2014-01-01
Cloud Computing (CC) is actually is a set of hardware, software, networks, storage, services an interface combines to deliver aspects of computing as a service. Cloud Computing (CC) actually uses the central remote servers to maintain data and applications. Practically Cloud Computing (CC) is extension of Grid computing with independency and…
NASA Astrophysics Data System (ADS)
Michaelis, A.; Ganguly, S.; Nemani, R. R.; Votava, P.; Wang, W.; Lee, T. J.; Dungan, J. L.
2014-12-01
Sharing community-valued codes, intermediary datasets and results from individual efforts with others that are not in a direct funded collaboration can be a challenge. Cross organization collaboration is often impeded due to infrastructure security constraints, rigid financial controls, bureaucracy, and workforce nationalities, etc., which can force groups to work in a segmented fashion and/or through awkward and suboptimal web services. We show how a focused community may come together, share modeling and analysis codes, computing configurations, scientific results, knowledge and expertise on a public cloud platform; diverse groups of researchers working together at "arms length". Through the OpenNEX experimental workshop, users can view short technical "how-to" videos and explore encapsulated working environment. Workshop participants can easily instantiate Amazon Machine Images (AMI) or launch full cluster and data processing configurations within minutes. Enabling users to instantiate computing environments from configuration templates on large public cloud infrastructures, such as Amazon Web Services, may provide a mechanism for groups to easily use each others work and collaborate indirectly. Moreover, using the public cloud for this workshop allowed a single group to host a large read only data archive, making datasets of interest to the community widely available on the public cloud, enabling other groups to directly connect to the data and reduce the costs of the collaborative work by freeing other individual groups from redundantly retrieving, integrating or financing the storage of the datasets of interest.
A scoping review of cloud computing in healthcare.
Griebel, Lena; Prokosch, Hans-Ulrich; Köpcke, Felix; Toddenroth, Dennis; Christoph, Jan; Leb, Ines; Engel, Igor; Sedlmayr, Martin
2015-03-19
Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain. MEDLINE was searched in July 2013 and in December 2014 for publications containing the terms "cloud computing" and "cloud-based". Each journal and conference article was categorized and summarized independently by two researchers who consolidated their findings. 102 publications have been analyzed and 6 main topics have been found: telemedicine/teleconsultation, medical imaging, public health and patient self-management, hospital management and information systems, therapy, and secondary use of data. Commonly used features are broad network access for sharing and accessing data and rapid elasticity to dynamically adapt to computing demands. Eight articles favor the pay-for-use characteristics of cloud-based services avoiding upfront investments. Nevertheless, while 22 articles present very general potentials of cloud computing in the medical domain and 66 articles describe conceptual or prototypic projects, only 14 articles report from successful implementations. Further, in many articles cloud computing is seen as an analogy to internet-/web-based data sharing and the characteristics of the particular cloud computing approach are unfortunately not really illustrated. Even though cloud computing in healthcare is of growing interest only few successful implementations yet exist and many papers just use the term "cloud" synonymously for "using virtual machines" or "web-based" with no described benefit of the cloud paradigm. The biggest threat to the adoption in the healthcare domain is caused by involving external cloud partners: many issues of data safety and security are still to be solved. Until then, cloud computing is favored more for singular, individual features such as elasticity, pay-per-use and broad network access, rather than as cloud paradigm on its own.
Modeling the Cloud to Enhance Capabilities for Crises and Catastrophe Management
2016-11-16
order for cloud computing infrastructures to be successfully deployed in real world scenarios as tools for crisis and catastrophe management, where...Statement of the Problem Studied As cloud computing becomes the dominant computational infrastructure[1] and cloud technologies make a transition to hosting...1. Formulate rigorous mathematical models representing technological capabilities and resources in cloud computing for performance modeling and
Automating NEURON Simulation Deployment in Cloud Resources.
Stockton, David B; Santamaria, Fidel
2017-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.
Automating NEURON Simulation Deployment in Cloud Resources
Santamaria, Fidel
2016-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341
Homomorphic encryption experiments on IBM's cloud quantum computing platform
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud
ERIC Educational Resources Information Center
Wang, Minjuan; Chen, Yong; Khan, Muhammad Jahanzaib
2014-01-01
Mobile cloud learning, a combination of mobile learning and cloud computing, is a relatively new concept that holds considerable promise for future development and delivery in the education sectors. Cloud computing helps mobile learning overcome obstacles related to mobile computing. The main focus of this paper is to explore how cloud computing…
76 FR 13984 - Cloud Computing Forum & Workshop III
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... public workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop III to be held on April 7... provide information on the NIST strategic and tactical Cloud Computing program, including progress on the...
NASA Astrophysics Data System (ADS)
Marinos, Alexandros; Briscoe, Gerard
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
Cloud Environment Automation: from infrastructure deployment to application monitoring
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Costantini, A.; Bucchi, R.; Italiano, A.; Michelotto, D.; Panella, M.; Pergolesi, M.; Saletta, M.; Traldi, S.; Vistoli, C.; Zizzi, G.; Salomoni, D.
2017-10-01
The potential offered by the cloud paradigm is often limited by technical issues, rules and regulations. In particular, the activities related to the design and deployment of the Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for the infrastructure maintainers. In this paper the research activity, carried out during the Open City Platform (OCP) research project [1], aimed at designing and developing an automatic tool for cloud-based IaaS deployment is presented. Open City Platform is an industrial research project funded by the Italian Ministry of University and Research (MIUR), started in 2014. It intends to research, develop and test new technological solutions open, interoperable and usable on-demand in the field of Cloud Computing, along with new sustainable organizational models that can be deployed for and adopted by the Public Administrations (PA). The presented work and the related outcomes are aimed at simplifying the deployment and maintenance of a complete IaaS cloud-based infrastructure.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
A Cloud-Based X73 Ubiquitous Mobile Healthcare System: Design and Implementation
Ji, Zhanlin; O'Droma, Máirtín; Zhang, Xin; Zhang, Xueji
2014-01-01
Based on the user-centric paradigm for next generation networks, this paper describes a ubiquitous mobile healthcare (uHealth) system based on the ISO/IEEE 11073 personal health data (PHD) standards (X73) and cloud computing techniques. A number of design issues associated with the system implementation are outlined. The system includes a middleware on the user side, providing a plug-and-play environment for heterogeneous wireless sensors and mobile terminals utilizing different communication protocols and a distributed “big data” processing subsystem in the cloud. The design and implementation of this system are envisaged as an efficient solution for the next generation of uHealth systems. PMID:24737958
A Cloud Computing Based Patient Centric Medical Information System
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Henehan, Nathan; Somashekarappa, Vivek; Pandya, A. S.; Kalva, Hari; Furht, Borko
This chapter discusses an emerging concept of a cloud computing based Patient Centric Medical Information System framework that will allow various authorized users to securely access patient records from various Care Delivery Organizations (CDOs) such as hospitals, urgent care centers, doctors, laboratories, imaging centers among others, from any location. Such a system must seamlessly integrate all patient records including images such as CT-SCANS and MRI'S which can easily be accessed from any location and reviewed by any authorized user. In such a scenario the storage and transmission of medical records will have be conducted in a totally secure and safe environment with a very high standard of data integrity, protecting patient privacy and complying with all Health Insurance Portability and Accountability Act (HIPAA) regulations.
Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.
Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P
2010-12-22
Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.
75 FR 64258 - Cloud Computing Forum & Workshop II
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop II to be held on November 4 and 5, 2010. This workshop will provide information on a Cloud Computing Roadmap Strategy as well as provide...
76 FR 62373 - Notice of Public Meeting-Cloud Computing Forum & Workshop IV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...--Cloud Computing Forum & Workshop IV AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop IV to be held on... to help develop open standards in interoperability, portability and security in cloud computing. This...
Intelligent cloud computing security using genetic algorithm as a computational tools
NASA Astrophysics Data System (ADS)
Razuky AL-Shaikhly, Mazin H.
2018-05-01
An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.
WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K; Kagadis, G; Xing, L
As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set againstmore » new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.« less
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
Cloud Computing with iPlant Atmosphere.
McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos
2013-10-15
Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.
Storing and Using Health Data in a Virtual Private Cloud
Regola, Nathan
2013-01-01
Electronic health records are being adopted at a rapid rate due to increased funding from the US federal government. Health data provide the opportunity to identify possible improvements in health care delivery by applying data mining and statistical methods to the data and will also enable a wide variety of new applications that will be meaningful to patients and medical professionals. Researchers are often granted access to health care data to assist in the data mining process, but HIPAA regulations mandate comprehensive safeguards to protect the data. Often universities (and presumably other research organizations) have an enterprise information technology infrastructure and a research infrastructure. Unfortunately, both of these infrastructures are generally not appropriate for sensitive research data such as HIPAA, as they require special accommodations on the part of the enterprise information technology (or increased security on the part of the research computing environment). Cloud computing, which is a concept that allows organizations to build complex infrastructures on leased resources, is rapidly evolving to the point that it is possible to build sophisticated network architectures with advanced security capabilities. We present a prototype infrastructure in Amazon’s Virtual Private Cloud to allow researchers and practitioners to utilize the data in a HIPAA-compliant environment. PMID:23485880
Energy Consumption Management of Virtual Cloud Computing Platform
NASA Astrophysics Data System (ADS)
Li, Lin
2017-11-01
For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.
Basic Techniques in Environmental Simulation.
1982-07-01
the devel- ’I or oper is liable for all necessary changes in the model or its supporting computer software . After the 90-day warranty expires, the user...processing unit, that part of a computer which accom- plishes arithmetic and logical operations DCFLOS Dynamic cloud -free line-of-sight, a simulation... Software Development ......... 12 1.7.7 Operational Environment, Interfaces, and Constraints. . 12 1.7.8 Effectiveness Evaluation, Value Analysis, and
Cloud-free resolution element statistics program
NASA Technical Reports Server (NTRS)
Liley, B.; Martin, C. D.
1971-01-01
Computer program computes number of cloud-free elements in field-of-view and percentage of total field-of-view occupied by clouds. Human error is eliminated by using visual estimation to compute cloud statistics from aerial photographs.
TRIDEC Cloud - a Web-based Platform for Tsunami Early Warning tested with NEAMWave14 Scenarios
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven; Necmioglu, Ocal; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Carrilho, Fernando; Wächter, Joachim
2015-04-01
In times of cloud computing and ubiquitous computing the use of concepts and paradigms introduced by information and communications technology (ICT) have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in research projects new technologies are exploited to implement a cloud-based and web-based platform - the TRIDEC Cloud - to open up new prospects for EWS. The platform in its current version addresses tsunami early warning and mitigation. It merges several complementary external and in-house cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The TRIDEC Cloud can be accessed in two different modes, the monitoring mode and the exercise-and-training mode. The monitoring mode provides important functionality required to act in a real event. So far, the monitoring mode integrates historic and real-time sea level data and latest earthquake information. The integration of sources is supported by a simple and secure interface. The exercise and training mode enables training and exercises with virtual scenarios. This mode disconnects real world systems and connects with a virtual environment that receives virtual earthquake information and virtual sea level data re-played by a scenario player. Thus operators and other stakeholders are able to train skills and prepare for real events and large exercises. The GFZ German Research Centre for Geosciences (GFZ), the Kandilli Observatory and Earthquake Research Institute (KOERI), and the Portuguese Institute for the Sea and Atmosphere (IPMA) have used the opportunity provided by NEAMWave14 to test the TRIDEC Cloud as a collaborative activity based on previous partnership and commitments at the European scale. The TRIDEC Cloud has not been involved officially in Part B of the NEAMWave14 scenarios. However, the scenarios have been used by GFZ, KOERI, and IPMA for testing in exercise runs on October 27-28, 2014. Additionally, the Greek NEAMWave14 scenario has been tested in an exercise run by GFZ only on October 29, 2014 (see ICG/NEAMTWS-XI/13). The exercise runs demonstrated that operators in warning centres and stakeholders of other involved parties just need a standard web browser to access a full-fledged TEWS. The integration of GPU accelerated tsunami simulation computations have been an integral part to foster early warning with on-demand tsunami predictions based on actual source parameters. Thus tsunami travel times, estimated times of arrival and estimated wave heights are available immediately for visualization and for further analysis and processing. The generation of warning messages is based on internationally agreed message structures and includes static and dynamic information based on earthquake information, instant computations of tsunami simulations, and actual measurements. Generated messages are served for review, modification, and addressing in one simple form for dissemination via Cloud Messages, Shared Maps, e-mail, FTP/GTS, SMS, and FAX. Cloud Messages and Shared Maps are complementary channels and integrate interactive event and simulation data. Thus recipients are enabled to interact dynamically with a map and diagrams beyond traditional text information.
77 FR 26509 - Notice of Public Meeting-Cloud Computing Forum & Workshop V
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
...--Cloud Computing Forum & Workshop V AGENCY: National Institute of Standards & Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop V to be held on Tuesday... workshop. This workshop will provide information on the U.S. Government (USG) Cloud Computing Technology...
Optimizing the Use of Storage Systems Provided by Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Gallagher, J. H.; Potter, N.; Byrne, D. A.; Ogata, J.; Relph, J.
2013-12-01
Cloud computing systems present a set of features that include familiar computing resources (albeit augmented to support dynamic scaling of processing power) bundled with a mix of conventional and unconventional storage systems. The linux base on which many Cloud environments (e.g., Amazon) are based make it tempting to assume that any Unix software will run efficiently in this environment efficiently without change. OPeNDAP and NODC collaborated on a short project to explore how the S3 and Glacier storage systems provided by the Amazon Cloud Computing infrastructure could be used with a data server developed primarily to access data stored in a traditional Unix file system. Our work used the Amazon cloud system, but we strived for designs that could be adapted easily to other systems like OpenStack. Lastly, we evaluated different architectures from a computer security perspective. We found that there are considerable issues associated with treating S3 as if it is a traditional file system, even though doing so is conceptually simple. These issues include performance penalties because using a software tool that emulates a traditional file system to store data in S3 performs poorly when compared to a storing data directly in S3. We also found there are important benefits beyond performance to ensuring that data written to S3 can directly accessed without relying on a specific software tool. To provide a hierarchical organization to the data stored in S3, we wrote 'catalog' files, using XML. These catalog files map discrete files to S3 access keys. Like a traditional file system's directories, the catalogs can also contain references to other catalogs, providing a simple but effective hierarchy overlaid on top of S3's flat storage space. An added benefit to these catalogs is that they can be viewed in a web browser; our storage scheme provides both efficient access for the data server and access via a web browser. We also looked at the Glacier storage system and found that the system's response characteristics are very different from a traditional file system or database; it behaves like a near-line storage system. To be used by a traditional data server, the underlying access protocol must support asynchronous accesses. This is because the Glacier system takes a minimum of four hours to deliver any data object, so systems built with the expectation of instant access (i.e., most web systems) must be fundamentally changed to use Glacier. Part of a related project has been to develop an asynchronous access mode for OPeNDAP, and we have developed a design using that new addition to the DAP protocol with Glacier as a near-line mass store. In summary, we found that both S3 and Glacier require special treatment to be effectively used by a data server. It is important to add (new) interfaces to data servers that enable them to use these storage devices through their native interfaces. We also found that our designs could easily map to a cloud environment based on OpenStack. Lastly, we noted that while these designs invited more liberal use of remote references for data objects, that can expose software to new security risks.
Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anthony B.; Marshak, Alexander
2001-03-15
In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
Research on OpenStack of open source cloud computing in colleges and universities’ computer room
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhang, Dandan
2017-06-01
In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers’ perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers’ legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients’ control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale. PMID:27755563
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers' perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers' legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients' control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale.
Cloud Fingerprinting: Using Clock Skews To Determine Co Location Of Virtual Machines
2016-09-01
DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Cloud computing has quickly revolutionized computing practices of organizations, to include the Department of... Cloud computing has quickly revolutionized computing practices of organizations, to in- clude the Department of Defense. However, security concerns...vi Table of Contents 1 Introduction 1 1.1 Proliferation of Cloud Computing . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement
A novel clinical decision support algorithm for constructing complete medication histories.
Long, Ju; Yuan, Michael Juntao
2017-07-01
A patient's complete medication history is a crucial element for physicians to develop a full understanding of the patient's medical conditions and treatment options. However, due to the fragmented nature of medical data, this process can be very time-consuming and often impossible for physicians to construct a complete medication history for complex patients. In this paper, we describe an accurate, computationally efficient and scalable algorithm to construct a medication history timeline. The algorithm is developed and validated based on 1 million random prescription records from a large national prescription data aggregator. Our evaluation shows that the algorithm can be scaled horizontally on-demand, making it suitable for future delivery in a cloud-computing environment. We also propose that this cloud-based medication history computation algorithm could be integrated into Electronic Medical Records, enabling informed clinical decision-making at the point of care. Copyright © 2017 Elsevier B.V. All rights reserved.
Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark
2012-09-01
The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.
1994-06-01
charge clouds. These finitely-remote fields are then used to compute asymptotic radiation fields in the limit of the field point going to infinity in a 0...like to thank Doug Beason for providing an environment conducive to performing the research reported on here and Michelle Tafoya for her excellent...radiation quantities, however, are obtained only in the limit of the field point going to infinity ; we thus demonstrate the existence of this limit and
NASA Astrophysics Data System (ADS)
Shamugam, Veeramani; Murray, I.; Leong, J. A.; Sidhu, Amandeep S.
2016-03-01
Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations.
Cloud Computing Services for Seismic Networks
NASA Astrophysics Data System (ADS)
Olson, Michael
This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.
NASA Astrophysics Data System (ADS)
Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.
2016-06-01
Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.
Proposal for a Security Management in Cloud Computing for Health Care
Dzombeta, Srdan; Brandis, Knud
2014-01-01
Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources. PMID:24701137
Proposal for a security management in cloud computing for health care.
Haufe, Knut; Dzombeta, Srdan; Brandis, Knud
2014-01-01
Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources.
ERIC Educational Resources Information Center
Kaestner, Rich
2012-01-01
Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…
Cloud Computing in Higher Education Sector for Sustainable Development
ERIC Educational Resources Information Center
Duan, Yuchao
2016-01-01
Cloud computing is considered a new frontier in the field of computing, as this technology comprises three major entities namely: software, hardware and network. The collective nature of all these entities is known as the Cloud. This research aims to examine the impacts of various aspects namely: cloud computing, sustainability, performance…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...
Reviews on Security Issues and Challenges in Cloud Computing
NASA Astrophysics Data System (ADS)
An, Y. Z.; Zaaba, Z. F.; Samsudin, N. F.
2016-11-01
Cloud computing is an Internet-based computing service provided by the third party allowing share of resources and data among devices. It is widely used in many organizations nowadays and becoming more popular because it changes the way of how the Information Technology (IT) of an organization is organized and managed. It provides lots of benefits such as simplicity and lower costs, almost unlimited storage, least maintenance, easy utilization, backup and recovery, continuous availability, quality of service, automated software integration, scalability, flexibility and reliability, easy access to information, elasticity, quick deployment and lower barrier to entry. While there is increasing use of cloud computing service in this new era, the security issues of the cloud computing become a challenges. Cloud computing must be safe and secure enough to ensure the privacy of the users. This paper firstly lists out the architecture of the cloud computing, then discuss the most common security issues of using cloud and some solutions to the security issues since security is one of the most critical aspect in cloud computing due to the sensitivity of user's data.
Bringing numerous methods for expression and promoter analysis to a public cloud computing service.
Polanski, Krzysztof; Gao, Bo; Mason, Sam A; Brown, Paul; Ott, Sascha; Denby, Katherine J; Wild, David L
2018-03-01
Every year, a large number of novel algorithms are introduced to the scientific community for a myriad of applications, but using these across different research groups is often troublesome, due to suboptimal implementations and specific dependency requirements. This does not have to be the case, as public cloud computing services can easily house tractable implementations within self-contained dependency environments, making the methods easily accessible to a wider public. We have taken 14 popular methods, the majority related to expression data or promoter analysis, developed these up to a good implementation standard and housed the tools in isolated Docker containers which we integrated into the CyVerse Discovery Environment, making these easily usable for a wide community as part of the CyVerse UK project. The integrated apps can be found at http://www.cyverse.org/discovery-environment, while the raw code is available at https://github.com/cyversewarwick and the corresponding Docker images are housed at https://hub.docker.com/r/cyversewarwick/. info@cyverse.warwick.ac.uk or D.L.Wild@warwick.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Garov, A. S.; Karachevtseva, I. P.; Matveev, E. V.; Zubarev, A. E.; Florinsky, I. V.
2016-06-01
We are developing a unified distributed communication environment for processing of spatial data which integrates web-, desktop- and mobile platforms and combines volunteer computing model and public cloud possibilities. The main idea is to create a flexible working environment for research groups, which may be scaled according to required data volume and computing power, while keeping infrastructure costs at minimum. It is based upon the "single window" principle, which combines data access via geoportal functionality, processing possibilities and communication between researchers. Using an innovative software environment the recently developed planetary information system (http://cartsrv.mexlab.ru/geoportal) will be updated. The new system will provide spatial data processing, analysis and 3D-visualization and will be tested based on freely available Earth remote sensing data as well as Solar system planetary images from various missions. Based on this approach it will be possible to organize the research and representation of results on a new technology level, which provides more possibilities for immediate and direct reuse of research materials, including data, algorithms, methodology, and components. The new software environment is targeted at remote scientific teams, and will provide access to existing spatial distributed information for which we suggest implementation of a user interface as an advanced front-end, e.g., for virtual globe system.
Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems
2012-01-31
2012 UNCLASSIFIED 1 of 58 Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems A Report to the U.S. Department...2.1.7 Engineering of Computational Behavior .............................................................18 2.2 How the Cloud Will Impact Systems...58 Executive Summary This report discusses the impact of cloud computing and the broader revolution in computing on systems, on the disciplines of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei
Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less
Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud
NASA Astrophysics Data System (ADS)
Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok
Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.
Virtualization and cloud computing in dentistry.
Chow, Frank; Muftu, Ali; Shorter, Richard
2014-01-01
The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.
Development of an atmospheric infrared radiation model with high clouds for target detection
NASA Astrophysics Data System (ADS)
Bellisario, Christophe; Malherbe, Claire; Schweitzer, Caroline; Stein, Karin
2016-10-01
In the field of target detection, the simulation of the camera FOV (field of view) background is a significant issue. The presence of heterogeneous clouds might have a strong impact on a target detection algorithm. In order to address this issue, we present here the construction of the CERAMIC package (Cloudy Environment for RAdiance and MIcrophysics Computation) that combines cloud microphysical computation and 3D radiance computation to produce a 3D atmospheric infrared radiance in attendance of clouds. The input of CERAMIC starts with an observer with a spatial position and a defined FOV (by the mean of a zenithal angle and an azimuthal angle). We introduce a 3D cloud generator provided by the French LaMP for statistical and simplified physics. The cloud generator is implemented with atmospheric profiles including heterogeneity factor for 3D fluctuations. CERAMIC also includes a cloud database from the French CNRM for a physical approach. We present here some statistics developed about the spatial and time evolution of the clouds. Molecular optical properties are provided by the model MATISSE (Modélisation Avancée de la Terre pour l'Imagerie et la Simulation des Scènes et de leur Environnement). The 3D radiance is computed with the model LUCI (for LUminance de CIrrus). It takes into account 3D microphysics with a resolution of 5 cm-1 over a SWIR bandwidth. In order to have a fast computation time, most of the radiance contributors are calculated with analytical expressions. The multiple scattering phenomena are more difficult to model. Here a discrete ordinate method with correlated-K precision to compute the average radiance is used. We add a 3D fluctuations model (based on a behavioral model) taking into account microphysics variations. In fine, the following parameters are calculated: transmission, thermal radiance, single scattering radiance, radiance observed through the cloud and multiple scattering radiance. Spatial images are produced, with a dimension of 10 km x 10 km and a resolution of 0.1 km with each contribution of the radiance separated. We present here the first results with examples of a typical scenarii. A 1D comparison in results is made with the use of the MATISSE model by separating each radiance calculated, in order to validate outputs. The code performance in 3D is shown by comparing LUCI to SHDOM model, referency code which uses the Spherical Harmonic Discrete Ordinate Method for 3D Atmospheric Radiative Transfer model. The results obtained by the different codes present a strong agreement and the sources of small differences are considered. An important gain in time is observed for LUCI versus SHDOM. We finally conclude on various scenarios for case analysis.
Global Software Development with Cloud Platforms
NASA Astrophysics Data System (ADS)
Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya
Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.
Cloud Based Applications and Platforms (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodt-Giles, D.
2014-05-15
Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.
Development of a Secure Mobile GPS Tracking and Management System
ERIC Educational Resources Information Center
Liu, Anyi
2012-01-01
With increasing demand of mobile devices and cloud computing, it becomes increasingly important to develop efficient mobile application and its secured backend, such as web applications and virtualization environment. This dissertation reports a systematic study of mobile application development and the security issues of its related backend. …
Universities and Libraries Move to the Mobile Web
ERIC Educational Resources Information Center
Aldrich, Alan W.
2010-01-01
The convergence of web-enabled smartphones, the applications designed for smartphone interfaces, and cloud computing is rapidly changing how people interact with each other and with their environments. The commercial sector has taken the lead in creating mobile websites that leverage the capacities of smartphones, and the academic community has…
SCIMITAR: Scalable Stream-Processing for Sensor Information Brokering
2013-11-01
IaaS) cloud frameworks including Amazon Web Services and Eucalyptus . For load testing, we used The Grinder [9], a Java load testing framework that...internal Eucalyptus cluster which we could not scale as large as the Amazon environment due to a lack of computation resources. We recreated our
LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments
NASA Astrophysics Data System (ADS)
Walker, Kyle M.
2017-06-01
While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... explored in this series is cloud computing. The workshop on this topic will be held in Gaithersburg, MD on October 21, 2011. Assertion: ``Current implementations of cloud computing indicate a new approach to security'' Implementations of cloud computing have provided new ways of thinking about how to secure data...
77 FR 74829 - Notice of Public Meeting-Cloud Computing and Big Data Forum and Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-18
...--Cloud Computing and Big Data Forum and Workshop AGENCY: National Institute of Standards and Technology... Standards and Technology (NIST) announces a Cloud Computing and Big Data Forum and Workshop to be held on... followed by a one-day hands-on workshop. The NIST Cloud Computing and Big Data Forum and Workshop will...
ERIC Educational Resources Information Center
Tweel, Abdeneaser
2012-01-01
High uncertainties related to cloud computing adoption may hinder IT managers from making solid decisions about adopting cloud computing. The problem addressed in this study was the lack of understanding of the relationship between factors related to the adoption of cloud computing and IT managers' interest in adopting this technology. In…
When cloud computing meets bioinformatics: a review.
Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong
2013-10-01
In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.
NASA Astrophysics Data System (ADS)
Yu, Xiaoyuan; Yuan, Jian; Chen, Shi
2013-03-01
Cloud computing is one of the most popular topics in the IT industry and is recently being adopted by many companies. It has four development models, as: public cloud, community cloud, hybrid cloud and private cloud. Except others, private cloud can be implemented in a private network, and delivers some benefits of cloud computing without pitfalls. This paper makes a comparison of typical open source platforms through which we can implement a private cloud. After this comparison, we choose Eucalyptus and Wavemaker to do a case study on the private cloud. We also do some performance estimation of cloud platform services and development of prototype software as cloud services.
An Artificial Neural Network-Based Decision-Support System for Integrated Network Security
2014-09-01
group that they need to know in order to make team-based decisions in real-time environments, (c) Employ secure cloud computing services to host mobile...THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force...out-of-the-loop syndrome and create complexity creep. As a result, full automation efforts can lead to inappropriate decision-making despite a
Portable Map-Reduce Utility for MIT SuperCloud Environment
2015-09-17
Reuther, A. Rosa, C. Yee, “Driving Big Data With Big Compute,” IEEE HPEC, Sep 10-12, 2012, Waltham, MA. [6] Apache Hadoop 1.2.1 Documentation: HDFS... big data architecture, which is designed to address these challenges, is made of the computing resources, scheduler, central storage file system...databases, analytics software and web interfaces [1]. These components are common to many big data and supercomputing systems. The platform is
Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup
Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.
2010-01-01
Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure. PMID:21258651
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco
2012-01-01
Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.
NASA Astrophysics Data System (ADS)
Molthan, A.; Case, J.; Venner, J.; Moreno-Madriñán, M. J.; Delgado, F.
2012-12-01
Over the past two years, scientists in the Earth Science Office at NASA's Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real-time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA's Short-term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface- and satellite-based observations.
FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption
2015-01-01
Background The increasing availability of genome data motivates massive research studies in personalized treatment and precision medicine. Public cloud services provide a flexible way to mitigate the storage and computation burden in conducting genome-wide association studies (GWAS). However, data privacy has been widely concerned when sharing the sensitive information in a cloud environment. Methods We presented a novel framework (FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption) to fully outsource GWAS (i.e., chi-square statistic computation) using homomorphic encryption. The proposed framework enables secure divisions over encrypted data. We introduced two division protocols (i.e., secure errorless division and secure approximation division) with a trade-off between complexity and accuracy in computing chi-square statistics. Results The proposed framework was evaluated for the task of chi-square statistic computation with two case-control datasets from the 2015 iDASH genome privacy protection challenge. Experimental results show that the performance of FORESEE can be significantly improved through algorithmic optimization and parallel computation. Remarkably, the secure approximation division provides significant performance gain, but without missing any significance SNPs in the chi-square association test using the aforementioned datasets. Conclusions Unlike many existing HME based studies, in which final results need to be computed by the data owner due to the lack of the secure division operation, the proposed FORESEE framework support complete outsourcing to the cloud and output the final encrypted chi-square statistics. PMID:26733391
NASA Astrophysics Data System (ADS)
Grandi, C.; Italiano, A.; Salomoni, D.; Calabrese Melcarne, A. K.
2011-12-01
WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.
FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption.
Zhang, Yuchen; Dai, Wenrui; Jiang, Xiaoqian; Xiong, Hongkai; Wang, Shuang
2015-01-01
The increasing availability of genome data motivates massive research studies in personalized treatment and precision medicine. Public cloud services provide a flexible way to mitigate the storage and computation burden in conducting genome-wide association studies (GWAS). However, data privacy has been widely concerned when sharing the sensitive information in a cloud environment. We presented a novel framework (FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption) to fully outsource GWAS (i.e., chi-square statistic computation) using homomorphic encryption. The proposed framework enables secure divisions over encrypted data. We introduced two division protocols (i.e., secure errorless division and secure approximation division) with a trade-off between complexity and accuracy in computing chi-square statistics. The proposed framework was evaluated for the task of chi-square statistic computation with two case-control datasets from the 2015 iDASH genome privacy protection challenge. Experimental results show that the performance of FORESEE can be significantly improved through algorithmic optimization and parallel computation. Remarkably, the secure approximation division provides significant performance gain, but without missing any significance SNPs in the chi-square association test using the aforementioned datasets. Unlike many existing HME based studies, in which final results need to be computed by the data owner due to the lack of the secure division operation, the proposed FORESEE framework support complete outsourcing to the cloud and output the final encrypted chi-square statistics.
Flexible services for the support of research.
Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John
2013-01-28
Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.
The Cloud Area Padovana: from pilot to production
NASA Astrophysics Data System (ADS)
Andreetto, P.; Costa, F.; Crescente, A.; Dorigo, A.; Fantinel, S.; Fanzago, F.; Sgaravatto, M.; Traldi, S.; Verlato, M.; Zangrando, L.
2017-10-01
The Cloud Area Padovana has been running for almost two years. This is an OpenStack-based scientific cloud, spread across two different sites: the INFN Padova Unit and the INFN Legnaro National Labs. The hardware resources have been scaled horizontally and vertically, by upgrading some hypervisors and by adding new ones: currently it provides about 1100 cores. Some in-house developments were also integrated in the OpenStack dashboard, such as a tool for user and project registrations with direct support for the INFN-AAI Identity Provider as a new option for the user authentication. In collaboration with the EU-funded Indigo DataCloud project, the integration with Docker-based containers has been experimented with and will be available in production soon. This computing facility now satisfies the computational and storage demands of more than 70 users affiliated with about 20 research projects. We present here the architecture of this Cloud infrastructure, the tools and procedures used to operate it. We also focus on the lessons learnt in these two years, describing the problems that were found and the corrective actions that had to be applied. We also discuss about the chosen strategy for upgrades, which combines the need to promptly integrate the OpenStack new developments, the demand to reduce the downtimes of the infrastructure, and the need to limit the effort requested for such updates. We also discuss how this Cloud infrastructure is being used. In particular we focus on two big physics experiments which are intensively exploiting this computing facility: CMS and SPES. CMS deployed on the cloud a complex computational infrastructure, composed of several user interfaces for job submission in the Grid environment/local batch queues or for interactive processes; this is fully integrated with the local Tier-2 facility. To avoid a static allocation of the resources, an elastic cluster, based on cernVM, has been configured: it allows to automatically create and delete virtual machines according to the user needs. SPES, using a client-server system called TraceWin, exploits INFN’s virtual resources performing a very large number of simulations on about a thousand nodes elastically managed.
The emerging role of cloud computing in molecular modelling.
Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W
2013-07-01
There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways. Copyright © 2013 Elsevier Inc. All rights reserved.
Challenges in Securing the Interface Between the Cloud and Pervasive Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagesse, Brent J
2011-01-01
Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources andmore » issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.« less
An Architecture for Cross-Cloud System Management
NASA Astrophysics Data System (ADS)
Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad
The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.
A European Federated Cloud: Innovative distributed computing solutions by EGI
NASA Astrophysics Data System (ADS)
Sipos, Gergely; Turilli, Matteo; Newhouse, Steven; Kacsuk, Peter
2013-04-01
The European Grid Infrastructure (EGI) is the result of pioneering work that has, over the last decade, built a collaborative production infrastructure of uniform services through the federation of national resource providers that supports multi-disciplinary science across Europe and around the world. This presentation will provide an overview of the recently established 'federated cloud computing services' that the National Grid Initiatives (NGIs), operators of EGI, offer to scientific communities. The presentation will explain the technical capabilities of the 'EGI Federated Cloud' and the processes whereby earth and space science researchers can engage with it. EGI's resource centres have been providing services for collaborative, compute- and data-intensive applications for over a decade. Besides the well-established 'grid services', several NGIs already offer privately run cloud services to their national researchers. Many of these researchers recently expressed the need to share these cloud capabilities within their international research collaborations - a model similar to the way the grid emerged through the federation of institutional batch computing and file storage servers. To facilitate the setup of a pan-European cloud service from the NGIs' resources, the EGI-InSPIRE project established a Federated Cloud Task Force in September 2011. The Task Force has a mandate to identify and test technologies for a multinational federated cloud that could be provisioned within EGI by the NGIs. A guiding principle for the EGI Federated Cloud is to remain technology neutral and flexible for both resource providers and users: • Resource providers are allowed to use any cloud hypervisor and management technology to join virtualised resources into the EGI Federated Cloud as long as the site is subscribed to the user-facing interfaces selected by the EGI community. • Users can integrate high level services - such as brokers, portals and customised Virtual Research Environments - with the EGI Federated Cloud as long as these services access cloud resources through the user-facing interfaces selected by the EGI community. The Task Force will be closed in May 2013. It already • Identified key enabling technologies by which a multinational, federated 'Infrastructure as a Service' (IaaS) type cloud can be built from the NGIs' resources; • Deployed a test bed to evaluate the integration of virtualised resources within EGI and to engage with early adopter use cases from different scientific domains; • Integrated cloud resources into the EGI production infrastructure through cloud specific bindings of the EGI information system, monitoring system, authentication system, etc.; • Collected and catalogued requirements concerning the federated cloud services from the feedback of early adopter use cases; • Provided feedback and requirements to relevant technology providers on their implementations and worked with these providers to address those requirements; • Identified issues that need to be addressed by other areas of EGI (such as portal solutions, resource allocation policies, marketing and user support) to reach a production system. The Task Force will publish a blueprint in April 2013. The blueprint will drive the establishment of a production level EGI Federated Cloud service after May 2013.
'Cloud computing' and clinical trials: report from an ECRIN workshop.
Ohmann, Christian; Canham, Steve; Danielyan, Edgar; Robertshaw, Steve; Legré, Yannick; Clivio, Luca; Demotes, Jacques
2015-07-29
Growing use of cloud computing in clinical trials prompted the European Clinical Research Infrastructures Network, a European non-profit organisation established to support multinational clinical research, to organise a one-day workshop on the topic to clarify potential benefits and risks. The issues that arose in that workshop are summarised and include the following: the nature of cloud computing and the cloud computing industry; the risks in using cloud computing services now; the lack of explicit guidance on this subject, both generally and with reference to clinical trials; and some possible ways of reducing risks. There was particular interest in developing and using a European 'community cloud' specifically for academic clinical trial data. It was recognised that the day-long workshop was only the start of an ongoing process. Future discussion needs to include clarification of trial-specific regulatory requirements for cloud computing and involve representatives from the relevant regulatory bodies.
Biomedical Informatics on the Cloud: A Treasure Hunt for Advancing Cardiovascular Medicine.
Ping, Peipei; Hermjakob, Henning; Polson, Jennifer S; Benos, Panagiotis V; Wang, Wei
2018-04-27
In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly accelerated by the guidance and resources required to unearth potential collections of knowledge. A unified computational platform leverages metadata to not only provide direction but also empower researchers to mine a wealth of biomedical information and forge novel mechanistic insights. This review takes the opportunity to present an overview of the cloud-based computational environment, including the functional roles of metadata, the architecture schema of indexing and search, and the practical scenarios of machine learning-supported molecular signature extraction. By introducing several established resources and state-of-the-art workflows, we share with our readers a broadly defined informatics framework to phenotype cardiovascular health and disease. © 2018 American Heart Association, Inc.
a Fast and Flexible Method for Meta-Map Building for Icp Based Slam
NASA Astrophysics Data System (ADS)
Kurian, A.; Morin, K. W.
2016-06-01
Recent developments in LiDAR sensors make mobile mapping fast and cost effective. These sensors generate a large amount of data which in turn improves the coverage and details of the map. Due to the limited range of the sensor, one has to collect a series of scans to build the entire map of the environment. If we have good GNSS coverage, building a map is a well addressed problem. But in an indoor environment, we have limited GNSS reception and an inertial solution, if available, can quickly diverge. In such situations, simultaneous localization and mapping (SLAM) is used to generate a navigation solution and map concurrently. SLAM using point clouds possesses a number of computational challenges even with modern hardware due to the shear amount of data. In this paper, we propose two strategies for minimizing the cost of computation and storage when a 3D point cloud is used for navigation and real-time map building. We have used the 3D point cloud generated by Leica Geosystems's Pegasus Backpack which is equipped with Velodyne VLP-16 LiDARs scanners. To improve the speed of the conventional iterative closest point (ICP) algorithm, we propose a point cloud sub-sampling strategy which does not throw away any key features and yet significantly reduces the number of points that needs to be processed and stored. In order to speed up the correspondence finding step, a dual kd-tree and circular buffer architecture is proposed. We have shown that the proposed method can run in real time and has excellent navigation accuracy characteristics.
Research on the application in disaster reduction for using cloud computing technology
NASA Astrophysics Data System (ADS)
Tao, Liang; Fan, Yida; Wang, Xingling
Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.
Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for bothmore » academia and government, including configuration options, hardware issues, challenges, and solutions.« less
Challenges and Security in Cloud Computing
NASA Astrophysics Data System (ADS)
Chang, Hyokyung; Choi, Euiin
People who live in this world want to solve any problems as they happen then. An IT technology called Ubiquitous computing should help the situations easier and we call a technology which makes it even better and powerful cloud computing. Cloud computing, however, is at the stage of the beginning to implement and use and it faces a lot of challenges in technical matters and security issues. This paper looks at the cloud computing security.
Hemispherical reflectance model for passive images in an outdoor environment.
Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar
2015-05-01
We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.
Scaling predictive modeling in drug development with cloud computing.
Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola
2015-01-26
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.
Making Cloud Computing Available For Researchers and Innovators (Invited)
NASA Astrophysics Data System (ADS)
Winsor, R.
2010-12-01
High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.
Big data mining analysis method based on cloud computing
NASA Astrophysics Data System (ADS)
Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao
2017-08-01
Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.
Secure searching of biomarkers through hybrid homomorphic encryption scheme.
Kim, Miran; Song, Yongsoo; Cheon, Jung Hee
2017-07-26
As genome sequencing technology develops rapidly, there has lately been an increasing need to keep genomic data secure even when stored in the cloud and still used for research. We are interested in designing a protocol for the secure outsourcing matching problem on encrypted data. We propose an efficient method to securely search a matching position with the query data and extract some information at the position. After decryption, only a small amount of comparisons with the query information should be performed in plaintext state. We apply this method to find a set of biomarkers in encrypted genomes. The important feature of our method is to encode a genomic database as a single element of polynomial ring. Since our method requires a single homomorphic multiplication of hybrid scheme for query computation, it has the advantage over the previous methods in parameter size, computation complexity, and communication cost. In particular, the extraction procedure not only prevents leakage of database information that has not been queried by user but also reduces the communication cost by half. We evaluate the performance of our method and verify that the computation on large-scale personal data can be securely and practically outsourced to a cloud environment during data analysis. It takes about 3.9 s to search-and-extract the reference and alternate sequences at the queried position in a database of size 4M. Our solution for finding a set of biomarkers in DNA sequences shows the progress of cryptographic techniques in terms of their capability can support real-world genome data analysis in a cloud environment.
Efficient frequent pattern mining algorithm based on node sets in cloud computing environment
NASA Astrophysics Data System (ADS)
Billa, V. N. Vinay Kumar; Lakshmanna, K.; Rajesh, K.; Reddy, M. Praveen Kumar; Nagaraja, G.; Sudheer, K.
2017-11-01
The ultimate goal of Data Mining is to determine the hidden information which is useful in making decisions using the large databases collected by an organization. This Data Mining involves many tasks that are to be performed during the process. Mining frequent itemsets is the one of the most important tasks in case of transactional databases. These transactional databases contain the data in very large scale where the mining of these databases involves the consumption of physical memory and time in proportion to the size of the database. A frequent pattern mining algorithm is said to be efficient only if it consumes less memory and time to mine the frequent itemsets from the given large database. Having these points in mind in this thesis we proposed a system which mines frequent itemsets in an optimized way in terms of memory and time by using cloud computing as an important factor to make the process parallel and the application is provided as a service. A complete framework which uses a proven efficient algorithm called FIN algorithm. FIN algorithm works on Nodesets and POC (pre-order coding) tree. In order to evaluate the performance of the system we conduct the experiments to compare the efficiency of the same algorithm applied in a standalone manner and in cloud computing environment on a real time data set which is traffic accidents data set. The results show that the memory consumption and execution time taken for the process in the proposed system is much lesser than those of standalone system.
Charting a Security Landscape in the Clouds: Data Protection and Collaboration in Cloud Storage
2016-07-01
cloud computing is perhaps the most revolutionary force in the information technology industry today. This field encompasses many different domains...characteristic shared by all cloud computing tasks is that they involve storing data in the cloud . In this report, we therefore aim to describe and rank the...CONCLUSION The advent of cloud computing has caused government organizations to rethink their IT architectures so that they can take advantage of the
Centralized Duplicate Removal Video Storage System with Privacy Preservation in IoT.
Yan, Hongyang; Li, Xuan; Wang, Yu; Jia, Chunfu
2018-06-04
In recent years, the Internet of Things (IoT) has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud computing. To further reduce the communication bandwidth and storage space, data deduplication has been widely adopted to eliminate the redundant data. However, since data collected in IoT are sensitive and closely related to users' personal information, the privacy protection of users' information becomes a challenge. As the channels, like the wireless channels between the terminals and the cloud servers in IoT, are public and the cloud servers are not fully trusted, data have to be encrypted before being uploaded to the cloud. However, encryption makes the performance of deduplication by the cloud server difficult because the ciphertext will be different even if the underlying plaintext is identical. In this paper, we build a centralized privacy-preserving duplicate removal storage system, which supports both file-level and block-level deduplication. In order to avoid the leakage of statistical information of data, Intel Software Guard Extensions (SGX) technology is utilized to protect the deduplication process on the cloud server. The results of the experimental analysis demonstrate that the new scheme can significantly improve the deduplication efficiency and enhance the security. It is envisioned that the duplicated removal system with privacy preservation will be of great use in the centralized storage environment of IoT.
Fasani, Rick A; Livi, Carolina B; Choudhury, Dipanwita R; Kleensang, Andre; Bouhifd, Mounir; Pendse, Salil N; McMullen, Patrick D; Andersen, Melvin E; Hartung, Thomas; Rosenberg, Michael
2015-01-01
The Human Toxome Project is part of a long-term vision to modernize toxicity testing for the 21st century. In the initial phase of the project, a consortium of six academic, commercial, and government organizations has partnered to map pathways of toxicity, using endocrine disruption as a model hazard. Experimental data is generated at multiple sites, and analyzed using a range of computational tools. While effectively gathering, managing, and analyzing the data for high-content experiments is a challenge in its own right, doing so for a growing number of -omics technologies, with larger data sets, across multiple institutions complicates the process. Interestingly, one of the most difficult, ongoing challenges has been the computational collaboration between the geographically separate institutions. Existing solutions cannot handle the growing heterogeneous data, provide a computational environment for consistent analysis, accommodate different workflows, and adapt to the constantly evolving methods and goals of a research project. To meet the needs of the project, we have created and managed The Human Toxome Collaboratorium, a shared computational environment hosted on third-party cloud services. The Collaboratorium provides a familiar virtual desktop, with a mix of commercial, open-source, and custom-built applications. It shares some of the challenges of traditional information technology, but with unique and unexpected constraints that emerge from the cloud. Here we describe the problems we faced, the current architecture of the solution, an example of its use, the major lessons we learned, and the future potential of the concept. In particular, the Collaboratorium represents a novel distribution method that could increase the reproducibility and reusability of results from similar large, multi-omic studies.
The ISB Cancer Genomics Cloud: A Flexible Cloud-Based Platform for Cancer Genomics Research.
Reynolds, Sheila M; Miller, Michael; Lee, Phyliss; Leinonen, Kalle; Paquette, Suzanne M; Rodebaugh, Zack; Hahn, Abigail; Gibbs, David L; Slagel, Joseph; Longabaugh, William J; Dhankani, Varsha; Reyes, Madelyn; Pihl, Todd; Backus, Mark; Bookman, Matthew; Deflaux, Nicole; Bingham, Jonathan; Pot, David; Shmulevich, Ilya
2017-11-01
The ISB Cancer Genomics Cloud (ISB-CGC) is one of three pilot projects funded by the National Cancer Institute to explore new approaches to computing on large cancer datasets in a cloud environment. With a focus on Data as a Service, the ISB-CGC offers multiple avenues for accessing and analyzing The Cancer Genome Atlas, TARGET, and other important references such as GENCODE and COSMIC using the Google Cloud Platform. The open approach allows researchers to choose approaches best suited to the task at hand: from analyzing terabytes of data using complex workflows to developing new analysis methods in common languages such as Python, R, and SQL; to using an interactive web application to create synthetic patient cohorts and to explore the wealth of available genomic data. Links to resources and documentation can be found at www.isb-cgc.org Cancer Res; 77(21); e7-10. ©2017 AACR . ©2017 American Association for Cancer Research.
Introducing Cloud Computing Topics in Curricula
ERIC Educational Resources Information Center
Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue
2012-01-01
The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…
Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.
Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen
2013-01-01
Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.
Bootstrapping and Maintaining Trust in the Cloud
2016-12-01
simultaneous cloud nodes. 1. INTRODUCTION The proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as...Amazon Web Services and Google Compute Engine means more cloud tenants are hosting sensitive, private, and business critical data and applications in the...thousands of IaaS resources as they are elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features
Study on the application of mobile internet cloud computing platform
NASA Astrophysics Data System (ADS)
Gong, Songchun; Fu, Songyin; Chen, Zheng
2012-04-01
The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.
Nezarat, Amin; Dastghaibifard, GH
2015-01-01
One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer’s utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider. PMID:26431035
Nezarat, Amin; Dastghaibifard, G H
2015-01-01
One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer's utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider.
SPARCCS - Smartphone-Assisted Readiness, Command and Control System
2012-06-01
and database needs. By doing this SPARCCS takes advantage of all the capabilities cloud computing has to offer, especially that of disbursed data...40092829/ Microsoft. (2011). Cloud Computing . Retrieved September 24, 2011, http ://www.microsoft.com/industry/government/guides/cloud_computing/2...Command, and Control System) to address these issues. We use smartphones in conjunction with cloud computing to extend the benefits of collaborative
Future Naval Use of COTS Networking Infrastructure
2009-07-01
user to benefit from Google’s vast databases and computational resources. Obviously, the ability to harness the full power of the Cloud could be... Computing Impact Findings Action Items Take-Aways Appendices: Pages 54-68 A. Terms of Reference Document B. Sample Definitions of Cloud ...and definition of Cloud Computing . While Cloud Computing is developing in many variations – including Infrastructure as a Service (IaaS), Platform as
The application of cloud computing to scientific workflows: a study of cost and performance.
Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S
2013-01-28
The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.
Use of cloud computing in biomedicine.
Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil
2016-12-01
Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.
A resource management architecture based on complex network theory in cloud computing federation
NASA Astrophysics Data System (ADS)
Zhang, Zehua; Zhang, Xuejie
2011-10-01
Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.
Confidentiality Protection of Digital Health Records in Cloud Computing.
Chen, Shyh-Wei; Chiang, Dai Lun; Liu, Chia-Hui; Chen, Tzer-Shyong; Lai, Feipei; Wang, Huihui; Wei, Wei
2016-05-01
Electronic medical records containing confidential information were uploaded to the cloud. The cloud allows medical crews to access and manage the data and integration of medical records easily. This data system provides relevant information to medical personnel and facilitates and improve electronic medical record management and data transmission. A structure of cloud-based and patient-centered personal health record (PHR) is proposed in this study. This technique helps patients to manage their health information, such as appointment date with doctor, health reports, and a completed understanding of their own health conditions. It will create patients a positive attitudes to maintain the health. The patients make decision on their own for those whom has access to their records over a specific span of time specified by the patients. Storing data in the cloud environment can reduce costs and enhance the share of information, but the potential threat of information security should be taken into consideration. This study is proposing the cloud-based secure transmission mechanism is suitable for multiple users (like nurse aides, patients, and family members).
An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud
NASA Astrophysics Data System (ADS)
Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.
2017-08-01
Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.
Evaluating the Efficacy of the Cloud for Cluster Computation
NASA Technical Reports Server (NTRS)
Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom
2012-01-01
Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.
COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications
NASA Astrophysics Data System (ADS)
Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi
2012-05-01
The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.
Hybrid cloud: bridging of private and public cloud computing
NASA Astrophysics Data System (ADS)
Aryotejo, Guruh; Kristiyanto, Daniel Y.; Mufadhol
2018-05-01
Cloud Computing is quickly emerging as a promising paradigm in the recent years especially for the business sector. In addition, through cloud service providers, cloud computing is widely used by Information Technology (IT) based startup company to grow their business. However, the level of most businesses awareness on data security issues is low, since some Cloud Service Provider (CSP) could decrypt their data. Hybrid Cloud Deployment Model (HCDM) has characteristic as open source, which is one of secure cloud computing model, thus HCDM may solve data security issues. The objective of this study is to design, deploy and evaluate a HCDM as Infrastructure as a Service (IaaS). In the implementation process, Metal as a Service (MAAS) engine was used as a base to build an actual server and node. Followed by installing the vsftpd application, which serves as FTP server. In comparison with HCDM, public cloud was adopted through public cloud interface. As a result, the design and deployment of HCDM was conducted successfully, instead of having good security, HCDM able to transfer data faster than public cloud significantly. To the best of our knowledge, Hybrid Cloud Deployment model is one of secure cloud computing model due to its characteristic as open source. Furthermore, this study will serve as a base for future studies about Hybrid Cloud Deployment model which may relevant for solving big security issues of IT-based startup companies especially in Indonesia.
Cloud Optimized Image Format and Compression
NASA Astrophysics Data System (ADS)
Becker, P.; Plesea, L.; Maurer, T.
2015-04-01
Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pete Beckman and Ian Foster
Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
Laboratory and software applications for clinical trials: the global laboratory environment.
Briscoe, Chad
2011-11-01
The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.
NASA Technical Reports Server (NTRS)
Moses, John F.; Memarsadeghi, Nargess; Overoye, David; Littlefield, Brain
2017-01-01
The Global Learning and Observation to Benefit the Environment (GLOBE) Data and Information System supports an international science and education program with capabilities to accept local environment observations, archive, display and visualize them along with global satellite observations. Since its inception twenty years ago, the Web and database system has been upgraded periodically to accommodate the changes in technology and the steady growth of GLOBEs education community and collection of observations. Recently, near the end-of-life of the system hardware, new commercial computer platform options were explored and a decision made to utilize Cloud services. Now the GLOBE DIS has been fully deployed and maintained using Amazon Cloud services for over two years now. This paper reviews the early risks, actual challenges, and some unexpected findings as a result of the GLOBE DIS migration. We describe the plans, cost drivers and estimates, highlight adjustments that were made and suggest improvements. We present the trade studies for provisioning, for load balancing, networks, processing, storage, as well as production, staging and backup systems. We outline the migration teams skills and required level of effort for transition, and resulting changes in the overall maintenance and operations activities. Examples include incremental adjustments to processing capacity and frequency of backups, and efforts previously expended on hardware maintenance that were refocused onto application-specific enhancements.
NASA Technical Reports Server (NTRS)
Moses, John F.; Memarsadeghi, Nargess; Overoye, David; Littlefield, Bryan
2016-01-01
The Global Learning and Observation to Benefit the Environment (GLOBE) Data and Information System supports an international science and education program with capabilities to accept local environment observations, archive, display and visualize them along with global satellite observations. Since its inception twenty years ago, the Web and database system has been upgraded periodically to accommodate the changes in technology and the steady growth of GLOBEs education community and collection of observations. Recently, near the end-of-life of the system hardware, new commercial computer platform options were explored and a decision made to utilize Cloud services. Now the GLOBE DIS has been fully deployed and maintained using Amazon Cloud services for over two years now. This paper reviews the early risks, actual challenges, and some unexpected findings as a result of the GLOBE DIS migration. We describe the plans, cost drivers and estimates, highlight adjustments that were made and suggest improvements. We present the trade studies for provisioning, for load balancing, networks, processing, storage, as well as production, staging and backup systems. We outline the migration teams skills and required level of effort for transition, and resulting changes in the overall maintenance and operations activities. Examples include incremental adjustments to processing capacity and frequency of backups, and efforts previously expended on hardware maintenance that were refocused onto application-specific enhancements.
NASA Astrophysics Data System (ADS)
Moses, J. F.; Memarsadeghi, N.; Overoye, D.; Littlefield, B.
2016-12-01
The Global Learning and Observation to Benefit the Environment (GLOBE) Data and Information System supports an international science and education program with capabilities to accept local environment observations, archive, display and visualize them along with global satellite observations. Since its inception twenty years ago, the Web and database system has been upgraded periodically to accommodate the changes in technology and the steady growth of GLOBE's education community and collection of observations. Recently, near the end-of-life of the system hardware, new commercial computer platform options were explored and a decision made to utilize Cloud services. Now the GLOBE DIS has been fully deployed and maintained using Amazon Cloud services for over two years now. This paper reviews the early risks, actual challenges, and some unexpected findings as a result of the GLOBE DIS migration. We describe the plans, cost drivers and estimates, highlight adjustments that were made and suggest improvements. We present the trade studies for provisioning, for load balancing, networks, processing , storage, as well as production, staging and backup systems. We outline the migration team's skills and required level of effort for transition, and resulting changes in the overall maintenance and operations activities. Examples include incremental adjustments to processing capacity and frequency of backups, and efforts previously expended on hardware maintenance that were refocused onto application-specific enhancements.
Large-scale virtual screening on public cloud resources with Apache Spark.
Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola
2017-01-01
Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.
Galaxy CloudMan: delivering cloud compute clusters.
Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James
2010-12-21
Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.
Dynamic electronic institutions in agent oriented cloud robotic systems.
Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice
2015-01-01
The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
Libraries in the Cloud: Making a Case for Google and Amazon
ERIC Educational Resources Information Center
Buck, Stephanie
2009-01-01
As news outlets create headlines such as "A Cloud & A Prayer," "The Cloud Is the Computer," and "Leveraging Clouds to Make You More Efficient," many readers have been left with cloud confusion. Many definitions exist for cloud computing, and a uniform definition is hard to find. In its most basic form, cloud…
ERIC Educational Resources Information Center
Dulaney, Malik H.
2013-01-01
Emerging technologies challenge the management of information technology in organizations. Paradigm changing technologies, such as cloud computing, have the ability to reverse the norms in organizational management, decision making, and information technology governance. This study explores the effects of cloud computing on information technology…
Factors Influencing the Adoption of Cloud Computing by Decision Making Managers
ERIC Educational Resources Information Center
Ross, Virginia Watson
2010-01-01
Cloud computing is a growing field, addressing the market need for access to computing resources to meet organizational computing requirements. The purpose of this research is to evaluate the factors that influence an organization in their decision whether to adopt cloud computing as a part of their strategic information technology planning.…
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.
Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao
2018-05-23
The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.
Design for Run-Time Monitor on Cloud Computing
NASA Astrophysics Data System (ADS)
Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.
Research on phone contacts online status based on mobile cloud computing
NASA Astrophysics Data System (ADS)
Wang, Wen-jinga; Ge, Weib
2013-03-01
Because the limited ability of storage space, CPU processing on mobile phone, it is difficult to realize complex applications on mobile phones, but along with the development of cloud computing, we can place the computing and storage in the clouds, provide users with rich cloud services, helping users complete various function through the browser has become the trend for future mobile communication. This article is taking the mobile phone contacts online status as an example to analysis the development and application of mobile cloud computing.
Bootstrapping and Maintaining Trust in the Cloud
2016-12-01
proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as Amazon Web Services and Google Compute Engine means...IaaS trusted computing system: • Secure Bootstrapping – the system should enable the tenant to securely install an initial root secret into each cloud ...elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features, but none achieve all. Excalibur [31] sup