Sample records for cloud computing resources

  1. Dynamic virtual machine allocation policy in cloud computing complying with service level agreement using CloudSim

    NASA Astrophysics Data System (ADS)

    Aneri, Parikh; Sumathy, S.

    2017-11-01

    Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.

  2. A resource management architecture based on complex network theory in cloud computing federation

    NASA Astrophysics Data System (ADS)

    Zhang, Zehua; Zhang, Xuejie

    2011-10-01

    Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.

  3. Flexible services for the support of research.

    PubMed

    Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John

    2013-01-28

    Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.

  4. An Architecture for Cross-Cloud System Management

    NASA Astrophysics Data System (ADS)

    Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad

    The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.

  5. An Overview of Cloud Computing in Distributed Systems

    NASA Astrophysics Data System (ADS)

    Divakarla, Usha; Kumari, Geetha

    2010-11-01

    Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.

  6. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  7. Integration of Cloud resources in the LHCb Distributed Computing

    NASA Astrophysics Data System (ADS)

    Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel

    2014-06-01

    This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.

  8. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter

    PubMed Central

    Loganathan, Shyamala; Mukherjee, Saswati

    2015-01-01

    Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166

  9. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.

    PubMed

    Loganathan, Shyamala; Mukherjee, Saswati

    2015-01-01

    Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.

  10. Challenges in Securing the Interface Between the Cloud and Pervasive Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagesse, Brent J

    2011-01-01

    Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources andmore » issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.« less

  11. Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy

    PubMed Central

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-01-01

    Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313

  12. Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.

    PubMed

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-06-01

    Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.

  13. Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds

    NASA Astrophysics Data System (ADS)

    Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni

    2012-09-01

    Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.

  14. Cloudbus Toolkit for Market-Oriented Cloud Computing

    NASA Astrophysics Data System (ADS)

    Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian

    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.

  15. Provider-Independent Use of the Cloud

    NASA Astrophysics Data System (ADS)

    Harmer, Terence; Wright, Peter; Cunningham, Christina; Perrott, Ron

    Utility computing offers researchers and businesses the potential of significant cost-savings, making it possible for them to match the cost of their computing and storage to their demand for such resources. A utility compute provider enables the purchase of compute infrastructures on-demand; when a user requires computing resources a provider will provision a resource for them and charge them only for their period of use of that resource. There has been a significant growth in the number of cloud computing resource providers and each has a different resource usage model, application process and application programming interface (API)-developing generic multi-resource provider applications is thus difficult and time consuming. We have developed an abstraction layer that provides a single resource usage model, user authentication model and API for compute providers that enables cloud-provider neutral applications to be developed. In this paper we outline the issues in using external resource providers, give examples of using a number of the most popular cloud providers and provide examples of developing provider neutral applications. In addition, we discuss the development of the API to create a generic provisioning model based on a common architecture for cloud computing providers.

  16. Study on the application of mobile internet cloud computing platform

    NASA Astrophysics Data System (ADS)

    Gong, Songchun; Fu, Songyin; Chen, Zheng

    2012-04-01

    The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.

  17. A Novel College Network Resource Management Method using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Lin, Chen

    At present information construction of college mainly has construction of college networks and management information system; there are many problems during the process of information. Cloud computing is development of distributed processing, parallel processing and grid computing, which make data stored on the cloud, make software and services placed in the cloud and build on top of various standards and protocols, you can get it through all kinds of equipments. This article introduces cloud computing and function of cloud computing, then analyzes the exiting problems of college network resource management, the cloud computing technology and methods are applied in the construction of college information sharing platform.

  18. Research on Key Technologies of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Zhang, Shufen; Yan, Hongcan; Chen, Xuebin

    With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.

  19. ATLAS Cloud R&D

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  20. Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources

    NASA Astrophysics Data System (ADS)

    Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.

    2011-12-01

    Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.

  1. Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.

    PubMed

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.

  2. WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K; Kagadis, G; Xing, L

    As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set againstmore » new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.« less

  3. Operating Dedicated Data Centers - Is It Cost-Effective?

    NASA Astrophysics Data System (ADS)

    Ernst, M.; Hogue, R.; Hollowell, C.; Strecker-Kellog, W.; Wong, A.; Zaytsev, A.

    2014-06-01

    The advent of cloud computing centres such as Amazon's EC2 and Google's Computing Engine has elicited comparisons with dedicated computing clusters. Discussions on appropriate usage of cloud resources (both academic and commercial) and costs have ensued. This presentation discusses a detailed analysis of the costs of operating and maintaining the RACF (RHIC and ATLAS Computing Facility) compute cluster at Brookhaven National Lab and compares them with the cost of cloud computing resources under various usage scenarios. An extrapolation of likely future cost effectiveness of dedicated computing resources is also presented.

  4. Now and Next-Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Computing

    PubMed Central

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed “cloud computing”) has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows. PMID:23248640

  5. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    PubMed

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  6. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    DOE PAGES

    Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian; ...

    2017-09-29

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less

  7. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less

  8. Construction and application of Red5 cluster based on OpenStack

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqing; Song, Jianxin

    2017-08-01

    With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.

  9. Consolidation of cloud computing in ATLAS

    NASA Astrophysics Data System (ADS)

    Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration

    2017-10-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.

  10. Research on the digital education resources of sharing pattern in independent colleges based on cloud computing environment

    NASA Astrophysics Data System (ADS)

    Xiong, Ting; He, Zhiwen

    2017-06-01

    Cloud computing was first proposed by Google Company in the United States, which was based on the Internet center, providing a standard and open network sharing service approach. With the rapid development of the higher education in China, the educational resources provided by colleges and universities had greatly gap in the actual needs of teaching resources. therefore, Cloud computing of using the Internet technology to provide shared methods liked the timely rain, which had become an important means of the Digital Education on sharing applications in the current higher education. Based on Cloud computing environment, the paper analyzed the existing problems about the sharing of digital educational resources in Jiangxi Province Independent Colleges. According to the sharing characteristics of mass storage, efficient operation and low input about Cloud computing, the author explored and studied the design of the sharing model about the digital educational resources of higher education in Independent College. Finally, the design of the shared model was put into the practical applications.

  11. A resource-sharing model based on a repeated game in fog computing.

    PubMed

    Sun, Yan; Zhang, Nan

    2017-03-01

    With the rapid development of cloud computing techniques, the number of users is undergoing exponential growth. It is difficult for traditional data centers to perform many tasks in real time because of the limited bandwidth of resources. The concept of fog computing is proposed to support traditional cloud computing and to provide cloud services. In fog computing, the resource pool is composed of sporadic distributed resources that are more flexible and movable than a traditional data center. In this paper, we propose a fog computing structure and present a crowd-funding algorithm to integrate spare resources in the network. Furthermore, to encourage more resource owners to share their resources with the resource pool and to supervise the resource supporters as they actively perform their tasks, we propose an incentive mechanism in our algorithm. Simulation results show that our proposed incentive mechanism can effectively reduce the SLA violation rate and accelerate the completion of tasks.

  12. A Hybrid Cloud Computing Service for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.

    2016-12-01

    Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.

  13. Application of microarray analysis on computer cluster and cloud platforms.

    PubMed

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  14. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  15. A lightweight distributed framework for computational offloading in mobile cloud computing.

    PubMed

    Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul

    2014-01-01

    The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.

  16. A Lightweight Distributed Framework for Computational Offloading in Mobile Cloud Computing

    PubMed Central

    Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul

    2014-01-01

    The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC. PMID:25127245

  17. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    PubMed Central

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  18. Examining Effects of Virtual Machine Settings on Voice over Internet Protocol in a Private Cloud Environment

    ERIC Educational Resources Information Center

    Liao, Yuan

    2011-01-01

    The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…

  19. Cloud Computing. Technology Briefing. Number 1

    ERIC Educational Resources Information Center

    Alberta Education, 2013

    2013-01-01

    Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…

  20. Automating NEURON Simulation Deployment in Cloud Resources.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2017-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.

  1. Automating NEURON Simulation Deployment in Cloud Resources

    PubMed Central

    Santamaria, Fidel

    2016-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341

  2. Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*

    PubMed Central

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.

    2015-01-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363

  3. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.

    PubMed

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L

    2015-02-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Dynamic VM Provisioning for TORQUE in a Cloud Environment

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.

    2014-06-01

    Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.

  5. Dynamic Extension of a Virtualized Cluster by using Cloud Resources

    NASA Astrophysics Data System (ADS)

    Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter

    2012-12-01

    The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.

  6. Making Cloud Computing Available For Researchers and Innovators (Invited)

    NASA Astrophysics Data System (ADS)

    Winsor, R.

    2010-12-01

    High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.

  7. Cloud computing basics for librarians.

    PubMed

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC

  8. Infrastructures for Distributed Computing: the case of BESIII

    NASA Astrophysics Data System (ADS)

    Pellegrino, J.

    2018-05-01

    The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.

  9. SaaS enabled admission control for MCMC simulation in cloud computing infrastructures

    NASA Astrophysics Data System (ADS)

    Vázquez-Poletti, J. L.; Moreno-Vozmediano, R.; Han, R.; Wang, W.; Llorente, I. M.

    2017-02-01

    Markov Chain Monte Carlo (MCMC) methods are widely used in the field of simulation and modelling of materials, producing applications that require a great amount of computational resources. Cloud computing represents a seamless source for these resources in the form of HPC. However, resource over-consumption can be an important drawback, specially if the cloud provision process is not appropriately optimized. In the present contribution we propose a two-level solution that, on one hand, takes advantage of approximate computing for reducing the resource demand and on the other, uses admission control policies for guaranteeing an optimal provision to running applications.

  10. Dynamic partitioning as a way to exploit new computing paradigms: the cloud use case.

    NASA Astrophysics Data System (ADS)

    Ciaschini, Vincenzo; Dal Pra, Stefano; dell'Agnello, Luca

    2015-12-01

    The WLCG community and many groups in the HEP community have based their computing strategy on the Grid paradigm, which proved successful and still ensures its goals. However, Grid technology has not spread much over other communities; in the commercial world, the cloud paradigm is the emerging way to provide computing services. WLCG experiments aim to achieve integration of their existing current computing model with cloud deployments and take advantage of the so-called opportunistic resources (including HPC facilities) which are usually not Grid compliant. One missing feature in the most common cloud frameworks, is the concept of job scheduler, which plays a key role in a traditional computing centre, by enabling a fairshare based access at the resources to the experiments in a scenario where demand greatly outstrips availability. At CNAF we are investigating the possibility to access the Tier-1 computing resources as an OpenStack based cloud service. The system, exploiting the dynamic partitioning mechanism already being used to enable Multicore computing, allowed us to avoid a static splitting of the computing resources in the Tier-1 farm, while permitting a share friendly approach. The hosts in a dynamically partitioned farm may be moved to or from the partition, according to suitable policies for request and release of computing resources. Nodes being requested in the partition switch their role and become available to play a different one. In the cloud use case hosts may switch from acting as Worker Node in the Batch system farm to cloud compute node member, made available to tenants. In this paper we describe the dynamic partitioning concept, its implementation and integration with our current batch system, LSF.

  11. Cloud Computing - A Unified Approach for Surveillance Issues

    NASA Astrophysics Data System (ADS)

    Rachana, C. R.; Banu, Reshma, Dr.; Ahammed, G. F. Ali, Dr.; Parameshachari, B. D., Dr.

    2017-08-01

    Cloud computing describes highly scalable resources provided as an external service via the Internet on a basis of pay-per-use. From the economic point of view, the main attractiveness of cloud computing is that users only use what they need, and only pay for what they actually use. Resources are available for access from the cloud at any time, and from any location through networks. Cloud computing is gradually replacing the traditional Information Technology Infrastructure. Securing data is one of the leading concerns and biggest issue for cloud computing. Privacy of information is always a crucial pointespecially when an individual’s personalinformation or sensitive information is beingstored in the organization. It is indeed true that today; cloud authorization systems are notrobust enough. This paper presents a unified approach for analyzing the various security issues and techniques to overcome the challenges in the cloud environment.

  12. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-06-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  13. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared overmore » the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.« less

  14. Galaxy CloudMan: delivering cloud compute clusters.

    PubMed

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  15. Modeling the Cloud to Enhance Capabilities for Crises and Catastrophe Management

    DTIC Science & Technology

    2016-11-16

    order for cloud computing infrastructures to be successfully deployed in real world scenarios as tools for crisis and catastrophe management, where...Statement of the Problem Studied As cloud computing becomes the dominant computational infrastructure[1] and cloud technologies make a transition to hosting...1. Formulate rigorous mathematical models representing technological capabilities and resources in cloud computing for performance modeling and

  16. Evaluating open-source cloud computing solutions for geosciences

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong

    2013-09-01

    Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.

  17. ATLAS user analysis on private cloud resources at GoeGrid

    NASA Astrophysics Data System (ADS)

    Glaser, F.; Nadal Serrano, J.; Grabowski, J.; Quadt, A.

    2015-12-01

    User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.

  18. Galaxy CloudMan: delivering cloud compute clusters

    PubMed Central

    2010-01-01

    Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983

  19. Security model for VM in cloud

    NASA Astrophysics Data System (ADS)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  20. A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.

    PubMed

    Wang, Lujia; Liu, Ming; Meng, Max Q-H

    2017-02-01

    Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.

  1. The diverse use of clouds by CMS

    DOE PAGES

    Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; ...

    2015-12-23

    The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of themore » trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.« less

  2. Cloud Computing in Support of Applied Learning: A Baseline Study of Infrastructure Design at Southern Polytechnic State University

    ERIC Educational Resources Information Center

    Conn, Samuel S.; Reichgelt, Han

    2013-01-01

    Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…

  3. Design for Run-Time Monitor on Cloud Computing

    NASA Astrophysics Data System (ADS)

    Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.

  4. Infrastructure Systems for Advanced Computing in E-science applications

    NASA Astrophysics Data System (ADS)

    Terzo, Olivier

    2013-04-01

    In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.

  5. Exploring Cloud Computing for Large-scale Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Han, Binh; Yin, Jian

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less

  6. Opportunities and challenges of cloud computing to improve health care services.

    PubMed

    Kuo, Alex Mu-Hsing

    2011-09-21

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed.

  7. Factors Influencing the Adoption of Cloud Computing by Decision Making Managers

    ERIC Educational Resources Information Center

    Ross, Virginia Watson

    2010-01-01

    Cloud computing is a growing field, addressing the market need for access to computing resources to meet organizational computing requirements. The purpose of this research is to evaluate the factors that influence an organization in their decision whether to adopt cloud computing as a part of their strategic information technology planning.…

  8. High-performance scientific computing in the cloud

    NASA Astrophysics Data System (ADS)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  9. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  10. Securing the Data Storage and Processing in Cloud Computing Environment

    ERIC Educational Resources Information Center

    Owens, Rodney

    2013-01-01

    Organizations increasingly utilize cloud computing architectures to reduce costs and energy consumption both in the data warehouse and on mobile devices by better utilizing the computing resources available. However, the security and privacy issues with publicly available cloud computing infrastructures have not been studied to a sufficient depth…

  11. Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.

  12. Experience in using commercial clouds in CMS

    NASA Astrophysics Data System (ADS)

    Bauerdick, L.; Bockelman, B.; Dykstra, D.; Fuess, S.; Garzoglio, G.; Girone, M.; Gutsche, O.; Holzman, B.; Hufnagel, D.; Kim, H.; Kennedy, R.; Mason, D.; Spentzouris, P.; Timm, S.; Tiradani, A.; Vaandering, E.; CMS Collaboration

    2017-10-01

    Historically high energy physics computing has been performed on large purpose-built computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.

  13. Experience in using commercial clouds in CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauerdick, L.; Bockelman, B.; Dykstra, D.

    Historically high energy physics computing has been performed on large purposebuilt computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is amore » growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.« less

  14. Are Cloud Environments Ready for Scientific Applications?

    NASA Astrophysics Data System (ADS)

    Mehrotra, P.; Shackleford, K.

    2011-12-01

    Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.

  15. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.

    PubMed

    Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  16. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    PubMed Central

    Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746

  17. Bootstrapping and Maintaining Trust in the Cloud

    DTIC Science & Technology

    2016-12-01

    simultaneous cloud nodes. 1. INTRODUCTION The proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as...Amazon Web Services and Google Compute Engine means more cloud tenants are hosting sensitive, private, and business critical data and applications in the...thousands of IaaS resources as they are elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features

  18. Future Naval Use of COTS Networking Infrastructure

    DTIC Science & Technology

    2009-07-01

    user to benefit from Google’s vast databases and computational resources. Obviously, the ability to harness the full power of the Cloud could be... Computing Impact Findings Action Items Take-Aways Appendices: Pages 54-68 A. Terms of Reference Document B. Sample Definitions of Cloud ...and definition of Cloud Computing . While Cloud Computing is developing in many variations – including Infrastructure as a Service (IaaS), Platform as

  19. A Quantitative Risk Analysis Framework for Evaluating and Monitoring Operational Reliability of Cloud Computing

    ERIC Educational Resources Information Center

    Islam, Muhammad Faysal

    2013-01-01

    Cloud computing offers the advantage of on-demand, reliable and cost efficient computing solutions without the capital investment and management resources to build and maintain in-house data centers and network infrastructures. Scalability of cloud solutions enable consumers to upgrade or downsize their services as needed. In a cloud environment,…

  20. Risk in the Clouds?: Security Issues Facing Government Use of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wyld, David C.

    Cloud computing is poised to become one of the most important and fundamental shifts in how computing is consumed and used. Forecasts show that government will play a lead role in adopting cloud computing - for data storage, applications, and processing power, as IT executives seek to maximize their returns on limited procurement budgets in these challenging economic times. After an overview of the cloud computing concept, this article explores the security issues facing public sector use of cloud computing and looks to the risk and benefits of shifting to cloud-based models. It concludes with an analysis of the challenges that lie ahead for government use of cloud resources.

  1. Performance Evaluation of Resource Management in Cloud Computing Environments.

    PubMed

    Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci

    2015-01-01

    Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price.

  2. Performance Evaluation of Resource Management in Cloud Computing Environments

    PubMed Central

    Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci

    2015-01-01

    Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price. PMID:26555730

  3. Opportunities and Challenges of Cloud Computing to Improve Health Care Services

    PubMed Central

    2011-01-01

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed. PMID:21937354

  4. Migrating Educational Data and Services to Cloud Computing: Exploring Benefits and Challenges

    ERIC Educational Resources Information Center

    Lahiri, Minakshi; Moseley, James L.

    2013-01-01

    "Cloud computing" is currently the "buzzword" in the Information Technology field. Cloud computing facilitates convenient access to information and software resources as well as easy storage and sharing of files and data, without the end users being aware of the details of the computing technology behind the process. This…

  5. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    PubMed Central

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811

  6. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    PubMed

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  7. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  8. Interoperating Cloud-based Virtual Farms

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Colamaria, F.; Colella, D.; Casula, E.; Elia, D.; Franco, A.; Lusso, S.; Luparello, G.; Masera, M.; Miniello, G.; Mura, D.; Piano, S.; Vallero, S.; Venaruzzo, M.; Vino, G.

    2015-12-01

    The present work aims at optimizing the use of computing resources available at the grid Italian Tier-2 sites of the ALICE experiment at CERN LHC by making them accessible to interactive distributed analysis, thanks to modern solutions based on cloud computing. The scalability and elasticity of the computing resources via dynamic (“on-demand”) provisioning is essentially limited by the size of the computing site, reaching the theoretical optimum only in the asymptotic case of infinite resources. The main challenge of the project is to overcome this limitation by federating different sites through a distributed cloud facility. Storage capacities of the participating sites are seen as a single federated storage area, preventing the need of mirroring data across them: high data access efficiency is guaranteed by location-aware analysis software and storage interfaces, in a transparent way from an end-user perspective. Moreover, the interactive analysis on the federated cloud reduces the execution time with respect to grid batch jobs. The tests of the investigated solutions for both cloud computing and distributed storage on wide area network will be presented.

  9. Polyphony: A Workflow Orchestration Framework for Cloud Computing

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom

    2010-01-01

    Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.

  10. Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing.

    PubMed

    Zhang, Nan; Yang, Xiaolong; Zhang, Min; Sun, Yan

    2016-01-01

    Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network.

  11. Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing

    PubMed Central

    Zhang, Min; Sun, Yan

    2016-01-01

    Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network. PMID:28030553

  12. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  13. Cloud Computing for radiologists

    PubMed Central

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  14. Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.

    PubMed

    Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P

    2010-12-22

    Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.

  15. A Comprehensive Toolset for General-Purpose Private Computing and Outsourcing

    DTIC Science & Technology

    2016-12-08

    project and scientific advances made towards each of the research thrusts throughout the project duration. 1 Project Objectives Cloud computing enables...possibilities that the cloud enables is computation outsourcing, when the client can utilize any necessary computing resources for its computational task...Security considerations, however, stand on the way of harnessing the full benefits of cloud computing to the fullest extent and prevent clients from

  16. Reprocessing Multiyear GPS Data from Continuously Operating Reference Stations on Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Yoon, S.

    2016-12-01

    To define geodetic reference frame using GPS data collected by Continuously Operating Reference Stations (CORS) network, historical GPS data needs to be reprocessed regularly. Reprocessing GPS data collected by upto 2000 CORS sites for the last two decades requires a lot of computational resource. At National Geodetic Survey (NGS), there has been one completed reprocessing in 2011, and currently, the second reprocessing is undergoing. For the first reprocessing effort, in-house computing resource was utilized. In the current second reprocessing effort, outsourced cloud computing platform is being utilized. In this presentation, the outline of data processing strategy at NGS is described as well as the effort to parallelize the data processing procedure in order to maximize the benefit of the cloud computing. The time and cost savings realized by utilizing cloud computing approach will also be discussed.

  17. The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community

    NASA Astrophysics Data System (ADS)

    Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt

    2014-05-01

    Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.

  18. Human face recognition using eigenface in cloud computing environment

    NASA Astrophysics Data System (ADS)

    Siregar, S. T. M.; Syahputra, M. F.; Rahmat, R. F.

    2018-02-01

    Doing a face recognition for one single face does not take a long time to process, but if we implement attendance system or security system on companies that have many faces to be recognized, it will take a long time. Cloud computing is a computing service that is done not on a local device, but on an internet connected to a data center infrastructure. The system of cloud computing also provides a scalability solution where cloud computing can increase the resources needed when doing larger data processing. This research is done by applying eigenface while collecting data as training data is also done by using REST concept to provide resource, then server can process the data according to existing stages. After doing research and development of this application, it can be concluded by implementing Eigenface, recognizing face by applying REST concept as endpoint in giving or receiving related information to be used as a resource in doing model formation to do face recognition.

  19. Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic

    PubMed Central

    Sanduja, S; Jewell, P; Aron, E; Pharai, N

    2015-01-01

    Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic. PMID:26451333

  20. Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic.

    PubMed

    Sanduja, S; Jewell, P; Aron, E; Pharai, N

    2015-09-01

    Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic.

  1. A cloud-based production system for information and service integration: an internet of things case study on waste electronics

    NASA Astrophysics Data System (ADS)

    Wang, Xi Vincent; Wang, Lihui

    2017-08-01

    Cloud computing is the new enabling technology that offers centralised computing, flexible data storage and scalable services. In the manufacturing context, it is possible to utilise the Cloud technology to integrate and provide industrial resources and capabilities in terms of Cloud services. In this paper, a function block-based integration mechanism is developed to connect various types of production resources. A Cloud-based architecture is also deployed to offer a service pool which maintains these resources as production services. The proposed system provides a flexible and integrated information environment for the Cloud-based production system. As a specific type of manufacturing, Waste Electrical and Electronic Equipment (WEEE) remanufacturing experiences difficulties in system integration, information exchange and resource management. In this research, WEEE is selected as the example of Internet of Things to demonstrate how the obstacles and bottlenecks are overcome with the help of Cloud-based informatics approach. In the case studies, the WEEE recycle/recovery capabilities are also integrated and deployed as flexible Cloud services. Supporting mechanisms and technologies are presented and evaluated towards the end of the paper.

  2. Towards a Cloud Computing Environment: Near Real-time Cloud Product Processing and Distribution for Next Generation Satellites

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.

    2016-12-01

    The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.

  3. A European Federated Cloud: Innovative distributed computing solutions by EGI

    NASA Astrophysics Data System (ADS)

    Sipos, Gergely; Turilli, Matteo; Newhouse, Steven; Kacsuk, Peter

    2013-04-01

    The European Grid Infrastructure (EGI) is the result of pioneering work that has, over the last decade, built a collaborative production infrastructure of uniform services through the federation of national resource providers that supports multi-disciplinary science across Europe and around the world. This presentation will provide an overview of the recently established 'federated cloud computing services' that the National Grid Initiatives (NGIs), operators of EGI, offer to scientific communities. The presentation will explain the technical capabilities of the 'EGI Federated Cloud' and the processes whereby earth and space science researchers can engage with it. EGI's resource centres have been providing services for collaborative, compute- and data-intensive applications for over a decade. Besides the well-established 'grid services', several NGIs already offer privately run cloud services to their national researchers. Many of these researchers recently expressed the need to share these cloud capabilities within their international research collaborations - a model similar to the way the grid emerged through the federation of institutional batch computing and file storage servers. To facilitate the setup of a pan-European cloud service from the NGIs' resources, the EGI-InSPIRE project established a Federated Cloud Task Force in September 2011. The Task Force has a mandate to identify and test technologies for a multinational federated cloud that could be provisioned within EGI by the NGIs. A guiding principle for the EGI Federated Cloud is to remain technology neutral and flexible for both resource providers and users: • Resource providers are allowed to use any cloud hypervisor and management technology to join virtualised resources into the EGI Federated Cloud as long as the site is subscribed to the user-facing interfaces selected by the EGI community. • Users can integrate high level services - such as brokers, portals and customised Virtual Research Environments - with the EGI Federated Cloud as long as these services access cloud resources through the user-facing interfaces selected by the EGI community. The Task Force will be closed in May 2013. It already • Identified key enabling technologies by which a multinational, federated 'Infrastructure as a Service' (IaaS) type cloud can be built from the NGIs' resources; • Deployed a test bed to evaluate the integration of virtualised resources within EGI and to engage with early adopter use cases from different scientific domains; • Integrated cloud resources into the EGI production infrastructure through cloud specific bindings of the EGI information system, monitoring system, authentication system, etc.; • Collected and catalogued requirements concerning the federated cloud services from the feedback of early adopter use cases; • Provided feedback and requirements to relevant technology providers on their implementations and worked with these providers to address those requirements; • Identified issues that need to be addressed by other areas of EGI (such as portal solutions, resource allocation policies, marketing and user support) to reach a production system. The Task Force will publish a blueprint in April 2013. The blueprint will drive the establishment of a production level EGI Federated Cloud service after May 2013.

  4. TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Jones, N.; Ames, D. P.

    2015-12-01

    Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.

  5. CERN Computing in Commercial Clouds

    NASA Astrophysics Data System (ADS)

    Cordeiro, C.; Field, L.; Garrido Bear, B.; Giordano, D.; Jones, B.; Keeble, O.; Manzi, A.; Martelli, E.; McCance, G.; Moreno-García, D.; Traylen, S.

    2017-10-01

    By the end of 2016 more than 10 Million core-hours of computing resources have been delivered by several commercial cloud providers to the four LHC experiments to run their production workloads, from simulation to full chain processing. In this paper we describe the experience gained at CERN in procuring and exploiting commercial cloud resources for the computing needs of the LHC experiments. The mechanisms used for provisioning, monitoring, accounting, alarming and benchmarking will be discussed, as well as the involvement of the LHC collaborations in terms of managing the workflows of the experiments within a multicloud environment.

  6. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  7. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  8. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.

  9. Key Lessons in Building "Data Commons": The Open Science Data Cloud Ecosystem

    NASA Astrophysics Data System (ADS)

    Patterson, M.; Grossman, R.; Heath, A.; Murphy, M.; Wells, W.

    2015-12-01

    Cloud computing technology has created a shift around data and data analysis by allowing researchers to push computation to data as opposed to having to pull data to an individual researcher's computer. Subsequently, cloud-based resources can provide unique opportunities to capture computing environments used both to access raw data in its original form and also to create analysis products which may be the source of data for tables and figures presented in research publications. Since 2008, the Open Cloud Consortium (OCC) has operated the Open Science Data Cloud (OSDC), which provides scientific researchers with computational resources for storing, sharing, and analyzing large (terabyte and petabyte-scale) scientific datasets. OSDC has provided compute and storage services to over 750 researchers in a wide variety of data intensive disciplines. Recently, internal users have logged about 2 million core hours each month. The OSDC also serves the research community by colocating these resources with access to nearly a petabyte of public scientific datasets in a variety of fields also accessible for download externally by the public. In our experience operating these resources, researchers are well served by "data commons," meaning cyberinfrastructure that colocates data archives, computing, and storage infrastructure and supports essential tools and services for working with scientific data. In addition to the OSDC public data commons, the OCC operates a data commons in collaboration with NASA and is developing a data commons for NOAA datasets. As cloud-based infrastructures for distributing and computing over data become more pervasive, we ask, "What does it mean to publish data in a data commons?" Here we present the OSDC perspective and discuss several services that are key in architecting data commons, including digital identifier services.

  10. Teaching, Learning, and Collaborating in the Cloud: Applications of Cloud Computing for Educators in Post-Secondary Institutions

    ERIC Educational Resources Information Center

    Aaron, Lynn S.; Roche, Catherine M.

    2012-01-01

    "Cloud computing" refers to the use of computing resources on the Internet instead of on individual personal computers. The field is expanding and has significant potential value for educators. This is discussed with a focus on four main functions: file storage, file synchronization, document creation, and collaboration--each of which has…

  11. HPC on Competitive Cloud Resources

    NASA Astrophysics Data System (ADS)

    Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff

    Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.

  12. A Review Study on Cloud Computing Issues

    NASA Astrophysics Data System (ADS)

    Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti

    2018-05-01

    Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.

  13. An approximate dynamic programming approach to resource management in multi-cloud scenarios

    NASA Astrophysics Data System (ADS)

    Pietrabissa, Antonio; Priscoli, Francesco Delli; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo

    2017-03-01

    The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers' requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.

  14. Challenges and opportunities of cloud computing for atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.

    2016-04-01

    Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.

  15. Developing Online Learning Resources: Big Data, Social Networks, and Cloud Computing to Support Pervasive Knowledge

    ERIC Educational Resources Information Center

    Anshari, Muhammad; Alas, Yabit; Guan, Lim Sei

    2016-01-01

    Utilizing online learning resources (OLR) from multi channels in learning activities promise extended benefits from traditional based learning-centred to a collaborative based learning-centred that emphasises pervasive learning anywhere and anytime. While compiling big data, cloud computing, and semantic web into OLR offer a broader spectrum of…

  16. Cloud-based crowd sensing: a framework for location-based crowd analyzer and advisor

    NASA Astrophysics Data System (ADS)

    Aishwarya, K. C.; Nambi, A.; Hudson, S.; Nadesh, R. K.

    2017-11-01

    Cloud computing is an emerging field of computer science to integrate and explore large and powerful computing systems and storages for personal and also for enterprise requirements. Mobile Cloud Computing is the inheritance of this concept towards mobile hand-held devices. Crowdsensing, or to be precise, Mobile Crowdsensing is the process of sharing resources from an available group of mobile handheld devices that support sharing of different resources such as data, memory and bandwidth to perform a single task for collective reasons. In this paper, we propose a framework to use Crowdsensing and perform a crowd analyzer and advisor whether the user can go to the place or not. This is an ongoing research and is a new concept to which the direction of cloud computing has shifted and is viable for more expansion in the near future.

  17. A Cost-Benefit Study of Doing Astrophysics On The Cloud: Production of Image Mosaics

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Good, J. C. Deelman, E.; Singh, G. Livny, M.

    2009-09-01

    Utility grids such as the Amazon EC2 and Amazon S3 clouds offer computational and storage resources that can be used on-demand for a fee by compute- and data-intensive applications. The cost of running an application on such a cloud depends on the compute, storage and communication resources it will provision and consume. Different execution plans of the same application may result in significantly different costs. We studied via simulation the cost performance trade-offs of different execution and resource provisioning plans by creating, under the Amazon cloud fee structure, mosaics with the Montage image mosaic engine, a widely used data- and compute-intensive application. Specifically, we studied the cost of building mosaics of 2MASS data that have sizes of 1, 2 and 4 square degrees, and a 2MASS all-sky mosaic. These are examples of mosaics commonly generated by astronomers. We also study these trade-offs in the context of the storage and communication fees of Amazon S3 when used for long-term application data archiving. Our results show that by provisioning the right amount of storage and compute resources cost can be significantly reduced with no significant impact on application performance.

  18. Application-oriented offloading in heterogeneous networks for mobile cloud computing

    NASA Astrophysics Data System (ADS)

    Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.

    2018-04-01

    Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.

  19. Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Srinivas R.; Rumyantsev, Alexander

    2018-03-01

    Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.

  20. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.

  1. CSNS computing environment Based on OpenStack

    NASA Astrophysics Data System (ADS)

    Li, Yakang; Qi, Fazhi; Chen, Gang; Wang, Yanming; Hong, Jianshu

    2017-10-01

    Cloud computing can allow for more flexible configuration of IT resources and optimized hardware utilization, it also can provide computing service according to the real need. We are applying this computing mode to the China Spallation Neutron Source(CSNS) computing environment. So, firstly, CSNS experiment and its computing scenarios and requirements are introduced in this paper. Secondly, the design and practice of cloud computing platform based on OpenStack are mainly demonstrated from the aspects of cloud computing system framework, network, storage and so on. Thirdly, some improvments to openstack we made are discussed further. Finally, current status of CSNS cloud computing environment are summarized in the ending of this paper.

  2. Research on elastic resource management for multi-queue under cloud computing environment

    NASA Astrophysics Data System (ADS)

    CHENG, Zhenjing; LI, Haibo; HUANG, Qiulan; Cheng, Yaodong; CHEN, Gang

    2017-10-01

    As a new approach to manage computing resource, virtualization technology is more and more widely applied in the high-energy physics field. A virtual computing cluster based on Openstack was built at IHEP, using HTCondor as the job queue management system. In a traditional static cluster, a fixed number of virtual machines are pre-allocated to the job queue of different experiments. However this method cannot be well adapted to the volatility of computing resource requirements. To solve this problem, an elastic computing resource management system under cloud computing environment has been designed. This system performs unified management of virtual computing nodes on the basis of job queue in HTCondor based on dual resource thresholds as well as the quota service. A two-stage pool is designed to improve the efficiency of resource pool expansion. This paper will present several use cases of the elastic resource management system in IHEPCloud. The practical run shows virtual computing resource dynamically expanded or shrunk while computing requirements change. Additionally, the CPU utilization ratio of computing resource was significantly increased when compared with traditional resource management. The system also has good performance when there are multiple condor schedulers and multiple job queues.

  3. Multi-Dimensional Optimization for Cloud Based Multi-Tier Applications

    ERIC Educational Resources Information Center

    Jung, Gueyoung

    2010-01-01

    Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these…

  4. The Integration of CloudStack and OCCI/OpenNebula with DIRAC

    NASA Astrophysics Data System (ADS)

    Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan

    2012-12-01

    The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

  5. A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation

    PubMed Central

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  6. Development of a SaaS application probe to the physical properties of the Earth's interior: An attempt at moving HPC to the cloud

    NASA Astrophysics Data System (ADS)

    Huang, Qian

    2014-09-01

    Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.

  7. Cloud Computing: An Overview

    NASA Astrophysics Data System (ADS)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele

    The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub Center propose a joint project. The goals are to enable scientific workflows of stakeholders to run on multiple cloud resources by use of (a) Virtual Infrastructure Automation and Provisioning, (b) Interoperability and Federat ion of Cloud Resources , and (c) High-Throughput Fabric Virtualization. This is a matching fund project in which Fermilab and KISTI will contribute equal resources .

  9. Lost in Cloud

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  10. Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package

    PubMed Central

    2012-01-01

    Background Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. Results In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Conclusions Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org. PMID:23281941

  11. Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package.

    PubMed

    El-Kalioby, Mohamed; Abouelhoda, Mohamed; Krüger, Jan; Giegerich, Robert; Sczyrba, Alexander; Wall, Dennis P; Tonellato, Peter

    2012-01-01

    Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org.

  12. Does Cloud Computing in the Atmospheric Sciences Make Sense? A case study of hybrid cloud computing at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.

    2014-12-01

    The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.

  13. Cloud based intelligent system for delivering health care as a service.

    PubMed

    Kaur, Pankaj Deep; Chana, Inderveer

    2014-01-01

    The promising potential of cloud computing and its convergence with technologies such as mobile computing, wireless networks, sensor technologies allows for creation and delivery of newer type of cloud services. In this paper, we advocate the use of cloud computing for the creation and management of cloud based health care services. As a representative case study, we design a Cloud Based Intelligent Health Care Service (CBIHCS) that performs real time monitoring of user health data for diagnosis of chronic illness such as diabetes. Advance body sensor components are utilized to gather user specific health data and store in cloud based storage repositories for subsequent analysis and classification. In addition, infrastructure level mechanisms are proposed to provide dynamic resource elasticity for CBIHCS. Experimental results demonstrate that classification accuracy of 92.59% is achieved with our prototype system and the predicted patterns of CPU usage offer better opportunities for adaptive resource elasticity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration

    PubMed Central

    Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin

    2010-01-01

    This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235

  15. A Secure Alignment Algorithm for Mapping Short Reads to Human Genome.

    PubMed

    Zhao, Yongan; Wang, Xiaofeng; Tang, Haixu

    2018-05-09

    The elastic and inexpensive computing resources such as clouds have been recognized as a useful solution to analyzing massive human genomic data (e.g., acquired by using next-generation sequencers) in biomedical researches. However, outsourcing human genome computation to public or commercial clouds was hindered due to privacy concerns: even a small number of human genome sequences contain sufficient information for identifying the donor of the genomic data. This issue cannot be directly addressed by existing security and cryptographic techniques (such as homomorphic encryption), because they are too heavyweight to carry out practical genome computation tasks on massive data. In this article, we present a secure algorithm to accomplish the read mapping, one of the most basic tasks in human genomic data analysis based on a hybrid cloud computing model. Comparing with the existing approaches, our algorithm delegates most computation to the public cloud, while only performing encryption and decryption on the private cloud, and thus makes the maximum use of the computing resource of the public cloud. Furthermore, our algorithm reports similar results as the nonsecure read mapping algorithms, including the alignment between reads and the reference genome, which can be directly used in the downstream analysis such as the inference of genomic variations. We implemented the algorithm in C++ and Python on a hybrid cloud system, in which the public cloud uses an Apache Spark system.

  16. Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; O'Brien, Raymond

    2015-01-01

    Cloud computing capabilities have rapidly expanded within the private sector, offering new opportunities for meteorological applications. Collaborations between NASA Marshall, NASA Ames, and contractor partners led to evaluations of private (NASA) and public (Amazon) resources for executing short-term NWP systems. Activities helped the Marshall team further understand cloud capabilities, and benchmark use of cloud resources for NWP and other applications

  17. Proposal for a Security Management in Cloud Computing for Health Care

    PubMed Central

    Dzombeta, Srdan; Brandis, Knud

    2014-01-01

    Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources. PMID:24701137

  18. Proposal for a security management in cloud computing for health care.

    PubMed

    Haufe, Knut; Dzombeta, Srdan; Brandis, Knud

    2014-01-01

    Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources.

  19. VM Capacity-Aware Scheduling within Budget Constraints in IaaS Clouds

    PubMed Central

    Thanasias, Vasileios; Lee, Choonhwa; Hanif, Muhammad; Kim, Eunsam; Helal, Sumi

    2016-01-01

    Recently, cloud computing has drawn significant attention from both industry and academia, bringing unprecedented changes to computing and information technology. The infrastructure-as-a-Service (IaaS) model offers new abilities such as the elastic provisioning and relinquishing of computing resources in response to workload fluctuations. However, because the demand for resources dynamically changes over time, the provisioning of resources in a way that a given budget is efficiently utilized while maintaining a sufficing performance remains a key challenge. This paper addresses the problem of task scheduling and resource provisioning for a set of tasks running on IaaS clouds; it presents novel provisioning and scheduling algorithms capable of executing tasks within a given budget, while minimizing the slowdown due to the budget constraint. Our simulation study demonstrates a substantial reduction up to 70% in the overall task slowdown rate by the proposed algorithms. PMID:27501046

  20. VM Capacity-Aware Scheduling within Budget Constraints in IaaS Clouds.

    PubMed

    Thanasias, Vasileios; Lee, Choonhwa; Hanif, Muhammad; Kim, Eunsam; Helal, Sumi

    2016-01-01

    Recently, cloud computing has drawn significant attention from both industry and academia, bringing unprecedented changes to computing and information technology. The infrastructure-as-a-Service (IaaS) model offers new abilities such as the elastic provisioning and relinquishing of computing resources in response to workload fluctuations. However, because the demand for resources dynamically changes over time, the provisioning of resources in a way that a given budget is efficiently utilized while maintaining a sufficing performance remains a key challenge. This paper addresses the problem of task scheduling and resource provisioning for a set of tasks running on IaaS clouds; it presents novel provisioning and scheduling algorithms capable of executing tasks within a given budget, while minimizing the slowdown due to the budget constraint. Our simulation study demonstrates a substantial reduction up to 70% in the overall task slowdown rate by the proposed algorithms.

  1. Key Technology Research on Open Architecture for The Sharing of Heterogeneous Geographic Analysis Models

    NASA Astrophysics Data System (ADS)

    Yue, S. S.; Wen, Y. N.; Lv, G. N.; Hu, D.

    2013-10-01

    In recent years, the increasing development of cloud computing technologies laid critical foundation for efficiently solving complicated geographic issues. However, it is still difficult to realize the cooperative operation of massive heterogeneous geographical models. Traditional cloud architecture is apt to provide centralized solution to end users, while all the required resources are often offered by large enterprises or special agencies. Thus, it's a closed framework from the perspective of resource utilization. Solving comprehensive geographic issues requires integrating multifarious heterogeneous geographical models and data. In this case, an open computing platform is in need, with which the model owners can package and deploy their models into cloud conveniently, while model users can search, access and utilize those models with cloud facility. Based on this concept, the open cloud service strategies for the sharing of heterogeneous geographic analysis models is studied in this article. The key technology: unified cloud interface strategy, sharing platform based on cloud service, and computing platform based on cloud service are discussed in detail, and related experiments are conducted for further verification.

  2. State of the Art of Network Security Perspectives in Cloud Computing

    NASA Astrophysics Data System (ADS)

    Oh, Tae Hwan; Lim, Shinyoung; Choi, Young B.; Park, Kwang-Roh; Lee, Heejo; Choi, Hyunsang

    Cloud computing is now regarded as one of social phenomenon that satisfy customers' needs. It is possible that the customers' needs and the primary principle of economy - gain maximum benefits from minimum investment - reflects realization of cloud computing. We are living in the connected society with flood of information and without connected computers to the Internet, our activities and work of daily living will be impossible. Cloud computing is able to provide customers with custom-tailored features of application software and user's environment based on the customer's needs by adopting on-demand outsourcing of computing resources through the Internet. It also provides cloud computing users with high-end computing power and expensive application software package, and accordingly the users will access their data and the application software where they are located at the remote system. As the cloud computing system is connected to the Internet, network security issues of cloud computing are considered as mandatory prior to real world service. In this paper, survey and issues on the network security in cloud computing are discussed from the perspective of real world service environments.

  3. Cloud Computing for Mission Design and Operations

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios

    2012-01-01

    The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.

  4. Streaming support for data intensive cloud-based sequence analysis.

    PubMed

    Issa, Shadi A; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of "resources-on-demand" and "pay-as-you-go", scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  5. Integration of Openstack cloud resources in BES III computing cluster

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Cheng, Yaodong; Huang, Qiulan; Cheng, Zhenjing; Shi, Jingyan

    2017-10-01

    Cloud computing provides a new technical means for data processing of high energy physics experiment. However, the resource of each queue is fixed and the usage of the resource is static in traditional job management system. In order to make it simple and transparent for physicist to use, we developed a virtual cluster system (vpmanager) to integrate IHEPCloud and different batch systems such as Torque and HTCondor. Vpmanager provides dynamic virtual machines scheduling according to the job queue. The BES III use case results show that resource efficiency is greatly improved.

  6. Integrating Cloud-Computing-Specific Model into Aircraft Design

    NASA Astrophysics Data System (ADS)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  7. Data Intensive Scientific Workflows on a Federated Cloud: CRADA Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele

    The Fermilab Scientific Computing Division and the KISTI Global Science Experimental Data Hub Center have built a prototypical large-scale infrastructure to handle scientific workflows of stakeholders to run on multiple cloud resources. The demonstrations have been in the areas of (a) Data-Intensive Scientific Workflows on Federated Clouds, (b) Interoperability and Federation of Cloud Resources, and (c) Virtual Infrastructure Automation to enable On-Demand Services.

  8. On the Modeling and Management of Cloud Data Analytics

    NASA Astrophysics Data System (ADS)

    Castillo, Claris; Tantawi, Asser; Steinder, Malgorzata; Pacifici, Giovanni

    A new era is dawning where vast amount of data is subjected to intensive analysis in a cloud computing environment. Over the years, data about a myriad of things, ranging from user clicks to galaxies, have been accumulated, and continue to be collected, on storage media. The increasing availability of such data, along with the abundant supply of compute power and the urge to create useful knowledge, gave rise to a new data analytics paradigm in which data is subjected to intensive analysis, and additional data is created in the process. Meanwhile, a new cloud computing environment has emerged where seemingly limitless compute and storage resources are being provided to host computation and data for multiple users through virtualization technologies. Such a cloud environment is becoming the home for data analytics. Consequently, providing good performance at run-time to data analytics workload is an important issue for cloud management. In this paper, we provide an overview of the data analytics and cloud environment landscapes, and investigate the performance management issues related to running data analytics in the cloud. In particular, we focus on topics such as workload characterization, profiling analytics applications and their pattern of data usage, cloud resource allocation, placement of computation and data and their dynamic migration in the cloud, and performance prediction. In solving such management problems one relies on various run-time analytic models. We discuss approaches for modeling and optimizing the dynamic data analytics workload in the cloud environment. All along, we use the Map-Reduce paradigm as an illustration of data analytics.

  9. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  10. Use of several Cloud Computing approaches for climate modelling: performance, costs and opportunities

    NASA Astrophysics Data System (ADS)

    Perez Montes, Diego A.; Añel Cabanelas, Juan A.; Wallom, David C. H.; Arribas, Alberto; Uhe, Peter; Caderno, Pablo V.; Pena, Tomas F.

    2017-04-01

    Cloud Computing is a technological option that offers great possibilities for modelling in geosciences. We have studied how two different climate models, HadAM3P-HadRM3P and CESM-WACCM, can be adapted in two different ways to run on Cloud Computing Environments from three different vendors: Amazon, Google and Microsoft. Also, we have evaluated qualitatively how the use of Cloud Computing can affect the allocation of resources by funding bodies and issues related to computing security, including scientific reproducibility. Our first experiments were developed using the well known ClimatePrediction.net (CPDN), that uses BOINC, over the infrastructure from two cloud providers, namely Microsoft Azure and Amazon Web Services (hereafter AWS). For this comparison we ran a set of thirteen month climate simulations for CPDN in Azure and AWS using a range of different virtual machines (VMs) for HadRM3P (50 km resolution over South America CORDEX region) nested in the global atmosphere-only model HadAM3P. These simulations were run on a single processor and took between 3 and 5 days to compute depending on the VM type. The last part of our simulation experiments was running WACCM over different VMS on the Google Compute Engine (GCE) and make a comparison with the supercomputer (SC) Finisterrae1 from the Centro de Supercomputacion de Galicia. It was shown that GCE gives better performance than the SC for smaller number of cores/MPI tasks but the model throughput shows clearly how the SC performance is better after approximately 100 cores (related with network speed and latency differences). From a cost point of view, Cloud Computing moves researchers from a traditional approach where experiments were limited by the available hardware resources to monetary resources (how many resources can be afforded). As there is an increasing movement and recommendation for budgeting HPC projects on this technology (budgets can be calculated in a more realistic way) we could see a shift on the trends over the next years to consolidate Cloud as the preferred solution.

  11. Load Balancing in Cloud Computing Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks.

    PubMed

    Devi, D Chitra; Uthariaraj, V Rhymend

    2016-01-01

    Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.

  12. Load Balancing in Cloud Computing Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks

    PubMed Central

    Devi, D. Chitra; Uthariaraj, V. Rhymend

    2016-01-01

    Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656

  13. Design and deployment of an elastic network test-bed in IHEP data center based on SDN

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Qi, Fazhi; Chen, Gang

    2017-10-01

    High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.

  14. The Magellan Final Report on Cloud Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,; Coghlan, Susan; Yelick, Katherine

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computingmore » Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.« less

  15. Enabling BOINC in infrastructure as a service cloud system

    NASA Astrophysics Data System (ADS)

    Montes, Diego; Añel, Juan A.; Pena, Tomás F.; Uhe, Peter; Wallom, David C. H.

    2017-02-01

    Volunteer or crowd computing is becoming increasingly popular for solving complex research problems from an increasingly diverse range of areas. The majority of these have been built using the Berkeley Open Infrastructure for Network Computing (BOINC) platform, which provides a range of different services to manage all computation aspects of a project. The BOINC system is ideal in those cases where not only does the research community involved need low-cost access to massive computing resources but also where there is a significant public interest in the research being done.We discuss the way in which cloud services can help BOINC-based projects to deliver results in a fast, on demand manner. This is difficult to achieve using volunteers, and at the same time, using scalable cloud resources for short on demand projects can optimize the use of the available resources. We show how this design can be used as an efficient distributed computing platform within the cloud, and outline new approaches that could open up new possibilities in this field, using Climateprediction.net (http://www.climateprediction.net/) as a case study.

  16. Lightweight Data Systems in the Cloud: Costs, Benefits and Best Practices

    NASA Astrophysics Data System (ADS)

    Fatland, R.; Arendt, A. A.; Howe, B.; Hess, N. J.; Futrelle, J.

    2015-12-01

    We present here a simple analysis of both the cost and the benefit of using the cloud in environmental science circa 2016. We present this set of ideas to enable the potential 'cloud adopter' research scientist to explore and understand the tradeoffs in moving some aspect of their compute work to the cloud. We present examples, design patterns and best practices as an evolving body of knowledge that help optimize benefit to the research team. Thematically this generally means not starting from a blank page but rather learning how to find 90% of the solution to a problem pre-built. We will touch on four topics of interest. (1) Existing cloud data resources (NASA, WHOI BCO DMO, etc) and how they can be discovered, used and improved. (2) How to explore, compare and evaluate cost and compute power from many cloud options, particularly in relation to data scale (size/complexity). (3) What are simple / fast 'Lightweight Data System' procedures that take from 20 minutes to one day to implement and that have a clear immediate payoff in environmental data-driven research. Examples include publishing a SQL Share URL at (EarthCube's) CINERGI as a registered data resource and creating executable papers on a cloud-hosted Jupyter instance, particularly iPython notebooks. (4) Translating the computational terminology landscape ('cloud', 'HPC cluster', 'hadoop', 'spark', 'machine learning') into examples from the community of practice to help the geoscientist build or expand their mental map. In the course of this discussion -- which is about resource discovery, adoption and mastery -- we provide direction to online resources in support of these themes.

  17. Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud

    NASA Astrophysics Data System (ADS)

    Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok

    Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.

  18. Energy Consumption Management of Virtual Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  19. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.

  20. Extended outlook: description, utilization, and daily applications of cloud technology in radiology.

    PubMed

    Gerard, Perry; Kapadia, Neil; Chang, Patricia T; Acharya, Jay; Seiler, Michael; Lefkovitz, Zvi

    2013-12-01

    The purpose of this article is to discuss the concept of cloud technology, its role in medical applications and radiology, the role of the radiologist in using and accessing these vast resources of information, and privacy concerns and HIPAA compliance strategies. Cloud computing is the delivery of shared resources, software, and information to computers and other devices as a metered service. This technology has a promising role in the sharing of patient medical information and appears to be particularly suited for application in radiology, given the field's inherent need for storage and access to large amounts of data. The radiology cloud has significant strengths, such as providing centralized storage and access, reducing unnecessary repeat radiologic studies, and potentially allowing radiologic second opinions more easily. There are significant cost advantages to cloud computing because of a decreased need for infrastructure and equipment by the institution. Private clouds may be used to ensure secure storage of data and compliance with HIPAA. In choosing a cloud service, there are important aspects, such as disaster recovery plans, uptime, and security audits, that must be considered. Given that the field of radiology has become almost exclusively digital in recent years, the future of secure storage and easy access to imaging studies lies within cloud computing technology.

  1. Quantitative Investigation of the Technologies That Support Cloud Computing

    ERIC Educational Resources Information Center

    Hu, Wenjin

    2014-01-01

    Cloud computing is dramatically shaping modern IT infrastructure. It virtualizes computing resources, provides elastic scalability, serves as a pay-as-you-use utility, simplifies the IT administrators' daily tasks, enhances the mobility and collaboration of data, and increases user productivity. We focus on providing generalized black-box…

  2. The application of cloud computing to scientific workflows: a study of cost and performance.

    PubMed

    Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S

    2013-01-28

    The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.

  3. Climate simulations and services on HPC, Cloud and Grid infrastructures

    NASA Astrophysics Data System (ADS)

    Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio

    2017-04-01

    Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.

  4. Evaluating the Acceptance of Cloud-Based Productivity Computer Solutions in Small and Medium Enterprises

    ERIC Educational Resources Information Center

    Dominguez, Alfredo

    2013-01-01

    Cloud computing has emerged as a new paradigm for on-demand delivery and consumption of shared IT resources over the Internet. Research has predicted that small and medium organizations (SMEs) would be among the earliest adopters of cloud solutions; however, this projection has not materialized. This study set out to investigate if behavior…

  5. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Technical Reports Server (NTRS)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  6. Design and Implement of Astronomical Cloud Computing Environment In China-VO

    NASA Astrophysics Data System (ADS)

    Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu

    2017-06-01

    Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.

  7. Reviews on Security Issues and Challenges in Cloud Computing

    NASA Astrophysics Data System (ADS)

    An, Y. Z.; Zaaba, Z. F.; Samsudin, N. F.

    2016-11-01

    Cloud computing is an Internet-based computing service provided by the third party allowing share of resources and data among devices. It is widely used in many organizations nowadays and becoming more popular because it changes the way of how the Information Technology (IT) of an organization is organized and managed. It provides lots of benefits such as simplicity and lower costs, almost unlimited storage, least maintenance, easy utilization, backup and recovery, continuous availability, quality of service, automated software integration, scalability, flexibility and reliability, easy access to information, elasticity, quick deployment and lower barrier to entry. While there is increasing use of cloud computing service in this new era, the security issues of the cloud computing become a challenges. Cloud computing must be safe and secure enough to ensure the privacy of the users. This paper firstly lists out the architecture of the cloud computing, then discuss the most common security issues of using cloud and some solutions to the security issues since security is one of the most critical aspect in cloud computing due to the sensitivity of user's data.

  8. A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammad Mehedi; Huh, Eui-Nam

    In today's world the emerging Cloud computing (Weiss, 2007) offer a new computing model where resources such as computing power, storage, online applications and networking infrastructures can be shared as "services" over the internet. Cloud providers (CPs) are incentivized by the profits to be made by charging consumers for accessing these services. Consumers, such as enterprises, are attracted by the opportunity for reducing or eliminating costs associated with "in-house" provision of these services.

  9. Cloudbursting - Solving the 3-body problem

    NASA Astrophysics Data System (ADS)

    Chang, G.; Heistand, S.; Vakhnin, A.; Huang, T.; Zimdars, P.; Hua, H.; Hood, R.; Koenig, J.; Mehrotra, P.; Little, M. M.; Law, E.

    2014-12-01

    Many science projects in the future will be accomplished through collaboration among 2 or more NASA centers along with, potentially, external scientists. Science teams will be composed of more geographically dispersed individuals and groups. However, the current computing environment does not make this easy and seamless. By being able to share computing resources among members of a multi-center team working on a science/ engineering project, limited pre-competition funds could be more efficiently applied and technical work could be conducted more effectively with less time spent moving data or waiting for computing resources to free up. Based on the work from an NASA CIO IT Labs task, this presentation will highlight our prototype work in identifying the feasibility and identify the obstacles, both technical and management, to perform "Cloudbursting" among private clouds located at three different centers. We will demonstrate the use of private cloud computing infrastructure at the Jet Propulsion Laboratory, Langley Research Center, and Ames Research Center to provide elastic computation to each other to perform parallel Earth Science data imaging. We leverage elastic load balancing and auto-scaling features at each data center so that each location can independently define how many resources to allocate to a particular job that was "bursted" from another data center and demonstrate that compute capacity scales up and down with the job. We will also discuss future work in the area, which could include the use of cloud infrastructure from different cloud framework providers as well as other cloud service providers.

  10. Applications integration in a hybrid cloud computing environment: modelling and platform

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  11. Cloud4Psi: cloud computing for 3D protein structure similarity searching.

    PubMed

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-10-01

    Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.

  12. Cloud4Psi: cloud computing for 3D protein structure similarity searching

    PubMed Central

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-01-01

    Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141

  13. BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie

    Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.

  14. Distance Learning and Cloud Computing: "Just Another Buzzword or a Major E-Learning Breakthrough?"

    ERIC Educational Resources Information Center

    Romiszowski, Alexander J.

    2012-01-01

    "Cloud computing is a model for the enabling of ubiquitous, convenient, and on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and other services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." This…

  15. Biomedical image analysis and processing in clouds

    NASA Astrophysics Data System (ADS)

    Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John

    2013-10-01

    Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.

  16. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud

    PubMed Central

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Background Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. Results We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. Conclusions This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation. PMID:26501966

  17. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.

    PubMed

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.

  18. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    PubMed Central

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  19. Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services

    NASA Astrophysics Data System (ADS)

    Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui

    2017-09-01

    In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.

  20. Data Center Consolidation: A Step towards Infrastructure Clouds

    NASA Astrophysics Data System (ADS)

    Winter, Markus

    Application service providers face enormous challenges and rising costs in managing and operating a growing number of heterogeneous system and computing landscapes. Limitations of traditional computing environments force IT decision-makers to reorganize computing resources within the data center, as continuous growth leads to an inefficient utilization of the underlying hardware infrastructure. This paper discusses a way for infrastructure providers to improve data center operations based on the findings of a case study on resource utilization of very large business applications and presents an outlook beyond server consolidation endeavors, transforming corporate data centers into compute clouds.

  1. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  2. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    PubMed

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  3. Optimization of over-provisioned clouds

    NASA Astrophysics Data System (ADS)

    Balashov, N.; Baranov, A.; Korenkov, V.

    2016-09-01

    The functioning of modern applications in cloud-centers is characterized by a huge variety of computational workloads generated. This causes uneven workload distribution and as a result leads to ineffective utilization of cloud-centers' hardware. The proposed article addresses the possible ways to solve this issue and demonstrates that it is a matter of necessity to optimize cloud-centers' hardware utilization. As one of the possible ways to solve the problem of the inefficient resource utilization in heterogeneous cloud-environments an algorithm of dynamic re-allocation of virtual resources is suggested.

  4. Scalable and responsive event processing in the cloud

    PubMed Central

    Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul

    2013-01-01

    Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164

  5. Translational bioinformatics in the cloud: an affordable alternative

    PubMed Central

    2010-01-01

    With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073

  6. Efficient operating system level virtualization techniques for cloud resources

    NASA Astrophysics Data System (ADS)

    Ansu, R.; Samiksha; Anju, S.; Singh, K. John

    2017-11-01

    Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.

  7. Putting Order Into the Cloud: Object-oriented UML-based Rule Enforcement for Document and Application Organization

    DTIC Science & Technology

    2010-09-01

    Cloud computing describes a new distributed computing paradigm for IT data and services that involves over-the-Internet provision of dynamically scalable and often virtualized resources. While cost reduction and flexibility in storage, services, and maintenance are important considerations when deciding on whether or how to migrate data and applications to the cloud, large organizations like the Department of Defense need to consider the organization and structure of data on the cloud and the operations on such data in order to reap the full benefit of cloud

  8. SnowCloud - a Framework to Predict Streamflow in Snowmelt-dominated Watersheds Using Cloud-based Computing

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; Crumley, R. L.; Nolin, A. W.; Mar, E.; Lopez-Moreno, J. J.

    2017-12-01

    Streamflow in snowy mountain regions is extraordinarily challenging to forecast, and prediction efforts are hampered by the lack of timely snow data—particularly in data sparse regions. SnowCloud is a prototype web-based framework that integrates remote sensing, cloud computing, interactive mapping tools, and a hydrologic model to offer a new paradigm for delivering key data to water resource managers. We tested the skill of SnowCloud to forecast monthly streamflow with one month lead time in three snow-dominated headwaters. These watersheds represent a range of precipitation/runoff schemes: the Río Elqui in northern Chile (200 mm/yr, entirely snowmelt); the John Day River, Oregon, USA (635 mm/yr, primarily snowmelt); and the Río Aragon in the northern Spain (850 mm/yr, snowmelt dominated). Model skill corresponded to snowpack contribution with Nash-Sutcliffe Efficiencies of 0.86, 0.52, and 0.21 respectively. SnowCloud does not require the user to possess advanced programming skills or proprietary software. We access NASA's MOD10A1 snow cover product to calculate the snow metrics globally using Google Earth Engine's geospatial analysis and cloud computing service. The analytics and forecast tools are provided through a web-based portal that requires only internet access and minimal training. To test the efficacy of SnowCloud we provided the tools and a series of tutorials in English and Spanish to water resource managers in Chile, Spain, and the United States. Participants assessed their user experience and provided feedback, and the results of our multi-cultural assessment are also presented. While our results focus on SnowCloud, they outline methods to develop cloud-based tools that function effectively across cultures and languages. Our approach also addresses the primary challenges of science-based computing; human resource limitations, infrastructure costs, and expensive proprietary software. These challenges are particularly problematic in developing countries.

  9. An integrated system for land resources supervision based on the IoT and cloud computing

    NASA Astrophysics Data System (ADS)

    Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie

    2017-01-01

    Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.

  10. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  11. Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets

    PubMed Central

    Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L

    2014-01-01

    Background As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Methods Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Results Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Conclusions Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. PMID:24464852

  12. Analyzing the requirements for a robust security criteria and management of multi-level security in the clouds

    NASA Astrophysics Data System (ADS)

    Farroha, Bassam S.; Farroha, Deborah L.

    2011-06-01

    The new corporate approach to efficient processing and storage is migrating from in-house service-center services to the newly coined approach of Cloud Computing. This approach advocates thin clients and providing services by the service provider over time-shared resources. The concept is not new, however the implementation approach presents a strategic shift in the way organizations provision and manage their IT resources. The requirements on some of the data sets targeted to be run on the cloud vary depending on the data type, originator, user, and confidentiality level. Additionally, the systems that fuse such data would have to deal with the classifying the product and clearing the computing resources prior to allowing new application to be executed. This indicates that we could end up with a multi-level security system that needs to follow specific rules and can send the output to a protected network and systems in order not to have data spill or contaminated resources. The paper discusses these requirements and potential impact on the cloud architecture. Additionally, the paper discusses the unexpected advantages of the cloud framework providing a sophisticated environment for information sharing and data mining.

  13. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  14. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.

  15. Exploring Cloud Computing for Distance Learning

    ERIC Educational Resources Information Center

    He, Wu; Cernusca, Dan; Abdous, M'hammed

    2011-01-01

    The use of distance courses in learning is growing exponentially. To better support faculty and students for teaching and learning, distance learning programs need to constantly innovate and optimize their IT infrastructures. The new IT paradigm called "cloud computing" has the potential to transform the way that IT resources are utilized and…

  16. Application of Cloud Computing at KTU: MS Live@Edu Case

    ERIC Educational Resources Information Center

    Miseviciene, Regina; Budnikas, Germanas; Ambraziene, Danute

    2011-01-01

    Cloud computing is a significant alternative in today's educational perspective. The technology gives the students and teachers the opportunity to quickly access various application platforms and resources through the web pages on-demand. Unfortunately, not all educational institutions often have an ability to take full advantages of the newest…

  17. An expert fitness diagnosis system based on elastic cloud computing.

    PubMed

    Tseng, Kevin C; Wu, Chia-Chuan

    2014-01-01

    This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.

  18. Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing

    NASA Astrophysics Data System (ADS)

    Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey

    Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.

  19. Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing

    PubMed Central

    Balasubramaniam, S.; Kavitha, V.

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826

  20. Geometric data perturbation-based personal health record transactions in cloud computing.

    PubMed

    Balasubramaniam, S; Kavitha, V

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.

  1. Edge-Based Efficient Search over Encrypted Data Mobile Cloud Storage

    PubMed Central

    Liu, Fang; Cai, Zhiping; Xiao, Nong; Zhao, Ziming

    2018-01-01

    Smart sensor-equipped mobile devices sense, collect, and process data generated by the edge network to achieve intelligent control, but such mobile devices usually have limited storage and computing resources. Mobile cloud storage provides a promising solution owing to its rich storage resources, great accessibility, and low cost. But it also brings a risk of information leakage. The encryption of sensitive data is the basic step to resist the risk. However, deploying a high complexity encryption and decryption algorithm on mobile devices will greatly increase the burden of terminal operation and the difficulty to implement the necessary privacy protection algorithm. In this paper, we propose ENSURE (EfficieNt and SecURE), an efficient and secure encrypted search architecture over mobile cloud storage. ENSURE is inspired by edge computing. It allows mobile devices to offload the computation intensive task onto the edge server to achieve a high efficiency. Besides, to protect data security, it reduces the information acquisition of untrusted cloud by hiding the relevance between query keyword and search results from the cloud. Experiments on a real data set show that ENSURE reduces the computation time by 15% to 49% and saves the energy consumption by 38% to 69% per query. PMID:29652810

  2. Edge-Based Efficient Search over Encrypted Data Mobile Cloud Storage.

    PubMed

    Guo, Yeting; Liu, Fang; Cai, Zhiping; Xiao, Nong; Zhao, Ziming

    2018-04-13

    Smart sensor-equipped mobile devices sense, collect, and process data generated by the edge network to achieve intelligent control, but such mobile devices usually have limited storage and computing resources. Mobile cloud storage provides a promising solution owing to its rich storage resources, great accessibility, and low cost. But it also brings a risk of information leakage. The encryption of sensitive data is the basic step to resist the risk. However, deploying a high complexity encryption and decryption algorithm on mobile devices will greatly increase the burden of terminal operation and the difficulty to implement the necessary privacy protection algorithm. In this paper, we propose ENSURE (EfficieNt and SecURE), an efficient and secure encrypted search architecture over mobile cloud storage. ENSURE is inspired by edge computing. It allows mobile devices to offload the computation intensive task onto the edge server to achieve a high efficiency. Besides, to protect data security, it reduces the information acquisition of untrusted cloud by hiding the relevance between query keyword and search results from the cloud. Experiments on a real data set show that ENSURE reduces the computation time by 15% to 49% and saves the energy consumption by 38% to 69% per query.

  3. Government Cloud Computing Policies: Potential Opportunities for Advancing Military Biomedical Research.

    PubMed

    Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B

    2018-02-07

    This position paper summarizes the development and the present status of Department of Defense (DoD) and other government policies and guidances regarding cloud computing services. Due to the heterogeneous and growing biomedical big datasets, cloud computing services offer an opportunity to mitigate the associated storage and analysis requirements. Having on-demand network access to a shared pool of flexible computing resources creates a consolidated system that should reduce potential duplications of effort in military biomedical research. Interactive, online literature searches were performed with Google, at the Defense Technical Information Center, and at two National Institutes of Health research portfolio information sites. References cited within some of the collected documents also served as literature resources. We gathered, selected, and reviewed DoD and other government cloud computing policies and guidances published from 2009 to 2017. These policies were intended to consolidate computer resources within the government and reduce costs by decreasing the number of federal data centers and by migrating electronic data to cloud systems. Initial White House Office of Management and Budget information technology guidelines were developed for cloud usage, followed by policies and other documents from the DoD, the Defense Health Agency, and the Armed Services. Security standards from the National Institute of Standards and Technology, the Government Services Administration, the DoD, and the Army were also developed. Government Services Administration and DoD Inspectors General monitored cloud usage by the DoD. A 2016 Government Accountability Office report characterized cloud computing as being economical, flexible and fast. A congressionally mandated independent study reported that the DoD was active in offering a wide selection of commercial cloud services in addition to its milCloud system. Our findings from the Department of Health and Human Services indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Virtual pools for interactive analysis and software development through an integrated Cloud environment

    NASA Astrophysics Data System (ADS)

    Grandi, C.; Italiano, A.; Salomoni, D.; Calabrese Melcarne, A. K.

    2011-12-01

    WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.

  5. CloudMan as a platform for tool, data, and analysis distribution.

    PubMed

    Afgan, Enis; Chapman, Brad; Taylor, James

    2012-11-27

    Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions.

  6. Enabling Large-Scale Biomedical Analysis in the Cloud

    PubMed Central

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  7. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  8. A System Architecture for Efficient Transmission of Massive DNA Sequencing Data.

    PubMed

    Sağiroğlu, Mahmut Şamİl; Külekcİ, M Oğuzhan

    2017-11-01

    The DNA sequencing data analysis pipelines require significant computational resources. In that sense, cloud computing infrastructures appear as a natural choice for this processing. However, the first practical difficulty in reaching the cloud computing services is the transmission of the massive DNA sequencing data from where they are produced to where they will be processed. The daily practice here begins with compressing the data in FASTQ file format, and then sending these data via fast data transmission protocols. In this study, we address the weaknesses in that daily practice and present a new system architecture that incorporates the computational resources available on the client side while dynamically adapting itself to the available bandwidth. Our proposal considers the real-life scenarios, where the bandwidth of the connection between the parties may fluctuate, and also the computing power on the client side may be of any size ranging from moderate personal computers to powerful workstations. The proposed architecture aims at utilizing both the communication bandwidth and the computing resources for satisfying the ultimate goal of reaching the results as early as possible. We present a prototype implementation of the proposed architecture, and analyze several real-life cases, which provide useful insights for the sequencing centers, especially on deciding when to use a cloud service and in what conditions.

  9. Developing cloud-based Business Process Management (BPM): a survey

    NASA Astrophysics Data System (ADS)

    Mercia; Gunawan, W.; Fajar, A. N.; Alianto, H.; Inayatulloh

    2018-03-01

    In today’s highly competitive business environment, modern enterprises are dealing difficulties to cut unnecessary costs, eliminate wastes and delivery huge benefits for the organization. Companies are increasingly turning to a more flexible IT environment to help them realize this goal. For this reason, the article applies cloud based Business Process Management (BPM) that enables to focus on modeling, monitoring and process management. Cloud based BPM consists of business processes, business information and IT resources, which help build real-time intelligence systems, based on business management and cloud technology. Cloud computing is a paradigm that involves procuring dynamically measurable resources over the internet as an IT resource service. Cloud based BPM service enables to address common problems faced by traditional BPM, especially in promoting flexibility, event-driven business process to exploit opportunities in the marketplace.

  10. Costs of cloud computing for a biometry department. A case study.

    PubMed

    Knaus, J; Hieke, S; Binder, H; Schwarzer, G

    2013-01-01

    "Cloud" computing providers, such as the Amazon Web Services (AWS), offer stable and scalable computational resources based on hardware virtualization, with short, usually hourly, billing periods. The idea of pay-as-you-use seems appealing for biometry research units which have only limited access to university or corporate data center resources or grids. This case study compares the costs of an existing heterogeneous on-site hardware pool in a Medical Biometry and Statistics department to a comparable AWS offer. The "total cost of ownership", including all direct costs, is determined for the on-site hardware, and hourly prices are derived, based on actual system utilization during the year 2011. Indirect costs, which are difficult to quantify are not included in this comparison, but nevertheless some rough guidance from our experience is given. To indicate the scale of costs for a methodological research project, a simulation study of a permutation-based statistical approach is performed using AWS and on-site hardware. In the presented case, with a system utilization of 25-30 percent and 3-5-year amortization, on-site hardware can result in smaller costs, compared to hourly rental in the cloud dependent on the instance chosen. Renting cloud instances with sufficient main memory is a deciding factor in this comparison. Costs for on-site hardware may vary, depending on the specific infrastructure at a research unit, but have only moderate impact on the overall comparison and subsequent decision for obtaining affordable scientific computing resources. Overall utilization has a much stronger impact as it determines the actual computing hours needed per year. Taking this into ac count, cloud computing might still be a viable option for projects with limited maturity, or as a supplement for short peaks in demand.

  11. Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets.

    PubMed

    Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L

    2014-01-01

    As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Evaluating the Efficacy of the Cloud for Cluster Computation

    NASA Technical Reports Server (NTRS)

    Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom

    2012-01-01

    Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.

  13. A New Approach to Integrate Internet-of-Things and Software-as-a-Service Model for Logistic Systems: A Case Study

    PubMed Central

    Chen, Shang-Liang; Chen, Yun-Yao; Hsu, Chiang

    2014-01-01

    Cloud computing is changing the ways software is developed and managed in enterprises, which is changing the way of doing business in that dynamically scalable and virtualized resources are regarded as services over the Internet. Traditional manufacturing systems such as supply chain management (SCM), customer relationship management (CRM), and enterprise resource planning (ERP) are often developed case by case. However, effective collaboration between different systems, platforms, programming languages, and interfaces has been suggested by researchers. In cloud-computing-based systems, distributed resources are encapsulated into cloud services and centrally managed, which allows high automation, flexibility, fast provision, and ease of integration at low cost. The integration between physical resources and cloud services can be improved by combining Internet of things (IoT) technology and Software-as-a-Service (SaaS) technology. This study proposes a new approach for developing cloud-based manufacturing systems based on a four-layer SaaS model. There are three main contributions of this paper: (1) enterprises can develop their own cloud-based logistic management information systems based on the approach proposed in this paper; (2) a case study based on literature reviews with experimental results is proposed to verify that the system performance is remarkable; (3) challenges encountered and feedback collected from T Company in the case study are discussed in this paper for the purpose of enterprise deployment. PMID:24686728

  14. A new approach to integrate Internet-of-things and software-as-a-service model for logistic systems: a case study.

    PubMed

    Chen, Shang-Liang; Chen, Yun-Yao; Hsu, Chiang

    2014-03-28

    Cloud computing is changing the ways software is developed and managed in enterprises, which is changing the way of doing business in that dynamically scalable and virtualized resources are regarded as services over the Internet. Traditional manufacturing systems such as supply chain management (SCM), customer relationship management (CRM), and enterprise resource planning (ERP) are often developed case by case. However, effective collaboration between different systems, platforms, programming languages, and interfaces has been suggested by researchers. In cloud-computing-based systems, distributed resources are encapsulated into cloud services and centrally managed, which allows high automation, flexibility, fast provision, and ease of integration at low cost. The integration between physical resources and cloud services can be improved by combining Internet of things (IoT) technology and Software-as-a-Service (SaaS) technology. This study proposes a new approach for developing cloud-based manufacturing systems based on a four-layer SaaS model. There are three main contributions of this paper: (1) enterprises can develop their own cloud-based logistic management information systems based on the approach proposed in this paper; (2) a case study based on literature reviews with experimental results is proposed to verify that the system performance is remarkable; (3) challenges encountered and feedback collected from T Company in the case study are discussed in this paper for the purpose of enterprise deployment.

  15. CLON: Overlay Networks and Gossip Protocols for Cloud Environments

    NASA Astrophysics Data System (ADS)

    Matos, Miguel; Sousa, António; Pereira, José; Oliveira, Rui; Deliot, Eric; Murray, Paul

    Although epidemic or gossip-based multicast is a robust and scalable approach to reliable data dissemination, its inherent redundancy results in high resource consumption on both links and nodes. This problem is aggravated in settings that have costlier or resource constrained links as happens in Cloud Computing infrastructures composed by several interconnected data centers across the globe.

  16. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    PubMed

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  17. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment

    PubMed Central

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Ren, Shangping; Garzoglio, Gabriele

    Cloud bursting is one of the key research topics in the cloud computing communities. A well designed cloud bursting module enables private clouds to automatically launch virtual machines (VMs) to public clouds when more resources are needed. One of the main challenges in developing a cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on system operational data obtained from FermiCloud, a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows, the VM launching overheadmore » is not a constant. It varies with physical resource utilization, such as CPU and I/O device utilizations, at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launching overhead reference model is needed. In this paper, we first develop a VM launching overhead reference model based on operational data we have obtained on FermiCloud. Second, we apply the developed reference model on FermiCloud and compare calculated VM launching overhead values based on the model with measured overhead values on FermiCloud. Our empirical results on FermiCloud indicate that the developed reference model is accurate. We believe, with the guidance of the developed reference model, efficient resource allocation algorithms can be developed for cloud bursting process to minimize the operational cost and resource waste.« less

  19. Scientific Services on the Cloud

    NASA Astrophysics Data System (ADS)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  20. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.

  1. CloudMan as a platform for tool, data, and analysis distribution

    PubMed Central

    2012-01-01

    Background Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. Results CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. Conclusions With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions. PMID:23181507

  2. Spontaneous Ad Hoc Mobile Cloud Computing Network

    PubMed Central

    Lacuesta, Raquel; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes. PMID:25202715

  3. Spontaneous ad hoc mobile cloud computing network.

    PubMed

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  4. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less

  5. Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.

    2012-12-01

    Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.

  6. Cloud computing: a new business paradigm for biomedical information sharing.

    PubMed

    Rosenthal, Arnon; Mork, Peter; Li, Maya Hao; Stanford, Jean; Koester, David; Reynolds, Patti

    2010-04-01

    We examine how the biomedical informatics (BMI) community, especially consortia that share data and applications, can take advantage of a new resource called "cloud computing". Clouds generally offer resources on demand. In most clouds, charges are pay per use, based on large farms of inexpensive, dedicated servers, sometimes supporting parallel computing. Substantial economies of scale potentially yield costs much lower than dedicated laboratory systems or even institutional data centers. Overall, even with conservative assumptions, for applications that are not I/O intensive and do not demand a fully mature environment, the numbers suggested that clouds can sometimes provide major improvements, and should be seriously considered for BMI. Methodologically, it was very advantageous to formulate analyses in terms of component technologies; focusing on these specifics enabled us to bypass the cacophony of alternative definitions (e.g., exactly what does a cloud include) and to analyze alternatives that employ some of the component technologies (e.g., an institution's data center). Relative analyses were another great simplifier. Rather than listing the absolute strengths and weaknesses of cloud-based systems (e.g., for security or data preservation), we focus on the changes from a particular starting point, e.g., individual lab systems. We often find a rough parity (in principle), but one needs to examine individual acquisitions--is a loosely managed lab moving to a well managed cloud, or a tightly managed hospital data center moving to a poorly safeguarded cloud? 2009 Elsevier Inc. All rights reserved.

  7. Cloud computing for genomic data analysis and collaboration.

    PubMed

    Langmead, Ben; Nellore, Abhinav

    2018-04-01

    Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.

  8. The Czech National Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.

    2017-10-01

    The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.

  9. A study on strategic provisioning of cloud computing services.

    PubMed

    Whaiduzzaman, Md; Haque, Mohammad Nazmul; Rejaul Karim Chowdhury, Md; Gani, Abdullah

    2014-01-01

    Cloud computing is currently emerging as an ever-changing, growing paradigm that models "everything-as-a-service." Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified.

  10. A Study on Strategic Provisioning of Cloud Computing Services

    PubMed Central

    Rejaul Karim Chowdhury, Md

    2014-01-01

    Cloud computing is currently emerging as an ever-changing, growing paradigm that models “everything-as-a-service.” Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified. PMID:25032243

  11. Trust Model to Enhance Security and Interoperability of Cloud Environment

    NASA Astrophysics Data System (ADS)

    Li, Wenjuan; Ping, Lingdi

    Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.

  12. A Development of Lightweight Grid Interface

    NASA Astrophysics Data System (ADS)

    Iwai, G.; Kawai, Y.; Sasaki, T.; Watase, Y.

    2011-12-01

    In order to help a rapid development of Grid/Cloud aware applications, we have developed API to abstract the distributed computing infrastructures based on SAGA (A Simple API for Grid Applications). SAGA, which is standardized in the OGF (Open Grid Forum), defines API specifications to access distributed computing infrastructures, such as Grid, Cloud and local computing resources. The Universal Grid API (UGAPI), which is a set of command line interfaces (CLI) and APIs, aims to offer simpler API to combine several SAGA interfaces with richer functionalities. These CLIs of the UGAPI offer typical functionalities required by end users for job management and file access to the different distributed computing infrastructures as well as local computing resources. We have also built a web interface for the particle therapy simulation and demonstrated the large scale calculation using the different infrastructures at the same time. In this paper, we would like to present how the web interface based on UGAPI and SAGA achieve more efficient utilization of computing resources over the different infrastructures with technical details and practical experiences.

  13. Geo-spatial Service and Application based on National E-government Network Platform and Cloud

    NASA Astrophysics Data System (ADS)

    Meng, X.; Deng, Y.; Li, H.; Yao, L.; Shi, J.

    2014-04-01

    With the acceleration of China's informatization process, our party and government take a substantive stride in advancing development and application of digital technology, which promotes the evolution of e-government and its informatization. Meanwhile, as a service mode based on innovative resources, cloud computing may connect huge pools together to provide a variety of IT services, and has become one relatively mature technical pattern with further studies and massive practical applications. Based on cloud computing technology and national e-government network platform, "National Natural Resources and Geospatial Database (NRGD)" project integrated and transformed natural resources and geospatial information dispersed in various sectors and regions, established logically unified and physically dispersed fundamental database and developed national integrated information database system supporting main e-government applications. Cross-sector e-government applications and services are realized to provide long-term, stable and standardized natural resources and geospatial fundamental information products and services for national egovernment and public users.

  14. Integration of High-Performance Computing into Cloud Computing Services

    NASA Astrophysics Data System (ADS)

    Vouk, Mladen A.; Sills, Eric; Dreher, Patrick

    High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).

  15. Status and Roadmap of CernVM

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  16. Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond

    2015-01-01

    The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.

  17. Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community.

    PubMed

    Krampis, Konstantinos; Booth, Tim; Chapman, Brad; Tiwari, Bela; Bicak, Mesude; Field, Dawn; Nelson, Karen E

    2012-03-19

    A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them.

  18. Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community

    PubMed Central

    2012-01-01

    Background A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Results Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Conclusions Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them. PMID:22429538

  19. A scoping review of cloud computing in healthcare.

    PubMed

    Griebel, Lena; Prokosch, Hans-Ulrich; Köpcke, Felix; Toddenroth, Dennis; Christoph, Jan; Leb, Ines; Engel, Igor; Sedlmayr, Martin

    2015-03-19

    Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain. MEDLINE was searched in July 2013 and in December 2014 for publications containing the terms "cloud computing" and "cloud-based". Each journal and conference article was categorized and summarized independently by two researchers who consolidated their findings. 102 publications have been analyzed and 6 main topics have been found: telemedicine/teleconsultation, medical imaging, public health and patient self-management, hospital management and information systems, therapy, and secondary use of data. Commonly used features are broad network access for sharing and accessing data and rapid elasticity to dynamically adapt to computing demands. Eight articles favor the pay-for-use characteristics of cloud-based services avoiding upfront investments. Nevertheless, while 22 articles present very general potentials of cloud computing in the medical domain and 66 articles describe conceptual or prototypic projects, only 14 articles report from successful implementations. Further, in many articles cloud computing is seen as an analogy to internet-/web-based data sharing and the characteristics of the particular cloud computing approach are unfortunately not really illustrated. Even though cloud computing in healthcare is of growing interest only few successful implementations yet exist and many papers just use the term "cloud" synonymously for "using virtual machines" or "web-based" with no described benefit of the cloud paradigm. The biggest threat to the adoption in the healthcare domain is caused by involving external cloud partners: many issues of data safety and security are still to be solved. Until then, cloud computing is favored more for singular, individual features such as elasticity, pay-per-use and broad network access, rather than as cloud paradigm on its own.

  20. Efficient Resources Provisioning Based on Load Forecasting in Cloud

    PubMed Central

    Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin

    2014-01-01

    Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements. PMID:24701160

  1. Modeling the Virtual Machine Launching Overhead under Fermicloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele; Wu, Hao; Ren, Shangping

    FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resourcemore » (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.« less

  2. Privacy-preserving public auditing for data integrity in cloud

    NASA Astrophysics Data System (ADS)

    Shaik Saleem, M.; Murali, M.

    2018-04-01

    Cloud computing which has collected extent concentration from communities of research and with industry research development, a large pool of computing resources using virtualized sharing method like storage, processing power, applications and services. The users of cloud are vend with on demand resources as they want in the cloud computing. Outsourced file of the cloud user can easily tampered as it is stored at the third party service providers databases, so there is no integrity of cloud users data as it has no control on their data, therefore providing security assurance to the users data has become one of the primary concern for the cloud service providers. Cloud servers are not responsible for any data loss as it doesn’t provide the security assurance to the cloud user data. Remote data integrity checking (RDIC) licenses an information to data storage server, to determine that it is really storing an owners data truthfully. RDIC is composed of security model and ID-based RDIC where it is responsible for the security of every server and make sure the data privacy of cloud user against the third party verifier. Generally, by running a two-party Remote data integrity checking (RDIC) protocol the clients would themselves be able to check the information trustworthiness of their cloud. Within the two party scenario the verifying result is given either from the information holder or the cloud server may be considered as one-sided. Public verifiability feature of RDIC gives the privilege to all its users to verify whether the original data is modified or not. To ensure the transparency of the publicly verifiable RDIC protocols, Let’s figure out there exists a TPA who is having knowledge and efficiency to verify the work to provide the condition clearly by publicly verifiable RDIC protocols.

  3. Cloud-based opportunities in scientific computing: insights from processing Suomi National Polar-Orbiting Partnership (S-NPP) Direct Broadcast data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S.

    2013-12-01

    The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of data files concurrently. Our experience shows the viability and flexibility of this approach to workflow management for scientific data processing. - Finally, cloud computing is a promising platform for distributed volunteer ('interstitial') computing, via mechanisms such as the Berkeley Open Infrastructure for Network Computing (BOINC) popularized with the SETI@Home project and others such as ClimatePrediction.net and NASA's Climate@Home. Interstitial computing faces significant challenges as commodity computing shifts from (always on) desktop computers towards smartphones and tablets (untethered and running on scarce battery power); but cloud computing offers significant slack capacity. This capacity includes virtual machines with unused RAM or underused CPUs; virtual storage volumes allocated (& paid for) but not full; and virtual machines that are paid up for the current hour but whose work is complete. We are devising ways to facilitate the reuse of these resources (i.e., cloud-based interstitial computing) for satellite data processing and related analyses. We will present our findings and research directions on these and related topics.

  4. Prediction based proactive thermal virtual machine scheduling in green clouds.

    PubMed

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.

  5. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud.

    PubMed

    Zia Ullah, Qazi; Hassan, Shahzad; Khan, Gul Muhammad

    2017-01-01

    Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.

  6. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud

    PubMed Central

    Hassan, Shahzad; Khan, Gul Muhammad

    2017-01-01

    Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers. PMID:28811819

  7. Volunteer Clouds and Citizen Cyberscience for LHC Physics

    NASA Astrophysics Data System (ADS)

    Aguado Sanchez, Carlos; Blomer, Jakob; Buncic, Predrag; Chen, Gang; Ellis, John; Garcia Quintas, David; Harutyunyan, Artem; Grey, Francois; Lombrana Gonzalez, Daniel; Marquina, Miguel; Mato, Pere; Rantala, Jarno; Schulz, Holger; Segal, Ben; Sharma, Archana; Skands, Peter; Weir, David; Wu, Jie; Wu, Wenjing; Yadav, Rohit

    2011-12-01

    Computing for the LHC, and for HEP more generally, is traditionally viewed as requiring specialized infrastructure and software environments, and therefore not compatible with the recent trend in "volunteer computing", where volunteers supply free processing time on ordinary PCs and laptops via standard Internet connections. In this paper, we demonstrate that with the use of virtual machine technology, at least some standard LHC computing tasks can be tackled with volunteer computing resources. Specifically, by presenting volunteer computing resources to HEP scientists as a "volunteer cloud", essentially identical to a Grid or dedicated cluster from a job submission perspective, LHC simulations can be processed effectively. This article outlines both the technical steps required for such a solution and the implications for LHC computing as well as for LHC public outreach and for participation by scientists from developing regions in LHC research.

  8. An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing.

    PubMed

    Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei

    2016-02-18

    Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users' costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers' resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center's energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically.

  9. An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing

    PubMed Central

    Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei

    2016-01-01

    Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users’ costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers’ resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center’s energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically. PMID:26901201

  10. Commissioning the CERN IT Agile Infrastructure with experiment workloads

    NASA Astrophysics Data System (ADS)

    Medrano Llamas, Ramón; Harald Barreiro Megino, Fernando; Kucharczyk, Katarzyna; Kamil Denis, Marek; Cinquilli, Mattia

    2014-06-01

    In order to ease the management of their infrastructure, most of the WLCG sites are adopting cloud based strategies. In the case of CERN, the Tier 0 of the WLCG, is completely restructuring the resource and configuration management of their computing center under the codename Agile Infrastructure. Its goal is to manage 15,000 Virtual Machines by means of an OpenStack middleware in order to unify all the resources in CERN's two datacenters: the one placed in Meyrin and the new on in Wigner, Hungary. During the commissioning of this infrastructure, CERN IT is offering an attractive amount of computing resources to the experiments (800 cores for ATLAS and CMS) through a private cloud interface. ATLAS and CMS have joined forces to exploit them by running stress tests and simulation workloads since November 2012. This work will describe the experience of the first deployments of the current experiment workloads on the CERN private cloud testbed. The paper is organized as follows: the first section will explain the integration of the experiment workload management systems (WMS) with the cloud resources. The second section will revisit the performance and stress testing performed with HammerCloud in order to evaluate and compare the suitability for the experiment workloads. The third section will go deeper into the dynamic provisioning techniques, such as the use of the cloud APIs directly by the WMS. The paper finishes with a review of the conclusions and the challenges ahead.

  11. Benefits of cloud computing for PACS and archiving.

    PubMed

    Koch, Patrick

    2012-01-01

    The goal of cloud-based services is to provide easy, scalable access to computing resources and IT services. The healthcare industry requires a private cloud that adheres to government mandates designed to ensure privacy and security of patient data while enabling access by authorized users. Cloud-based computing in the imaging market has evolved from a service that provided cost effective disaster recovery for archived data to fully featured PACS and vendor neutral archiving services that can address the needs of healthcare providers of all sizes. Healthcare providers worldwide are now using the cloud to distribute images to remote radiologists while supporting advanced reading tools, deliver radiology reports and imaging studies to referring physicians, and provide redundant data storage. Vendor managed cloud services eliminate large capital investments in equipment and maintenance, as well as staffing for the data center--creating a reduction in total cost of ownership for the healthcare provider.

  12. Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.

    PubMed

    Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P

    2010-01-15

    A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.

  13. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  14. The EPOS Vision for the Open Science Cloud

    NASA Astrophysics Data System (ADS)

    Jeffery, Keith; Harrison, Matt; Cocco, Massimo

    2016-04-01

    Cloud computing offers dynamic elastic scalability for data processing on demand. For much research activity, demand for computing is uneven over time and so CLOUD computing offers both cost-effectiveness and capacity advantages. However, as reported repeatedly by the EC Cloud Expert Group, there are barriers to the uptake of Cloud Computing: (1) security and privacy; (2) interoperability (avoidance of lock-in); (3) lack of appropriate systems development environments for application programmers to characterise their applications to allow CLOUD middleware to optimize their deployment and execution. From CERN, the Helix-Nebula group has proposed the architecture for the European Open Science Cloud. They are discussing with other e-Infrastructure groups such as EGI (GRIDs), EUDAT (data curation), AARC (network authentication and authorisation) and also with the EIROFORUM group of 'international treaty' RIs (Research Infrastructures) and the ESFRI (European Strategic Forum for Research Infrastructures) RIs including EPOS. Many of these RIs are either e-RIs (electronic-RIs) or have an e-RI interface for access and use. The EPOS architecture is centred on a portal: ICS (Integrated Core Services). The architectural design already allows for access to e-RIs (which may include any or all of data, software, users and resources such as computers or instruments). Those within any one domain (subject area) of EPOS are considered within the TCS (Thematic Core Services). Those outside, or available across multiple domains of EPOS, are ICS-d (Integrated Core Services-Distributed) since the intention is that they will be used by any or all of the TCS via the ICS. Another such service type is CES (Computational Earth Science); effectively an ICS-d specializing in high performance computation, analytics, simulation or visualization offered by a TCS for others to use. Already discussions are underway between EPOS and EGI, EUDAT, AARC and Helix-Nebula for those offerings to be considered as ICS-ds by EPOS.. Provision of access to ICS-Ds from ICS-C concerns several aspects: (a) Technical : it may be more or less difficult to connect and pass from ICS-C to the ICS-d/ CES the 'package' (probably a virtual machine) of data and software; (b) Security/privacy : including passing personal information e.g. related to AAAI (Authentication, authorization, accounting Infrastructure); (c) financial and legal : such as payment, licence conditions; Appropriate interfaces from ICS-C to ICS-d are being designed to accommodate these aspects. The Open Science Cloud is timely because it provides a framework to discuss governance and sustainability for computational resource provision as well as an effective interpretation of federated approach to HPC(High Performance Computing) -HTC (High Throughput Computing). It will be a unique opportunity to share and adopt procurement policies to provide access to computational resources for RIs. The current state of discussions and expected roadmap for the EPOS-Open Science Cloud relationship are presented.

  15. Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup

    PubMed Central

    Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.

    2010-01-01

    Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure. PMID:21258651

  16. An imperialist competitive algorithm for virtual machine placement in cloud computing

    NASA Astrophysics Data System (ADS)

    Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza

    2017-05-01

    Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.

  17. MC-GenomeKey: a multicloud system for the detection and annotation of genomic variants.

    PubMed

    Elshazly, Hatem; Souilmi, Yassine; Tonellato, Peter J; Wall, Dennis P; Abouelhoda, Mohamed

    2017-01-20

    Next Generation Genome sequencing techniques became affordable for massive sequencing efforts devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is important to capitalize on the use of the recent development in the cloud computing market, which have witnessed more providers competing in terms of products and prices. In this paper, we present a new package called MC-GenomeKey (Multi-Cloud GenomeKey) that efficiently executes the variant analysis workflow for detecting and annotating mutations using cloud resources from different commercial cloud providers. Our package supports Amazon, Google, and Azure clouds, as well as, any other cloud platform based on OpenStack. Our package allows different scenarios of execution with different levels of sophistication, up to the one where a workflow can be executed using a cluster whose nodes come from different clouds. MC-GenomeKey also supports scenarios to exploit the spot instance model of Amazon in combination with the use of other cloud platforms to provide significant cost reduction. To the best of our knowledge, this is the first solution that optimizes the execution of the workflow using computational resources from different cloud providers. MC-GenomeKey provides an efficient multicloud based solution to detect and annotate mutations. The package can run in different commercial cloud platforms, which enables the user to seize the best offers. The package also provides a reliable means to make use of the low-cost spot instance model of Amazon, as it provides an efficient solution to the sudden termination of spot machines as a result of a sudden price increase. The package has a web-interface and it is available for free for academic use.

  18. Large-scale virtual screening on public cloud resources with Apache Spark.

    PubMed

    Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola

    2017-01-01

    Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.

  19. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  20. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    PubMed

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.

  1. An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud

    NASA Astrophysics Data System (ADS)

    Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.

    2017-08-01

    Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.

  2. Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and databasing.

    PubMed

    Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A

    2017-11-01

    Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Relating Solar Resource Variability to Cloud Type

    NASA Astrophysics Data System (ADS)

    Hinkelman, L. M.; Sengupta, M.

    2012-12-01

    Power production from renewable energy (RE) resources is rapidly increasing. Generation of renewable energy is quite variable since the solar and wind resources that form the inputs are, themselves, inherently variable. There is thus a need to understand the impact of renewable generation on the transmission grid. Such studies require estimates of high temporal and spatial resolution power output under various scenarios, which can be created from corresponding solar resource data. Satellite-based solar resource estimates are the best source of long-term solar irradiance data for the typically large areas covered by transmission studies. As satellite-based resource datasets are generally available at lower temporal and spatial resolution than required, there is, in turn, a need to downscale these resource data. Downscaling in both space and time requires information about solar irradiance variability, which is primarily a function of cloud types and properties. In this study, we analyze the relationship between solar resource variability and satellite-based cloud properties. One-minute resolution surface irradiance data were obtained from a number of stations operated by the National Oceanic and Atmospheric Administration (NOAA) under the Surface Radiation (SURFRAD) and Integrated Surface Irradiance Study (ISIS) networks as well as from NREL's Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Individual sites were selected so that a range of meteorological conditions would be represented. Cloud information at a nominal 4 km resolution and half hour intervals was derived from NOAA's Geostationary Operation Environmental Satellite (GOES) series of satellites. Cloud class information from the GOES data set was then used to select and composite irradiance data from the measurement sites. The irradiance variability for each cloud classification was characterized using general statistics of the fluxes themselves and their variability in time, as represented by ramps computed for time scales from 10 s to 0.5 hr. The statistical relationships derived using this method will be presented, comparing and contrasting the statistics computed for the different cloud types. The implications for downscaling irradiances from satellites or forecast models will also be discussed.

  4. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community

    PubMed Central

    Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J.; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius

    2016-01-01

    The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data. PMID:28785418

  5. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community.

    PubMed

    Connor, Thomas R; Loman, Nicholas J; Thompson, Simon; Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius; Sheppard, Samuel K; Pallen, Mark J

    2016-09-01

    The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.

  6. Bio and health informatics meets cloud : BioVLab as an example.

    PubMed

    Chae, Heejoon; Jung, Inuk; Lee, Hyungro; Marru, Suresh; Lee, Seong-Whan; Kim, Sun

    2013-01-01

    The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains.

  7. Unidata cyberinfrastructure in the cloud: A progress report

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan

    2016-04-01

    Data services, software, and committed support are critical components of geosciences cyber-infrastructure that can help scientists address problems of unprecedented complexity, scale, and scope. Unidata is currently working on innovative ideas, new paradigms, and novel techniques to complement and extend its offerings. Our goal is to empower users so that they can tackle major, heretofore difficult problems. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. To realize the above vision, Unidata is working toward: * Providing access to many types of data from a cloud (e.g., TDS, RAMADDA and EDEX); * Deploying data-proximate tools to easily process, analyze and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Fostering partnerships with NOAA and public cloud vendors (e.g., Amazon) to harness their capabilities and resources for the benefit of the academic community.

  8. Exploiting GPUs in Virtual Machine for BioCloud

    PubMed Central

    Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon

    2013-01-01

    Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment. PMID:23710465

  9. Exploiting GPUs in virtual machine for BioCloud.

    PubMed

    Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon

    2013-01-01

    Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.

  10. Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques

    NASA Astrophysics Data System (ADS)

    Bhadauria, Rohit; Sanyal, Sugata

    2012-06-01

    Cloud Computing holds the potential to eliminate the requirements for setting up of high-cost computing infrastructure for IT-based solutions and services that the industry uses. It promises to provide a flexible IT architecture, accessible through internet for lightweight portable devices. This would allow multi-fold increase in the capacity or capabilities of the existing and new software. In a cloud computing environment, the entire data reside over a set of networked resources, enabling the data to be accessed through virtual machines. Since these data-centers may lie in any corner of the world beyond the reach and control of users, there are multifarious security and privacy challenges that need to be understood and taken care of. Also, one can never deny the possibility of a server breakdown that has been witnessed, rather quite often in the recent times. There are various issues that need to be dealt with respect to security and privacy in a cloud computing scenario. This extensive survey paper aims to elaborate and analyze the numerous unresolved issues threatening the cloud computing adoption and diffusion affecting the various stake-holders linked to it.

  11. Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Fisher, W.; Yoksas, T.

    2014-12-01

    Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high student expectations. These changes are upending traditional approaches to accessing and using data and software. It is clear that Unidata's products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our initial efforts to deploy a subset of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.

  12. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. Formore » better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.« less

  13. Collaborative Working Architecture for IoT-Based Applications.

    PubMed

    Mora, Higinio; Signes-Pont, María Teresa; Gil, David; Johnsson, Magnus

    2018-05-23

    The new sensing applications need enhanced computing capabilities to handle the requirements of complex and huge data processing. The Internet of Things (IoT) concept brings processing and communication features to devices. In addition, the Cloud Computing paradigm provides resources and infrastructures for performing the computations and outsourcing the work from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based applications, however, there is still much research to be done to properly gear all the systems for working together. This work proposes a collaborative model and an architecture to take advantage of the available computing resources. The resulting architecture involves a novel network design with different levels which combines sensing and processing capabilities based on the Mobile Cloud Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can be used in diverse real applications. The results show the flexibility of the architecture to perform complex computational tasks of advanced applications.

  14. A world-wide databridge supported by a commercial cloud provider

    NASA Astrophysics Data System (ADS)

    Tat Cheung, Kwong; Field, Laurence; Furano, Fabrizio

    2017-10-01

    Volunteer computing has the potential to provide significant additional computing capacity for the LHC experiments. One of the challenges with exploiting volunteer computing is to support a global community of volunteers that provides heterogeneous resources. However, high energy physics applications require more data input and output than the CPU intensive applications that are typically used by other volunteer computing projects. While the so-called databridge has already been successfully proposed as a method to span the untrusted and trusted domains of volunteer computing and Grid computing respective, globally transferring data between potentially poor-performing residential networks and CERN could be unreliable, leading to wasted resources usage. The expectation is that by placing a storage endpoint that is part of a wider, flexible geographical databridge deployment closer to the volunteers, the transfer success rate and the overall performance can be improved. This contribution investigates the provision of a globally distributed databridge implemented upon a commercial cloud provider.

  15. Diversity in computing technologies and strategies for dynamic resource allocation

    DOE PAGES

    Garzoglio, G.; Gutsche, O.

    2015-12-23

    Here, High Energy Physics (HEP) is a very data intensive and trivially parallelizable science discipline. HEP is probing nature at increasingly finer details requiring ever increasing computational resources to process and analyze experimental data. In this paper, we discuss how HEP provisioned resources so far using Grid technologies, how HEP is starting to include new resource providers like commercial Clouds and HPC installations, and how HEP is transparently provisioning resources at these diverse providers.

  16. Exploiting Parallel R in the Cloud with SPRINT

    PubMed Central

    Piotrowski, M.; McGilvary, G.A.; Sloan, T. M.; Mewissen, M.; Lloyd, A.D.; Forster, T.; Mitchell, L.; Ghazal, P.; Hill, J.

    2012-01-01

    Background Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Objectives Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon’s Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. Methods The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. Results It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of algorithm. Resource underutilization can further improve the time to result. End-user’s location impacts on costs due to factors such as local taxation. Conclusions: Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds. PMID:23223611

  17. A Geospatial Information Grid Framework for Geological Survey.

    PubMed

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  18. A Geospatial Information Grid Framework for Geological Survey

    PubMed Central

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255

  19. Exploiting parallel R in the cloud with SPRINT.

    PubMed

    Piotrowski, M; McGilvary, G A; Sloan, T M; Mewissen, M; Lloyd, A D; Forster, T; Mitchell, L; Ghazal, P; Hill, J

    2013-01-01

    Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon's Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of the algorithm. Resource underutilization can further improve the time to result. End-user's location impacts on costs due to factors such as local taxation. Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds.

  20. Dynamic resource allocation engine for cloud-based real-time video transcoding in mobile cloud computing environments

    NASA Astrophysics Data System (ADS)

    Adedayo, Bada; Wang, Qi; Alcaraz Calero, Jose M.; Grecos, Christos

    2015-02-01

    The recent explosion in video-related Internet traffic has been driven by the widespread use of smart mobile devices, particularly smartphones with advanced cameras that are able to record high-quality videos. Although many of these devices offer the facility to record videos at different spatial and temporal resolutions, primarily with local storage considerations in mind, most users only ever use the highest quality settings. The vast majority of these devices are optimised for compressing the acquired video using a single built-in codec and have neither the computational resources nor battery reserves to transcode the video to alternative formats. This paper proposes a new low-complexity dynamic resource allocation engine for cloud-based video transcoding services that are both scalable and capable of being delivered in real-time. Firstly, through extensive experimentation, we establish resource requirement benchmarks for a wide range of transcoding tasks. The set of tasks investigated covers the most widely used input formats (encoder type, resolution, amount of motion and frame rate) associated with mobile devices and the most popular output formats derived from a comprehensive set of use cases, e.g. a mobile news reporter directly transmitting videos to the TV audience of various video format requirements, with minimal usage of resources both at the reporter's end and at the cloud infrastructure end for transcoding services.

  1. Computational biology in the cloud: methods and new insights from computing at scale.

    PubMed

    Kasson, Peter M

    2013-01-01

    The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.

  2. On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers

    NASA Astrophysics Data System (ADS)

    Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.

    2017-10-01

    This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.

  3. Security and Cloud Outsourcing Framework for Economic Dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi

    The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less

  4. Security and Cloud Outsourcing Framework for Economic Dispatch

    DOE PAGES

    Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi; ...

    2017-04-24

    The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less

  5. Exploring the Universe with WISE and Cloud Computing

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2011-01-01

    WISE is a recently-completed astronomical survey mission that has imaged the entire sky in four infrared wavelength bands. The large quantity of science images returned consists of 2,776,922 individual snapshots in various locations in each band which, along with ancillary data, totals around 110TB of raw, uncompressed data. Making the most use of this data requires advanced computing resources. I will discuss some initial attempts in the use of cloud computing to make this large problem tractable.

  6. Cloud access to interoperable IVOA-compliant VOSpace storage

    NASA Astrophysics Data System (ADS)

    Bertocco, S.; Dowler, P.; Gaudet, S.; Major, B.; Pasian, F.; Taffoni, G.

    2018-07-01

    Handling, processing and archiving the huge amount of data produced by the new generation of experiments and instruments in Astronomy and Astrophysics are among the more exciting challenges to address in designing the future data management infrastructures and computing services. We investigated the feasibility of a data management and computation infrastructure, available world-wide, with the aim of merging the FAIR data management provided by IVOA standards with the efficiency and reliability of a cloud approach. Our work involved the Canadian Advanced Network for Astronomy Research (CANFAR) infrastructure and the European EGI federated cloud (EFC). We designed and deployed a pilot data management and computation infrastructure that provides IVOA-compliant VOSpace storage resources and wide access to interoperable federated clouds. In this paper, we detail the main user requirements covered, the technical choices and the implemented solutions and we describe the resulting Hybrid cloud Worldwide infrastructure, its benefits and limitations.

  7. Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds

    PubMed Central

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962

  8. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-07-01

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.

  9. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-07-28

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.

  10. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network

    PubMed Central

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-01-01

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296

  11. Unidata Cyberinfrastructure in the Cloud

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Young, J. W.

    2016-12-01

    Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers, Python scientific libraries, scripts, and workflows; * Exploring end-to-end modeling and prediction capabilities in the cloud; * Partnering with NOAA and public cloud vendors (e.g., Amazon and OCC) on the NOAA Big Data Project to harness their capabilities and resources for the benefit of the academic community.

  12. Bioinformatics and Microarray Data Analysis on the Cloud.

    PubMed

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.

  13. Signal and image processing algorithm performance in a virtual and elastic computing environment

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  14. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  15. The Metadata Cloud: The Last Piece of a Distributed Data System Model

    NASA Astrophysics Data System (ADS)

    King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.

    2012-12-01

    Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.

  16. A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv

    In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less

  17. Dynamic Collaboration Infrastructure for Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.

  18. Cross layer optimization for cloud-based radio over optical fiber networks

    NASA Astrophysics Data System (ADS)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  19. Enabling a Scientific Cloud Marketplace: VGL (Invited)

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.

    2013-12-01

    The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org

  20. Distributed storage and cloud computing: a test case

    NASA Astrophysics Data System (ADS)

    Piano, S.; Delia Ricca, G.

    2014-06-01

    Since 2003 the computing farm hosted by the INFN Tier3 facility in Trieste supports the activities of many scientific communities. Hundreds of jobs from 45 different VOs, including those of the LHC experiments, are processed simultaneously. Given that normally the requirements of the different computational communities are not synchronized, the probability that at any given time the resources owned by one of the participants are not fully utilized is quite high. A balanced compensation should in principle allocate the free resources to other users, but there are limits to this mechanism. In fact, the Trieste site may not hold the amount of data needed to attract enough analysis jobs, and even in that case there could be a lack of bandwidth for their access. The Trieste ALICE and CMS computing groups, in collaboration with other Italian groups, aim to overcome the limitations of existing solutions using two approaches: sharing the data among all the participants taking full advantage of GARR-X wide area networks (10 GB/s) and integrating the resources dedicated to batch analysis with the ones reserved for dynamic interactive analysis, through modern solutions as cloud computing.

  1. Research on cloud-based remote measurement and analysis system

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan

    2015-02-01

    The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.

  2. Extending the farm on external sites: the INFN Tier-1 experience

    NASA Astrophysics Data System (ADS)

    Boccali, T.; Cavalli, A.; Chiarelli, L.; Chierici, A.; Cesini, D.; Ciaschini, V.; Dal Pra, S.; dell'Agnello, L.; De Girolamo, D.; Falabella, A.; Fattibene, E.; Maron, G.; Prosperini, A.; Sapunenko, V.; Virgilio, S.; Zani, S.

    2017-10-01

    The Tier-1 at CNAF is the main INFN computing facility offering computing and storage resources to more than 30 different scientific collaborations including the 4 experiments at the LHC. It is also foreseen a huge increase in computing needs in the following years mainly driven by the experiments at the LHC (especially starting with the run 3 from 2021) but also by other upcoming experiments such as CTA[1] While we are considering the upgrade of the infrastructure of our data center, we are also evaluating the possibility of using CPU resources available in other data centres or even leased from commercial cloud providers. Hence, at INFN Tier-1, besides participating to the EU project HNSciCloud, we have also pledged a small amount of computing resources (˜ 2000 cores) located at the Bari ReCaS[2] for the WLCG experiments for 2016 and we are testing the use of resources provided by a commercial cloud provider. While the Bari ReCaS data center is directly connected to the GARR network[3] with the obvious advantage of a low latency and high bandwidth connection, in the case of the commercial provider we rely only on the General Purpose Network. In this paper we describe the set-up phase and the first results of these installations started in the last quarter of 2015, focusing on the issues that we have had to cope with and discussing the measured results in terms of efficiency.

  3. Enabling Research Network Connectivity to Clouds with Virtual Router Technology

    NASA Astrophysics Data System (ADS)

    Seuster, R.; Casteels, K.; Leavett-Brown, CR; Paterson, M.; Sobie, RJ

    2017-10-01

    The use of opportunistic cloud resources by HEP experiments has significantly increased over the past few years. Clouds that are owned or managed by the HEP community are connected to the LHCONE network or the research network with global access to HEP computing resources. Private clouds, such as those supported by non-HEP research funds are generally connected to the international research network; however, commercial clouds are either not connected to the research network or only connect to research sites within their national boundaries. Since research network connectivity is a requirement for HEP applications, we need to find a solution that provides a high-speed connection. We are studying a solution with a virtual router that will address the use case when a commercial cloud has research network connectivity in a limited region. In this situation, we host a virtual router in our HEP site and require that all traffic from the commercial site transit through the virtual router. Although this may increase the network path and also the load on the HEP site, it is a workable solution that would enable the use of the remote cloud for low I/O applications. We are exploring some simple open-source solutions. In this paper, we present the results of our studies and how it will benefit our use of private and public clouds for HEP computing.

  4. Information Systems Education: The Case for the Academic Cloud

    ERIC Educational Resources Information Center

    Mew, Lionel

    2016-01-01

    This paper discusses how cloud computing can be leveraged to add value to academic programs in information systems and other fields by improving financial sustainment models for institutional technology and academic departments, relieving the strain on overworked technology support resources, while adding richness and improving pedagogical…

  5. A hazy outlook for cloud computing.

    PubMed

    Perna, Gabriel

    2012-01-01

    Because of competing priorities as well as cost, security, and implementation concerns, cloud-based storage development has gotten off to a slow start in healthcare. CIOs, CTOs, and other healthcare IT leaders are adopting a variety of strategies in this area, based on their organizations' needs, resources, and priorities.

  6. The Cloud Area Padovana: from pilot to production

    NASA Astrophysics Data System (ADS)

    Andreetto, P.; Costa, F.; Crescente, A.; Dorigo, A.; Fantinel, S.; Fanzago, F.; Sgaravatto, M.; Traldi, S.; Verlato, M.; Zangrando, L.

    2017-10-01

    The Cloud Area Padovana has been running for almost two years. This is an OpenStack-based scientific cloud, spread across two different sites: the INFN Padova Unit and the INFN Legnaro National Labs. The hardware resources have been scaled horizontally and vertically, by upgrading some hypervisors and by adding new ones: currently it provides about 1100 cores. Some in-house developments were also integrated in the OpenStack dashboard, such as a tool for user and project registrations with direct support for the INFN-AAI Identity Provider as a new option for the user authentication. In collaboration with the EU-funded Indigo DataCloud project, the integration with Docker-based containers has been experimented with and will be available in production soon. This computing facility now satisfies the computational and storage demands of more than 70 users affiliated with about 20 research projects. We present here the architecture of this Cloud infrastructure, the tools and procedures used to operate it. We also focus on the lessons learnt in these two years, describing the problems that were found and the corrective actions that had to be applied. We also discuss about the chosen strategy for upgrades, which combines the need to promptly integrate the OpenStack new developments, the demand to reduce the downtimes of the infrastructure, and the need to limit the effort requested for such updates. We also discuss how this Cloud infrastructure is being used. In particular we focus on two big physics experiments which are intensively exploiting this computing facility: CMS and SPES. CMS deployed on the cloud a complex computational infrastructure, composed of several user interfaces for job submission in the Grid environment/local batch queues or for interactive processes; this is fully integrated with the local Tier-2 facility. To avoid a static allocation of the resources, an elastic cluster, based on cernVM, has been configured: it allows to automatically create and delete virtual machines according to the user needs. SPES, using a client-server system called TraceWin, exploits INFN’s virtual resources performing a very large number of simulations on about a thousand nodes elastically managed.

  7. Leveraging the Cloud for Robust and Efficient Lunar Image Processing

    NASA Technical Reports Server (NTRS)

    Chang, George; Malhotra, Shan; Wolgast, Paul

    2011-01-01

    The Lunar Mapping and Modeling Project (LMMP) is tasked to aggregate lunar data, from the Apollo era to the latest instruments on the LRO spacecraft, into a central repository accessible by scientists and the general public. A critical function of this task is to provide users with the best solution for browsing the vast amounts of imagery available. The image files LMMP manages range from a few gigabytes to hundreds of gigabytes in size with new data arriving every day. Despite this ever-increasing amount of data, LMMP must make the data readily available in a timely manner for users to view and analyze. This is accomplished by tiling large images into smaller images using Hadoop, a distributed computing software platform implementation of the MapReduce framework, running on a small cluster of machines locally. Additionally, the software is implemented to use Amazon's Elastic Compute Cloud (EC2) facility. We also developed a hybrid solution to serve images to users by leveraging cloud storage using Amazon's Simple Storage Service (S3) for public data while keeping private information on our own data servers. By using Cloud Computing, we improve upon our local solution by reducing the need to manage our own hardware and computing infrastructure, thereby reducing costs. Further, by using a hybrid of local and cloud storage, we are able to provide data to our users more efficiently and securely. 12 This paper examines the use of a distributed approach with Hadoop to tile images, an approach that provides significant improvements in image processing time, from hours to minutes. This paper describes the constraints imposed on the solution and the resulting techniques developed for the hybrid solution of a customized Hadoop infrastructure over local and cloud resources in managing this ever-growing data set. It examines the performance trade-offs of using the more plentiful resources of the cloud, such as those provided by S3, against the bandwidth limitations such use encounters with remote resources. As part of this discussion this paper will outline some of the technologies employed, the reasons for their selection, the resulting performance metrics and the direction the project is headed based upon the demonstrated capabilities thus far.

  8. Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications

    NASA Astrophysics Data System (ADS)

    da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich

    2015-10-01

    Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.

  9. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks.

    PubMed

    Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young

    2016-04-18

    Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.

  10. Interfacing HTCondor-CE with OpenStack

    NASA Astrophysics Data System (ADS)

    Bockelman, B.; Caballero Bejar, J.; Hover, J.

    2017-10-01

    Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.

  11. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    PubMed

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  12. RBioCloud: A Light-Weight Framework for Bioconductor and R-based Jobs on the Cloud.

    PubMed

    Varghese, Blesson; Patel, Ishan; Barker, Adam

    2015-01-01

    Large-scale ad hoc analytics of genomic data is popular using the R-programming language supported by over 700 software packages provided by Bioconductor. More recently, analytical jobs are benefitting from on-demand computing and storage, their scalability and their low maintenance cost, all of which are offered by the cloud. While biologists and bioinformaticists can take an analytical job and execute it on their personal workstations, it remains challenging to seamlessly execute the job on the cloud infrastructure without extensive knowledge of the cloud dashboard. How analytical jobs can not only with minimum effort be executed on the cloud, but also how both the resources and data required by the job can be managed is explored in this paper. An open-source light-weight framework for executing R-scripts using Bioconductor packages, referred to as `RBioCloud', is designed and developed. RBioCloud offers a set of simple command-line tools for managing the cloud resources, the data and the execution of the job. Three biological test cases validate the feasibility of RBioCloud. The framework is available from http://www.rbiocloud.com.

  13. High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away

    NASA Astrophysics Data System (ADS)

    Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.

    2012-09-01

    By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data, and so the costs of running applications vary widely according to how they use resources. The cloud is well suited to processing CPU-bound (and memory bound) workflows such as the periodogram code, given the relatively low cost of processing in comparison with I/O operations. I/O-bound applications such as Montage perform best on high-performance clusters with fast networks and parallel file-systems. Science-driven Cyberinfrastructure: Montage has been widely used as a driver application to develop workflow management services, such as task scheduling in distributed environments, designing fault tolerance techniques for job schedulers, and developing workflow orchestration techniques. Running Parallel Applications Across Distributed Cloud Environments: Data processing will eventually take place in parallel distributed across cyber infrastructure environments having different architectures. We have used the Pegasus Work Management System (WMS) to successfully run applications across three very different environments: TeraGrid, OSG (Open Science Grid), and FutureGrid. Provisioning resources across different grids and clouds (also referred to as Sky Computing), involves establishing a distributed environment, where issues of, e.g, remote job submission, data management, and security need to be addressed. This environment also requires building virtual machine images that can run in different environments. Usually, each cloud provides basic images that can be customized with additional software and services. In most of our work, we provisioned compute resources using a custom application, called Wrangler. Pegasus WMS abstracts the architectures of the compute environments away from the end-user, and can be considered a first-generation tool suitable for scientists to run their applications on disparate environments.

  14. Seismic waveform modeling over cloud

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  15. Planning and management of cloud computing networks

    NASA Astrophysics Data System (ADS)

    Larumbe, Federico

    The evolution of the Internet has a great impact on a big part of the population. People use it to communicate, query information, receive news, work, and as entertainment. Its extraordinary usefulness as a communication media made the number of applications and technological resources explode. However, that network expansion comes at the cost of an important power consumption. If the power consumption of telecommunication networks and data centers is considered as the power consumption of a country, it would rank at the 5 th place in the world. Furthermore, the number of servers in the world is expected to grow by a factor of 10 between 2013 and 2020. This context motivates us to study techniques and methods to allocate cloud computing resources in an optimal way with respect to cost, quality of service (QoS), power consumption, and environmental impact. The results we obtained from our test cases show that besides minimizing capital expenditures (CAPEX) and operational expenditures (OPEX), the response time can be reduced up to 6 times, power consumption by 30%, and CO2 emissions by a factor of 60. Cloud computing provides dynamic access to IT resources as a service. In this paradigm, programs are executed in servers connected to the Internet that users access from their computers and mobile devices. The first advantage of this architecture is to reduce the time of application deployment and interoperability, because a new user only needs a web browser and does not need to install software on local computers with specific operating systems. Second, applications and information are available from everywhere and with any device with an Internet access. Also, servers and IT resources can be dynamically allocated depending on the number of users and workload, a feature called elasticity. This thesis studies the resource management of cloud computing networks and is divided in three main stages. We start by analyzing the planning of cloud computing networks to get a comprehensive vision. The first question to be solved is what are the optimal data center locations. We found that the location of each data center has a big impact on cost, QoS, power consumption, and greenhouse gas emissions. An optimization problem with a multi-criteria objective function is proposed to decide jointly the optimal location of data centers and software components, link capacities, and information routing. Once the network planning has been analyzed, the problem of dynamic resource provisioning in real time is addressed. In this context, virtualization is a key technique in cloud computing because each server can be shared by multiple Virtual Machines (VMs) and the total power consumption can be reduced. In the same line of location problems, we propose a Green Cloud Broker that optimizes VM placement across multiple data centers. In fact, when multiple data centers are considered, response time can be reduced by placing VMs close to users, cost can be minimized, power consumption can be optimized by using energy efficient data centers, and CO2 emissions can be decreased by choosing data centers provided with renewable energy sources. The third stage of the analysis is the short-term management of a cloud data center. In particular, a method is proposed to assign VMs to servers by considering communication traffic among VMs. Cloud data centers receive new applications over time and these applications need on-demand resource provisioning. Each application is composed of multiple types of VMs that interact among themselves. A program called scheduler must place each new VM in a server and that impacts the QoS and power consumption. Our method places VMs that communicate among themselves in servers that are close to each other in the network topology, thus reducing communication delay and increasing the throughput available among VMs. Furthermore, the power consumption of each type of server is considered and the most efficient ones are chosen to place the VMs. The number of VMs of each application can be dynamically changed to match the workload and servers not needed in a particular period can be suspended to save energy. The methodology developed is based on Mixed Integer Programming (MIP) models to formalize the problems and use state of the art optimization solvers. Then, heuristics are developed to solve cases with more than 1,000 potential data center locations for the planning problem, 1,000 nodes for the cloud broker, and 128,000 servers for the VM placement problem. Solutions with very short optimality gaps, between 0% and 1.95%, are obtained, and execution time in the order of minutes for the planning problem and less than a second for real time cases. We consider that this thesis on resource provisioning of cloud computing networks includes important contributions on this research area, and innovative commercial applications based on the proposed methods have promising future.

  16. Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.

    2014-12-01

    The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.

  17. Enabling opportunistic resources for CMS Computing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Dirk

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  18. Enabling opportunistic resources for CMS Computing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Dick

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize “opportunistic” resources — resources not owned by, or a priori configured for CMS — to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are usedmore » to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  19. Enabling opportunistic resources for CMS Computing Operations

    DOE PAGES

    Hufnagel, Dirk

    2015-12-23

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  20. A Science Cloud: OneSpaceNet

    NASA Astrophysics Data System (ADS)

    Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.

    2010-12-01

    Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage system performs as one disk). There are three supercomputers allocated on the cloud, one from Tokyo, one from Osaka and the other from Nagoya. One's simulation job data on any supercomputers are saved on the cloud data storage (same directory); it is a kind of virtual computing environment. The tiled display wall has 36 panels acting as one display; the pixel (resolution) size of it is as large as 18000x4300. This size is enough to preview or analyze the large-scale computer simulation data. It also allows us to take a look of multiple (e.g., 100 pictures) on one screen together with many researchers. In our talk we also present a brief report of the initial results using the OneSpaceNet for Global MHD simulations as an example of successful use of our science cloud; (i) Ultra-high time resolution visualization of Global MHD simulations on the large-scale storage and parallel processing system on the cloud, (ii) Database of real-time Global MHD simulation and statistic analyses of the data, and (iii) 3D Web service of Global MHD simulations.

  1. On localization attacks against cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Ge, Linqiang; Yu, Wei; Sistani, Mohammad Ali

    2013-05-01

    One of the key characteristics of cloud computing is the device and location independence that enables the user to access systems regardless of their location. Because cloud computing is heavily based on sharing resource, it is vulnerable to cyber attacks. In this paper, we investigate a localization attack that enables the adversary to leverage central processing unit (CPU) resources to localize the physical location of server used by victims. By increasing and reducing CPU usage through the malicious virtual machine (VM), the response time from the victim VM will increase and decrease correspondingly. In this way, by embedding the probing signal into the CPU usage and correlating the same pattern in the response time from the victim VM, the adversary can find the location of victim VM. To determine attack accuracy, we investigate features in both the time and frequency domains. We conduct both theoretical and experimental study to demonstrate the effectiveness of such an attack.

  2. On Using Home Networks and Cloud Computing for a Future Internet of Things

    NASA Astrophysics Data System (ADS)

    Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg

    In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).

  3. ooi: OpenStack OCCI interface

    NASA Astrophysics Data System (ADS)

    López García, Álvaro; Fernández del Castillo, Enol; Orviz Fernández, Pablo

    In this document we present an implementation of the Open Grid Forum's Open Cloud Computing Interface (OCCI) for OpenStack, namely ooi (Openstack occi interface, 2015) [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.

  4. Cloud-based MOTIFSIM: Detecting Similarity in Large DNA Motif Data Sets.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2017-05-01

    We developed the cloud-based MOTIFSIM on Amazon Web Services (AWS) cloud. The tool is an extended version from our web-based tool version 2.0, which was developed based on a novel algorithm for detecting similarity in multiple DNA motif data sets. This cloud-based version further allows researchers to exploit the computing resources available from AWS to detect similarity in multiple large-scale DNA motif data sets resulting from the next-generation sequencing technology. The tool is highly scalable with expandable AWS.

  5. Assessing the Need for Supercomputing Resources Within the Pacific Area of Responsibility

    DTIC Science & Technology

    2015-05-26

    portion of today’s research and development dollars are going toward developing machines that will be better suited for addressing big data applications...2009; Radu Sion, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data Management, Vol. 8425, May 2014, pp. 3–5; Yao Chen...Applied Parallel and Scientific Computing, Vol. 7134, 2010. Sion, Radu, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data

  6. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Astrophysics Data System (ADS)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly better performance than the local machine. Much of the difference was due to newer equipment in the Nebula than the legacy computer, which is suggestive of a potential economic advantage beyond elastic power, i.e., access to up-to-date hardware vs. legacy hardware that must be maintained past its prime to amortize the cost. In addition to a trade study of advantages and challenges of porting complex processing to the cloud, a tutorial was developed to enable further progress in utilizing the Nebula for Earth Science applications and understanding better the potential for Cloud Computing in further data- and computing-intensive Earth Science research. In particular, highly bursty computing such as that experienced in the user-demand-driven Giovanni system may become more tractable in a Cloud environment. Our future work will continue to focus on migrating more GES DISC's applications/instances, e.g. Giovanni instances, to the Nebula platform and making matured migrated applications to be in operation on the Nebula.

  7. GATE Monte Carlo simulation in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  8. Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan; Fisher, Ward; Yoksas, Tom

    2015-04-01

    Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high expectations from students who have grown up with smartphones and tablets. These changes are upending traditional approaches to accessing and using data and software. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable in the form of downloadable Unidata-in-a-box virtual images, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our ongoing efforts to deploy a suite of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.

  9. Scheduling multimedia services in cloud computing environment

    NASA Astrophysics Data System (ADS)

    Liu, Yunchang; Li, Chunlin; Luo, Youlong; Shao, Yanling; Zhang, Jing

    2018-02-01

    Currently, security is a critical factor for multimedia services running in the cloud computing environment. As an effective mechanism, trust can improve security level and mitigate attacks within cloud computing environments. Unfortunately, existing scheduling strategy for multimedia service in the cloud computing environment do not integrate trust mechanism when making scheduling decisions. In this paper, we propose a scheduling scheme for multimedia services in multi clouds. At first, a novel scheduling architecture is presented. Then, We build a trust model including both subjective trust and objective trust to evaluate the trust degree of multimedia service providers. By employing Bayesian theory, the subjective trust degree between multimedia service providers and users is obtained. According to the attributes of QoS, the objective trust degree of multimedia service providers is calculated. Finally, a scheduling algorithm integrating trust of entities is proposed by considering the deadline, cost and trust requirements of multimedia services. The scheduling algorithm heuristically hunts for reasonable resource allocations and satisfies the requirement of trust and meets deadlines for the multimedia services. Detailed simulated experiments demonstrate the effectiveness and feasibility of the proposed trust scheduling scheme.

  10. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  11. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  12. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    PubMed

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  13. USMC Installations Command Information Environment: Opportunities and Analysis for Integration of First Responder Communications

    DTIC Science & Technology

    2014-09-01

    becoming a more and more prevalent technology in the business world today. According to Syal and Goswami (2012), cloud technology is seen as a...use of computing resources, applications, and personal files without reliance on a single computer or system ( Syal & Goswami, 2012). By operating in...cloud services largely being web-based, which can be retrieved through most systems with access to the Internet ( Syal & Goswami, 2012). The end user can

  14. The AIST Managed Cloud Environment

    NASA Astrophysics Data System (ADS)

    Cook, S.

    2016-12-01

    ESTO is currently in the process of developing and implementing the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to ESTO-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs will allow them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE will facilitate infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.

  15. cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud.

    PubMed

    Cianfrocco, Michael A; Lahiri, Indrajit; DiMaio, Frank; Leschziner, Andres E

    2018-06-01

    Access to streamlined computational resources remains a significant bottleneck for new users of cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will submit cryo-EM analysis routines and atomic model building jobs directly to Amazon Web Services (AWS) from a local computer or laptop. These new software tools ("cryoem-cloud-tools") have incorporated optimal data movement, security, and cost-saving strategies, giving novice users access to complex cryo-EM data processing pipelines. Integrating these tools into the RELION processing pipeline and graphical user interface we determined a 2.2 Å structure of ß-galactosidase in ∼55 hours on AWS. We implemented a similar strategy to submit Rosetta atomic model building and refinement to AWS. These software tools dramatically reduce the barrier for entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud. Copyright © 2018. Published by Elsevier Inc.

  16. The AMCE (AIST Managed Cloud Environment)

    NASA Astrophysics Data System (ADS)

    Cook, S.

    2017-12-01

    ESTO has developed and implemented the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to SMD-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs allows them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE facilitates infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.

  17. CE-ACCE: The Cloud Enabled Advanced sCience Compute Environment

    NASA Astrophysics Data System (ADS)

    Cinquini, L.; Freeborn, D. J.; Hardman, S. H.; Wong, C.

    2017-12-01

    Traditionally, Earth Science data from NASA remote sensing instruments has been processed by building custom data processing pipelines (often based on a common workflow engine or framework) which are typically deployed and run on an internal cluster of computing resources. This approach has some intrinsic limitations: it requires each mission to develop and deploy a custom software package on top of the adopted framework; it makes use of dedicated hardware, network and storage resources, which must be specifically purchased, maintained and re-purposed at mission completion; and computing services cannot be scaled on demand beyond the capability of the available servers.More recently, the rise of Cloud computing, coupled with other advances in containerization technology (most prominently, Docker) and micro-services architecture, has enabled a new paradigm, whereby space mission data can be processed through standard system architectures, which can be seamlessly deployed and scaled on demand on either on-premise clusters, or commercial Cloud providers. In this talk, we will present one such architecture named CE-ACCE ("Cloud Enabled Advanced sCience Compute Environment"), which we have been developing at the NASA Jet Propulsion Laboratory over the past year. CE-ACCE is based on the Apache OODT ("Object Oriented Data Technology") suite of services for full data lifecycle management, which are turned into a composable array of Docker images, and complemented by a plug-in model for mission-specific customization. We have applied this infrastructure to both flying and upcoming NASA missions, such as ECOSTRESS and SMAP, and demonstrated deployment on the Amazon Cloud, either using simple EC2 instances, or advanced AWS services such as Amazon Lambda and ECS (EC2 Container Services).

  18. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it requires the use of additional software. In particular, there are at least three elements that are needed: a geospatially enabled database, a map server, and geoprocessing toolbox. We recommend a software stack for geospatial web application development comprising: MapServer, PostGIS, and 52 North with Python as the scripting language to tie them together. Another hurdle that must be cleared is managing the cloud-computing load. We are using HTCondor as a solution to this end. Finally, we are creating a scripting environment wherein developers will be able to create apps that use existing hydrologic models in our system with minimal effort. This capability will be accomplished by creating a plugin for a Python content management system called CKAN. We are currently developing cyberinfrastructure that utilizes this stack and greatly lowers the investment required to deploy cloud-based modeling apps. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  19. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  20. A cloud-based workflow to quantify transcript-expression levels in public cancer compendia

    PubMed Central

    Tatlow, PJ; Piccolo, Stephen R.

    2016-01-01

    Public compendia of sequencing data are now measured in petabytes. Accordingly, it is infeasible for researchers to transfer these data to local computers. Recently, the National Cancer Institute began exploring opportunities to work with molecular data in cloud-computing environments. With this approach, it becomes possible for scientists to take their tools to the data and thereby avoid large data transfers. It also becomes feasible to scale computing resources to the needs of a given analysis. We quantified transcript-expression levels for 12,307 RNA-Sequencing samples from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas. We used two cloud-based configurations and examined the performance and cost profiles of each configuration. Using preemptible virtual machines, we processed the samples for as little as $0.09 (USD) per sample. As the samples were processed, we collected performance metrics, which helped us track the duration of each processing step and quantified computational resources used at different stages of sample processing. Although the computational demands of reference alignment and expression quantification have decreased considerably, there remains a critical need for researchers to optimize preprocessing steps. We have stored the software, scripts, and processed data in a publicly accessible repository (https://osf.io/gqrz9). PMID:27982081

  1. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  2. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  3. A modular (almost) automatic set-up for elastic multi-tenants cloud (micro)infrastructures

    NASA Astrophysics Data System (ADS)

    Amoroso, A.; Astorino, F.; Bagnasco, S.; Balashov, N. A.; Bianchi, F.; Destefanis, M.; Lusso, S.; Maggiora, M.; Pellegrino, J.; Yan, L.; Yan, T.; Zhang, X.; Zhao, X.

    2017-10-01

    An auto-installing tool on an usb drive can allow for a quick and easy automatic deployment of OpenNebula-based cloud infrastructures remotely managed by a central VMDIRAC instance. A single team, in the main site of an HEP Collaboration or elsewhere, can manage and run a relatively large network of federated (micro-)cloud infrastructures, making an highly dynamic and elastic use of computing resources. Exploiting such an approach can lead to modular systems of cloud-bursting infrastructures addressing complex real-life scenarios.

  4. BigData and computing challenges in high energy and nuclear physics

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Grigorieva, M.; Kiryanov, A.; Zarochentsev, A.

    2017-06-01

    In this contribution we discuss the various aspects of the computing resource needs experiments in High Energy and Nuclear Physics, in particular at the Large Hadron Collider. This will evolve in the future when moving from LHC to HL-LHC in ten years from now, when the already exascale levels of data we are processing could increase by a further order of magnitude. The distributed computing environment has been a great success and the inclusion of new super-computing facilities, cloud computing and volunteering computing for the future is a big challenge, which we are successfully mastering with a considerable contribution from many super-computing centres around the world, academic and commercial cloud providers. We also discuss R&D computing projects started recently in National Research Center ``Kurchatov Institute''

  5. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-06-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  6. The direction of cloud computing for Malaysian education sector in 21st century

    NASA Astrophysics Data System (ADS)

    Jaafar, Jazurainifariza; Rahman, M. Nordin A.; Kadir, M. Fadzil A.; Shamsudin, Syadiah Nor; Saany, Syarilla Iryani A.

    2017-08-01

    In 21st century, technology has turned learning environment into a new way of education to make learning systems more effective and systematic. Nowadays, education institutions are faced many challenges to ensure the teaching and learning process is running smoothly and manageable. Some of challenges in the current education management are lack of integrated systems, high cost of maintenance, difficulty of configuration and deployment as well as complexity of storage provision. Digital learning is an instructional practice that use technology to make learning experience more effective, provides education process more systematic and attractive. Digital learning can be considered as one of the prominent application that implemented under cloud computing environment. Cloud computing is a type of network resources that provides on-demands services where the users can access applications inside it at any location and no time border. It also promises for minimizing the cost of maintenance and provides a flexible of data storage capacity. The aim of this article is to review the definition and types of cloud computing for improving digital learning management as required in the 21st century education. The analysis of digital learning context focused on primary school in Malaysia. Types of cloud applications and services in education sector are also discussed in the article. Finally, gap analysis and direction of cloud computing in education sector for facing the 21st century challenges are suggested.

  7. Virtual Business Operating Environment in the Cloud: Conceptual Architecture and Challenges

    NASA Astrophysics Data System (ADS)

    Nezhad, Hamid R. Motahari; Stephenson, Bryan; Singhal, Sharad; Castellanos, Malu

    Advances in service oriented architecture (SOA) have brought us close to the once imaginary vision of establishing and running a virtual business, a business in which most or all of its business functions are outsourced to online services. Cloud computing offers a realization of SOA in which IT resources are offered as services that are more affordable, flexible and attractive to businesses. In this paper, we briefly study advances in cloud computing, and discuss the benefits of using cloud services for businesses and trade-offs that they have to consider. We then present 1) a layered architecture for the virtual business, and 2) a conceptual architecture for a virtual business operating environment. We discuss the opportunities and research challenges that are ahead of us in realizing the technical components of this conceptual architecture. We conclude by giving the outlook and impact of cloud services on both large and small businesses.

  8. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    NASA Astrophysics Data System (ADS)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.

  9. CLARUS as a Cloud Security Framework: e-Health Use Case.

    PubMed

    Vidal, David; Iriso, Santiago; Mulero, Rafael

    2017-01-01

    Maintaining Passive Medical Health Records (PMHR) is an increasing cost and resource consumption problem. Moving to the cloud is the clearest solution to solve the problem as it offers a high amount of space and computation power. But the cloud is not safe enough when dealing with this kind of information because it can be easily accessed by attackers. The European Commission funded research project CLARUS contributes to protect healthcare-sensitive information in a secure way.

  10. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  11. The StratusLab cloud distribution: Use-cases and support for scientific applications

    NASA Astrophysics Data System (ADS)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.

  12. Using Computer Assisted Instruction in a Reading and Study Skills Course.

    ERIC Educational Resources Information Center

    Rauch, Margaret

    Test wiseness programs and computer assisted study skills instruction (CASSI) were found to be valuable resources for college reading and study skills instructors and students at St. Cloud State University (Minnesota). Two booklets on test wiseness cues were reorganized and used as computer programs to allow the information to be presented outside…

  13. A PACS archive architecture supported on cloud services.

    PubMed

    Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis

    2012-05-01

    Diagnostic imaging procedures have continuously increased over the last decade and this trend may continue in coming years, creating a great impact on storage and retrieval capabilities of current PACS. Moreover, many smaller centers do not have financial resources or requirements that justify the acquisition of a traditional infrastructure. Alternative solutions, such as cloud computing, may help address this emerging need. A tremendous amount of ubiquitous computational power, such as that provided by Google and Amazon, are used every day as a normal commodity. Taking advantage of this new paradigm, an architecture for a Cloud-based PACS archive that provides data privacy, integrity, and availability is proposed. The solution is independent from the cloud provider and the core modules were successfully instantiated in examples of two cloud computing providers. Operational metrics for several medical imaging modalities were tabulated and compared for Google Storage, Amazon S3, and LAN PACS. A PACS-as-a-Service archive that provides storage of medical studies using the Cloud was developed. The results show that the solution is robust and that it is possible to store, query, and retrieve all desired studies in a similar way as in a local PACS approach. Cloud computing is an emerging solution that promises high scalability of infrastructures, software, and applications, according to a "pay-as-you-go" business model. The presented architecture uses the cloud to setup medical data repositories and can have a significant impact on healthcare institutions by reducing IT infrastructures.

  14. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  15. Menu-driven cloud computing and resource sharing for R and Bioconductor.

    PubMed

    Bolouri, Hamid; Dulepet, Rajiv; Angerman, Michael

    2011-08-15

    We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. hbolouri@fhcrc.org.

  16. Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing.

    PubMed

    Ma, Xiao; Lin, Chuang; Zhang, Han; Liu, Jianwei

    2018-06-15

    Mobile edge computing is proposed as a promising computing paradigm to relieve the excessive burden of data centers and mobile networks, which is induced by the rapid growth of Internet of Things (IoT). This work introduces the cloud-assisted multi-cloudlet framework to provision scalable services in cloudlet-based mobile edge computing. Due to the constrained computation resources of cloudlets and limited communication resources of wireless access points (APs), IoT sensors with identical computation offloading decisions interact with each other. To optimize the processing delay and energy consumption of computation tasks, theoretic analysis of the computation offloading decision problem of IoT sensors is presented in this paper. In more detail, the computation offloading decision problem of IoT sensors is formulated as a computation offloading game and the condition of Nash equilibrium is derived by introducing the tool of a potential game. By exploiting the finite improvement property of the game, the Computation Offloading Decision (COD) algorithm is designed to provide decentralized computation offloading strategies for IoT sensors. Simulation results demonstrate that the COD algorithm can significantly reduce the system cost compared with the random-selection algorithm and the cloud-first algorithm. Furthermore, the COD algorithm can scale well with increasing IoT sensors.

  17. Lessons learned from the ATLAS performance studies of the Iberian Cloud for the first LHC running period

    NASA Astrophysics Data System (ADS)

    Sánchez-Martínez, V.; Borges, G.; Borrego, C.; del Peso, J.; Delfino, M.; Gomes, J.; González de la Hoz, S.; Pacheco Pages, A.; Salt, J.; Sedov, A.; Villaplana, M.; Wolters, H.

    2014-06-01

    In this contribution we describe the performance of the Iberian (Spain and Portugal) ATLAS cloud during the first LHC running period (March 2010-January 2013) in the context of the GRID Computing and Data Distribution Model. The evolution of the resources for CPU, disk and tape in the Iberian Tier-1 and Tier-2s is summarized. The data distribution over all ATLAS destinations is shown, focusing on the number of files transferred and the size of the data. The status and distribution of simulation and analysis jobs within the cloud are discussed. The Distributed Analysis tools used to perform physics analysis are explained as well. Cloud performance in terms of the availability and reliability of its sites is discussed. The effect of the changes in the ATLAS Computing Model on the cloud is analyzed. Finally, the readiness of the Iberian Cloud towards the first Long Shutdown (LS1) is evaluated and an outline of the foreseen actions to take in the coming years is given. The shutdown will be a good opportunity to improve and evolve the ATLAS Distributed Computing system to prepare for the future challenges of the LHC operation.

  18. Mobile-Cloud Assisted Video Summarization Framework for Efficient Management of Remote Sensing Data Generated by Wireless Capsule Sensors

    PubMed Central

    Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook

    2014-01-01

    Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data. PMID:25225874

  19. Mobile-cloud assisted video summarization framework for efficient management of remote sensing data generated by wireless capsule sensors.

    PubMed

    Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook

    2014-09-15

    Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.

  20. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    PubMed Central

    Florence, A. Paulin; Shanthi, V.; Simon, C. B. Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption. PMID:27239551

  1. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.

    PubMed

    Florence, A Paulin; Shanthi, V; Simon, C B Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  2. Techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert

    1993-01-01

    The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.

  3. Cloud-based computation for accelerating vegetation mapping and change detection at regional to national scales

    Treesearch

    Matthew J. Gregory; Zhiqiang Yang; David M. Bell; Warren B. Cohen; Sean Healey; Janet L. Ohmann; Heather M. Roberts

    2015-01-01

    Mapping vegetation and landscape change at fine spatial scales is needed to inform natural resource and conservation planning, but such maps are expensive and time-consuming to produce. For Landsat-based methodologies, mapping efforts are hampered by the daunting task of manipulating multivariate data for millions to billions of pixels. The advent of cloud-based...

  4. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud

    PubMed Central

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-01-01

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16–480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM. DOI: http://dx.doi.org/10.7554/eLife.06664.001 PMID:25955969

  5. Cloud based emergency health care information service in India.

    PubMed

    Karthikeyan, N; Sukanesh, R

    2012-12-01

    A hospital is a health care organization providing patient treatment by expert physicians, surgeons and equipments. A report from a health care accreditation group says that miscommunication between patients and health care providers is the reason for the gap in providing emergency medical care to people in need. In developing countries, illiteracy is the major key root for deaths resulting from uncertain diseases constituting a serious public health problem. Mentally affected, differently abled and unconscious patients can't communicate about their medical history to the medical practitioners. Also, Medical practitioners can't edit or view DICOM images instantly. Our aim is to provide palm vein pattern recognition based medical record retrieval system, using cloud computing for the above mentioned people. Distributed computing technology is coming in the new forms as Grid computing and Cloud computing. These new forms are assured to bring Information Technology (IT) as a service. In this paper, we have described how these new forms of distributed computing will be helpful for modern health care industries. Cloud Computing is germinating its benefit to industrial sectors especially in medical scenarios. In Cloud Computing, IT-related capabilities and resources are provided as services, via the distributed computing on-demand. This paper is concerned with sprouting software as a service (SaaS) by means of Cloud computing with an aim to bring emergency health care sector in an umbrella with physical secured patient records. In framing the emergency healthcare treatment, the crucial thing considered necessary to decide about patients is their previous health conduct records. Thus a ubiquitous access to appropriate records is essential. Palm vein pattern recognition promises a secured patient record access. Likewise our paper reveals an efficient means to view, edit or transfer the DICOM images instantly which was a challenging task for medical practitioners in the past years. We have developed two services for health care. 1. Cloud based Palm vein recognition system 2. Distributed Medical image processing tools for medical practitioners.

  6. Elastic Extension of a CMS Computing Centre Resources on External Clouds

    NASA Astrophysics Data System (ADS)

    Codispoti, G.; Di Maria, R.; Aiftimiei, C.; Bonacorsi, D.; Calligola, P.; Ciaschini, V.; Costantini, A.; Dal Pra, S.; DeGirolamo, D.; Grandi, C.; Michelotto, D.; Panella, M.; Peco, G.; Sapunenko, V.; Sgaravatto, M.; Taneja, S.; Zizzi, G.

    2016-10-01

    After the successful LHC data taking in Run-I and in view of the future runs, the LHC experiments are facing new challenges in the design and operation of the computing facilities. The computing infrastructure for Run-II is dimensioned to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, CMS - along the lines followed by other LHC experiments - is exploring the opportunity to access Cloud resources provided by external partners or commercial providers. Specific use cases have already been explored and successfully exploited during Long Shutdown 1 (LS1) and the first part of Run 2. In this work we present the proof of concept of the elastic extension of a CMS site, specifically the Bologna Tier-3, on an external OpenStack infrastructure. We focus on the “Cloud Bursting” of a CMS Grid site using a newly designed LSF configuration that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on the OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage. The amount of resources allocated thus can be elastically modeled to cope up with the needs of CMS experiment and local users. Moreover, a direct access/integration of OpenStack resources to the CMS workload management system is explored. In this paper we present this approach, we report on the performances of the on-demand allocated resources, and we discuss the lessons learned and the next steps.

  7. Cloud Computing and Your Library

    ERIC Educational Resources Information Center

    Mitchell, Erik T.

    2010-01-01

    One of the first big shifts in how libraries manage resources was the move from print-journal purchasing models to database-subscription and electronic-journal purchasing models. Libraries found that this transition helped them scale their resources and provide better service just by thinking a bit differently about their services. Likewise,…

  8. Biomedical Informatics on the Cloud: A Treasure Hunt for Advancing Cardiovascular Medicine.

    PubMed

    Ping, Peipei; Hermjakob, Henning; Polson, Jennifer S; Benos, Panagiotis V; Wang, Wei

    2018-04-27

    In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly accelerated by the guidance and resources required to unearth potential collections of knowledge. A unified computational platform leverages metadata to not only provide direction but also empower researchers to mine a wealth of biomedical information and forge novel mechanistic insights. This review takes the opportunity to present an overview of the cloud-based computational environment, including the functional roles of metadata, the architecture schema of indexing and search, and the practical scenarios of machine learning-supported molecular signature extraction. By introducing several established resources and state-of-the-art workflows, we share with our readers a broadly defined informatics framework to phenotype cardiovascular health and disease. © 2018 American Heart Association, Inc.

  9. Biomedical cloud computing with Amazon Web Services.

    PubMed

    Fusaro, Vincent A; Patil, Prasad; Gafni, Erik; Wall, Dennis P; Tonellato, Peter J

    2011-08-01

    In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.

  10. Integration of end-user Cloud storage for CMS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez

    End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less

  11. Integration of end-user Cloud storage for CMS analysis

    DOE PAGES

    Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez; ...

    2017-05-19

    End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less

  12. Developing a Science Commons for Geosciences

    NASA Astrophysics Data System (ADS)

    Lenhardt, W. C.; Lander, H.

    2016-12-01

    Many scientific communities, recognizing the research possibilities inherent in data sets, have created domain specific archives such as the Incorporated Research Institutions for Seismology (iris.edu) and ClinicalTrials.gov. Though this is an important step forward, most scientists, including geoscientists, also use a variety of software tools and at least some amount of computation to conduct their research. While the archives make it simpler for scientists to locate the required data, provisioning disk space, compute resources, and network bandwidth can still require significant efforts. This challenge exists despite the wealth of resources available to researchers, namely lab IT resources, institutional IT resources, national compute resources (XSEDE, OSG), private clouds, public clouds, and the development of cyberinfrastructure technologies meant to facilitate use of those resources. Further tasks include obtaining and installing required tools for analysis and visualization. If the research effort is a collaboration or involves certain types of data, then the partners may well have additional non-scientific tasks such as securing the data and developing secure sharing methods for the data. These requirements motivate our investigations into the "Science Commons". This paper will present a working definition of a science commons, compare and contrast examples of existing science commons, and describe a project based at RENCI to implement a science commons for risk analytics. We will then explore what a similar tool might look like for the geosciences.

  13. A Toolkit for ARB to Integrate Custom Databases and Externally Built Phylogenies

    DOE PAGES

    Essinger, Steven D.; Reichenberger, Erin; Morrison, Calvin; ...

    2015-01-21

    Researchers are perpetually amassing biological sequence data. The computational approaches employed by ecologists for organizing this data (e.g. alignment, phylogeny, etc.) typically scale nonlinearly in execution time with the size of the dataset. This often serves as a bottleneck for processing experimental data since many molecular studies are characterized by massive datasets. To keep up with experimental data demands, ecologists are forced to choose between continually upgrading expensive in-house computer hardware or outsourcing the most demanding computations to the cloud. Outsourcing is attractive since it is the least expensive option, but does not necessarily allow direct user interaction with themore » data for exploratory analysis. Desktop analytical tools such as ARB are indispensable for this purpose, but they do not necessarily offer a convenient solution for the coordination and integration of datasets between local and outsourced destinations. Therefore, researchers are currently left with an undesirable tradeoff between computational throughput and analytical capability. To mitigate this tradeoff we introduce a software package to leverage the utility of the interactive exploratory tools offered by ARB with the computational throughput of cloud-based resources. Our pipeline serves as middleware between the desktop and the cloud allowing researchers to form local custom databases containing sequences and metadata from multiple resources and a method for linking data outsourced for computation back to the local database. Furthermore, a tutorial implementation of the toolkit is provided in the supporting information, S1 Tutorial.« less

  14. A Toolkit for ARB to Integrate Custom Databases and Externally Built Phylogenies

    PubMed Central

    Essinger, Steven D.; Reichenberger, Erin; Morrison, Calvin; Blackwood, Christopher B.; Rosen, Gail L.

    2015-01-01

    Researchers are perpetually amassing biological sequence data. The computational approaches employed by ecologists for organizing this data (e.g. alignment, phylogeny, etc.) typically scale nonlinearly in execution time with the size of the dataset. This often serves as a bottleneck for processing experimental data since many molecular studies are characterized by massive datasets. To keep up with experimental data demands, ecologists are forced to choose between continually upgrading expensive in-house computer hardware or outsourcing the most demanding computations to the cloud. Outsourcing is attractive since it is the least expensive option, but does not necessarily allow direct user interaction with the data for exploratory analysis. Desktop analytical tools such as ARB are indispensable for this purpose, but they do not necessarily offer a convenient solution for the coordination and integration of datasets between local and outsourced destinations. Therefore, researchers are currently left with an undesirable tradeoff between computational throughput and analytical capability. To mitigate this tradeoff we introduce a software package to leverage the utility of the interactive exploratory tools offered by ARB with the computational throughput of cloud-based resources. Our pipeline serves as middleware between the desktop and the cloud allowing researchers to form local custom databases containing sequences and metadata from multiple resources and a method for linking data outsourced for computation back to the local database. A tutorial implementation of the toolkit is provided in the supporting information, S1 Tutorial. Availability: http://www.ece.drexel.edu/gailr/EESI/tutorial.php. PMID:25607539

  15. Future Approach to tier-0 extension

    NASA Astrophysics Data System (ADS)

    Jones, B.; McCance, G.; Cordeiro, C.; Giordano, D.; Traylen, S.; Moreno García, D.

    2017-10-01

    The current tier-0 processing at CERN is done on two managed sites, the CERN computer centre and the Wigner computer centre. With the proliferation of public cloud resources at increasingly competitive prices, we have been investigating how to transparently increase our compute capacity to include these providers. The approach taken has been to integrate these resources using our existing deployment and computer management tools and to provide them in a way that exposes them to users as part of the same site. The paper will describe the architecture, the toolset and the current production experiences of this model.

  16. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele

    The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub Center are working on a multi-year Collaborative Research and Development Agreement.With the knowledge developed in the first year on how to provision and manage a federation of virtual machines through Cloud management systems. In this second year, we expanded the work on provisioning and federation, increasing both scale and diversity of solutions, and we started to build on-demand services on the established fabric, introducing the paradigm of Platform as a Service to assist with the execution of scientific workflows. We have enabled scientific workflows ofmore » stakeholders to run on multiple cloud resources at the scale of 1,000 concurrent machines. The demonstrations have been in the areas of (a) Virtual Infrastructure Automation and Provisioning, (b) Interoperability and Federation of Cloud Resources, and (c) On-demand Services for ScientificWorkflows.« less

  18. Game Theory Based Trust Model for Cloud Environment

    PubMed Central

    Gokulnath, K.; Uthariaraj, Rhymend

    2015-01-01

    The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365

  19. Menu-driven cloud computing and resource sharing for R and Bioconductor

    PubMed Central

    Bolouri, Hamid; Angerman, Michael

    2011-01-01

    Summary: We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. Availability and Implementation: CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. Contact: hbolouri@fhcrc.org PMID:21685055

  20. Auspice: Automatic Service Planning in Cloud/Grid Environments

    NASA Astrophysics Data System (ADS)

    Chiu, David; Agrawal, Gagan

    Recent scientific advances have fostered a mounting number of services and data sets available for utilization. These resources, though scattered across disparate locations, are often loosely coupled both semantically and operationally. This loosely coupled relationship implies the possibility of linking together operations and data sets to answer queries. This task, generally known as automatic service composition, therefore abstracts the process of complex scientific workflow planning from the user. We have been exploring a metadata-driven approach toward automatic service workflow composition, among other enabling mechanisms, in our system, Auspice: Automatic Service Planning in Cloud/Grid Environments. In this paper, we present a complete overview of our system's unique features and outlooks for future deployment as the Cloud computing paradigm becomes increasingly eminent in enabling scientific computing.

  1. Making Spatial Statistics Service Accessible On Cloud Platform

    NASA Astrophysics Data System (ADS)

    Mu, X.; Wu, J.; Li, T.; Zhong, Y.; Gao, X.

    2014-04-01

    Web service can bring together applications running on diverse platforms, users can access and share various data, information and models more effectively and conveniently from certain web service platform. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtualized resources are provided as services. With the rampant growth of massive data and restriction of net, traditional web services platforms have some prominent problems existing in development such as calculation efficiency, maintenance cost and data security. In this paper, we offer a spatial statistics service based on Microsoft cloud. An experiment was carried out to evaluate the availability and efficiency of this service. The results show that this spatial statistics service is accessible for the public conveniently with high processing efficiency.

  2. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  3. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  4. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE PAGES

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  5. Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud

    PubMed Central

    Griffith, Malachi; Walker, Jason R.; Spies, Nicholas C.; Ainscough, Benjamin J.; Griffith, Obi L.

    2015-01-01

    Massively parallel RNA sequencing (RNA-seq) has rapidly become the assay of choice for interrogating RNA transcript abundance and diversity. This article provides a detailed introduction to fundamental RNA-seq molecular biology and informatics concepts. We make available open-access RNA-seq tutorials that cover cloud computing, tool installation, relevant file formats, reference genomes, transcriptome annotations, quality-control strategies, expression, differential expression, and alternative splicing analysis methods. These tutorials and additional training resources are accompanied by complete analysis pipelines and test datasets made available without encumbrance at www.rnaseq.wiki. PMID:26248053

  6. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  7. An element search ant colony technique for solving virtual machine placement problem

    NASA Astrophysics Data System (ADS)

    Srija, J.; Rani John, Rose; Kanaga, Grace Mary, Dr.

    2017-09-01

    The data centres in the cloud environment play a key role in providing infrastructure for ubiquitous computing, pervasive computing, mobile computing etc. This computing technique tries to utilize the available resources in order to provide services. Hence maintaining the resource utilization without wastage of power consumption has become a challenging task for the researchers. In this paper we propose the direct guidance ant colony system for effective mapping of virtual machines to the physical machine with maximal resource utilization and minimal power consumption. The proposed algorithm has been compared with the existing ant colony approach which is involved in solving virtual machine placement problem and thus the proposed algorithm proves to provide better result than the existing technique.

  8. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    NASA Astrophysics Data System (ADS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-09-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.

  9. On Study of Application of Big Data and Cloud Computing Technology in Smart Campus

    NASA Astrophysics Data System (ADS)

    Tang, Zijiao

    2017-12-01

    We live in an era of network and information, which means we produce and face a lot of data every day, however it is not easy for database in the traditional meaning to better store, process and analyze the mass data, therefore the big data was born at the right moment. Meanwhile, the development and operation of big data rest with cloud computing which provides sufficient space and resources available to process and analyze data of big data technology. Nowadays, the proposal of smart campus construction aims at improving the process of building information in colleges and universities, therefore it is necessary to consider combining big data technology and cloud computing technology into construction of smart campus to make campus database system and campus management system mutually combined rather than isolated, and to serve smart campus construction through integrating, storing, processing and analyzing mass data.

  10. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline.

    PubMed

    Reid, Jeffrey G; Carroll, Andrew; Veeraraghavan, Narayanan; Dahdouli, Mahmoud; Sundquist, Andreas; English, Adam; Bainbridge, Matthew; White, Simon; Salerno, William; Buhay, Christian; Yu, Fuli; Muzny, Donna; Daly, Richard; Duyk, Geoff; Gibbs, Richard A; Boerwinkle, Eric

    2014-01-29

    Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples.

  11. Generic-distributed framework for cloud services marketplace based on unified ontology.

    PubMed

    Hasan, Samer; Valli Kumari, V

    2017-11-01

    Cloud computing is a pattern for delivering ubiquitous and on demand computing resources based on pay-as-you-use financial model. Typically, cloud providers advertise cloud service descriptions in various formats on the Internet. On the other hand, cloud consumers use available search engines (Google and Yahoo) to explore cloud service descriptions and find the adequate service. Unfortunately, general purpose search engines are not designed to provide a small and complete set of results, which makes the process a big challenge. This paper presents a generic-distrusted framework for cloud services marketplace to automate cloud services discovery and selection process, and remove the barriers between service providers and consumers. Additionally, this work implements two instances of generic framework by adopting two different matching algorithms; namely dominant and recessive attributes algorithm borrowed from gene science and semantic similarity algorithm based on unified cloud service ontology. Finally, this paper presents unified cloud services ontology and models the real-life cloud services according to the proposed ontology. To the best of the authors' knowledge, this is the first attempt to build a cloud services marketplace where cloud providers and cloud consumers can trend cloud services as utilities. In comparison with existing work, semantic approach reduced the execution time by 20% and maintained the same values for all other parameters. On the other hand, dominant and recessive attributes approach reduced the execution time by 57% but showed lower value for recall.

  12. SCEAPI: A unified Restful Web API for High-Performance Computing

    NASA Astrophysics Data System (ADS)

    Rongqiang, Cao; Haili, Xiao; Shasha, Lu; Yining, Zhao; Xiaoning, Wang; Xuebin, Chi

    2017-10-01

    The development of scientific computing is increasingly moving to collaborative web and mobile applications. All these applications need high-quality programming interface for accessing heterogeneous computing resources consisting of clusters, grid computing or cloud computing. In this paper, we introduce our high-performance computing environment that integrates computing resources from 16 HPC centers across China. Then we present a bundle of web services called SCEAPI and describe how it can be used to access HPC resources with HTTP or HTTPs protocols. We discuss SCEAPI from several aspects including architecture, implementation and security, and address specific challenges in designing compatible interfaces and protecting sensitive data. We describe the functions of SCEAPI including authentication, file transfer and job management for creating, submitting and monitoring, and how to use SCEAPI in an easy-to-use way. Finally, we discuss how to exploit more HPC resources quickly for the ATLAS experiment by implementing the custom ARC compute element based on SCEAPI, and our work shows that SCEAPI is an easy-to-use and effective solution to extend opportunistic HPC resources.

  13. The HEPCloud Facility: elastic computing for High Energy Physics - The NOvA Use Case

    NASA Astrophysics Data System (ADS)

    Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Norman, A.; Timm, S.; Tiradani, A.

    2017-10-01

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 38 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper describes the Fermilab HEPCloud Facility and the challenges overcome for the CMS and NOvA communities.

  14. Hybrid Pluggable Processing Pipeline (HyP3): A cloud-based infrastructure for generic processing of SAR data

    NASA Astrophysics Data System (ADS)

    Hogenson, K.; Arko, S. A.; Buechler, B.; Hogenson, R.; Herrmann, J.; Geiger, A.

    2016-12-01

    A problem often faced by Earth science researchers is how to scale algorithms that were developed against few datasets and take them to regional or global scales. One significant hurdle can be the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively, while remaining generic enough to incorporate new algorithms with limited administration time or expense. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon services such as Lambda, the Simple Notification Service (SNS), Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. The HyP3 user interface was written using elastic beanstalk, and the system uses SNS and Lamdba to handle creating, instantiating, executing, and terminating EC2 instances automatically. Data are sent to S3 for delivery to customers and removed using standard data lifecycle management rules. In HyP3 all data processing is ephemeral; there are no persistent processes taking compute and storage resources or generating added cost. When complete, HyP3 will leverage the automatic scaling up and down of EC2 compute power to respond to event-driven demand surges correlated with natural disaster or reprocessing efforts. Massive simultaneous processing within EC2 will be able match the demand spike in ways conventional physical computing power never could, and then tail off incurring no costs when not needed. This presentation will focus on the development techniques and technologies that were used in developing the HyP3 system. Data and process flow will be shown, highlighting the benefits of the cloud for each step. Finally, the steps for integrating a new processing algorithm will be demonstrated. This is the true power of HyP3; allowing people to upload their own algorithms and execute them at archive level scales.

  15. Federated and Cloud Enabled Resources for Data Management and Utilization

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Gordon, M.; Potter, R. G.; Satchwill, B.

    2011-12-01

    The emergence of cloud computing over the past three years has led to a paradigm shift in how data can be managed, processed and made accessible. Building on the federated data management system offered through the Canadian Space Science Data Portal (www.cssdp.ca), we demonstrate how heterogeneous and geographically distributed data sets and modeling tools have been integrated to form a virtual data center and computational modeling platform that has services for data processing and visualization embedded within it. We also discuss positive and negative experiences in utilizing Eucalyptus and OpenStack cloud applications, and job scheduling facilitated by Condor and Star Cluster. We summarize our findings by demonstrating use of these technologies in the Cloud Enabled Space Weather Data Assimilation and Modeling Platform CESWP (www.ceswp.ca), which is funded through Canarie's (canarie.ca) Network Enabled Platforms program in Canada.

  16. Design of Control Plane Architecture Based on Cloud Platform and Experimental Network Demonstration for Multi-domain SDON

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan

    2016-02-01

    With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.

  17. Technology in College Unions and Student Activities: A Collection of Technology Resources from the ACUI Community

    ERIC Educational Resources Information Center

    Association of College Unions International (NJ1), 2012

    2012-01-01

    This publication presents a collection of technology resources from the Association of College Unions International (ACUI) community. Contents include: (1) Podcasting (Jeff Lail); (2) Video Podcasting (Ed Cabellon); (3) Building a Multimedia Production Center (Nathan Byrer); (4) Cloud Computing in the Student Union and Student Activities (TJ…

  18. Jade: using on-demand cloud analysis to give scientists back their flow

    NASA Astrophysics Data System (ADS)

    Robinson, N.; Tomlinson, J.; Hilson, A. J.; Arribas, A.; Powell, T.

    2017-12-01

    The UK's Met Office generates 400 TB weather and climate data every day by running physical models on its Top 20 supercomputer. As data volumes explode, there is a danger that analysis workflows become dominated by watching progress bars, and not thinking about science. We have been researching how we can use distributed computing to allow analysts to process these large volumes of high velocity data in a way that's easy, effective and cheap.Our prototype analysis stack, Jade, tries to encapsulate this. Functionality includes: An under-the-hood Dask engine which parallelises and distributes computations, without the need to retrain analysts Hybrid compute clusters (AWS, Alibaba, and local compute) comprising many thousands of cores Clusters which autoscale up/down in response to calculation load using Kubernetes, and balances the cluster across providers based on the current price of compute Lazy data access from cloud storage via containerised OpenDAP This technology stack allows us to perform calculations many orders of magnitude faster than is possible on local workstations. It is also possible to outperform dedicated local compute clusters, as cloud compute can, in principle, scale to much larger scales. The use of ephemeral compute resources also makes this implementation cost efficient.

  19. Templet Web: the use of volunteer computing approach in PaaS-style cloud

    NASA Astrophysics Data System (ADS)

    Vostokin, Sergei; Artamonov, Yuriy; Tsarev, Daniil

    2018-03-01

    This article presents the Templet Web cloud service. The service is designed for high-performance scientific computing automation. The use of high-performance technology is specifically required by new fields of computational science such as data mining, artificial intelligence, machine learning, and others. Cloud technologies provide a significant cost reduction for high-performance scientific applications. The main objectives to achieve this cost reduction in the Templet Web service design are: (a) the implementation of "on-demand" access; (b) source code deployment management; (c) high-performance computing programs development automation. The distinctive feature of the service is the approach mainly used in the field of volunteer computing, when a person who has access to a computer system delegates his access rights to the requesting user. We developed an access procedure, algorithms, and software for utilization of free computational resources of the academic cluster system in line with the methods of volunteer computing. The Templet Web service has been in operation for five years. It has been successfully used for conducting laboratory workshops and solving research problems, some of which are considered in this article. The article also provides an overview of research directions related to service development.

  20. A case study of tuning MapReduce for efficient Bioinformatics in the cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lizhen; Wang, Zhong; Yu, Weikuan

    The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs. More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular characteristics of bioinformatics applications. In this paper, we aim to minimize the cloud computing cost spent on bioinformatics datamore » analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case. Experimental results show that, with the fine-tuned parameters, we achieve a total of 4× speedup compared with the original performance (using the default settings). Finally, this paper presents an exemplary case for tuning MapReduce-based bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance benefits.« less

  1. Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.

    2011-01-01

    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.

  2. The application of data mining and cloud computing techniques in data-driven models for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Khazaeli, S.; Ravandi, A. G.; Banerji, S.; Bagchi, A.

    2016-04-01

    Recently, data-driven models for Structural Health Monitoring (SHM) have been of great interest among many researchers. In data-driven models, the sensed data are processed to determine the structural performance and evaluate the damages of an instrumented structure without necessitating the mathematical modeling of the structure. A framework of data-driven models for online assessment of the condition of a structure has been developed here. The developed framework is intended for automated evaluation of the monitoring data and structural performance by the Internet technology and resources. The main challenges in developing such framework include: (a) utilizing the sensor measurements to estimate and localize the induced damage in a structure by means of signal processing and data mining techniques, and (b) optimizing the computing and storage resources with the aid of cloud services. The main focus in this paper is to demonstrate the efficiency of the proposed framework for real-time damage detection of a multi-story shear-building structure in two damage scenarios (change in mass and stiffness) in various locations. Several features are extracted from the sensed data by signal processing techniques and statistical methods. Machine learning algorithms are deployed to select damage-sensitive features as well as classifying the data to trace the anomaly in the response of the structure. Here, the cloud computing resources from Amazon Web Services (AWS) have been used to implement the proposed framework.

  3. Scalable cloud without dedicated storage

    NASA Astrophysics Data System (ADS)

    Batkovich, D. V.; Kompaniets, M. V.; Zarochentsev, A. K.

    2015-05-01

    We present a prototype of a scalable computing cloud. It is intended to be deployed on the basis of a cluster without the separate dedicated storage. The dedicated storage is replaced by the distributed software storage. In addition, all cluster nodes are used both as computing nodes and as storage nodes. This solution increases utilization of the cluster resources as well as improves fault tolerance and performance of the distributed storage. Another advantage of this solution is high scalability with a relatively low initial and maintenance cost. The solution is built on the basis of the open source components like OpenStack, CEPH, etc.

  4. Cloud-based processing of multi-spectral imaging data

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  5. Analytical modeling and feasibility study of a multi-GPU cloud-based server (MGCS) framework for non-voxel-based dose calculations.

    PubMed

    Neylon, J; Min, Y; Kupelian, P; Low, D A; Santhanam, A

    2017-04-01

    In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies. An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect. The analytically predicted computation time predicted matched experimentally observations within 1-5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies. The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.

  6. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  7. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment

    PubMed Central

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584

  8. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.

    PubMed

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation.

  9. A Cloud-Based Infrastructure for Near-Real-Time Processing and Dissemination of NPP Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.; Chettri, S. S.

    2011-12-01

    We are building a scalable cloud-based infrastructure for generating and disseminating near-real-time data products from a variety of geospatial and meteorological data sources, including the new National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP). Our approach relies on linking Direct Broadcast and other data streams to a suite of scientific algorithms coordinated by NASA's International Polar-Orbiter Processing Package (IPOPP). The resulting data products are directly accessible to a wide variety of end-user applications, via industry-standard protocols such as OGC Web Services, Unidata Local Data Manager, or OPeNDAP, using open source software components. The processing chain employs on-demand computing resources from Amazon.com's Elastic Compute Cloud and NASA's Nebula cloud services. Our current prototype targets short-term weather forecasting, in collaboration with NASA's Short-term Prediction Research and Transition (SPoRT) program and the National Weather Service. Direct Broadcast is especially crucial for NPP, whose current ground segment is unlikely to deliver data quickly enough for short-term weather forecasters and other near-real-time users. Direct Broadcast also allows full local control over data handling, from the receiving antenna to end-user applications: this provides opportunities to streamline processes for data ingest, processing, and dissemination, and thus to make interpreted data products (Environmental Data Records) available to practitioners within minutes of data capture at the sensor. Cloud computing lets us grow and shrink computing resources to meet large and rapid fluctuations in data availability (twice daily for polar orbiters) - and similarly large fluctuations in demand from our target (near-real-time) users. This offers a compelling business case for cloud computing: the processing or dissemination systems can grow arbitrarily large to sustain near-real time data access despite surges in data volumes or user demand, but that computing capacity (and hourly costs) can be dropped almost instantly once the surge passes. Cloud computing also allows low-risk experimentation with a variety of machine architectures (processor types; bandwidth, memory, and storage capacities, etc.) and of system configurations (including massively parallel computing patterns). Finally, our service-based approach (in which user applications invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored products on demand. To maximize the usefulness and impact of our technology, we have emphasized open, industry-standard software interfaces. We are also using and developing open source software to facilitate the widespread adoption of similar, derived, or interoperable systems for processing and serving near-real-time data from NPP and other sources.

  10. BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2.

    PubMed

    Lee, Hyungro; Yang, Youngik; Chae, Heejoon; Nam, Seungyoon; Choi, Donghoon; Tangchaisin, Patanachai; Herath, Chathura; Marru, Suresh; Nephew, Kenneth P; Kim, Sun

    2012-09-01

    MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research. However, the ability to conduct genome-wide microRNA-mRNA (gene) integration currently requires sophisticated, high-end informatics tools, significant expertise in bioinformatics and computer science to carry out the complex integration analysis. In addition, increased computing infrastructure capabilities are essential in order to accommodate large data sets. In this study, we have extended the BioVLAB cloud workbench to develop an environment for the integrated analysis of microRNA and mRNA expression data, named BioVLAB-MMIA. The workbench facilitates computations on the Amazon EC2 and S3 resources orchestrated by the XBaya Workflow Suite. The advantages of BioVLAB-MMIA over the web-based MMIA system include: 1) readily expanded as new computational tools become available; 2) easily modifiable by re-configuring graphic icons in the workflow; 3) on-demand cloud computing resources can be used on an "as needed" basis; 4) distributed orchestration supports complex and long running workflows asynchronously. We believe that BioVLAB-MMIA will be an easy-to-use computing environment for researchers who plan to perform genome-wide microRNA-mRNA (gene) integrated analysis tasks.

  11. Grids, Clouds, and Virtualization

    NASA Astrophysics Data System (ADS)

    Cafaro, Massimo; Aloisio, Giovanni

    This chapter introduces and puts in context Grids, Clouds, and Virtualization. Grids promised to deliver computing power on demand. However, despite a decade of active research, no viable commercial grid computing provider has emerged. On the other hand, it is widely believed - especially in the Business World - that HPC will eventually become a commodity. Just as some commercial consumers of electricity have mission requirements that necessitate they generate their own power, some consumers of computational resources will continue to need to provision their own supercomputers. Clouds are a recent business-oriented development with the potential to render this eventually as rare as organizations that generate their own electricity today, even among institutions who currently consider themselves the unassailable elite of the HPC business. Finally, Virtualization is one of the key technologies enabling many different Clouds. We begin with a brief history in order to put them in context, and recall the basic principles and concepts underlying and clearly differentiating them. A thorough overview and survey of existing technologies provides the basis to delve into details as the reader progresses through the book.

  12. A Framework and Improvements of the Korea Cloud Services Certification System.

    PubMed

    Jeon, Hangoo; Seo, Kwang-Kyu

    2015-01-01

    Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed.

  13. A Framework and Improvements of the Korea Cloud Services Certification System

    PubMed Central

    Jeon, Hangoo

    2015-01-01

    Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed. PMID:26125049

  14. Hybrid Pluggable Processing Pipeline (HyP3): Programmatic Access to Cloud-Based Processing of SAR Data

    NASA Astrophysics Data System (ADS)

    Weeden, R.; Horn, W. B.; Dimarchi, H.; Arko, S. A.; Hogenson, K.

    2017-12-01

    A problem often faced by Earth science researchers is the question of how to scale algorithms that were developed against few datasets and take them to regional or global scales. This problem only gets worse as we look to a future with larger and larger datasets becoming available. One significant hurdle can be having the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon cloud services such as Lambda, Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. HyP3 provides an Application Programming Interface (API) through which users can programmatically interface with the HyP3 system; allowing them to monitor and control processing jobs running in HyP3, and retrieve the generated HyP3 products when completed. This presentation will focus on the development techniques and enabling technologies that were used in developing the HyP3 system. Data and process flow, from new subscription through to order completion will be shown, highlighting the benefits of the cloud for each step. Because the HyP3 system can be accessed directly from a user's Python scripts, powerful applications leveraging SAR products can be put together fairly easily. This is the true power of HyP3; allowing people to programmatically leverage the power of the cloud.

  15. NGScloud: RNA-seq analysis of non-model species using cloud computing.

    PubMed

    Mora-Márquez, Fernando; Vázquez-Poletti, José Luis; López de Heredia, Unai

    2018-05-03

    RNA-seq analysis usually requires large computing infrastructures. NGScloud is a bioinformatic system developed to analyze RNA-seq data using the cloud computing services of Amazon that permit the access to ad hoc computing infrastructure scaled according to the complexity of the experiment, so its costs and times can be optimized. The application provides a user-friendly front-end to operate Amazon's hardware resources, and to control a workflow of RNA-seq analysis oriented to non-model species, incorporating the cluster concept, which allows parallel runs of common RNA-seq analysis programs in several virtual machines for faster analysis. NGScloud is freely available at https://github.com/GGFHF/NGScloud/. A manual detailing installation and how-to-use instructions is available with the distribution. unai.lopezdeheredia@upm.es.

  16. Role of the ATLAS Grid Information System (AGIS) in Distributed Data Analysis and Simulation

    NASA Astrophysics Data System (ADS)

    Anisenkov, A. V.

    2018-03-01

    In modern high-energy physics experiments, particular attention is paid to the global integration of information and computing resources into a unified system for efficient storage and processing of experimental data. Annually, the ATLAS experiment performed at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) produces tens of petabytes raw data from the recording electronics and several petabytes of data from the simulation system. For processing and storage of such super-large volumes of data, the computing model of the ATLAS experiment is based on heterogeneous geographically distributed computing environment, which includes the worldwide LHC computing grid (WLCG) infrastructure and is able to meet the requirements of the experiment for processing huge data sets and provide a high degree of their accessibility (hundreds of petabytes). The paper considers the ATLAS grid information system (AGIS) used by the ATLAS collaboration to describe the topology and resources of the computing infrastructure, to configure and connect the high-level software systems of computer centers, to describe and store all possible parameters, control, configuration, and other auxiliary information required for the effective operation of the ATLAS distributed computing applications and services. The role of the AGIS system in the development of a unified description of the computing resources provided by grid sites, supercomputer centers, and cloud computing into a consistent information model for the ATLAS experiment is outlined. This approach has allowed the collaboration to extend the computing capabilities of the WLCG project and integrate the supercomputers and cloud computing platforms into the software components of the production and distributed analysis workload management system (PanDA, ATLAS).

  17. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  18. Cloud Computing Fundamentals

    NASA Astrophysics Data System (ADS)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  19. Cancer Diagnosis Epigenomics Scientific Workflow Scheduling in the Cloud Computing Environment Using an Improved PSO Algorithm

    PubMed

    N, Sadhasivam; R, Balamurugan; M, Pandi

    2018-01-27

    Objective: Epigenetic modifications involving DNA methylation and histone statud are responsible for the stable maintenance of cellular phenotypes. Abnormalities may be causally involved in cancer development and therefore could have diagnostic potential. The field of epigenomics refers to all epigenetic modifications implicated in control of gene expression, with a focus on better understanding of human biology in both normal and pathological states. Epigenomics scientific workflow is essentially a data processing pipeline to automate the execution of various genome sequencing operations or tasks. Cloud platform is a popular computing platform for deploying large scale epigenomics scientific workflow. Its dynamic environment provides various resources to scientific users on a pay-per-use billing model. Scheduling epigenomics scientific workflow tasks is a complicated problem in cloud platform. We here focused on application of an improved particle swam optimization (IPSO) algorithm for this purpose. Methods: The IPSO algorithm was applied to find suitable resources and allocate epigenomics tasks so that the total cost was minimized for detection of epigenetic abnormalities of potential application for cancer diagnosis. Result: The results showed that IPSO based task to resource mapping reduced total cost by 6.83 percent as compared to the traditional PSO algorithm. Conclusion: The results for various cancer diagnosis tasks showed that IPSO based task to resource mapping can achieve better costs when compared to PSO based mapping for epigenomics scientific application workflow. Creative Commons Attribution License

  20. Secure Dynamic access control scheme of PHR in cloud computing.

    PubMed

    Chen, Tzer-Shyong; Liu, Chia-Hui; Chen, Tzer-Long; Chen, Chin-Sheng; Bau, Jian-Guo; Lin, Tzu-Ching

    2012-12-01

    With the development of information technology and medical technology, medical information has been developed from traditional paper records into electronic medical records, which have now been widely applied. The new-style medical information exchange system "personal health records (PHR)" is gradually developed. PHR is a kind of health records maintained and recorded by individuals. An ideal personal health record could integrate personal medical information from different sources and provide complete and correct personal health and medical summary through the Internet or portable media under the requirements of security and privacy. A lot of personal health records are being utilized. The patient-centered PHR information exchange system allows the public autonomously maintain and manage personal health records. Such management is convenient for storing, accessing, and sharing personal medical records. With the emergence of Cloud computing, PHR service has been transferred to storing data into Cloud servers that the resources could be flexibly utilized and the operation cost can be reduced. Nevertheless, patients would face privacy problem when storing PHR data into Cloud. Besides, it requires a secure protection scheme to encrypt the medical records of each patient for storing PHR into Cloud server. In the encryption process, it would be a challenge to achieve accurately accessing to medical records and corresponding to flexibility and efficiency. A new PHR access control scheme under Cloud computing environments is proposed in this study. With Lagrange interpolation polynomial to establish a secure and effective PHR information access scheme, it allows to accurately access to PHR with security and is suitable for enormous multi-users. Moreover, this scheme also dynamically supports multi-users in Cloud computing environments with personal privacy and offers legal authorities to access to PHR. From security and effectiveness analyses, the proposed PHR access scheme in Cloud computing environments is proven flexible and secure and could effectively correspond to real-time appending and deleting user access authorization and appending and revising PHR records.

  1. Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems

    PubMed Central

    Wu, Jun; Su, Zhou; Li, Jianhua

    2017-01-01

    Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on “friend” relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems. PMID:28758943

  2. Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems.

    PubMed

    Wu, Jun; Su, Zhou; Wang, Shen; Li, Jianhua

    2017-07-30

    Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on "friend" relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems.

  3. GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.

    PubMed

    Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun

    2013-01-01

    As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.

  4. Integration of XRootD into the cloud infrastructure for ALICE data analysis

    NASA Astrophysics Data System (ADS)

    Kompaniets, Mikhail; Shadura, Oksana; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey

    2015-12-01

    Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments. We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is based on the Puppet configuration management system. Ceph installation and configuration operations are structured and converted to Puppet manifests describing node configurations and integrated into Packstack. This solution can be easily deployed, maintained and used even in small groups with limited computing resources and small organizations, which usually have lack of IT support. The proposed infrastructure has been tested on two different clouds (SPbSU & BITP) and integrates successfully with the ALICE data analysis model.

  5. Cost Optimal Elastic Auto-Scaling in Cloud Infrastructure

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Sidhanta, S.; Ganguly, S.; Nemani, R. R.

    2014-12-01

    Today, elastic scaling is critical part of leveraging cloud. Elastic scaling refers to adding resources only when it is needed and deleting resources when not in use. Elastic scaling ensures compute/server resources are not over provisioned. Today, Amazon and Windows Azure are the only two platform provider that allow auto-scaling of cloud resources where servers are automatically added and deleted. However, these solution falls short of following key features: A) Requires explicit policy definition such server load and therefore lacks any predictive intelligence to make optimal decision; B) Does not decide on the right size of resource and thereby does not result in cost optimal resource pool. In a typical cloud deployment model, we consider two types of application scenario: A. Batch processing jobs → Hadoop/Big Data case B. Transactional applications → Any application that process continuous transactions (Requests/response) In reference of classical queuing model, we are trying to model a scenario where servers have a price and capacity (size) and system can add delete servers to maintain a certain queue length. Classical queueing models applies to scenario where number of servers are constant. So we cannot apply stationary system analysis in this case. We investigate the following questions 1. Can we define Job queue and use the metric to define such a queue to predict the resource requirement in a quasi-stationary way? Can we map that into an optimal sizing problem? 2. Do we need to get into a level of load (CPU/Data) on server level to characterize the size requirement? How do we learn that based on Job type?

  6. ScipionCloud: An integrative and interactive gateway for large scale cryo electron microscopy image processing on commercial and academic clouds.

    PubMed

    Cuenca-Alba, Jesús; Del Cano, Laura; Gómez Blanco, Josué; de la Rosa Trevín, José Miguel; Conesa Mingo, Pablo; Marabini, Roberto; S Sorzano, Carlos Oscar; Carazo, Jose María

    2017-10-01

    New instrumentation for cryo electron microscopy (cryoEM) has significantly increased data collection rate as well as data quality, creating bottlenecks at the image processing level. Current image processing model of moving the acquired images from the data source (electron microscope) to desktops or local clusters for processing is encountering many practical limitations. However, computing may also take place in distributed and decentralized environments. In this way, cloud is a new form of accessing computing and storage resources on demand. Here, we evaluate on how this new computational paradigm can be effectively used by extending our current integrative framework for image processing, creating ScipionCloud. This new development has resulted in a full installation of Scipion both in public and private clouds, accessible as public "images", with all the required preinstalled cryoEM software, just requiring a Web browser to access all Graphical User Interfaces. We have profiled the performance of different configurations on Amazon Web Services and the European Federated Cloud, always on architectures incorporating GPU's, and compared them with a local facility. We have also analyzed the economical convenience of different scenarios, so cryoEM scientists have a clearer picture of the setup that is best suited for their needs and budgets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Big data processing in the cloud - Challenges and platforms

    NASA Astrophysics Data System (ADS)

    Zhelev, Svetoslav; Rozeva, Anna

    2017-12-01

    Choosing the appropriate architecture and technologies for a big data project is a difficult task, which requires extensive knowledge in both the problem domain and in the big data landscape. The paper analyzes the main big data architectures and the most widely implemented technologies used for processing and persisting big data. Clouds provide for dynamic resource scaling, which makes them a natural fit for big data applications. Basic cloud computing service models are presented. Two architectures for processing big data are discussed, Lambda and Kappa architectures. Technologies for big data persistence are presented and analyzed. Stream processing as the most important and difficult to manage is outlined. The paper highlights main advantages of cloud and potential problems.

  8. The Clouds distributed operating system - Functional description, implementation details and related work

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.

    1988-01-01

    Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.

  9. A FairShare Scheduling Service for OpenNebula

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Vallero, S.; Zaccolo, V.

    2017-10-01

    In the ideal limit of infinite resources, multi-tenant applications are able to scale in/out on a Cloud driven only by their functional requirements. While a large Public Cloud may be a reasonable approximation of this condition, small scientific computing centres usually work in a saturated regime. In this case, an advanced resource allocation policy is needed in order to optimize the use of the data centre. The general topic of advanced resource scheduling is addressed by several components of the EU-funded INDIGO-DataCloud project. In this contribution, we describe the FairShare Scheduler Service (FaSS) for OpenNebula (ONE). The service must satisfy resource requests according to an algorithm which prioritizes tasks according to an initial weight and to the historical resource usage of the project. The software was designed to be less intrusive as possible in the ONE code. We keep the original ONE scheduler implementation to match requests to available resources, but the queue of pending jobs to be processed is the one ordered according to priorities as delivered by the FaSS. The FaSS implementation is still being finalized and in this contribution we describe the functional and design requirements the module should satisfy, as well as its high-level architecture.

  10. Service-oriented Software Defined Optical Networks for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Liu, Yuze; Li, Hui; Ji, Yuefeng

    2017-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.

  11. Range wise busy checking 2-way imbalanced algorithm for cloudlet allocation in cloud environment

    NASA Astrophysics Data System (ADS)

    Alanzy, Mohammed; Latip, Rohaya; Muhammed, Abdullah

    2018-05-01

    Cloud computing considers as a new business paradigm and a popular platform over the last few years. Many organizations, agencies, and departments consider responsible tasks time and tasks needed to be accomplished as soon as possible. These agencies counter IT issues due to the massive arise of data, applications, and solution scopes. Currently, the main issue related with the cloud is the way of making the environment of the cloud computing more qualified, and this way needs a competent allocation strategy of the cloudlet, Thus, there are huge number of studies conducted with regards to this matter that sought to assign the cloudlets to VMs or resources by variety of strategies. In this paper we have proposed range wise busy checking 2-way imbalanced Algorithm in cloud computing. Compare to other methods, it decreases the completion time to finish tasks’ execution, it is considered the fundamental part to enhance the system performance such as the makespan. This algorithm was simulated using Cloudsim to give more opportunity to the higher VM speed to accommodate more Cloudlets in its local queue without considering the threshold balance condition. The simulation result shows that the average makespan time is lesser compare to the previous cloudlet allocation strategy.

  12. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.

  13. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services.

    PubMed

    Bao, Shunxing; Damon, Stephen M; Landman, Bennett A; Gokhale, Aniruddha

    2016-02-27

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  14. Performance management of high performance computing for medical image processing in Amazon Web Services

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-03-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical- Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for- use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  15. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services

    PubMed Central

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-01-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline. PMID:27127335

  16. Cloud Based Earth Observation Data Exploitation Platforms

    NASA Astrophysics Data System (ADS)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.

    2017-12-01

    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland and the Amazon Web Services cloud. This work will present an overview of the TEPs and the multi-cloud EO data processing platform, and discuss their main achievements and their impacts in the context of distributed Research Infrastructures such as EPOS and EOSC.

  17. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  18. Towards real-time photon Monte Carlo dose calculation in the cloud

    NASA Astrophysics Data System (ADS)

    Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe

    2017-06-01

    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.

  19. Towards real-time photon Monte Carlo dose calculation in the cloud.

    PubMed

    Ziegenhein, Peter; Kozin, Igor N; Kamerling, Cornelis Ph; Oelfke, Uwe

    2017-06-07

    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.

  20. HNSciCloud - Overview and technical Challenges

    NASA Astrophysics Data System (ADS)

    Gasthuber, Martin; Meinhard, Helge; Jones, Robert

    2017-10-01

    HEP is only one of many sciences with sharply increasing compute requirements that cannot be met by profiting from Moore’s law alone. Commercial clouds potentially allow for realising larger economies of scale. While some small-scale experience requiring dedicated effort has been collected, public cloud resources have not been integrated yet with the standard workflows of science organisations in their private data centres; in addition, European science has not ramped up to significant scale yet. The HELIX NEBULA Science Cloud project - HNSciCloud, partly funded by the European Commission, addresses these points. Ten organisations under CERN’s leadership, covering particle physics, bioinformatics, photon science and other sciences, have joined to procure public cloud resources as well as dedicated development efforts towards this integration. The HNSciCloud project faces the challenge to accelerate developments performed by the selected commercial providers. In order to guarantee cost efficient usage of IaaS resources across a wide range of scientific communities, the technical requirements had to be carefully constructed. With respect to current IaaS offerings, dataintensive science is the biggest challenge; other points that need to be addressed concern identity federations, network connectivity and how to match business practices of large IaaS providers with those of public research organisations. In the first section, this paper will give an overview of the project and explain the findings so far. The last section will explain the key points of the technical requirements and present first results of the experience of the procurers with the services in comparison to their’on-premise’ infrastructure.

  1. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline

    PubMed Central

    2014-01-01

    Background Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. Results To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. Conclusions By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples. PMID:24475911

  2. Large-scale parallel genome assembler over cloud computing environment.

    PubMed

    Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong

    2017-06-01

    The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.

  3. Global, Persistent, Real-time Multi-sensor Automated Satellite Image Analysis and Crop Forecasting in Commercial Cloud

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.

    2016-12-01

    Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general indicators of environmental health, and can detect growth and changes in cities that are displacing historical agricultural zones.

  4. The HEPCloud Facility: elastic computing for High Energy Physics – The NOvA Use Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuess, S.; Garzoglio, G.; Holzman, B.

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a commonmore » interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper describes the Fermilab HEPCloud Facility and the challenges overcome for the CMS and NOvA communities.« less

  5. Federated data storage system prototype for LHC experiments and data intensive science

    NASA Astrophysics Data System (ADS)

    Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Ryabinkin, E.; Zarochentsev, A.

    2017-10-01

    Rapid increase of data volume from the experiments running at the Large Hadron Collider (LHC) prompted physics computing community to evaluate new data handling and processing solutions. Russian grid sites and universities’ clusters scattered over a large area aim at the task of uniting their resources for future productive work, at the same time giving an opportunity to support large physics collaborations. In our project we address the fundamental problem of designing a computing architecture to integrate distributed storage resources for LHC experiments and other data-intensive science applications and to provide access to data from heterogeneous computing facilities. Studies include development and implementation of federated data storage prototype for Worldwide LHC Computing Grid (WLCG) centres of different levels and University clusters within one National Cloud. The prototype is based on computing resources located in Moscow, Dubna, Saint Petersburg, Gatchina and Geneva. This project intends to implement a federated distributed storage for all kind of operations such as read/write/transfer and access via WAN from Grid centres, university clusters, supercomputers, academic and commercial clouds. The efficiency and performance of the system are demonstrated using synthetic and experiment-specific tests including real data processing and analysis workflows from ATLAS and ALICE experiments, as well as compute-intensive bioinformatics applications (PALEOMIX) running on supercomputers. We present topology and architecture of the designed system, report performance and statistics for different access patterns and show how federated data storage can be used efficiently by physicists and biologists. We also describe how sharing data on a widely distributed storage system can lead to a new computing model and reformations of computing style, for instance how bioinformatics program running on supercomputers can read/write data from the federated storage.

  6. Local storage federation through XRootD architecture for interactive distributed analysis

    NASA Astrophysics Data System (ADS)

    Colamaria, F.; Colella, D.; Donvito, G.; Elia, D.; Franco, A.; Luparello, G.; Maggi, G.; Miniello, G.; Vallero, S.; Vino, G.

    2015-12-01

    A cloud-based Virtual Analysis Facility (VAF) for the ALICE experiment at the LHC has been deployed in Bari. Similar facilities are currently running in other Italian sites with the aim to create a federation of interoperating farms able to provide their computing resources for interactive distributed analysis. The use of cloud technology, along with elastic provisioning of computing resources as an alternative to the grid for running data intensive analyses, is the main challenge of these facilities. One of the crucial aspects of the user-driven analysis execution is the data access. A local storage facility has the disadvantage that the stored data can be accessed only locally, i.e. from within the single VAF. To overcome such a limitation a federated infrastructure, which provides full access to all the data belonging to the federation independently from the site where they are stored, has been set up. The federation architecture exploits both cloud computing and XRootD technologies, in order to provide a dynamic, easy-to-use and well performing solution for data handling. It should allow the users to store the files and efficiently retrieve the data, since it implements a dynamic distributed cache among many datacenters in Italy connected to one another through the high-bandwidth national network. Details on the preliminary architecture implementation and performance studies are discussed.

  7. Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.

    PubMed

    Abouelhoda, Mohamed; Issa, Shadi Alaa; Ghanem, Moustafa

    2012-05-04

    Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis.The system can be accessed either through a cloud-enabled web-interface or downloaded and installed to run within the user's local environment. All resources related to Tavaxy are available at http://www.tavaxy.org.

  8. Precipitation Processes developed during ARM (1997), TOGA COARE (1992), GATE (1974), SCSMEX (1998), and KWAJEX (1999), Consistent 2D, semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  9. Dynamic Space for Rent: Using Commercial Web Hosting to Develop a Web 2.0 Intranet

    ERIC Educational Resources Information Center

    Hodgins, Dave

    2010-01-01

    The explosion of Web 2.0 into libraries has left many smaller academic libraries (and other libraries with limited computing resources or support) to work in the cloud using free Web applications. The use of commercial Web hosting is an innovative approach to the problem of inadequate local resources. While the idea of insourcing IT will seem…

  10. Efficient Nash Equilibrium Resource Allocation Based on Game Theory Mechanism in Cloud Computing by Using Auction

    PubMed Central

    Nezarat, Amin; Dastghaibifard, GH

    2015-01-01

    One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer’s utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider. PMID:26431035

  11. Efficient Nash Equilibrium Resource Allocation Based on Game Theory Mechanism in Cloud Computing by Using Auction.

    PubMed

    Nezarat, Amin; Dastghaibifard, G H

    2015-01-01

    One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer's utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider.

  12. Where Next for Marine Cloud Brightening Research?

    NASA Astrophysics Data System (ADS)

    Jenkins, A. K. L.; Forster, P.

    2014-12-01

    Realistic estimates of geoengineering effectiveness will be central to informed decision-making on its possible role in addressing climate change. Over the last decade, global-scale computer climate modelling of geoengineering has been developing. While these developments have allowed quantitative estimates of geoengineering effectiveness to be produced, the relative coarseness of the grid of these models (tens of kilometres) means that key practical details of the proposed geoengineering is not always realistically captured. This is particularly true for marine cloud brightening (MCB), where both the clouds, as well as the tens-of-meters scale sea-going implementation vessels cannot be captured in detail. Previous research using cloud resolving modelling has shown that neglecting such details may lead to MCB effectiveness being overestimated by up to half. Realism of MCB effectiveness will likely improve from ongoing developments in the understanding and modelling of clouds. We also propose that realism can be increased via more specific improvements (see figure). A readily achievable example would be the reframing of previous MCB effectiveness estimates in light of the cloud resolving scale findings. Incorporation of implementation details could also be made - via parameterisation - into future global-scale modelling of MCB. However, as significant unknowns regarding the design of the MCB aerosol production technique remain, resource-intensive cloud resolving computer modelling of MCB may be premature unless of broader benefit to the wider understanding of clouds. One of the most essential recommendations is for enhanced communication between climate scientists and MCB designers. This would facilitate the identification of potentially important design aspects necessary for realistic computer simulations. Such relationships could be mutually beneficial, with computer modelling potentially informing more efficient designs of the MCB implementation technique. (Acknowledgment) This work is part of the Integrated Assessment of Geoengineering Proposals (IAGP) project, funded by the Engineering and Physical Sciences Research Council and the Natural Environment Research Council (EP/I014721/1).

  13. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system

    NASA Astrophysics Data System (ADS)

    Toor, S.; Osmani, L.; Eerola, P.; Kraemer, O.; Lindén, T.; Tarkoma, S.; White, J.

    2014-06-01

    The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.

  14. BESIII physical offline data analysis on virtualization platform

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Li, H.; Kan, B.; Shi, J.; Lei, X.

    2015-12-01

    In this contribution, we present an ongoing work, which aims at benefiting BESIII computing system for higher resource utilization and more efficient job operations brought by cloud and virtualization technology with Openstack and KVM. We begin with the architecture of BESIII offline software to understand how it works. We mainly report the KVM performance evaluation and optimization from various factors in hardware and kernel. Experimental results show the CPU performance penalty of KVM can be approximately decreased to 3%. In addition, the performance comparison between KVM and physical machines in aspect of CPU, disk IO and network IO is also presented. Finally, we present our development work, an adaptive cloud scheduler, which allocates and reclaims VMs dynamically according to the status of TORQUE queue and the size of resource pool to improve resource utilization and job processing efficiency.

  15. Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open Source Search Algorithms

    PubMed Central

    Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.

    2009-01-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578

  16. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    PubMed

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  17. The performance of low-cost commercial cloud computing as an alternative in computational chemistry.

    PubMed

    Thackston, Russell; Fortenberry, Ryan C

    2015-05-05

    The growth of commercial cloud computing (CCC) as a viable means of computational infrastructure is largely unexplored for the purposes of quantum chemistry. In this work, the PSI4 suite of computational chemistry programs is installed on five different types of Amazon World Services CCC platforms. The performance for a set of electronically excited state single-point energies is compared between these CCC platforms and typical, "in-house" physical machines. Further considerations are made for the number of cores or virtual CPUs (vCPUs, for the CCC platforms), but no considerations are made for full parallelization of the program (even though parallelization of the BLAS library is implemented), complete high-performance computing cluster utilization, or steal time. Even with this most pessimistic view of the computations, CCC resources are shown to be more cost effective for significant numbers of typical quantum chemistry computations. Large numbers of large computations are still best utilized by more traditional means, but smaller-scale research may be more effectively undertaken through CCC services. © 2015 Wiley Periodicals, Inc.

  18. Hybrid cloud and cluster computing paradigms for life science applications

    PubMed Central

    2010-01-01

    Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982

  19. Hybrid cloud and cluster computing paradigms for life science applications.

    PubMed

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  20. Cloud Computing

    DTIC Science & Technology

    2010-04-29

    Cloud Computing   The answer, my friend, is blowing in the wind.   The answer is blowing in the wind. 1Bingue ‐ Cook  Cloud   Computing  STSC 2010... Cloud   Computing  STSC 2010 Objectives • Define the cloud    • Risks of  cloud   computing f l d i• Essence o  c ou  comput ng • Deployed clouds in DoD 3Bingue...Cook  Cloud   Computing  STSC 2010 Definitions of Cloud Computing       Cloud   computing  is a model for enabling  b d d ku

  1. Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.

    2017-12-01

    While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).

  2. An Adaptive Multilevel Security Framework for the Data Stored in Cloud Environment

    PubMed Central

    Dorairaj, Sudha Devi; Kaliannan, Thilagavathy

    2015-01-01

    Cloud computing is renowned for delivering information technology services based on internet. Nowadays, organizations are interested in moving their massive data and computations into cloud to reap their significant benefits of on demand service, resource pooling, and rapid elasticity that helps to satisfy the dynamically changing infrastructure demand without the burden of owning, managing, and maintaining it. Since the data needs to be secured throughout its life cycle, security of the data in cloud is a major challenge to be concentrated on because the data is in third party's premises. Any uniform simple or high level security method for all the data either compromises the sensitive data or proves to be too costly with increased overhead. Any common multiple method for all data becomes vulnerable when the common security pattern is identified at the event of successful attack on any information and also encourages more attacks on all other data. This paper suggests an adaptive multilevel security framework based on cryptography techniques that provide adequate security for the classified data stored in cloud. The proposed security system acclimates well for cloud environment and is also customizable and more reliant to meet the required level of security of data with different sensitivity that changes with business needs and commercial conditions. PMID:26258165

  3. An Adaptive Multilevel Security Framework for the Data Stored in Cloud Environment.

    PubMed

    Dorairaj, Sudha Devi; Kaliannan, Thilagavathy

    2015-01-01

    Cloud computing is renowned for delivering information technology services based on internet. Nowadays, organizations are interested in moving their massive data and computations into cloud to reap their significant benefits of on demand service, resource pooling, and rapid elasticity that helps to satisfy the dynamically changing infrastructure demand without the burden of owning, managing, and maintaining it. Since the data needs to be secured throughout its life cycle, security of the data in cloud is a major challenge to be concentrated on because the data is in third party's premises. Any uniform simple or high level security method for all the data either compromises the sensitive data or proves to be too costly with increased overhead. Any common multiple method for all data becomes vulnerable when the common security pattern is identified at the event of successful attack on any information and also encourages more attacks on all other data. This paper suggests an adaptive multilevel security framework based on cryptography techniques that provide adequate security for the classified data stored in cloud. The proposed security system acclimates well for cloud environment and is also customizable and more reliant to meet the required level of security of data with different sensitivity that changes with business needs and commercial conditions.

  4. GTZ: a fast compression and cloud transmission tool optimized for FASTQ files.

    PubMed

    Xing, Yuting; Li, Gen; Wang, Zhenguo; Feng, Bolun; Song, Zhuo; Wu, Chengkun

    2017-12-28

    The dramatic development of DNA sequencing technology is generating real big data, craving for more storage and bandwidth. To speed up data sharing and bring data to computing resource faster and cheaper, it is necessary to develop a compression tool than can support efficient compression and transmission of sequencing data onto the cloud storage. This paper presents GTZ, a compression and transmission tool, optimized for FASTQ files. As a reference-free lossless FASTQ compressor, GTZ treats different lines of FASTQ separately, utilizes adaptive context modelling to estimate their characteristic probabilities, and compresses data blocks with arithmetic coding. GTZ can also be used to compress multiple files or directories at once. Furthermore, as a tool to be used in the cloud computing era, it is capable of saving compressed data locally or transmitting data directly into cloud by choice. We evaluated the performance of GTZ on some diverse FASTQ benchmarks. Results show that in most cases, it outperforms many other tools in terms of the compression ratio, speed and stability. GTZ is a tool that enables efficient lossless FASTQ data compression and simultaneous data transmission onto to cloud. It emerges as a useful tool for NGS data storage and transmission in the cloud environment. GTZ is freely available online at: https://github.com/Genetalks/gtz .

  5. Cloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.

    2010-12-01

    We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for processing and serving near-real-time data from NPP and other sensors. A scalable architecture based on cloud computing ensures cost-effective, real-time processing and delivery of NPP and other data. Access via standard Web services maximizes its interoperability and usefulness.

  6. Marine Corps Private Cloud Computing Environment Strategy

    DTIC Science & Technology

    2012-05-15

    leveraging economies of scale through the MCEITS PCCE, the Marine Corps will measure consumed IT resources more effectively, increase or decrease...flexible broad network access, resource pooling, elastic provisioning and measured services. By leveraging economies of scale the Marine Corps will be able...IaaS SaaS / IaaS 1 1 LCE I ACE Dets I I I I ------------------~ GIG / CJ Internet Security Boundary MCEN I DISN r :------------------ MCEN

  7. INDIGO-DataCloud solutions for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Fiore, Sandro; Monna, Stephen; Chen, Yin

    2017-04-01

    INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is a European Commission funded project aiming to develop a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The development of INDIGO solutions covers the different layers in cloud computing (IaaS, PaaS, SaaS), and provides tools to exploit resources like HPC or GPGPUs. INDIGO is oriented to support European Scientific research communities, that are well represented in the project. Twelve different Case Studies have been analyzed in detail from different fields: Biological & Medical sciences, Social sciences & Humanities, Environmental and Earth sciences and Physics & Astrophysics. INDIGO-DataCloud provides solutions to emerging challenges in Earth Science like: -Enabling an easy deployment of community services at different cloud sites. Many Earth Science research infrastructures often involve distributed observation stations across countries, and also have distributed data centers to support the corresponding data acquisition and curation. There is a need to easily deploy new data center services while the research infrastructure continuous spans. As an example: LifeWatch (ESFRI, Ecosystems and Biodiversity) uses INDIGO solutions to manage the deployment of services to perform complex hydrodynamics and water quality modelling over a Cloud Computing environment, predicting algae blooms, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator for deployment, AAI (AuthN, AuthZ) and OneData (Distributed Storage System). -Supporting Big Data Analysis. Nowadays, many Earth Science research communities produce large amounts of data and and are challenged by the difficulties of processing and analysing it. A climate models intercomparison data analysis case study for the European Network for Earth System Modelling (ENES) community has been setup, based on the Ophidia big data analysis framework and the Kepler workflow management system. Such services normally involve a large and distributed set of data and computing resources. In this regard, this case study exploits the INDIGO PaaS for a flexible and dynamic allocation of the resources at the infrastructural level. -Providing Distributed Data Storage Solutions. In order to allow scientific communities to perform heavy computation on huge datasets, INDIGO provides global data access solutions allowing researchers to access data in a distributed environment like fashion regardless of its location, and also to publish and share their research results with public or close communities. INDIGO solutions that support the access to distributed data storage (OneData) are being tested on EMSO infrastructure (Ocean Sciences and Geohazards) data. Another aspect of interest for the EMSO community is in efficient data processing by exploiting INDIGO services like PaaS Orchestrator. Further, for HPC exploitation, a new solution named Udocker has been implemented, enabling users to execute docker containers in supercomputers, without requiring administration privileges. This presentation will overview INDIGO solutions that are interesting and useful for Earth science communities and will show how they can be applied to other Case Studies.

  8. REEF: Retainable Evaluator Execution Framework

    PubMed Central

    Weimer, Markus; Chen, Yingda; Chun, Byung-Gon; Condie, Tyson; Curino, Carlo; Douglas, Chris; Lee, Yunseong; Majestro, Tony; Malkhi, Dahlia; Matusevych, Sergiy; Myers, Brandon; Narayanamurthy, Shravan; Ramakrishnan, Raghu; Rao, Sriram; Sears, Russell; Sezgin, Beysim; Wang, Julia

    2015-01-01

    Resource Managers like Apache YARN have emerged as a critical layer in the cloud computing system stack, but the developer abstractions for leasing cluster resources and instantiating application logic are very low-level. This flexibility comes at a high cost in terms of developer effort, as each application must repeatedly tackle the same challenges (e.g., fault-tolerance, task scheduling and coordination) and re-implement common mechanisms (e.g., caching, bulk-data transfers). This paper presents REEF, a development framework that provides a control-plane for scheduling and coordinating task-level (data-plane) work on cluster resources obtained from a Resource Manager. REEF provides mechanisms that facilitate resource re-use for data caching, and state management abstractions that greatly ease the development of elastic data processing work-flows on cloud platforms that support a Resource Manager service. REEF is being used to develop several commercial offerings such as the Azure Stream Analytics service. Furthermore, we demonstrate REEF development of a distributed shell application, a machine learning algorithm, and a port of the CORFU [4] system. REEF is also currently an Apache Incubator project that has attracted contributors from several instititutions.1 PMID:26819493

  9. Analysis on the security of cloud computing

    NASA Astrophysics Data System (ADS)

    He, Zhonglin; He, Yuhua

    2011-02-01

    Cloud computing is a new technology, which is the fusion of computer technology and Internet development. It will lead the revolution of IT and information field. However, in cloud computing data and application software is stored at large data centers, and the management of data and service is not completely trustable, resulting in safety problems, which is the difficult point to improve the quality of cloud service. This paper briefly introduces the concept of cloud computing. Considering the characteristics of cloud computing, it constructs the security architecture of cloud computing. At the same time, with an eye toward the security threats cloud computing faces, several corresponding strategies are provided from the aspect of cloud computing users and service providers.

  10. The Cloud2SM Project

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barosso, Guillermo; Simonin, Matthieu

    2015-04-01

    From the past decades the monitoring of civil engineering structure became a major field of research and development process in the domains of modelling and integrated instrumentation. This increasing of interest can be attributed in part to the need of controlling the aging of such structures and on the other hand to the need to optimize maintenance costs. From this standpoint the project Cloud2SM (Cloud architecture design for Structural Monitoring with in-line Sensors and Models tasking), has been launched to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. The specificity of such architecture is to be based on the notion of data processing through physical or statistical models. Thus the data processing, whether material or mathematical, can be seen here as a resource of the main architecture. The project can be divided in various items: -The sensors and their measurement process: Those items provide data to the main architecture and can embed storage or computational resources. Dependent of onboard capacity and the amount of data generated it can be distinguished heavy and light sensors. - The storage resources: Based on the cloud concept this resource can store at least two types of data, raw data and processed ones. - The computational resources: This item includes embedded "pseudo real time" resources as the dedicated computer cluster or computational resources. - The models: Used for the conversion of raw data to meaningful data. Those types of resources inform the system of their needs they can be seen as independents blocks of the system. - The user interface: This item can be divided in various HMI to assess maintaining operation on the sensors or pop-up some information to the user. - The demonstrators: The structures themselves. This project follows previous research works initiated in the European project ISTIMES [1]. It includes the infrared thermal monitoring of civil engineering structures [2-3] and/or the vibration monitoring of such structures [4-5]. The chosen architecture is based on the OGC standard in order to ensure the interoperability between the various measurement systems. This concept is extended to the notion of physical models. The last but not the least main objective of this project is to explore the feasibility and the reliability to deploy mathematical models and process a large amount of data using the GPGPU capacity of a dedicated computational cluster, while studying OGC standardization to those technical concepts. References [1] M. Proto et al., « Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing: the ISTIMES project », Journal Sensors, Sensors 2010, 10(12), 10620-10639; doi:10.3390/s101210620, December 2010. [2] J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, 17 pages ,November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [3] J Dumoulin and V Boucher; "Infrared thermography system for transport infrastructures survey with inline local atmospheric parameter measurements and offline model for radiation attenuation evaluations," J. Appl. Remote Sens., 8(1), 084978 (2014). doi:10.1117/1.JRS.8.084978. [4] V. Le Cam, M. Doehler, M. Le Pen, L. Mevel. "Embedded modal analysis algorithms on the smart wireless sensor platform PEGASE", In Proc. 9th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 2013. [5] M. Zghal, L. Mevel, P. Del Moral, "Modal parameter estimation using interacting Kalman filter", Mechanical Systems and Signal Processing, 2014.

  11. Altitude determination and descriptive analysis of clouds on ERTS-1 multispectral photography. [Venezuela

    NASA Technical Reports Server (NTRS)

    Albrizzio, C.; Andressen, A.

    1974-01-01

    A simple method to determine the approximate altitude of clouds is described, with the objective of refining their classification using only marginal data from the photographs. Results of the application of this method on photographs of the Goajira Peninsula, Paraguana Peninsula and the Central Coast of Venezuela are presented. Here, the altitudes computed are used to classify clouds and to identify the genus of others without typical form. Instability of air masses through clouds vertical development, and wind direction as well as other local climatic characteristics such as moisture content, loci of condensation, area, etc. are determined using repetitive coverage for the time interval of the photography. Applications for the regional and urban planning (including airport location and flights schedule) and natural resources evaluation are suggested.

  12. Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm.

    PubMed

    Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian

    2016-01-01

    With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.

  13. SeaWiFS Technical Report Series. Volume 7: Cloud screening for polar orbiting visible and infrared (IR) satellite sensors

    NASA Technical Reports Server (NTRS)

    Darzi, Michael; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)

    1992-01-01

    Methods for detecting and screening cloud contamination from satellite derived visible and infrared data are reviewed in this document. The methods are applicable to past, present, and future polar orbiting satellite radiometers. Such instruments include the Coastal Zone Color Scanner (CZCS), operational from 1978 through 1986; the Advanced Very High Resolution Radiometer (AVHRR); the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), scheduled for launch in August 1993; and the Moderate Resolution Imaging Spectrometer (IMODIS). Constant threshold methods are the least demanding computationally, and often provide adequate results. An improvement to these methods are the least demanding computationally, and often provide adequate results. An improvement to these methods is to determine the thresholds dynamically by adjusting them according to the areal and temporal distributions of the surrounding pixels. Spatial coherence methods set thresholds based on the expected spatial variability of the data. Other statistically derived methods and various combinations of basic methods are also reviewed. The complexity of the methods is ultimately limited by the computing resources. Finally, some criteria for evaluating cloud screening methods are discussed.

  14. Integrating the Apache Big Data Stack with HPC for Big Data

    NASA Astrophysics Data System (ADS)

    Fox, G. C.; Qiu, J.; Jha, S.

    2014-12-01

    There is perhaps a broad consensus as to important issues in practical parallel computing as applied to large scale simulations; this is reflected in supercomputer architectures, algorithms, libraries, languages, compilers and best practice for application development. However, the same is not so true for data intensive computing, even though commercially clouds devote much more resources to data analytics than supercomputers devote to simulations. We look at a sample of over 50 big data applications to identify characteristics of data intensive applications and to deduce needed runtime and architectures. We suggest a big data version of the famous Berkeley dwarfs and NAS parallel benchmarks and use these to identify a few key classes of hardware/software architectures. Our analysis builds on combining HPC and ABDS the Apache big data software stack that is well used in modern cloud computing. Initial results on clouds and HPC systems are encouraging. We propose the development of SPIDAL - Scalable Parallel Interoperable Data Analytics Library -- built on system aand data abstractions suggested by the HPC-ABDS architecture. We discuss how it can be used in several application areas including Polar Science.

  15. Optimisation of the usage of LHC and local computing resources in a multidisciplinary physics department hosting a WLCG Tier-2 centre

    NASA Astrophysics Data System (ADS)

    Barberis, Stefano; Carminati, Leonardo; Leveraro, Franco; Mazza, Simone Michele; Perini, Laura; Perlz, Francesco; Rebatto, David; Tura, Ruggero; Vaccarossa, Luca; Villaplana, Miguel

    2015-12-01

    We present the approach of the University of Milan Physics Department and the local unit of INFN to allow and encourage the sharing among different research areas of computing, storage and networking resources (the largest ones being those composing the Milan WLCG Tier-2 centre and tailored to the needs of the ATLAS experiment). Computing resources are organised as independent HTCondor pools, with a global master in charge of monitoring them and optimising their usage. The configuration has to provide satisfactory throughput for both serial and parallel (multicore, MPI) jobs. A combination of local, remote and cloud storage options are available. The experience of users from different research areas operating on this shared infrastructure is discussed. The promising direction of improving scientific computing throughput by federating access to distributed computing and storage also seems to fit very well with the objectives listed in the European Horizon 2020 framework for research and development.

  16. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  17. Self managing experiment resources

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Ubeda, M.; Tsaregorodtsev, A.; Romanovskiy, V.; Roiser, S.; Charpentier, P.; Graciani, R.

    2014-06-01

    Within this paper we present an autonomic Computing resources management system, used by LHCb for assessing the status of their Grid resources. Virtual Organizations Grids include heterogeneous resources. For example, LHC experiments very often use resources not provided by WLCG, and Cloud Computing resources will soon provide a non-negligible fraction of their computing power. The lack of standards and procedures across experiments and sites generated the appearance of multiple information systems, monitoring tools, ticket portals, etc... which nowadays coexist and represent a very precious source of information for running HEP experiments Computing systems as well as sites. These two facts lead to many particular solutions for a general problem: managing the experiment resources. In this paper we present how LHCb, via the DIRAC interware, addressed such issues. With a renewed Central Information Schema hosting all resources metadata and a Status System (Resource Status System) delivering real time information, the system controls the resources topology, independently of the resource types. The Resource Status System applies data mining techniques against all possible information sources available and assesses the status changes, that are then propagated to the topology description. Obviously, giving full control to such an automated system is not risk-free. Therefore, in order to minimise the probability of misbehavior, a battery of tests has been developed in order to certify the correctness of its assessments. We will demonstrate the performance and efficiency of such a system in terms of cost reduction and reliability.

  18. Large Spatial Scale Ground Displacement Mapping through the P-SBAS Processing of Sentinel-1 Data on a Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Casu, F.; Bonano, M.; de Luca, C.; Lanari, R.; Manunta, M.; Manzo, M.; Zinno, I.

    2017-12-01

    Since its launch in 2014, the Sentinel-1 (S1) constellation has played a key role on SAR data availability and dissemination all over the World. Indeed, the free and open access data policy adopted by the European Copernicus program together with the global coverage acquisition strategy, make the Sentinel constellation as a game changer in the Earth Observation scenario. Being the SAR data become ubiquitous, the technological and scientific challenge is focused on maximizing the exploitation of such huge data flow. In this direction, the use of innovative processing algorithms and distributed computing infrastructures, such as the Cloud Computing platforms, can play a crucial role. In this work we present a Cloud Computing solution for the advanced interferometric (DInSAR) processing chain based on the Parallel SBAS (P-SBAS) approach, aimed at processing S1 Interferometric Wide Swath (IWS) data for the generation of large spatial scale deformation time series in efficient, automatic and systematic way. Such a DInSAR chain ingests Sentinel 1 SLC images and carries out several processing steps, to finally compute deformation time series and mean deformation velocity maps. Different parallel strategies have been designed ad hoc for each processing step of the P-SBAS S1 chain, encompassing both multi-core and multi-node programming techniques, in order to maximize the computational efficiency achieved within a Cloud Computing environment and cut down the relevant processing times. The presented P-SBAS S1 processing chain has been implemented on the Amazon Web Services platform and a thorough analysis of the attained parallel performances has been performed to identify and overcome the major bottlenecks to the scalability. The presented approach is used to perform national-scale DInSAR analyses over Italy, involving the processing of more than 3000 S1 IWS images acquired from both ascending and descending orbits. Such an experiment confirms the big advantage of exploiting large computational and storage resources of Cloud Computing platforms for large scale DInSAR analysis. The presented Cloud Computing P-SBAS processing chain can be a precious tool in the perspective of developing operational services disposable for the EO scientific community related to hazard monitoring and risk prevention and mitigation.

  19. Future of Department of Defense Cloud Computing Amid Cultural Confusion

    DTIC Science & Technology

    2013-03-01

    enterprise cloud - computing environment and transition to a public cloud service provider. Services have started the development of individual cloud - computing environments...endorsing cloud computing . It addresses related issues in matters of service culture changes and how strategic leaders will dictate the future of cloud ...through data center consolidation and individual Service provided cloud computing .

  20. IAServ: an intelligent home care web services platform in a cloud for aging-in-place.

    PubMed

    Su, Chuan-Jun; Chiang, Chang-Yu

    2013-11-12

    As the elderly population has been rapidly expanding and the core tax-paying population has been shrinking, the need for adequate elderly health and housing services continues to grow while the resources to provide such services are becoming increasingly scarce. Thus, increasing the efficiency of the delivery of healthcare services through the use of modern technology is a pressing issue. The seamless integration of such enabling technologies as ontology, intelligent agents, web services, and cloud computing is transforming healthcare from hospital-based treatments to home-based self-care and preventive care. A ubiquitous healthcare platform based on this technological integration, which synergizes service providers with patients' needs to be developed to provide personalized healthcare services at the right time, in the right place, and the right manner. This paper presents the development and overall architecture of IAServ (the Intelligent Aging-in-place Home care Web Services Platform) to provide personalized healthcare service ubiquitously in a cloud computing setting to support the most desirable and cost-efficient method of care for the aged-aging in place. The IAServ is expected to offer intelligent, pervasive, accurate and contextually-aware personal care services. Architecturally the implemented IAServ leverages web services and cloud computing to provide economic, scalable, and robust healthcare services over the Internet.

  1. IAServ: An Intelligent Home Care Web Services Platform in a Cloud for Aging-in-Place

    PubMed Central

    Su, Chuan-Jun; Chiang, Chang-Yu

    2013-01-01

    As the elderly population has been rapidly expanding and the core tax-paying population has been shrinking, the need for adequate elderly health and housing services continues to grow while the resources to provide such services are becoming increasingly scarce. Thus, increasing the efficiency of the delivery of healthcare services through the use of modern technology is a pressing issue. The seamless integration of such enabling technologies as ontology, intelligent agents, web services, and cloud computing is transforming healthcare from hospital-based treatments to home-based self-care and preventive care. A ubiquitous healthcare platform based on this technological integration, which synergizes service providers with patients’ needs to be developed to provide personalized healthcare services at the right time, in the right place, and the right manner. This paper presents the development and overall architecture of IAServ (the Intelligent Aging-in-place Home care Web Services Platform) to provide personalized healthcare service ubiquitously in a cloud computing setting to support the most desirable and cost-efficient method of care for the aged-aging in place. The IAServ is expected to offer intelligent, pervasive, accurate and contextually-aware personal care services. Architecturally the implemented IAServ leverages web services and cloud computing to provide economic, scalable, and robust healthcare services over the Internet. PMID:24225647

  2. Today's Higher Education IT Workforce

    ERIC Educational Resources Information Center

    Bichsel, Jacqueline

    2014-01-01

    The professionals making up the current higher education IT workforce have been asked to adjust to a culture of increased IT consumerization, more sourcing options, broader interest in IT's transformative potential, and decreased resources. Disruptions that include the bring-your-own-everything era, cloud computing, new management practices,…

  3. Computation offloading for real-time health-monitoring devices.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Tuan Le; Hosseini, Anahita; Sarrafzadeh, Majid

    2016-08-01

    Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.

  4. The CMS Tier0 goes cloud and grid for LHC Run 2

    DOE PAGES

    Hufnagel, Dirk

    2015-12-23

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threadedmore » framework to deal with the increased event complexity and to ensure efficient use of the resources. Furthermore, this contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.« less

  5. An Assessment of New Satellite Data Products for the Development of a Long-Term Global Solar Resource at 10-100 km

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stackhouse Jr., Paul W.; Minnis, Patrick; Perez, Richard

    A project representing an effort to reprocess the NASA based solar resource data sets is reviewed. The effort represented a collaboration between NASA, NOAA, NREL and the SUNY-Albany and aimed to deliver a 10 km resolution, 3-hourly data set spanning from 1983 through near-present. Part of the project was to transition project capability to NREL for annual processing to extend data set. Due to delays in the key input project called ISCCP, we evaluate only Beta versions of this data set and also introduce the potential use of another NASA Langley based cloud data set for the CERES project. Themore » CERES project uses these cloud properties to compute global top-of-atmosphere and surface fluxes at the 1x1 degree resolution. Here, we also briefly discuss these data sets in potential usage for solar resource benchmarking.« less

  6. An Assessment of New Satellite Data Products for the Development of a Long-Term Global Solar Resource at 10-100 km

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Minnis, Patrick; Perez, Richard; Sengupta, Manajit; Knapp, Kenneth; Mikovitz, J. Colleen; Schlemmer, James; Scarino, Benjamin; Zhang, Taiping; Cox, Stephen J.

    2016-01-01

    A project representing an effort to reprocess the NASA based solar resource data sets is reviewed. The effort represented a collaboration between NASA, NOAA, NREL and the SUNY-Albany and aimed to deliver a 10 km resolution, 3-hourly data set spanning from 1983 through near-present. Part of the project was to transition project capability to NREL for annual processing to extend data set. Due to delays in the key input project called ISCCP, we evaluate only Beta versions of this data set and also introduce the potential use of another NASA Langley based cloud data set for the CERES project. The CERES project uses these cloud properties to compute global top-of-atmosphere and surface fluxes at the 1x1 degree resolution. Here, we also briefly discuss these data sets in potential usage for solar resource benchmarking.

  7. The CMS TierO goes Cloud and Grid for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Hufnagel, Dirk

    2015-12-01

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threaded framework to deal with the increased event complexity and to ensure efficient use of the resources. This contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Sengupta, M.; Wilcox, S.

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can processmore » increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.« less

  9. Distributed Processing of Sentinel-2 Products using the BIGEARTH Platform

    NASA Astrophysics Data System (ADS)

    Bacu, Victor; Stefanut, Teodor; Nandra, Constantin; Mihon, Danut; Gorgan, Dorian

    2017-04-01

    The constellation of observational satellites orbiting around Earth is constantly increasing, providing more data that need to be processed in order to extract meaningful information and knowledge from it. Sentinel-2 satellites, part of the Copernicus Earth Observation program, aim to be used in agriculture, forestry and many other land management applications. ESA's SNAP toolbox can be used to process data gathered by Sentinel-2 satellites but is limited to the resources provided by a stand-alone computer. In this paper we present a cloud based software platform that makes use of this toolbox together with other remote sensing software applications to process Sentinel-2 products. The BIGEARTH software platform [1] offers an integrated solution for processing Earth Observation data coming from different sources (such as satellites or on-site sensors). The flow of processing is defined as a chain of tasks based on the WorDeL description language [2]. Each task could rely on a different software technology (such as Grass GIS and ESA's SNAP) in order to process the input data. One important feature of the BIGEARTH platform comes from this possibility of interconnection and integration, throughout the same flow of processing, of the various well known software technologies. All this integration is transparent from the user perspective. The proposed platform extends the SNAP capabilities by enabling specialists to easily scale the processing over distributed architectures, according to their specific needs and resources. The software platform [3] can be used in multiple configurations. In the basic one the software platform runs as a standalone application inside a virtual machine. Obviously in this case the computational resources are limited but it will give an overview of the functionalities of the software platform, and also the possibility to define the flow of processing and later on to execute it on a more complex infrastructure. The most complex and robust configuration is based on cloud computing and allows the installation on a private or public cloud infrastructure. In this configuration, the processing resources can be dynamically allocated and the execution time can be considerably improved by the available virtual resources and the number of parallelizable sequences in the processing flow. The presentation highlights the benefits and issues of the proposed solution by analyzing some significant experimental use cases. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Constantin Nandra, Dorian Gorgan: "Defining Earth data batch processing tasks by means of a flexible workflow description language", ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-4, 59-66, (2016). [3] Victor Bacu, Teodor Stefanut, Dorian Gorgan, "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).

  10. Massive Cloud-Based Big Data Processing for Ocean Sensor Networks and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Schwehr, K. D.

    2017-12-01

    Until recently, the work required to integrate and analyze data for global-scale environmental issues was prohibitive both in cost and availability. Traditional desktop processing systems are not able to effectively store and process all the data, and super computer solutions are financially out of the reach of most people. The availability of large-scale cloud computing has created tools that are usable by small groups and individuals regardless of financial resources or locally available computational resources. These systems give scientists and policymakers the ability to see how critical resources are being used across the globe with little or no barrier to entry. Google Earth Engine has the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra, MODIS Aqua, and Global Land Data Assimilation Systems (GLDAS) data catalogs available live online. Here we demonstrate these data to calculate the correlation between lagged chlorophyll and rainfall to identify areas of eutrophication, matching these events to ocean currents from datasets like HYbrid Coordinate Ocean Model (HYCOM) to check if there are constraints from oceanographic configurations. The system can provide addition ground truth with observations from sensor networks like the International Comprehensive Ocean-Atmosphere Data Set / Voluntary Observing Ship (ICOADS/VOS) and Argo floats. This presentation is intended to introduce users to the datasets, programming idioms, and functionality of Earth Engine for large-scale, data-driven oceanography.

  11. Demonstration of NICT Space Weather Cloud --Integration of Supercomputer into Analysis and Visualization Environment--

    NASA Astrophysics Data System (ADS)

    Watari, S.; Morikawa, Y.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Kato, H.; Shimojo, S.; Murata, K. T.

    2010-12-01

    In the Solar-Terrestrial Physics (STP) field, spatio-temporal resolution of computer simulations is getting higher and higher because of tremendous advancement of supercomputers. A more advanced technology is Grid Computing that integrates distributed computational resources to provide scalable computing resources. In the simulation research, it is effective that a researcher oneself designs his physical model, performs calculations with a supercomputer, and analyzes and visualizes for consideration by a familiar method. A supercomputer is far from an analysis and visualization environment. In general, a researcher analyzes and visualizes in the workstation (WS) managed at hand because the installation and the operation of software in the WS are easy. Therefore, it is necessary to copy the data from the supercomputer to WS manually. Time necessary for the data transfer through long delay network disturbs high-accuracy simulations actually. In terms of usefulness, integrating a supercomputer and an analysis and visualization environment seamlessly with a researcher's familiar method is important. NICT has been developing a cloud computing environment (NICT Space Weather Cloud). In the NICT Space Weather Cloud, disk servers are located near its supercomputer and WSs for data analysis and visualization. They are connected to JGN2plus that is high-speed network for research and development. Distributed virtual high-capacity storage is also constructed by Grid Datafarm (Gfarm v2). Huge-size data output from the supercomputer is transferred to the virtual storage through JGN2plus. A researcher can concentrate on the research by a familiar method without regard to distance between a supercomputer and an analysis and visualization environment. Now, total 16 disk servers are setup in NICT headquarters (at Koganei, Tokyo), JGN2plus NOC (at Otemachi, Tokyo), Okinawa Subtropical Environment Remote-Sensing Center, and Cybermedia Center, Osaka University. They are connected on JGN2plus, and they constitute 1PB (physical size) virtual storage by Gfarm v2. These disk servers are connected with supercomputers of NICT and Osaka University. A system that data output from the supercomputers are automatically transferred to the virtual storage had been built up. Transfer rate is about 50 GB/hrs by actual measurement. It is estimated that the performance is reasonable for a certain simulation and analysis for reconstruction of coronal magnetic field. This research is assumed an experiment of the system, and the verification of practicality is advanced at the same time. Herein we introduce an overview of the space weather cloud system so far we have developed. We also demonstrate several scientific results using the space weather cloud system. We also introduce several web applications of the cloud as a service of the space weather cloud, which is named as "e-SpaceWeather" (e-SW). The e-SW provides with a variety of space weather online services from many aspects.

  12. Evolving the Land Information System into a Cloud Computing Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, Paul R.

    The Land Information System (LIS) was developed to use advanced flexible land surface modeling and data assimilation frameworks to integrate extremely large satellite- and ground-based observations with advanced land surface models to produce continuous high-resolution fields of land surface states and fluxes. The resulting fields are extremely useful for drought and flood assessment, agricultural planning, disaster management, weather and climate forecasting, water resources assessment, and the like. We envisioned transforming the LIS modeling system into a scientific cloud computing-aware web and data service that would allow clients to easily setup and configure for use in addressing large water management issues.more » The focus of this Phase 1 project was to determine the scientific, technical, commercial merit and feasibility of the proposed LIS-cloud innovations that are currently barriers to broad LIS applicability. We (a) quantified the barriers to broad LIS utility and commercialization (high performance computing, big data, user interface, and licensing issues); (b) designed the proposed LIS-cloud web service, model-data interface, database services, and user interfaces; (c) constructed a prototype LIS user interface including abstractions for simulation control, visualization, and data interaction, (d) used the prototype to conduct a market analysis and survey to determine potential market size and competition, (e) identified LIS software licensing and copyright limitations and developed solutions, and (f) developed a business plan for development and marketing of the LIS-cloud innovation. While some significant feasibility issues were found in the LIS licensing, overall a high degree of LIS-cloud technical feasibility was found.« less

  13. Attribute based encryption for secure sharing of E-health data

    NASA Astrophysics Data System (ADS)

    Charanya, R.; Nithya, S.; Manikandan, N.

    2017-11-01

    Distributed computing is one of the developing innovations in IT part and information security assumes a real part. It includes sending gathering of remote server and programming that permit the unified information and online access to PC administrations. Distributed computing depends on offering of asset among different clients are additionally progressively reallocated on interest. Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. The reasons for security and protection issues, which rise on the grounds that the health information possessed by distinctive clients are put away in some cloud servers rather than under their own particular control”z. To deal with security problems, various schemes based on the Attribute-Based Encryption have been proposed. In this paper, in order to make ehealth data’s more secure we use multi party in cloud computing system. Where the health data is encrypted using attributes and key policy. And the user with a particular attribute and key policy alone will be able to decrypt the health data after it is verified by “key distribution centre” and the “secure data distributor”. This technique can be used in medical field for secure storage of patient details and limiting to particular doctor access. To make data’s scalable secure we need to encrypt the health data before outsourcing.

  14. Approaches in highly parameterized inversion-PESTCommander, a graphical user interface for file and run management across networks

    USGS Publications Warehouse

    Karanovic, Marinko; Muffels, Christopher T.; Tonkin, Matthew J.; Hunt, Randall J.

    2012-01-01

    Models of environmental systems have become increasingly complex, incorporating increasingly large numbers of parameters in an effort to represent physical processes on a scale approaching that at which they occur in nature. Consequently, the inverse problem of parameter estimation (specifically, model calibration) and subsequent uncertainty analysis have become increasingly computation-intensive endeavors. Fortunately, advances in computing have made computational power equivalent to that of dozens to hundreds of desktop computers accessible through a variety of alternate means: modelers have various possibilities, ranging from traditional Local Area Networks (LANs) to cloud computing. Commonly used parameter estimation software is well suited to take advantage of the availability of such increased computing power. Unfortunately, logistical issues become increasingly important as an increasing number and variety of computers are brought to bear on the inverse problem. To facilitate efficient access to disparate computer resources, the PESTCommander program documented herein has been developed to provide a Graphical User Interface (GUI) that facilitates the management of model files ("file management") and remote launching and termination of "slave" computers across a distributed network of computers ("run management"). In version 1.0 described here, PESTCommander can access and ascertain resources across traditional Windows LANs: however, the architecture of PESTCommander has been developed with the intent that future releases will be able to access computing resources (1) via trusted domains established in Wide Area Networks (WANs) in multiple remote locations and (2) via heterogeneous networks of Windows- and Unix-based operating systems. The design of PESTCommander also makes it suitable for extension to other computational resources, such as those that are available via cloud computing. Version 1.0 of PESTCommander was developed primarily to work with the parameter estimation software PEST; the discussion presented in this report focuses on the use of the PESTCommander together with Parallel PEST. However, PESTCommander can be used with a wide variety of programs and models that require management, distribution, and cleanup of files before or after model execution. In addition to its use with the Parallel PEST program suite, discussion is also included in this report regarding the use of PESTCommander with the Global Run Manager GENIE, which was developed simultaneously with PESTCommander.

  15. Assessing Teaching Skills with a Mobile Simulation

    ERIC Educational Resources Information Center

    Gibson, David

    2013-01-01

    Because mobile technologies are overtaking personal computers as the primary tools of Internet access, and cloud-based resources are fundamentally transforming the world's knowledge, new forms of teaching and assessment are required to foster 21st century literacies, including those needed by K-12 teachers. A key feature of mobile technology…

  16. SCIMITAR: Scalable Stream-Processing for Sensor Information Brokering

    DTIC Science & Technology

    2013-11-01

    IaaS) cloud frameworks including Amazon Web Services and Eucalyptus . For load testing, we used The Grinder [9], a Java load testing framework that...internal Eucalyptus cluster which we could not scale as large as the Amazon environment due to a lack of computation resources. We recreated our

  17. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support

    PubMed Central

    2012-01-01

    Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis. The system can be accessed either through a cloud-enabled web-interface or downloaded and installed to run within the user's local environment. All resources related to Tavaxy are available at http://www.tavaxy.org. PMID:22559942

  18. MERRA Analytic Services: Meeting the Big Data Challenges of Climate Science through Cloud-Enabled Climate Analytics-as-a-Service

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D.; Tamkin, G. S.; Nadeau, D.; Thompson, J. H.; Grieg, C. M.; McInerney, M.; Webster, W. P.

    2013-12-01

    Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS built on this principle. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRA/AS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to organizational change, fosters innovation and experimentation, facilitates technology transfer, and provides the agility required to meet our customers' increasing and changing needs. Cloud Computing is providing a new tier in the data services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. For climate science, Cloud Computing's capacity to engage communities in the construction of new capabilies is perhaps the most important link between Cloud Computing and Big Data.

  19. MERRA Analytic Services: Meeting the Big Data Challenges of Climate Science Through Cloud-enabled Climate Analytics-as-a-service

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Duffy, Daniel Quinn; Tamkin, Glenn S.; Nadeau, Denis; Thompson, John H.; Grieg, Christina M.; McInerney, Mark A.; Webster, William P.

    2014-01-01

    Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we it see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRAAS) is an example of cloud-enabled CAaaS built on this principle. MERRAAS enables MapReduce analytics over NASAs Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRAAS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRAAS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to organizational change, fosters innovation and experimentation, facilitates technology transfer, and provides the agility required to meet our customers' increasing and changing needs. Cloud Computing is providing a new tier in the data services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. For climate science, Cloud Computing's capacity to engage communities in the construction of new capabilies is perhaps the most important link between Cloud Computing and Big Data.

  20. Cloud-Based NoSQL Open Database of Pulmonary Nodules for Computer-Aided Lung Cancer Diagnosis and Reproducible Research.

    PubMed

    Ferreira Junior, José Raniery; Oliveira, Marcelo Costa; de Azevedo-Marques, Paulo Mazzoncini

    2016-12-01

    Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.

Top