Sample records for cloud cover temperature

  1. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  2. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air temperature.

  3. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  4. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    NASA Astrophysics Data System (ADS)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  5. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  6. On the response of MODIS cloud coverage to global mean surface air temperature

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Kahn, Brian H.; Fetzer, Eric J.; Wong, Sun; Frey, Richard; Meyer, Kerry G.

    2017-01-01

    The global surface temperature change (ΔTs) mediated cloud cover response is directly related to cloud-climate feedback. Using satellite remote sensing data to relate cloud and climate requires a well-calibrated, stable, and consistent long-term cloud data record. The Collection 5.1 (C5) Moderate Resolution Imaging Spectroradiometer (MODIS) cloud observations have been widely used for this purpose. However, the MODIS data quality varies greatly with the surface type, spectral region, cloud type, and time periods of study, which calls for additional caution when applying such data to studies on cloud cover temporal trends and variability. Using 15 years of cloud observations made by Terra and Aqua MODIS, we analyze the ΔTs-mediated cloud cover response for different cloud types by linearly regressing the monthly anomaly of cloud cover (ΔC) with the monthly anomaly of global Ts. The Collection 6 (C6) Aqua data exhibit a similar cloud response to the long-term counterpart simulated by advanced climate models. A robust increase in altitude with increasing ΔTs is found for high clouds, while a robust decrease of ΔC is noticed for optically thick low clouds. The large differences between C5 and C6 results are from improvements in calibration and cloud retrieval algorithms. The large positive cloud cover responses with data after 2010 and the strong sensitivity to time period obtained from the Terra (C5 and C6) data are likely due to calibration drift that has not been corrected, suggesting that the previous estimate of the short-term cloud cover response from the these data should be revisited.

  7. Study and Application on Cloud Covered Rate for Agroclimatical Distribution Using In Guangxi Based on Modis Data

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua

    Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.

  8. Temporal variability of total cloud cover at a Mediterranean megacity in the 20th century: Evidence from visual observations and climate models

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2013-04-01

    Cloud cover is one of the major factors that determine the radiation budget and the climate system of the Earth. Moreover, the response of clouds has always been an important source of uncertainty in global climate models. Visual surface observations of clouds have been conducted at the National Observatory of Athens (NOA) since the mid 19th century. The historical archive of cloud reports at NOA since 1860 has been digitized and updated, spanning now a period of one and a half century. Mean monthly values of total cloud cover were derived by averaging subdaily observations of cloud cover (3 observations/day). Changes in observational practice (e.g. from 1/10 to 1/8 units) were considered, however, subjective measures of cloud cover from trained observers introduces some kind of uncertainty in the time series. Data before 1884 were considered unreliable, so the analysis was restricted to the series from 1884 to 2012. The time series of total cloud cover at NOA is validated and correlated with historical time series of other (physically related) variables such as the total sunshine duration as well as DTR (Diurnal Temperature Range) which are independently measured. Trend analysis was performed on the mean annual and seasonal series of total cloud cover from 1884-2012. The mean annual values show a marked temporal variability with sub periods of decreasing and increasing tendencies, however, the overall linear trend is positive and statistically significant (p <0.001) amounting to +2% per decade and implying a total increase of almost 25% for the whole analysed period. These results are in agreement qualitatively with the trends reported in other studies worldwide, especially concerning the period before the mid 20th century. On a seasonal basis, spring and summer series present outstanding positive long term trends, while in winter and autumn total cloud cover reveals also positive but less pronounced long term trends Additionally, an evaluation of cloud cover and/or sunshine duration/diurnal temperature range as depicted by regional climate models over Athens will be performed. Regional climate models are valuable tools for projections of future climate change but their performance is typically assessed only in terms of temperature and precipitation. The representation of non-standard parameters such as cloud cover and/or sunshine duration/diurnal temperature range has so far seen little or no evaluation in the models and can therefore be prone to large uncertainties. Regional climate models developed in the framework of recent EU projects, such as the ENSEMBLES (www.ensembles-eu.org) and the CIRCE (www.circeproject.eu) projects, will be used and an initial validation of these parameters against the historical archive of NOA will be performed.

  9. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz<0) and the By component duskward (By>0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  10. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Miller, Ron L.

    2010-01-01

    We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.

  11. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows little geographical relationship to the high cloud input. Considering whether these effects would be observable, changing upper level cloud cover by as little as 0.4% produces warming greater than 2 standard deviations in the Microwave Sounding Unit (MSU) channels 4, 2 and 2r, in flight path regions and in the subtropics. Despite the simplified nature of these experiments, the results emphasize the sensitivity of the modeled climate to high level cloud cover changes, and thus the potential ability of aircraft to influence climate by altering clouds in the upper troposphere.

  12. Temperature Calculations in the Coastal Modeling System

    DTIC Science & Technology

    2017-04-01

    tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature...during a clear (i.e., cloudless) sky (Wm-2); CLDC is the cloud cover fraction (0-1.0); SWR is the surface reflection coefficient; and SHDf is the

  13. Do Clouds Save the Great Barrier Reef? Satellite Imagery Elucidates the Cloud-SST Relationship at the Local Scale

    PubMed Central

    Leahy, Susannah M.; Kingsford, Michael J.; Steinberg, Craig R.

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an “ocean thermostat” and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs. PMID:23894649

  14. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  15. Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984

    NASA Astrophysics Data System (ADS)

    Dessens, J.; Bücher, A.

    In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.

  16. Retrieval of cloud cover parameters from multispectral satellite images

    NASA Technical Reports Server (NTRS)

    Arking, A.; Childs, J. D.

    1985-01-01

    A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.

  17. Atmospheric Soundings from AIRS/AMSU/HSB

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert

    2004-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and 1 km tropospheric layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved effective fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correlation coefficients and the prediction of location and intensity of cyclones.

  18. Current results from AlRS/AMSU/HSB

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert; Barnet, Christopher; Blaisdell, Jon; Iredell, Lena; Bri, Genia; Jusem, Juan Carlos; Keita, Fricky; Kouvaris, Louis; Molnar, Gyula

    2004-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correction coefficients and the prediction of location and intensity of cyclones.

  19. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.

  20. HCMM/soil moisture experiment. [relationship between surface minus air temperature differential and available water according to crop type in Canada

    NASA Technical Reports Server (NTRS)

    Cihlar, J. (Principal Investigator)

    1980-01-01

    Progress in the compilation and analysis of airborne and ground data to determine the relationship between the maximum surface minus maximum air temperature differential (delta Tsa) and available water (PAW) is reported. Also, results of an analysis of HCMM images to determine the effect of cloud cover on the availability of HCMM-type data are presented. An inverse relationship between delta Tsa and PAW is indicated along with stable delta Tsa vs. PAW distributions for fully developed canopies. Large variations, both geographical and diurnal, in the cloud cover images are reported. The average monthly daytime cloud cover fluctuated between 40 and 60 percent.

  1. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  2. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  3. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  4. Tropical cloud feedbacks and natural variability of climate

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Del Genio, A. D.

    1994-01-01

    Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.

  5. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    NASA Astrophysics Data System (ADS)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  6. Integrating solar energy and climate research into science education

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Hamilton, James; Ligon, Sam; Mahar, Ann Marie

    2016-01-01

    This paper analyzes multi-year records of solar flux and climate data from two solar power sites in Vermont. We show the inter-annual differences of temperature, wind, panel solar flux, electrical power production, and cloud cover. Power production has a linear relation to a dimensionless measure of the transmission of sunlight through the cloud field. The difference between panel and air temperatures reaches 24°C with high solar flux and low wind speed. High panel temperatures that occur in summer with low wind speeds and clear skies can reduce power production by as much as 13%. The intercomparison of two sites 63 km apart shows that while temperature is highly correlated on daily (R2=0.98) and hourly (R2=0.94) timescales, the correlation of panel solar flux drops markedly from daily (R2=0.86) to hourly (R2=0.63) timescales. Minimum temperatures change little with cloud cover, but the diurnal temperature range shows a nearly linear increase with falling cloud cover to 16°C under nearly clear skies, similar to results from the Canadian Prairies. The availability of these new solar and climate datasets allows local student groups, a Rutland High School team here, to explore the coupled relationships between climate, clouds, and renewable power production. As our society makes major changes in our energy infrastructure in response to climate change, it is important that we accelerate the technical education of high school students using real-world data.

  7. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei

    2017-08-01

    Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.

  8. Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.

    2016-01-01

    Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared(TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave(MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product. This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.

  9. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  10. Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1992-01-01

    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.

  11. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  12. Light availability controls ecosystem fluxes in native and non-native tropical montane wet forests in Hawai`i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Mudd, R. G.; Huang, M.; Nullet, M.; Asner, G. P.; Martin, R.; Ostertag, R.; Miyazawa, Y.; Litton, C. M.

    2016-12-01

    Uncertainty about the local and regional effects of global climate warming on terrestrial ecosystems and their ability to produce ecosystem goods and services is a serious constraint for land-based natural resource managers. In Hawai`i and other Pacific Islands, this issue is complicated by the presence of numerous and widespread non-native invasive species, including invasive trees. As warming continues and other climate variables change in response to temperature increases, how will native- and non-native-dominated ecosystems respond? To address this question, eddy covariance flux towers were established and operated for approximately a decade over native forest and at a site invaded by a non-native tree. Flux data were analyzed to determine the sensitivity of carbon exchange rates to fluctuations in ambient CO2 concentration, temperature (T), humidity, photosynthetically active radiation (PAR), and soil moisture (SM). At both sites, gross primary production (GPP) is strongly controlled by PAR and to a lesser extent by T. Ecosystem respiration (Re) responds to T and SM at both sites, as expected. Net ecosystem carbon exchange (NEE) is predominantly controlled by PAR at both sites. Higher temperature is associated with higher rates of photosynthesis and greater Re, thereby canceling the net effect of temperature on carbon exchange. Hence, no significant effect of temperature on NEE was found at either site. These results suggest that the direct effects of future warming will be small in relation to the effects of any changes in cloud cover that affect incident solar radiation. Cloud cover in Hawai`i could be affected by projected increases in atmospheric stability (reduced cloud cover) and increases in humidity (increased cloud cover). Light response (GPP sensitivity to PAR) was found to be significantly greater at the non-native site, suggesting that a future decrease in cloud cover would favor the non-native ecosystem, while increased cloudiness would cause a greater reduction in carbon uptake in the non-native forest.

  13. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2005-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  14. Validation of Local-Cloud Model Outputs With the GOES Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Malek, E.

    2005-05-01

    Clouds (visible aggregations of minute droplets of water or tiny crystals of ice suspended in the air) affect the radiation budget of our planet by reflecting, absorbing and scattering solar radiation, and the re-emission of terrestrial radiation. They affect the weather and climate by positive or negative feedbacks. Many researchers have worked on the parameterization of clouds and their effects on the radiation budget. There is little information about ground-based approaches for continuous evaluation of cloud, such as cloud base height, cloud base temperature, and cloud coverage, at local and regional scales. This present article deals with the development of an algorithm for continuous (day and night) evaluation of cloud base temperature, cloud base height and percent of skies covered by cloud at local scale throughout the year. The Vaisala model CT-12K laser beam ceilometer is used at the Automated Surface Observing Systems (ASOS) to measure the cloud base height and report the sky conditions on an hourly basis or at shorter intervals. This laser ceilometer is a fixed-type whose transmitter and receiver point straight up at the cloud (if any) base. It is unable to measure clouds that are not above the sensor. To report cloudiness at the local scale, many of these type of ceilometers are needed. This is not a perfect method for cloud measurement. A single cloud hanging overhead the sensor will cause overcast readings, whereas, a hole in the clouds could cause a clear reading to be reported. To overcome this problem, we have set up a ventilated radiation station at Logan-Cache airport, Utah, U.S.A., since 1995, which is equipped with one of the above-mentioned ceilometers. This radiation station (composed of pyranometers, pyrgeometers and net radiometer) provides continuous measurements of incoming and outgoing shortwave and longwave radiation and the net radiation throughout the year. We have also measured the surface temperature and pressure, the 2-m air temperature and humidity, precipitation, and the 3-m wind and direction at this station. Having the air temperature, moisture, and the measured cloudless incoming longwave (atmospheric) radiation during 1999 through 2004, based upon the ASOS and the algorithm data, we found the appropriate formula (among four reported approaches) for computation of the cloudless-skies atmospheric emissivity. Considering the additional longwave radiation captured by the facing-up pyrgeometer during the cloudy skies, coming from the cloud in the wave band which the gaseous emission lacks (from 8-13 ìm), we developed an algorithm which provides the continuous 20-min cloud information (cloud base height, cloud base temperature, and percent of skies covered by cloud) over the Cache Valley during day and night throughout the year. The comparisons between the ASOS and the algorithm data during the period of 8-12 June, 2004 are reported in this article. The proposed algorithm is a promising approach for evaluation of the cloud base temperature, cloud base height, and percent of skies covered by cloud at the local scale throughout the year. It also reports the comparison between model outputs and GOES 10 satellite images.

  15. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011

    NASA Astrophysics Data System (ADS)

    Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili

    2013-01-01

    Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.

  16. Relationships between nocturnal winter road slipperiness, cloud cover and surface temperature

    NASA Astrophysics Data System (ADS)

    Grimbacher, T.; Schmid, W.

    2003-04-01

    Ice and Snow are important risks for road traffic. In this study we show several events of slipperiness in Switzerland, mainly caused by rain or snow falling on a frozen surface. Other reasons for slippery conditions are frost or freezing dew in clear nights and nocturnal clearing after precipitation, which goes along with radiative cooling. The main parameters of road weather forecasts are precipitation, cloudiness and surface temperature. Precipitation is well predictable with weather radars and radar nowcasting algorithms. Temperatures are often taken from numerical weather prediction models, but because of changes in cloud cover these model values are inaccurate in terms of predicting the onset of freezing. Cloudiness, especially the advection, formation and dissipation of clouds and their interaction with surface temperatures, is one of the major unsolved problems of road weather forecasts. Cloud cover and the temperature difference between air and surface temperature are important parameters of the radiation balance. In this contribution, we show the relationship between them, proved at several stations all over Switzerland. We found a quadratic correlation coefficient of typically 60% and improved it considering other meteorological parameters like wind speed and surface water. The acquired relationship may vary from one station to another, but we conclude that temperature difference is a signature for nocturnal cloudiness. We investigated nocturnal cloudiness for two cases from winters 2002 and 2003 in the canton of Lucerne in central Switzerland. There, an ultra-dense combination of two networks with together 55 stations within 50x50 km^2 is operated, measuring air and surface temperature, wind and other road weather parameters. With the aid of our equations, temperature differences detected from this network were converted into cloud maps. A comparison between precipitation seen by radar, cloud maps and surface temperatures shows that there are similar structures in all data. Depending on the situation, we also identified additional effects influencing the temperature differences, for instance the advection of could air or the influence of melting heat at or after a snow event. All these findings help to further understand the phenomena, and hence will contribute to a better predictability of winter road slipperiness.

  17. Clouds and the Near-Earth Environment: Possible Links

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Voiculescu, Mirela; Dragomir, Carmelia

    2015-12-01

    Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009). Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  18. An analysis of the relationship between cloud anomalies and sea surface temperature anomalies in a global circulation model

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.

    1992-01-01

    The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.

  19. Using cloud and climate data to understand warm season hydrometeorology from diurnal to monthly timescales

    NASA Astrophysics Data System (ADS)

    Betts, A. K.; Tawfik, A. B.; Desjardins, R. L.

    2016-12-01

    We use 600 station years of hourly data from 14 stations on the Canadian Prairies to map the warm season hydrometeorology. The months from April (after snowmelt) to September, have a very similar coupling between surface thermodynamics and opaque cloud cover, which has been calibrated to give cloud radiative forcing. We can derive both the mean diurnal ranges and the diurnal imbalances as a function of opaque cloud cover. For the monthly diurnal climate, we compute the coupling coefficients with opaque cloud cover and lagged precipitation. In April the diurnal cycle climate has memory of precipitation back to freeze-up in November. During the growing season months of June, July and August, there is memory of precipitation back to March. Monthly mean temperature depends strongly on cloud but little on precipitation, while monthly mean mixing ratio depends on precipitation, but rather little on cloud. The coupling coefficients to cloud and precipitation change with increasing monthly precipitation anomaly. This observational climate analysis provides a firm basis for model evaluation.

  20. Using Space Lidar Observations to Decompose Longwave Cloud Radiative Effect Variations Over the Last Decade

    NASA Astrophysics Data System (ADS)

    Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Winker, David M.; Plougonven, Riwal

    2017-12-01

    Measurements of the longwave cloud radiative effect (LWCRE) at the top of the atmosphere assess the contribution of clouds to the Earth warming but do not quantify the cloud property variations that are responsible for the LWCRE variations. The CALIPSO space lidar observes directly the detailed profile of cloud, cloud opacity, and cloud cover. Here we use these observations to quantify the influence of cloud properties on the variations of the LWCRE observed between 2008 and 2015 in the tropics and at global scale. At global scale, the method proposed here gives good results except over the Southern Ocean. We find that the global LWCRE variations observed over ocean are mostly due to variations in the opaque cloud properties (82%); transparent cloud columns contributed 18%. Variation of opaque cloud cover is the first contributor to the LWCRE evolution (58%); opaque cloud temperature is the second contributor (28%).

  1. Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data

    NASA Technical Reports Server (NTRS)

    Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil

    2004-01-01

    Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.

  2. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  3. Incorporation of a Cumulus Fraction Scheme in the GRAPES_Meso and Evaluation of Its Performance

    NASA Astrophysics Data System (ADS)

    Zheng, X.

    2016-12-01

    Accurate simulation of cloud cover fraction is a key and difficult issue in numerical modeling studies. Preliminary evaluations have indicated that cloud fraction is generally underestimated in GRAPES_Meso simulations, while the cloud fraction scheme (CFS) of ECMWF can provide more realistic results. Therefore, the ECMWF cumulus fraction scheme is introduced into GRAPES_Meso to replace the original CFS, and the model performance with the new CFS is evaluated based on simulated three-dimensional cloud fractions and surface temperature. Results indicate that the simulated cloud fractions increase and become more accurate with the new CFS; the simulation for vertical cloud structure has improved too; errors in surface temperature simulation have decreased. The above analysis and results suggest that the new CFS has a positive impact on cloud fraction and surface temperature simulation.

  4. Infrared remote sensing of the vertical and horizontal distribution of clouds

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.; Haskins, R. D.

    1982-01-01

    An algorithm has been developed to derive the horizontal and vertical distribution of clouds from the same set of infrared radiance data used to retrieve atmospheric temperature profiles. The method leads to the determination of the vertical atmospheric temperature structure and the cloud distribution simultaneously, providing information on heat sources and sinks, storage rates and transport phenomena in the atmosphere. Experimental verification of this algorithm was obtained using the 15-micron data measured by the NOAA-VTPR temperature sounder. After correcting for water vapor emission, the results show that the cloud cover derived from 15-micron data is less than that obtained from visible data.

  5. 15 CFR 908.8 - Maintenance of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activity during each operational period (e.g., cumulus clouds between 10,000 and 30,000 feet m.s.l.; ground... weather modification activity during each operational period (e.g., cumulus clouds between 10,000 and 30... operation; for example: Percent of cloud cover, temperature, humidity, the presence of lightning, hail...

  6. 15 CFR 908.8 - Maintenance of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... activity during each operational period (e.g., cumulus clouds between 10,000 and 30,000 feet m.s.l.; ground... weather modification activity during each operational period (e.g., cumulus clouds between 10,000 and 30... operation; for example: Percent of cloud cover, temperature, humidity, the presence of lightning, hail...

  7. 15 CFR 908.8 - Maintenance of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activity during each operational period (e.g., cumulus clouds between 10,000 and 30,000 feet m.s.l.; ground... weather modification activity during each operational period (e.g., cumulus clouds between 10,000 and 30... operation; for example: Percent of cloud cover, temperature, humidity, the presence of lightning, hail...

  8. Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 micrometer region

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Wiscombe, W. J.

    1993-01-01

    A method for detecting cirrus clouds in terms of brightness temperature differences between narrow bands at 8, 11, and 12 mu m has been proposed by Ackerman et al. (1990). In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria (1992), we have found that the brightness temperature differences between the 8 and 11 mu m bands for soils, rocks and minerals, and dry vegetation can vary between approximately -8 K and +8 K due solely to surface emissivity variations. We conclude that although the method of Ackerman et al. is useful for detecting cirrus clouds over areas covered by green vegetation, water, and ice, it is less effective for detecting cirrus clouds over areas covered by bare soils, rocks and minerals, and dry vegetation. In addition, we recommend that in future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.

  9. Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.

  10. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina

    2017-10-01

    The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  11. Radiative energy balance of the Venus mesosphere

    NASA Astrophysics Data System (ADS)

    Haus, R.; Goering, H.

    1990-03-01

    An accurate radiative transfer model for line-by-line gaseous absorption, as well as for cloud absorption and multiple scattering, is used in the present calculation of solar heating and thermal cooling rates for standard temperature profiles and temperatures yielded by the Venera 15 Fourier Spectrometer Experiment. A strong dependency is noted for heating and cooling rates on cloud-structure variations. The Venus mesosphere is characterized by main cloud-cover heating and overlying-haze cooling. These results are applicable to Venus atmosphere dynamical models.

  12. Atlantic Multidecadal Oscillation footprint on global high cloud cover

    NASA Astrophysics Data System (ADS)

    Vaideanu, Petru; Dima, Mihai; Voiculescu, Mirela

    2017-12-01

    Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.

  13. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    DTIC Science & Technology

    2014-09-30

    developed by incorporating the proposed IR sensors and ground-sky temperature difference algorithm into a tethered balloon borne payload (Figure 3...into the cloud base. RESULTS FROM FY 2014 • A second flight of the tethered balloon -borne IR cloud margin sensor was conducted in Colorado on...Figure 3: Tethered balloon -borne IR sensing payload IR Cloud Margin Sensor Figure 4: First successful flight validation of the IR cloud

  14. Microwave noise temperature and attenuation of clouds - Statistics of these effects at various sites in the United States, Alaska, and Hawaii

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1982-01-01

    The microwave attenuation and noise temperature effects of clouds can result in serious degradation of telecommunications link performance, especially for low-noise systems presently used in deep-space communications. Although cloud effects are generally less than rain effects, the frequent presence of clouds will cause some amount of link degradation a large portion of the time. This paper presents a general review of cloud types and their water particle densities, attenuation and noise temperature calculations, and basic link signal-to-noise ratio calculations. Tabular results of calculations for 12 different cloud models are presented for frequencies in the range 10-50 GHz. Curves of average-year attenuation and noise temperature statistics at frequencies ranging from 10 to 90 GHz, calculated from actual surface and radiosonde observations, are given for 15 climatologically distinct regions in the contiguous United States, Alaska, and Hawaii. Nonuniform sky cover is considered in these calculations.

  15. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.

    PubMed

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L

    2017-06-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  16. Discharge forecasts in mountain basins based on satellite snow cover mapping. [Dinwoody Creek Basin, Wyoming and the Dischma Basin, Switzerland

    NASA Technical Reports Server (NTRS)

    Martinec, J.; Rango, A. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff.

  17. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  18. Atmospheric Soundings from AIRS/AMSU in Partial Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert

    2005-01-01

    Simultaneous use of AIRS/AMSU-A observations allow for the determination of accurate atmospheric soundings under partial cloud cover conditions. The methodology involves the determination of the radiances AIRS would have seen if the AIRS fields of view were clear, called clear column radiances, and use of these radiances to infer the atmospheric and surface conditions giving rise to these clear column radiances. Susskind et al. demonstrate via simulation that accurate temperature soundings and clear column radiances can be derived from AIRS/AMSU-A observations in cases of up to 80% partial cloud cover, with only a small degradation in accuracy compared to that obtained in clear scenes. Susskind and Atlas show that these findings hold for real AIRS/AMSU-A soundings as well. For data assimilation purposes, this small degradation in accuracy is more than offset by a significant increase in spatial coverage (roughly 50% of global cases were accepted, compared to 3.6% of the global cases being diagnosed as clear), and assimilation of AIRS temperature soundings in partially cloudy conditions resulted in a larger improvement in forecast skill than when AIRS soundings were assimilated only under clear conditions. Alternatively, derived AIRS clear column radiances under partial cloud cover could also be used for data assimilation purposes. Further improvements in AIRS sounding methodology have been made since the results shown in Susskind and Atlas . A new version of the AIRS/AMSU-A retrieval algorithm, Version 4.0, was delivered to the Goddard DAAC in February 2005 for production of AIRS derived products, including clear column radiances. The major improvement in the Version 4.0 retrieval algorithm is with regard to a more flexible, parameter dependent, quality control. Results are shown of the accuracy and spatial distribution of temperature-moisture profiles and clear column radiances derived from AIRS/AMSU-A as a function of fractional cloud cover using the Version 4.0 algorithm. Use of the Version 4.0 AIRS temperature profiles increased the positive forecast impact arising from AIRS retrievals relative to what was shown in Susskind and Atlas .

  19. Impact of decadal cloud variations on the Earth’s energy budget

    DOE PAGES

    Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.

    2016-10-31

    Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less

  20. Impact of decadal cloud variations on the Earth’s energy budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.

    Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less

  1. Impact of decadal cloud variations on the Earth's energy budget

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.

    2016-12-01

    Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. Here we present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. We find that cloud anomalies associated with these patterns significantly modify the Earth's energy budget. Specifically, the decadal cloud feedback between the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. These results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and offer a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.

  2. Cloud cover over the equatorial eastern Pacific derived from July 1983 International Satellite Cloud Climatology Project data using a hybrid bispectral threshold method

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Harrison, Edwin F.; Gibson, Gary G.

    1987-01-01

    A set of visible and IR data obtained with GOES from July 17-31, 1983 is analyzed using a modified version of the hybrid bispectral threshold method developed by Minnis and Harrison (1984). This methodology can be divided into a set of procedures or optional techniques to determine the proper contaminate clear-sky temperature or IR threshold. The various optional techniques are described; the options are: standard, low-temperature limit, high-reflectance limit, low-reflectance limit, coldest pixel and thermal adjustment limit, IR-only low-cloud temperature limit, IR clear-sky limit, and IR overcast limit. Variations in the cloud parameters and the characteristics and diurnal cycles of trade cumulus and stratocumulus clouds over the eastern equatorial Pacific are examined. It is noted that the new method produces substantial changes in about one third of the cloud amount retrieval; and low cloud retrievals are affected most by the new constraints.

  3. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors

    DOE PAGES

    Qu, Xin; Hall, Alex; Klein, Stephen A.; ...

    2015-09-28

    Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient.more » In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Finally, correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.« less

  4. Providing Diurnal Sky Cover Data at ARM Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebe, Dimitri I.

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizingmore » the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.« less

  5. Sensitivity analysis of upwelling thermal radiance in presence of clouds

    NASA Technical Reports Server (NTRS)

    Subramanian, S. V.; Tiwari, S. N.; Suttles, J. T.

    1981-01-01

    Total upwelling radiance at the top of the atmosphere is evaluated theoretically in the presence of clouds. The influence of cloud heights, thicknesses and different cloud covers on the upwelling radiance is also investigated. The characteristics of the two cloud types considered in this study closely correspond to altocumulus and cirrus with the cloud emissivity as a function of its liquid water (or ice) content. For calculation of the integrated transmittance of atmospheric gases such as, H2O, CO2, O3, and N2O, the Quasi Random Band (QRB) model approach is adopted. Results are obtained in three different spectral ranges and are compared with the clearsky radiance results. It is found that the difference between the clearsky and cloudy radiance increases with increasing cloud height and liquid water content. This difference also decreases as the surface temperature approaches the value of the cloud top temperature.

  6. Goddard Laboratory for Atmospheric Sciences physical retrieval system for remote determination of weather and climate parameter from HIRS2 and MSU observations

    NASA Technical Reports Server (NTRS)

    Susskind, J.

    1984-01-01

    At the Goddard Laboratory for Atmospheric Sciences (GLAS) a physically based satellite temperature sounding retrieval system, involving the simultaneous analysis of HIRS2 and MSU sounding data, was developed for determining atmospheric and surface conditions which are consistent with the observed radiances. In addition to determining accurate atmospheric temperature profiles even in the presence of cloud contamination, the system provides global estimates of day and night sea or land surface temperatures, snow and ice cover, and parameters related to cloud cover. Details of the system are described elsewhere. A brief overview of the system is presented, as well as recent improvements and previously unpublished results, relating to the sea-surface intercomparison workshop, the diurnal variation of ground temperatures, and forecast impact tests.

  7. Spatial characteristics of the tropical cloud systems: comparison between model simulation and satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Zurovac-Jevtic, Dance; Boer, Erwin R.

    1999-10-01

    A Lagrangian cloud classification algorithm is applied to the cloud fields in the tropical Pacific simulated by a high-resolution regional atmospheric model. The purpose of this work is to assess the model's ability to reproduce the observed spatial characteristics of the tropical cloud systems. The cloud systems are broadly grouped into three categories: deep clouds, mid-level clouds and low clouds. The deep clouds are further divided into mesoscale convective systems and non-mesoscale convective systems. It is shown that the model is able to simulate the total cloud cover for each category reasonably well. However, when the cloud cover is broken down into contributions from cloud systems of different sizes, it is shown that the simulated cloud size distribution is biased toward large cloud systems, with contribution from relatively small cloud systems significantly under-represented in the model for both deep and mid-level clouds. The number distribution and area contribution to the cloud cover from mesoscale convective systems are very well simulated compared to the satellite observations, so are low clouds as well. The dependence of the cloud physical properties on cloud scale is examined. It is found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat fluxes have a clear dependence on cloud types and scale. This is of particular interest to studies of the cloud effects on surface energy budget and hydrological cycle. The diurnal variation of the cloud population and area is also examined. The model exhibits a varying degree of success in simulating the diurnal variation of the cloud number and area. The observed early morning maximum cloud cover in deep convective cloud systems is qualitatively simulated. However, the afternoon secondary maximum is missing in the model simulation. The diurnal variation of the tropospheric temperature is well reproduced by the model while simulation of the diurnal variation of the moisture field is poor. The implication of this comparison between model simulation and observations on cloud parameterization is discussed.

  8. Radiative Forcing by Contrails

    NASA Technical Reports Server (NTRS)

    Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.

    1999-01-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

  9. Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina

    2016-04-01

    The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud particles are nevertheless classified as spherical for all temperatures, possibly indicating columnar ice crystals (see Järvinen et al, submitted to JAS 2016).

  10. Trends and uncertainties in U.S. cloud cover from weather stations and satellite data

    NASA Astrophysics Data System (ADS)

    Free, M. P.; Sun, B.; Yoo, H. L.

    2014-12-01

    Cloud cover data from ground-based weather observers can be an important source of climate information, but the record of such observations in the U.S. is disrupted by the introduction of automated observing systems and other artificial shifts that interfere with our ability to assess changes in cloudiness at climate time scales. A new dataset using 54 National Weather Service (NWS) and 101 military stations that continued to make human-augmented cloud observations after the 1990s has been adjusted using statistical changepoint detection and visual scrutiny. The adjustments substantially reduce the trends in U.S. mean total cloud cover while increasing the agreement between the cloud cover time series and those of physically related climate variables such as diurnal temperature range and number of precipitation days. For 1949-2009, the adjusted time series give a trend in U.S. mean total cloud of 0.11 ± 0.22 %/decade for the military data, 0.55 ± 0.24 %/decade for the NWS data, and 0.31 ± 0.22 %/decade for the combined dataset. These trends are less than half those in the original data. For 1976-2004, the original data give a significant increase but the adjusted data show an insignificant trend of -0.17 (military stations) to 0.66 %/decade (NWS stations). The differences between the two sets of station data illustrate the uncertainties in the U.S. cloud cover record. We compare the adjusted station data to cloud cover time series extracted from several satellite datasets: ISCCP (International Satellite Cloud Climatology Project), PATMOS-x (AVHRR Pathfinder Atmospheres Extended) and CLARA-a1 (CM SAF cLoud Albedo and RAdiation), and the recently developed PATMOS-x diurnally corrected dataset. Like the station data, satellite cloud cover time series may contain inhomogeneities due to changes in the observing systems and problems with retrieval algorithms. Overall we find good agreement between interannual variability in most of the satellite data and that in our station data, with the diurnally corrected PATMOS-x product generally showing the best match. For the satellite period 1984-2007, trends in the U.S. mean cloud cover from satellite data vary widely among the datasets, and all are more negative than those in the station data, with PATMOS-x having the trends closest to those in the station data.

  11. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    PubMed Central

    Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838

  12. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    NASA Technical Reports Server (NTRS)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  13. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition.

    PubMed

    Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-10-18

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.

  14. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet

    PubMed Central

    Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.

    2017-01-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014

  15. Atlas of the Earth's radiation budget as measured by Nimbus-7: May 1979 to May 1980

    NASA Technical Reports Server (NTRS)

    Kyle, H. Lee; Hucek, Richard R.; Vallette, Brenda J.

    1991-01-01

    This atlas describes the seasonal changes in the Earth's radiation budget for the 13-month period, May 1979 to May 1980. It helps to illustrate the strong feedback mechanisms by which the Earth's climate interacts with the top-of-the-atmosphere insolation to modify the energy that various regions absorb from the Sun. Cloud type and cloud amount, which are linked to the surface temperature and the regional climate, are key elements in this interaction. Annual, seasonal, and monthly maps of the albedo, outgoing longwave and net radiation, noontime cloud cover, and mean diurnal surface temperatures are presented. Annual and seasonal net cloud forcing maps are also given. All of the quantities were derived from Nimbus-7 satellite measurements except for the temperatures, which were used in the cloud detection algorithm and came originally from the Air Force 3-dimensional nephanalysis dataset. The seasonal changes are described. The interaction of clouds and the radiation budget is briefly discussed.

  16. Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. I - Analysis method. II - November 1978 cloud distributions. III - November 1978 radiative parameters

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Harrison, E. F.

    1984-01-01

    Cloud cover is one of the most important variables affecting the earth radiation budget (ERB) and, ultimately, the global climate. The present investigation is concerned with several aspects of the effects of extended cloudiness, taking into account hourly visible and infrared data from the Geostationary Operational Environmental Satelite (GOES). A methodology called the hybrid bispectral threshold method is developed to extract regional cloud amounts at three levels in the atmosphere, effective cloud-top temperatures, clear-sky temperature and cloud and clear-sky visible reflectance characteristics from GOES data. The diurnal variations are examined in low, middle, high, and total cloudiness determined with this methodology for November 1978. The bulk, broadband radiative properties of the resultant cloud and clear-sky data are estimated to determine the possible effect of the diurnal variability of regional cloudiness on the interpretation of ERB measurements.

  17. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate fractionation from a pure marine source, indicating a link between inversion strength and moistening of the lower troposphere from the outflow of shallow convection. This approach can be applied in other settings and the results can be used to test parameterizations in climate models.

  18. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1992-01-01

    Global maps of the monthly mean net upward longwave radiation flux at the ocean surface were obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top of the atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (greater than 80/sq Wm) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux ((less than 40/sq Wm) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover.The technique used relies on General Circulation Model simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture, and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of longwave radiation.

  19. Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada

    NASA Technical Reports Server (NTRS)

    Cihlar, J. (Principal Investigator); Dixon, R. G.

    1981-01-01

    Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.

  20. Pattern recognition analysis of polar clouds during summer and winter

    NASA Technical Reports Server (NTRS)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  1. Land cover changes and their biogeophysical effects on climate

    Treesearch

    Rezaul Mahmood; Roger A. Pielke; Kenneth G. Hubbard; Dev Niyogi; Paul A. Dirmeyer; Clive McAlpine; Andrew M. Carleton; Robert Hale; Samuel Gameda; Adriana Beltrán-Przekurat; Bruce Baker; Richard McNider; David R. Legates; Marshall Shepherd; Jinyang Du; Peter D. Blanken; Oliver W. Frauenfeld; U.S. Nair; Souleymane Fall

    2013-01-01

    Land cover changes (LCCs) play an important role in the climate system. Research over recent decades highlights the impacts of these changes on atmospheric temperature, humidity, cloud cover, circulation, and precipitation. These impacts range from the local- and regional-scale to sub-continental and global-scale. It has been found that the impacts of regional-scale...

  2. ENSO shifts and their link to Southern Africa surface air temperature in summer

    NASA Astrophysics Data System (ADS)

    Manatsa, D.; Mukwada, G.; Makaba, L.

    2018-05-01

    ENSO has been known to influence the trends of summer warming over Southern Africa. In this work, we used observational and reanalysis data to analyze the relationship between ENSO and maximum surface air temperature (SATmax) trends during the three epochs created by the ENSO phase shifts around 1977 and 1997 for the period 1960 to 2014. We observed that while ENSO and cloud cover remains the dominant factor controlling SATmax variability, the first two epochs had the predominant La Niña (El Niño)-like events connected to robust positive (negative) trends in cloud fraction. However, this established relationship reversed in the post-1997 La Niña-like dominated epoch which coincided with a falling cloud cover trend. It is established that this deviation from the previously established link within the previous epochs could be due to the post-1998 era in which SATmin was suppressed while SATmax was enhanced. The resulting increase in diurnal temperature range (DTR) could have discouraged the formation of low-level clouds which have relatively more extensive areal coverage and hence allowing more solar energy to reach the surface to boost daytime SATmax. It is noted that these relationships are more pronounced from December to March.

  3. Hole punch clouds over the Bahamas

    NASA Image and Video Library

    2017-12-08

    In elementary school, students learn that water freezes at 0 degrees Celsius (32 degrees Fahrenheit). That is true most of the time, but there are exceptions to the rule. For instance, water with very few impurities (such as dust or pollution particles, fungal spores, bacteria) can be chilled to much cooler temperatures and still remain liquid—a process known as supercooling. Supercooling may sound exotic, but it occurs pretty routinely in Earth’s atmosphere. Altocumulus clouds, a common type of mid-altitude cloud, are mostly composed of water droplets supercooled to a temperature of about -15 degrees C. Altocumulus clouds with supercooled tops cover about 8 percent of Earth’s surface at any given time. Supercooled water droplets play a key role in the formation of hole-punch and canal clouds, the distinctive clouds shown in these satellite images. Hole-punch clouds usually appear as circular gaps in decks of altocumulus clouds; canal clouds look similar but the gaps are longer and thinner. This true-color image shows hole-punch and canal clouds off the coast of Florida, as observed on December 12, 2014, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Both types of cloud form when aircraft fly through cloud decks rich with supercooled water droplets and produce aerodynamic contrails. Air expands and cools as it moves around the wings and past the propeller, a process known as adiabatic cooling. Air temperatures over jet wings often cool by as much as 20 degrees Celsius, pushing supercooled water droplets to the point of freezing. As ice crystals form, they absorb nearby water droplets. Since ice crystals are relatively heavy, they tend to sink. This triggers tiny bursts of snow or rain that leave gaps in the cloud cover. Whether a cloud formation becomes a hole-punch or canal depends on the thickness of the cloud layer, the air temperature, and the degree of horizontal wind shear. Both descending and ascending aircraft—including jets and propeller planes—can trigger hole-punch and canal clouds. The nearest major airports in the images above include Miami International, Fort Lauderdale International, Grand Bahama International, and Palm Beach International. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate

    NASA Technical Reports Server (NTRS)

    Lacis, A. A.; Wang, W. C.; Hansen, J. E.

    1979-01-01

    A radiative transfer method appropriate for use in simple climate models and three dimensional global climate models was developed. It is fully interactive with climate changes, such as in the temperature-pressure profile, cloud distribution, and atmospheric composition, and it is accurate throughout the troposphere and stratosphere. The vertical inhomogeneity of the atmosphere is accounted for by assuming a correlation of gaseous k-distributions of different pressures and temperatures. Line-by-line calculations are made to demonstrate that The method is remarkably accurate. The method is then used in a one-dimensional radiative-convective climate model to study the effect of cirrus clouds on surface temperature. It is shown that an increase in cirrus cloud cover can cause a significant warming of the troposphere and the Earth's surface, by the mechanism of an enhanced green-house effect. The dependence of this phenomenon on cloud optical thickness, altitude, and latitude is investigated.

  5. Are stock market returns related to the weather effects? Empirical evidence from Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Tsangyao; Nieh, Chien-Chung; Yang, Ming Jing; Yang, Tse-Yu

    2006-05-01

    In this study, we employ a recently developed econometric technique of the threshold model with the GJR-GARCH process on error terms to investigate the relationships between weather factors and stock market returns in Taiwan using daily data for the period of 1 July 1997-22 October 2003. The major weather factors studied include temperature, humidity, and cloud cover. Our empirical evidence shows that temperature and cloud cover are two important weather factors that affect the stock returns in Taiwan. Our empirical findings further support the previous arguments that advocate the inclusion of economically neutral behavioral variables in asset pricing models. These results also have significant implications for individual investors and financial institutions planning to invest in the Taiwan stock market.

  6. The cloud-radiative processes and its modulation by sea-ice cover and stability as derived from a merged C3M Data product.

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2016-12-01

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  7. An eight-month climatology of marine stratocumulus cloud fraction, albedo, and integrated liquid water

    NASA Technical Reports Server (NTRS)

    Fairall, C. W.; Hare, J. E.; Snider, Jack B.

    1990-01-01

    As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.

  8. On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs

    DOE PAGES

    McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...

    2016-05-06

    In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less

  9. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    NASA Astrophysics Data System (ADS)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land-use change affects climate.

  10. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance evolution

    USDA-ARS?s Scientific Manuscript database

    Land cover changes affect climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Recent studies have examined both the greenhouse gas and biophysical consequ...

  11. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance

    USDA-ARS?s Scientific Manuscript database

    Land cover change affects climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Previous studies have highlighted that forest loss in high latitudes could c...

  12. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  13. Improved cloud parameterization for Arctic climate simulations based on satellite data

    NASA Astrophysics Data System (ADS)

    Klaus, Daniel; Dethloff, Klaus; Dorn, Wolfgang; Rinke, Annette

    2015-04-01

    The defective representation of Arctic cloud processes and properties remains a crucial problem in climate modelling and in reanalysis products. Satellite-based cloud observations (MODIS and CPR/CALIOP) and single-column model simulations (HIRHAM5-SCM) were exploited to evaluate and improve the simulated Arctic cloud cover of the atmospheric regional climate model HIRHAM5. The ECMWF reanalysis dataset 'ERA-Interim' (ERAint) was used for the model initialization, the lateral boundary forcing as well as the dynamical relaxation inside the pan-Arctic domain. HIRHAM5 has a horizontal resolution of 0.25° and uses 40 pressure-based and terrain-following vertical levels. In comparison with the satellite observations, the HIRHAM5 control run (HH5ctrl) systematically overestimates total cloud cover, but to a lesser extent than ERAint. The underestimation of high- and mid-level clouds is strongly outweighed by the overestimation of low-level clouds. Numerous sensitivity studies with HIRHAM5-SCM suggest (1) the parameter tuning, enabling a more efficient Bergeron-Findeisen process, combined with (2) an extension of the prognostic-statistical (PS) cloud scheme, enabling the use of negatively skewed beta distributions. This improved model setup was then used in a corresponding HIRHAM5 sensitivity run (HH5sens). While the simulated high- and mid-level cloud cover is improved only to a limited extent, the large overestimation of low-level clouds can be systematically and significantly reduced, especially over sea ice. Consequently, the multi-year annual mean area average of total cloud cover with respect to sea ice is almost 14% lower than in HH5ctrl. Overall, HH5sens slightly underestimates the observed total cloud cover but shows a halved multi-year annual mean bias of 2.2% relative to CPR/CALIOP at all latitudes north of 60° N. Importantly, HH5sens produces a more realistic ratio between the cloud water and ice content. The considerably improved cloud simulation manifests in a more correct radiative transfer and better energy budget in the atmospheric boundary layer and results also in a more realistic surface energy budget associated with more reasonable turbulent fluxes. All this mitigates the positive temperature, relative humidity and horizontal wind speed biases in the lower model levels.

  14. Irrigation scheduling based on crop canopy temperature for humid environments

    USDA-ARS?s Scientific Manuscript database

    The use of infrared thermometers (IR) to measure canopy temperatures for irrigation scheduling has been successfully applied in arid environments. Functionality of this technique in humid areas has been limited due to the presence of low vapor pressure deficits (VPD) and intermittent cloud cover. T...

  15. The CREW intercomparison of SEVIRI cloud retrievals

    NASA Astrophysics Data System (ADS)

    Hamann, U.; Walther, A.; Bennartz, R.; Thoss, A.; Meirink, J. M.; Roebeling, R.

    2012-12-01

    About 70% of the earth's surface is covered with clouds. They strongly influence the radiation balance and the water cycle of the earth. Hence the detailed monitoring of cloud properties - such as cloud fraction, cloud top temperature, cloud particle size, and cloud water path - is important to understand the role of clouds in the weather and the climate system. The remote sensing with passive sensors is an essential mean for the global observation of the cloud parameters, but is nevertheless challenging. This presentation focuses on the inter-comparison and validation of cloud physical properties retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard METEOSAT. For this study we use retrievals from 12 state-of-art algorithms (Eumetsat, KNMI, NASA Langley, NASA Goddard, University Madison/Wisconsin, DWD, DLR, Meteo-France, KMI, FU Berlin, UK MetOffice) that are made available through the common database of the CREW (Cloud Retrieval Evaluation Working) group. Cloud detection, cloud top phase, height, and temperature, as well as optical properties and water path are validated with CLOUDSAT, CALIPSO, MISR, and AMSR-E measurements. Special emphasis is given to challenging retrieval conditions. Semi-transparent clouds over the earth's surface or another cloud layer modify the measured brightness temperature and increase the retrieval uncertainty. The consideration of the three-dimensional radiative effects is especially important for large viewing angles and broken cloud fields. Aerosols might be misclassified as cloud and may increase the retrieval uncertainty, too. Due to the availability of the high number of sophisticated retrieval datasets, the advantages of different retrieval approaches can be examined and suggestions for future retrieval developments can be made. We like to thank Eumetsat for sponsoring the CREW project including this work.nstitutes that participate in the CREW project.

  16. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [Rio Grande Valley, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Procedures to edit cloud-contaminated pixels from those pixels representing Earth surface features were investigated. Because clouds are more reflective than Earth features and are colder than Earth surface features most of the year at 26 N latitude, either a raw digital count ratio or a ratio of reflectance percentage for the VIS band to the temperature works well. For this procedure, the two bands of data need to be registered to the ground scene.

  17. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both daytime and nighttime conditions showing improved surface and atmospheric soundings under partial cloud cover resulted from not using R(sub i) in the retrieval process for any longwave channels sensitive to cloud effects. This improvement is made possible because AIRS NEDT in the shortwave portion of the spectrum is extremely low.

  18. The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows

    NASA Astrophysics Data System (ADS)

    Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James

    2014-05-01

    In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in the high-Arctic energy budget and evaluate general circulation model simulations.

  19. The effect of multiple stressors on salt marsh end-of-season biomass

    USGS Publications Warehouse

    Visser, J.M.; Sasser, C.E.; Cade, B.S.

    2006-01-01

    It is becoming more apparent that commonly used statistical methods (e.g., analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity, air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass. ?? 2006 Estuarine Research Federation.

  20. The effect of multiple stressors on salt marsh end-of-season biomass

    USGS Publications Warehouse

    Visser, J.M.; Sasser, C.E.; Cade, B.S.

    2006-01-01

    It is becoming more apparent that commonly used statistical methods (e.g. analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass.

  1. Validation of the large-scale Lagrangian cirrus model CLaMS-Ice by in-situ measurements

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Rolf, Christian; Grooß, Jens-Uwe; Afchine, Armin; Spelten, Nicole; Dreiling, Volker; Zöger, Martin; Krämer, Martina

    2015-04-01

    Cirrus clouds are an element of uncertainty in the climate system and have received increasing attention since the last IPCC reports. The interaction of varying freezing meachanisms, sedimentation rates, temperature and updraft velocity fluctuations and other factors that lead to the formation of those clouds is still not fully understood. During the ML-Cirrus campaign 2014 (Germany), the new cirrus cloud model CLaMS-Ice (see Rolf et al., EGU 2015) has been used for flight planning to direct the research aircraft HALO into interesting cirrus cloud regions. Now, after the campaign, we use our in-situ aircraft measurements to validate and improve this model - with the long-term goal to enable it to simulate cirrus cloud cover globally, with reasonable computing times and sufficient accuracy. CLaMS-Ice consists of a two-moment bulk model established by Spichtinger and Gierens (2009a, 2009b), which simulates cirrus clouds along trajectories that the Lagrangian model CLaMS (McKenna et al., 2002 and Konopka et al. 2007) derived from ECMWF data. The model output covers temperature, pressure, relative humidity, ice water content (IWC), and ice crystal numbers (Nice). These parameters were measured on board of HALO by the following instruments: temperature and pressure by BAHAMAS, total and gas phase water by the hygrometers FISH and SHARC (see Meyer et al 2014, submitted to ACP), and Nice as well as ice crystal size distributions by the cloud spectrometer NIXE-CAPS (see also Krämer et al., EGU 2015). Comparisons of the model results with the measurements yield that cirrus clouds can be successfully simulated by CLaMS-Ice. However, there are sections in which the model's relative humidity and Nice deviate considerably from the measured values. This can be traced back to e.g. the initialization of total water from ECMWF data. The simulations are therefore reinitiated with the total water content measured by FISH. Other possible sources of uncertainties are investigated, as imposed temperature fluctuations, numbers and efficencies of heterogeneous ice nuclei or assumptions concerning the sedimentation rates. This contribution sums up the results of these investigations and outlines future work on CLaMS-Ice, that will lead to a tool helping to understand the cirrus clouds under the different environmental conditions during ML-Cirrus.

  2. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  3. Comparison of AIRS Version-6 OLR Climatologies and Anomaly Time Series with Those of CERES and MERRA-2

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae; Iredell, Lena

    2016-01-01

    RCs of AIRS and MERRA-2 500 mb specific humidity agree very well in terms of spatial patterns, but MERRA-2 ARCs are larger in magnitude and show a spurious moistening globally and over Central Africa. AIRS and MERRA-2 fractional cloud cover ARCs agree less well with each other. MERRA-2 shows a spurious global mean increase in cloud cover that is not found in AIRS, including a large spurious cloud increase in Central Africa. AIRS and MERRA-2 ARCs of surface skin and surface air temperatures are all similar to each other in patterns. AIRS shows a small global warming over the 13 year period, while MERRA-2 shows a small global cooling. This difference results primarily from spurious MERRA-2 temperature trends at high latitudes and over Central Africa. These differences all contribute to the spurious negative global MERRA-2 OLR trend. AIRS Version-6 confirms that 2015 is the warmest year on record and that the Earth's surface is continuing to warm.

  4. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.

  5. Cold Episodes, Their Precursors and Teleconnections in the Central Peruvian Andes (1958-2009)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2014-12-01

    The Mantaro valley (MV) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during the austral summer (January-March), which strongly damage crops. However, little is known about the causes and impacts of such cold episodes in the MV. The main goal of this study is thus to characterize cold episodes in the MV and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MV daily minimum temperature for the period 1958-2009 from Huayao station, located within the MV was used. We defined a cold episode as the period when daily minimum temperature drops below the 10-percentile for at least one day. Several gridded reanalysis and satellite products were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events for same period. Cold episodes in the MV are associated with positive OLR anomalies, which extend over much of the central Andes, indicating reduced convective cloud cover during these extremes, but also affirm the large-scale nature of these events. At the same time, northeastern Brazil (NEB) registers negative OLR anomalies, strong convective activity and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. Further, it is associated with a weakening of the Bolivian High - Nordeste Low (BH-NL) system at upper levels, but also influenced by a low-level migratory high-pressure center develops at 30°S, 50°W; propagating from mid- to low latitudes as part of an extratropical Rossby wave train. In conclusion, cold episodes in the MV appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection. The reduced cloud cover in turn results from a robust large-scale pattern of westerly wind anomalies over central Peruvian Andes, inhibiting moisture influx, convective activity and hence cloud formation. At the same time NEB registers strong convective activity and enhanced cloud cover. This dipole is caused by a weakening of BH-NL system at upper levels, which is associated with a low-level migratory high-pressure center, propagating from mid- to low latitudes as part of an extratropical Rossby wave train.

  6. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    NASA Astrophysics Data System (ADS)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  7. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  8. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  9. Selective cooling on land supports cloud formation by cosmic ray during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D. L.; Sato, H.

    2017-12-01

    On geological time scales, the galactic cosmic ray (GCR) flux at the Earth's surface has increased significantly during many short time intervals. There is a growing body of evidence that suggests that climatic cooling occurred during these episodes. Cloud formation by GCR has been claimed as the most likely cause of the linkage. However, the mechanism is not fully understood due to the difficulty of accurately estimating the amount of cloud cover in the geologic past. Our study focused on the geomagnetic field and climate in East Asia. The Earth's magnetic field provides a shield against GCR. The East Asian climate reflects the temperature balance between the Eurasian landmass and the Pacific Ocean that drives monsoon circulation.Two geomagnetic polarity reversals occurred at 780 ka and 1,070 ka. At these times the geomagnetic field decreased to about 10% of its present level causing a near doubling of the GCR flux. Temperature and rainfall amounts during these episodes were reconstructed using pollen in sediment cores from Osaka Bay, Japan. The results show a more significant temperature drop on the Eurasian continent than over the Pacific, and a decrease of summer rainfall in East Asia (i.e. a weakening of East Asian summer monsoon). These observed climate changes can be accounted for if the landmasses were more strongly cooled than the oceans. The simplest mechanism behind such asymmetric cooling is the so-called `umbrella effect' (increased cloud cover blocking solar radiation) that induces greater cooling of objects with smaller heat capacities.

  10. The thermal balance of the lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.

    1981-01-01

    The temperature near the surface of Venus (now established at 730 K) is remarkably high in view of Venus's cloud cover which causes the planet to absorb even less sunlight than does Earth. Early attempts to understand the thermal balance that leads to this unusual state were hindered by the lack of basic information regarding the composition, temperature-pressure structure, cloud properties, and wind field of the lower atmosphere. A series of successful space missions have measured many of the above quantities that control the transfer of heat in Venus's lower atmosphere. The relevant observational data are summarized and the attempts to understand the thermal balance of Venus's atmosphere below the cloud tops are reviewed. The data indicate that sufficient sunlight penetrates to deep atmospheric levels and is trapped by the large thermal opacity of the atmosphere to essentially account for the high temperatures observed.

  11. Cloud cover models derived from satellite radiation measurements

    NASA Technical Reports Server (NTRS)

    Bean, S. J.; Somerville, P. N.

    1979-01-01

    Using daily measurement of day and night infrared and incoming and absorbed solar radiation obtained from a TIROS satellite over a period of approximately 45 months, and integrated over 2.5 degree latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four three-month periods, estimates a and b of the two parameters of the best-fit beta distribution were obtained for each grid location. The (a,b) plane was divided into a number of regions. All the geographical locations whose (a,b) estimates were in the same region in the (a,b) plane were said to have the same cloud cover type for that season. For each season, the world was thus divided into separate cloud cover types. Using estimates of mean cloud cover for each season, the world was again divided into separate cloud cover types. The process was repeated for standard deviations. Thus for each season, three separate cloud cover models were obtained using the criteria of shape of frequency distribution, mean cloud cover, and variability of cloud cover. The cloud cover statistics were derived from once-a-day, near-local-noon satellite radiation measurements.

  12. Interfacing a one-dimensional lake model with a single-column atmospheric model: 2. Thermal response of the deep Lake Geneva, Switzerland under a 2 × CO2 global climate change

    NASA Astrophysics Data System (ADS)

    Perroud, Marjorie; Goyette, StéPhane

    2012-06-01

    In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.

  13. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.

    PubMed

    Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika

    2004-06-01

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.

  14. Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model.

    PubMed

    Roth, T R; Westhoff, M C; Huwald, H; Huff, J A; Rubin, J F; Barrenetxea, G; Vetterli, M; Parriaux, A; Selkeer, J S; Parlange, M B

    2010-03-15

    Elevated in-stream temperature has led to a surge in the occurrence of parasitic intrusion proliferative kidney disease and has resulted in fish kills throughout Switzerland's waterways. Data from distributed temperature sensing (DTS) in-stream measurements for three cloud-free days in August 2007 over a 1260 m stretch of the Boiron de Merges River in southwest Switzerland were used to calibrate and validate a physically based one-dimensional stream temperature model. Stream temperature response to three distinct riparian conditions were then modeled: open, in-stream reeds, and forest cover. Simulation predicted a mean peak stream temperature increase of 0.7 °C if current vegetation was removed, an increase of 0.1 °C if dense reeds covered the entire stream reach, and a decrease of 1.2 °C if a mature riparian forest covered the entire reach. Understanding that full vegetation canopy cover is the optimal riparian management option for limiting stream temperature, in-stream reeds, which require no riparian set-aside and grow very quickly, appear to provide substantial thermal control, potentially useful for land-use management.

  15. Rise in the frequency of cloud cover in LANDSAT data for the period 1973 to 1981. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Mendonca, F. J.; Neto, G. C.

    1983-01-01

    Percentages of cloud cover in LANDSAT imagery were used to calculate the cloud cover monthly average statistic for each LANDSAT scene in Brazil, during the period of 1973 to 1981. The average monthly cloud cover and the monthly minimum cloud cover were also calculated for the regions of north, northeast, central west, southeast and south, separately.

  16. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent).

  17. Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets, appendix B

    NASA Technical Reports Server (NTRS)

    Yanai, M.; Esbensen, S.; Chu, J.

    1972-01-01

    The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.

  18. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is observed by the satellite. Also, this condition constitutes layers of clouds that are not observed by each camera. The results of this study show that one instrument can be used to correct each other to provide better cloud cover values. These corrections is dependent on the height and thickness of the clouds. No correction is necessary when the sky is clear.

  19. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    1997-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect local and regional climate and air quality. Clouds play a significant role in this relationship. Using GOES images, we found that in a 63-day period (5 July-5 September 1996) there were zero days which were clear for the entire daylight period. Days which are cloud-free in the morning become partly cloudy with small cumulus clouds in the afternoon in response to solar heating. This result casts doubt on the applicability of California-style air quality models which run in perpetual clear skies. Days which are clear in the morning have higher ozone than those which are cloudy in the morning. Using the RAMS model, we found that urbanization increases the skin surface temperature by about 1.0-1.5 C on average under cloudy conditions, with an extreme of +3.5 C. Clouds cool the surface due to their shading effect by 1.5-2.0 C on average, with an extreme of 5.0 C. RAMS simulates well the building stage of the cumulus cloud field, but does poorly in the decaying phase. Next year's work: doing a detailed cloud climatology and developing improved RAMS cloud simulations.

  20. The beta distribution: A statistical model for world cloud cover

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1973-01-01

    Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.

  1. Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance

    NASA Astrophysics Data System (ADS)

    Tan, Zhihong; Schneider, Tapio; Teixeira, João.; Pressel, Kyle G.

    2016-12-01

    Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change.

  2. Monthly and Seasonal Cloud Cover Patterns at the Manila Observatory (14.64°N, 121.08°E)

    NASA Astrophysics Data System (ADS)

    Antioquia, C. T.; Lagrosas, N.; Caballa, K.

    2014-12-01

    A ground based sky imaging system was developed at the Manila Observatory in 2012 to measure cloud occurrence and to analyse seasonal variation of cloud cover over Metro Manila. Ground-based cloud occurrence measurements provide more reliable results compared to satellite observations. Also, cloud occurrence data aid in the analysis of radiation budget in the atmosphere. In this study, a GoPro Hero 2 with almost 180o field of view is employed to take pictures of the atmosphere. These pictures are taken continuously, having a temporal resolution of 1min. Atmospheric images from April 2012 to June 2013 (excluding the months of September, October, and November 2012) were processed to determine cloud cover. Cloud cover in an image is measured as the ratio of the number of pixels with clouds present in them to the total number of pixels. The cloud cover values were then averaged over each month to know its monthly and seasonal variation. In Metro Manila, the dry season occurs in the months of November to May of the next year, while the wet season occurs in the months of June to October of the same year. Fig 1 shows the measured monthly variation of cloud cover. No data was collected during the months of September (wherein the camera was used for the 7SEAS field campaign), October, and November 2012 (due to maintenance and repairs). Results show that there is high cloud cover during the wet season months (80% on average) while there is low cloud cover during the dry season months (62% on average). The lowest average cloud cover for a wet season month occurred in June 2012 (73%) while the highest average cloud cover for a wet season month occurred in June 2013 (86%). The variations in cloud cover average in this season is relatively smaller compared to that of the dry season wherein the lowest average cloud cover in a month was during April 2012 (38%) while the highest average cloud cover in a month was during January 2013 (77%); minimum and maximum averages being 39% apart. During the wet season, the cloud occurrence is mainly due to tropical storms, Southwest Monsoon, and local convection processes. In the dry season, less cloud is formed because of cold dry air from Northeast Monsoon (December to February) and generally dry and hot weather (March to May). Regular data collection has been implemented for further long term data analysis.

  3. A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography

    USGS Publications Warehouse

    Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.

    2017-01-01

    Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea fog.

  4. Stable Carbon Isotopes in Treerings; Revisiting the Paleocloud Proxy.

    NASA Astrophysics Data System (ADS)

    Gagen, M.; Zorita, E.; Dorado Liñán, I.; Loader, N.; McCarroll, D.; Robertson, I.; Young, G.

    2017-12-01

    The long term relationship between cloud cover and temperature is one of the most important climate feedbacks contributing to determining the value of climate sensitivity. Climate models still reveal a large spread in the simulation of changes in cloud cover under future warming scenarios and clarity might be aided by a picture of the past variability of cloudiness. Stable carbon isotope ratios from tree ring records have been successfully piloted as a palaeocloud proxy in geographical areas traditionally producing strong dendroclimatological reconstructions (high northern latitudes in the Northern Hemisphere) and with some notable successes elsewhere too. An expansion of tree-ring based palaeocloud reconstructions might help to estimate past variations of cloud cover in periods colder or warmer than the 20th century, providing a way to test model test this specific aspect. Calibration with measured instrumental sunshine and cloud data reveals stable carbon isotope ratios from tree rings as an indicator of incoming short wave solar radiation (SWR) in non-moisture stressed sites, but the statistical identification of the SWR signal is hampered by its interannual co-variability with air temperature during the growing season. Here we present a spatio-temporal statistical analysis of a multivariate stable carbon isotope tree ring data set over Europe to assess its usefulness to reconstruct past solar radiation changes. The interannual co-variability of the tree ring records stronger covariation with SWR than with air temperature. The resulting spatial patterns of interannual co-variability are strongly linked to atmospheric circulation in a physically consistent manner. However, the multidecadal variations in the proxy records show a less physically coherent picture. We explore whether atmospheric corrections applied to the proxy series are contributing to differences in the multi decadal signal and investigate whether multidecadal variations in soil moisture perturb the SWR. Preliminary results of strategies to bypass these problems are explored.

  5. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    PubMed

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  6. Spatial and Temporal Variation of Land Surface Temperature in Fujian Province from 2001 TO 2015

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, X.; Ding, Z.

    2018-04-01

    Land surface temperature (LST) is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G) filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1) the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2) The annual mean temperature of LST declines slightly among 15 years in Fujian. 3) Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  7. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  8. Using Stable Isotopes in Water Vapor to Diagnose Relationships Between Lower-Tropospheric Stability, Mixing, and Low-Cloud Cover Near the Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Galewsky, Joseph

    2018-01-01

    In situ measurements of water vapor isotopic composition from Mauna Loa, Hawaii, are merged with soundings from Hilo to show an inverse relationship between the estimated inversion strength (EIS) and isotopically derived measures of lower-tropospheric mixing. Remote sensing estimates of cloud fraction, cloud liquid water path, and cloud top pressure were all found to be higher (lower) under low (high) EIS. Inverse modeling of the isotopic data corresponding to terciles of EIS conditions provide quantitative constraints on the last-saturation temperatures and mixing fractions that govern the humidity above the trade inversion. The mixing fraction of water vapor transported from the boundary layer to Mauna Loa decreases with respect to EIS at a rate of about 3% K-1, corresponding to a mixing ratio decrease of 0.6 g kg-1 K-1. A last-saturation temperature of 240 K can match all observations. This approach can be applied in other settings and may be used to test models of low-cloud climate feedbacks.

  9. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  10. Ice Sheet Temperature Records - Satellite and In Situ Data from Antarctica and Greenland

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.; Comiso, J. C.

    2001-12-01

    Recently completed decadal-length surface temperature records from Antarctica and Greenland are providing insights into the challenge of detecting climate change. Ice and snow cover at high latitudes influence the global climate system by reflecting much of the incoming solar energy back to space. An expected consequence of global warming is a decrease in area covered by snow and ice and an increase in Earth's absorption of solar radiation. Models have predicted that the effects of climate warming may be amplified at high latitudes; thinning of the Greenland ice sheet margins and the breakup of Antarctic Peninsula ice shelves suggest this process may have begun. Satellite data provide an excellent means of observing climate parameters across both long temporal and remote spatial domains but calibration and validation of their data remains a challenge. Infrared sensors can provide excellent temperature information but cloud cover and calibration remain as problems. Passive-microwave sensors can obtain data during the long polar night and through clouds but have calibration issues and a much lower spatial resolution. Automatic weather stations are generally spatially- and temporally-restricted and may have long gaps due to equipment failure. Stable isotopes of oxygen and hydrogen from ice sheet locations provide another means of determining temperature variations with time but are challenging to calibrate to observed temperatures and also represent restricted areas. This presentation will discuss these issues and elaborate on the development and limitations of composite satellite, automatic weather station, and proxy temperature data from selected sites in Antarctica and Greenland.

  11. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.

    2015-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  12. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, Y.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Lo, M. H.

    2014-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  13. A Thermal Infrared Cloud Mapper

    NASA Astrophysics Data System (ADS)

    Mallama, A.; Degnan, J. J.

    2001-12-01

    A thermal infrared imager for mapping the changing cloud cover over a ground based observing site has been developed. There are two main components to our instrument. One is a commercially made uncooled 10 micron thermal infrared detector that outputs a 120x120 pixel thermogram. The other is a convex electroplated reflector, which is situated beneath the detector and in its field of view. The resulting image covers the sky from zenith down to about 10 degrees elevation. The self-reflection of the camera and supporting vanes is removed by interpolation. Atmospheric transparency is distinguished by the difference between the sky temperature and the ambient air temperature. Clear sky is indicated by pixels having a difference of about 20 degrees C or more. The qualitative results 'clear, haze and cloud' have proven to be very reliable during two years of development and testing. Quantitative information, such as the extinction coefficient, is also available though it is not exact. The uncertainty is probably due to variability of the lapse rate under different atmospheric conditions. Software has been written for PC/DOS and VME/LynxOS (similar to Linux) systems in the C programming language. Functionality includes serial communication with the detector, analysis of the thermogram, mapping of cloud cover, data display, and file I/O. The main elements of cost in this system were for the thermal infrared detector and for the machining of an 18-inch diameter stainless steel mandrel. The latter is needed to produce an electroplated reflector. We have had good success with the gold and rhodium reflectors that have been generated. The reflectors themselves are relatively inexpensive now that the mandrel is available.

  14. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Roeckner, E.; Zhang, J.

    2007-03-01

    The double-moment cloud microphysics scheme from ECHAM4 has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass and number concentrations and the aerosol mixing state. This results in a much better agreement with observed vertical profiles of the black carbon and aerosol mass mixing ratios than with the previous version ECHAM4, where only the different aerosol mass mixing ratios were predicted. Also, the simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35°C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.8 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and present-day aerosol emissions representative for the year 2000 are used. It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed.

  15. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  16. MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.

    2015-12-01

    For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.

  17. @KarlTheFog has been mapped!

    USGS Publications Warehouse

    Torregrosa, Alicia

    2016-01-01

    Within the world of mapping, clouds are a pesky interference to be removed from satellite remote sensed imagery.  However, to many of us, that is a waste of pixels. Cloud maps are becoming increasingly valuable in the quest to understand land cover change and surface processes. In coastal California, the dynamic summertime interactions between air masses, the ocean, and topography result in blankets of fog and low clouds flowing into low lying areas of the San Francisco Bay Area. The low clouds and fog advected from the Pacific bring moisture and shade to coastal ecosystems. This acts to reduce temperatures and evapotranspiration stress during the otherwise arid Mediterranean climate season, in turn impacting vegetation distribution, irrigation needs, and urban energy consumption.

  18. Satellite Studies of Cirrus Clouds for Project Fire

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Examine global cloud climatologies for evidence of human caused changes in cloud cover and their effect on the Earth's heat budget through radiative processes. Quantify climatological changes in global cloud cover and estimate their effect on the Earth's heat budget. Improve our knowledge of global cloud cover and its changes through the merging of several satellite data sets.

  19. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  20. A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area

    USGS Publications Warehouse

    McCabe, Gregory J.

    1990-01-01

    A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.

  1. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J.

    1989-01-01

    The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.

  2. Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Stam, D. M.

    2017-11-01

    Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.

  3. The effects of atmospheric cloud radiative forcing on climate

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1989-01-01

    In order to isolate the effects of atmospheric cloud radiative forcing (ACRF) on climate, the general circulation of an ocean-covered earth called 'Seaworld' was simulated using the Colorado State University GCM. Most current climate models, however, do not include an interactive ocean. The key simplifications in 'Seaworld' are the fixed boundary temperature with no land points, the lack of mountains and the zonal uniformity of the boundary conditions. Two 90-day 'perpetual July' simulations were performed and analyzed the last sixty days of each. The first run included all the model's physical parameterizations, while the second omitted the effects of clouds in both the solar and terrestrial radiation parameterizations. Fixed and identical boundary temperatures were set for the two runs, and resulted in differences revealing the direct and indirect effects of the ACRF on the large-scale circulation and the parameterized hydrologic processes.

  4. Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Stone, P. H.

    1980-01-01

    The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.

  5. Improving GEOS-5 seven day forecast skill by assimilation of quality controlled AIRS temperature profiles

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Rosenberg, R. I.

    2016-12-01

    The GEOS-5 Data Assimilation System (DAS) generates a global analysis every six hours by combining the previous six hour forecast for that time period with contemporaneous observations. These observations include in-situ observations as well as those taken by satellite borne instruments, such as AIRS/AMSU on EOS Aqua and CrIS/ATMS on S-NPP. Operational data assimilation methodology assimilates observed channel radiances Ri for IR sounding instruments such as AIRS and CrIS, but only for those channels i in a given scene whose radiances are thought to be unaffected by clouds. A limitation of this approach is that radiances in most tropospheric sounding channels are affected by clouds under partial cloud cover conditions, which occurs most of the time. The AIRS Science Team Version-6 retrieval algorithm generates cloud cleared radiances (CCR's) for each channel in a given scene, which represent the radiances AIRS would have observed if the scene were cloud free, and then uses them to determine quality controlled (QC'd) temperature profiles T(p) under all cloud conditions. There are potential advantages to assimilate either AIRS QC'd CCR's or QC'd T(p) instead of Ri in that the spatial coverage of observations is greater under partial cloud cover. We tested these two alternate data assimilation approaches by running three parallel data assimilation experiments over different time periods using GEOS-5. Experiment 1 assimilated all observations as done operationally, Experiment 2 assimilated QC'd values of AIRS CCRs in place of AIRS radiances, and Experiment 3 assimilated QC'd values of T(p) in place of observed radiances. Assimilation of QC'd AIRS T(p) resulted in significant improvement in seven day forecast skill compared to assimilation of CCR's or assimilation of observed radiances, especially in the Southern Hemisphere Extra-tropics.

  6. Application and Evaluation of an Explicit Prognostic Cloud-Cover Scheme in GRAPES Global Forecast System

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan; Liu, Qijun; Zhao, Chuanfeng; Shen, Xueshun; Wang, Yuan; Jiang, Jonathan H.; Li, Zhe; Yung, Yuk

    2018-03-01

    An explicit prognostic cloud-cover scheme (PROGCS) is implemented into the Global/Regional Assimilation and Prediction System (GRAPES) for global middle-range numerical weather predication system (GRAPES_GFS) to improve the model performance in simulating cloud cover and radiation. Unlike the previous diagnostic cloud-cover scheme (DIAGCS), PROGCS considers the formation and dissipation of cloud cover by physically connecting it to the cumulus convection and large-scale stratiform condensation processes. Our simulation results show that clouds in mid-high latitudes arise mainly from large-scale stratiform condensation processes, while cumulus convection and large-scale condensation processes jointly determine cloud cover in low latitudes. Compared with DIAGCS, PROGCS captures more consistent vertical distributions of cloud cover with the observations from Atmospheric Radiation Measurements (ARM) program at the Southern Great Plains (SGP) site and simulates more realistic diurnal cycle of marine stratocumulus with the ERA-Interim reanalysis data. The low, high, and total cloud covers that are determined via PROGCS appear to be more realistic than those simulated via DIAGCS when both are compared with satellite retrievals though the former maintains slight negative biases. In addition, the simulations of outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from PROGCS runs have been considerably improved as well, resulting in less biases in radiative heating rates at heights below 850 hPa and above 400 hPa of GRAPES_GFS. Our results indicate that a prognostic method of cloud-cover calculation has significant advantage over the conventional diagnostic one, and it should be adopted in both weather and climate simulation and forecast.

  7. Satellite Sounder-Based OLR-, Cloud- and Atmospheric Temperature Climatologies for Climate Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2006-01-01

    Global energy balance of the Earth-atmosphere system may change due to natural and man-made climate variations. For example, changes in the outgoing longwave radiation (OLR) can be regarded as a crucial indicator of climate variations. Clouds play an important role -still insufficiently assessed in the global energy balance on all spatial and temporal scales, and satellites provide an ideal platform to measure cloud and large-scale atmospheric variables simultaneously. The TOVS series of satellites were the first to provide this type of information since 1979. OLR [Mehta and Susskind], cloud cover and cloud top pressure [Susskind et al] are among the key climatic parameters computed by the TOVS Pathfinder Path-A algorithm using mainly the retrieved temperature and moisture profiles. AIRS, regarded as the new and improved TOVS , has a much higher spectral resolution and greater S/N ratio, retrieving climatic parameters with higher accuracy. First we present encouraging agreements between MODIS and AIRS cloud top pressure (C(sub tp) and effective (A(sub eff), a product of infrared emissivity at 11 microns and physical cloud cover or A(sub c)) cloud fraction seasonal and interannual variabilities for selected months. Next we present validation efforts and preliminary trend analyses of TOVS-retrieved C(sub tp) and A(sub eff). For example, decadal global trends of the TOVS Path-A and ISCCP-D2 P(sub c), and A(sub eff)/A(sub c), values are similar. Furthermore, the TOVS Path-A and ISCCP-AVHRR [available since 19831 cloud fractions correlate even more strongly, including regional trends. We also present TOVS and AIRS OLR validation effort results and (for the longer-term TOVS Pathfinder Path-A dataset) trend analyses. OLR interannual spatial variabilities from the available state-of-the-art CERES measurements and both from the AIRS [Susskind et al] and TOVS OLR computations are in remarkably good agreement. Global monthly mean CERES and TOVS OLR time series show very good agreement in absolute values also. Finally, we will assess correlations among long-term trends of selected parameters, derived simultaneously from the TOVS Pathfinder Path-A datase

  8. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have been developed. Errors have been estimated to range from 1K to 5K mainly due to cloud masking problems. With many additional channels available, it is expected that the EOS-Moderate Resolution Imaging Spectroradiometer (MODIS) will provide an improved characterization of clouds and a good discrimination of clouds from snow or ice surfaces.

  9. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.« less

  10. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    NASA Astrophysics Data System (ADS)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  11. Estimation of sea surface temperature from remote measurements in the 11-13 micron window region

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Conrath, B. J.; Kunde, V. G.

    1972-01-01

    The Nimbus-4 IRIS data was examined in the spectral region 775 to 1250/cm (8-13 microns) for useful information to determine the sea surface temperature. The high spectral resolution data of IRIS was degraded to low resolution by averaging to simulate a multi-channel radiometer in the window region. These simulated data show that within the region 775-975/cm (12.9-10.25 microns) the brightness temperatures are linearly related to the absorption parameters. Such a linear relationship is observed over cloudy as well as clear regions and over a wide range of latitudes. From this linear relationship it is feasible to correct for the atmospheric attenuation and get the sea surface temperature, accurate to within 1 K, in a cloud free field of view. The information about the cloud cover is taken from the TV pictures and BUV albedo measurements on board the Nimbus-4 satellite.

  12. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  13. Possible external sources of terrestrial cloud cover variability: the solar wind

    NASA Astrophysics Data System (ADS)

    Voiculescu, Mirela; Usoskin, Ilya; Condurache-Bota, Simona

    2014-05-01

    Cloud cover plays an important role in the terrestrial radiation budget. The possible influence of the solar activity on cloud cover is still an open question with contradictory answers. An extraterrestrial factor potentially affecting the cloud cover is related to fields associated with solar wind. We focus here on a derived quantity, the interplanetary electric field (IEF), defined as the product between the solar wind speed and the meridional component, Bz, of the interplanetary magnetic field (IMF) in the Geocentric Solar Magnetospheric (GSM) system. We show that cloud cover at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Since the IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. We also present results showing that the link between cloud cover and IMF varies depending on composition and altitude of clouds.

  14. [Monitoring on spatial and temporal changes of snow cover in the Heilongjiang Basin based on remote sensing].

    PubMed

    Yu, Ling-Xue; Zhang, Shu-Wen; Guan, Cong; Yan, Feng-Qin; Yang, Chao-Bin; Bu, Kun; Yang, Jiu-Chun; Chang, Li-Ping

    2014-09-01

    This paper extracted and verified the snow cover extent in Heilongjiang Basin from 2003 to 2012 based on MODIS Aqua and Terra data, and the seasonal and interannual variations of snow cover extent were analyzed. The result showed that the double-star composite data reduced the effects of clouds and the overall accuracy was more than 91%, which could meet the research requirements. There existed significant seasonal variation of snow cover extent. The snow cover area was almost zero in July and August while in January it expanded to the maximum, which accounted for more than 80% of the basin. According to the analysis on the interannual variability of snow cover, the maximum winter snow cover areas in 2003-2004 and 2009-2010 (>180 x 10(4) km2) were higher than that of 2011 (150 x 10(4) km2). Meanwhile, there were certain correlations between the interannual fluctuations of snow cover and the changes of average annual temperature and precipitation. The year with the low snow cover was corresponding to less annual rainfall and higher average temperature, and vice versa. The spring snow cover showed a decreasing trend from 2003 to 2012, which was closely linked with decreasing precipitation and increasing temperature.

  15. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain

    NASA Astrophysics Data System (ADS)

    Bucchignani, E.; Cattaneo, L.; Panitz, H.-J.; Mercogliano, P.

    2016-02-01

    The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.

  16. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size showed an overestimation of in situ LST and some improvement in the daytime Terra and nighttime Aqua biases, with the highest accuracy achieved with the 5x5 window. A comparison between MODIS emmisivity from bands 31, 32, and in situ emissivity showed that emissivity errors (Relative error = -.003) were insignificant.

  17. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is compensated by larger increases in sensible and latent heat fluxes out of the ocean. Although the net energy loss from the ocean surface increases by 0.8 W (per square meters), this is less than the interannual variability, and the increase may not indicate a long-term trend. The seasonal cycle of heat fluxes is significantly enhanced. The downward surface heat flux increases in summer (maximum 2 of 19 W per square meters or 23% in June) while the upward heat flux increases in winter (maximum of 16 W per square meters or 28% in November). The increased downward flux in summer is due to a combination of increases in absorbed solar and thermal radiation and smaller losses of sensible and latent heat. The increased heat loss in winter is due to increased sensible and latent heat fluxes, which in turn are due to reduced sea-ice cover. On the other hand, the seasonal cycle of surface air temperature is damped, as there is a large increase in winter temperature but little change in summer.

  18. First experimental evidence for carbon starvation at warm temperatures in epiphytic orchids of tropical cloud forests

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar

    2017-04-01

    Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the speed of the temperature increase. Most importantly, the decline of photosynthesis was accompanied by a rapid and complete depletion of leaf starch reserves followed by the prompt death of the plants. We therefore conclude, that temperature increases to 29 - 33°C lead to carbon starvation in epiphytic orchids of tropical cloud forests that is driven by the break-down of photosynthesis. The physiological reason for the observed dysfunction of photosynthesis at only moderately warm temperatures are currently not well understood. Within an ongoing phytotron study, we thus are aiming to confirm and deepen the findings in the genus Dracula in Masdevallia, another orchid genera native and endemic to tropical cloud forests.

  19. Cloud Occurrence Measurements Over Sea during the 2nd 7 Southeast Asian Studies (7SEAS) Field Campaign in Palawan Archipelago

    NASA Astrophysics Data System (ADS)

    Antioquia, C. T.; Uy, S. N.; Caballa, K.; Lagrosas, N.

    2014-12-01

    Ground based sky imaging cameras have been used to measure cloud cover over an area to aid in radiation budget models. During daytime, certain clouds tend to help decrease atmospheric temperature by obstructing sunrays in the atmosphere. Thus, the detection of clouds plays an important role in the formulation of radiation budget in the atmosphere. In this study, a wide angled sky imager (GoPro Hero 2) was brought on board M/Y Vasco to detect and quantity cloud occurrence over sea during the 2nd 7SEAS field campaign. The camera is just a part of a number of scientific instruments used to measure weather, aerosol chemistry and solar radiation among others. The data collection started during the departure from Manila Bay on 05 September 2012 and went on until the end of the cruise (29 September 2012). The camera was placed in a weather-proof box that is then affixed on a steel mast where other instruments are also attached during the cruise. The data has a temporal resolution of 1 minute, and each image is 500x666 pixels in size. Fig. 1a shows the track of the ship during the cruise. The red, blue, hue, saturation, and value of the pixels are analysed for cloud occurrence. A pixel is considered to "contain" thick cloud if it passes all four threshold parameters (R-B, R/B, R-B/R+B, HSV; R is the red pixel color value, blue is the blue pixel color value, and HSV is the hue saturation value of the pixel) and considered thin cloud if it passes two or three parameters. Fig. 1b shows the daily analysis of cloud occurrence. Cloud occurrence here is quantified as the ratio of the pixels with cloud to the total number of pixels in the data image. The average cloud cover for the days included in this dataset is 87%. These measurements show a big contrast when compared to cloud cover over land (Manila Observatory) which is usually around 67%. During the duration of the cruise, only one day (September 6) has an average cloud occurrence below 50%; the rest of the days have averages of 66% or higher - 98% being the highest. This result would then give a general trend of how cloud occurrences over land and over sea differ in the South East Asian region. In this study, these cloud occurrences come from local convection and clouds brought about by Southwest Monsoon winds.

  20. The Arctic clouds from model simulations and long-term observations at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    The Arctic is a region that is very sensitive to global climate change while also experiencing significant changes in its surface air temperature, sea-ice cover, atmospheric circulation, precipitation, snowfall, biogeochemical cycling, and land surface. Although previous studies have shown that the arctic clouds play an important role in the arctic climate changes, the arctic clouds are poorly understood and simulated in climate model due to limited observations. Furthermore, most of the studies were based on short-term experiments and typically only cover the warm seasons, which do not provide a full understanding of the seasonal cycle of arctic clouds. To address the above concerns and to improve our understanding of arctic clouds, six years of observational and retrieval data from 1999 to 2004 at the Atmospheric Radiation Management (ARM) Climate Research Facility (ACRF) North Slope of Alaska (NSA) Barrow site are used to understand the arctic clouds and related radiative processes. In particular, we focus on the liquid-ice mass partition in the mixed-phase cloud layer. Statistical results show that aerosol type and concentration are important factors that impact the mixed-phase stratus (MPS) cloud microphysical properties: liquid water path (LWP) and liquid water fraction (LWF) decrease with the increase of cloud condensation nuclei (CCN) number concentration; the high dust loading and dust occurrence in the spring are possible reasons for the much lower LWF than the other seasons. The importance of liquid-ice mass partition on surface radiation budgets was analyzed by comparing cloud longwave radiative forcings under the same LWP but different ice water path (IWP) ranges. Results show the ice phase enhance the surface cloud longwave (LW) forcing by 8˜9 W m-2 in the moderately thin MPS. This result provides an observational evidence on the aerosol glaciation effect in the moderately thin MPS, which is largely unknown so far. The above new insights are important to guide the model parameterizations of liquid-ice mass partition in arctic mixed-phase clouds, and are served as a test bed to cloud models and cloud microphysical schemes. The observational data between 1999 and 2007 are used to assess the performance of the European Center for Medium-Range Weather Forecasts (ECMWF) model in the Arctic region. The ECMWF model-simulated near-surface humidity had seasonal dependent biases as large as 20%, while also experiencing difficulty representing boundary layer (BL) temperature inversion height and strength during the transition seasons. Although the ECMWF model captured the seasonal variation of surface heat fluxes, it had sensible heat flux biases over 20 W m-2 in most of the cold months. Furthermore, even though the model captured the general seasonal variations of low-level cloud fraction (LCF) and LWP, it still overestimated the LCF by 20% or more and underestimated the LWP over 50% in the cold season. On average, the ECMWF model underestimated LWP by ˜30 g m-2 but more accurately predicted ice water path for BL clouds. For BL mixed-phase clouds, the model predicted water-ice mass partition was significantly lower than the observations, largely due to the temperature dependence of water-ice mass partition used in the model. The new cloud and BL schemes of the ECMWF model that were implemented after 2003 only resulted in minor improvements in BL cloud simulations in summer. These results indicate that significant improvements in cold season BL and mixed-phase cloud processes in the model are needed. In this study, single-layer MPS clouds were simulated by the Weather Research and Forecasting (WRF) model under different microphysical schemes and different ice nuclei (IN) number concentrations. Results show that by using proper IN concentration, the WRF model incorporated with Morrison microphysical scheme can reasonably capture the observed seasonal differences in temperature dependent liquid-ice mass partition. However, WRF simulations underestimate both LWP and IWP indicating its deficiency in capturing the radiative impacts of arctic MPS clouds.

  1. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  2. Seasonal and Non-Seasonal Variations of Jupiter's Atmosphere from Observations of Thermal Emission, 1994-2011

    NASA Technical Reports Server (NTRS)

    Orton, G.; Fletcher, L.; Yanamandra-Fisher, P.; Greathouse, T.; Fisher, B.; Greco, J.; Wakefield, L.; Snead, E.; Boydstun, K.; Simon-Miller, A.; hide

    2012-01-01

    We analyzed mid-infrared images of Jupiter's thermal emission, covering approx.1.5 Jovian years, acquired in discrete filters between 7.8 and 24.5 microns. The behavior of stratospheric (approx.10-mbar) and tropospheric (approx.100-400 mbar) temperatures is generally consistent with predictions of seasonal variability, with differences between 100-mbar temperatures +/-50-60deg from the equator on the order of +/-2. Removing this effect, there appear to be long-term quasi-periodic variability of tropospheric temperatures, whose amplitude, phase and period depend on latitude. The behavior of temperatures in the Equatorial Zone (EZ) suggests a approx.4-6-year period with amplitude of about +/-1-1.5 K in temperature. At mid-latitudes, the periodicity is more distinct with amplitudes around +/-1.5-2.5 K and 4-8 year periods. The 4.2-year variation of stratospheric temperatures known as the quasiquadrennial oscillation or "QQO" (Leovy et al. 1991, Nature 354, 380) continued during this period. There were no variations of zonal mean temperatures associated with any of the "global upheaval" events that have produced dramatic changes of jupiter's visible appearance and cloud cover, although there are colder discrete regions associated with updrafts, e.g. the early stages of the re-darkening ("revival") of the South Equatorial Belt (SEB) in late 2010. On the other hand increases in the visible albedos ("fades") of belts are accompanied by increases in the thickness of a 700-mbar cloud layer (most likely NH3 ice) and clouds at higher pressures, together with the mixing ratio of NH3 gas near 400 mbar (above its condensation level). These quantities decrease during re-darkening ("revival") episodes, during which we note discrete features that are exceptions to the general correlation between dark albedos and minimal cloudiness. In contrast to all these changes, the meridional distribution of the 240-mbar para-H2 fraction appears to be invariant in time.

  3. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  4. Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016

    NASA Astrophysics Data System (ADS)

    Rodrigo, F. S.

    2018-02-01

    In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.

  5. Geoengineering by cloud seeding: influence on sea ice and climate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasch, Philip J.; Latham, John; Chen, Chih-Chieh

    2009-12-18

    GCM computations using a fully coupled ocean atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with extent of the seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover and cooling the planet must be assessed alongside the localmore » changes to climate features.« less

  6. Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung

    2007-01-01

    A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.

  7. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  8. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  9. Installation Restoration Program Stage 2-1 Remedial Investigation. Beale Air Force Base, Marysville, California. Volume 1. Text and Plates

    DTIC Science & Technology

    1991-03-29

    laboratory. In addition, weather conditions (i.e., cloud cover, pre- cipitation, air temperature, and wind speed and direction), water clarity, and...carried over a 25-foot grid in this area. The weather at the time of emissions screening was mostly sunny with high clouds . The wind was 3 to 5 knots...TRIBUTARY TO HUTCHINSON CREEK SOIL GOMMIG ANGLED 300 FROM VERTICAL Ae o * SOL. 90011GM VERTICAL 0 100, o SURFACE SOIL SAMPLE AU. VALUES ARE IN mg/Kg MONITORIG

  10. Representing the Seasonal Variation of Marine Stratus and Stratocumulus near the Western Coast of Continents

    NASA Astrophysics Data System (ADS)

    He, Y.; Dickinson, R.

    2005-12-01

    The seasonal variation of marine stratus and stratocumulus (MSC) plays a significant role in ocean- atmosphere-land interaction during the seasonal transition of basic climate in the Eastern Pacific. A key factor in parameterization of MSC cloud cover is atmospheric stability. In this study, we examine the importance of lower troposphere stability for Marine Stratus and Stratocumulus (MSC) cloud cover variations over subtropical oceans on monthly and seasonal timescales. Our approach is to consider a two-layer conceptual model with moist denser boundary layer air topped by dry lighter free air beneath a trade wind inversion at around 700 mb.The vertical integrated dry static energy is of central importance in the lower troposphere. The variation of dry static energy transport and latent heat release leads to the variation of cloud top radiative forcing, which is a function of low cloud cover. A diagnostic cloud cover scheme derived from the model is a nonlinear function of lower troposphere stability and large-scale subsidence. Use ERA-40 and ISCCP-FD data as input, the scheme reproduces well the seasonal variation of low cloud cover in four MSC regions near the western coast of continents. NCAR CAM linear empirical cloud cover scheme could explain 16% of the observed ISCCP monthly covariance in the southeast subtropical Pacific during 1990 to 2000 period; while the new cloud cover scheme could explain 50% of the total covariance. When implementing new scheme into NCAR CAM3.1, it is found that the seasonal phase of MSC is better simulated near the Peruvian region, but the seasonal amplitudes of MSC cloud cover in four MSC regions using both schemes have systematic problems. Possible causes for model cloud biases are investigated through numerical experiments. The importance of MSC cloud cover in the eastern Pacific on local mean climate is also discussed.

  11. Long-wave Irradiance Measurement and Modeling during Snowmelt, a Case Study in the Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Sicart, J.; Essery, R.; Pomeroy, J.

    2004-12-01

    At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.

  12. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.

    PubMed

    Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng

    2018-01-18

    Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).

  13. Eastern equatorial Pacific sea surface temperature annual cycle in the Kiel climate model: simulation benefits from enhancing atmospheric resolution

    NASA Astrophysics Data System (ADS)

    Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.

    2018-05-01

    A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue's onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.

  14. [Application of single-band brightness variance ratio to the interference dissociation of cloud for satellite data].

    PubMed

    Qu, Wei-ping; Liu, Wen-qing; Liu, Jian-guo; Lu, Yi-huai; Zhu, Jun; Qin, Min; Liu, Cheng

    2006-11-01

    In satellite remote-sensing detection, cloud as an interference plays a negative role in data retrieval. How to discern the cloud fields with high fidelity thus comes as a need to the following research. A new method rooting in atmospheric radiation characteristics of cloud layer, in the present paper, presents a sort of solution where single-band brightness variance ratio is used to detect the relative intensity of cloud clutter so as to delineate cloud field rapidly and exactly, and the formulae of brightness variance ratio of satellite image, image reflectance variance ratio, and brightness temperature variance ratio of thermal infrared image are also given to enable cloud elimination to produce data free from cloud interference. According to the variance of the penetrating capability for different spectra bands, an objective evaluation is done on cloud penetration of them with the factors that influence penetration effect. Finally, a multi-band data fusion task is completed using the image data of infrared penetration from cirrus nothus. Image data reconstruction is of good quality and exactitude to show the real data of visible band covered by cloud fields. Statistics indicates the consistency of waveband relativity with image data after the data fusion.

  15. A Catalog of Molecular Clouds in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Wahl, Matthew; Koda, J.

    2010-01-01

    We have created a complete catalog of molecular clouds in the Milky Way Galaxy. This is an extension of our previous study (Koda et al. 2006) which used a preliminary data set from The Boston University Five College Radio Astronomy Observatory Galactic Ring Survey (BUFCRAO GRS). This work is of the complete data set from this GRS. The data covers the inner part of the northern Galactic disk between galactic longitudes 15 to 56 degrees, galactic latitudes -1.1 to 1.1 degrees, and the entire Galactic velocities. We used the standard cloud identification method. This method searches the data cube for a peak in temperature above a specified value, and then searches around that peak in all directions until the extents of the cloud are found. This method is iterated until all clouds are found. We prefer this method over other methods, because of its simplicity. The properties of our molecular clouds are very similar to those based on a more evolved method (Rathborne et al. 2009).

  16. Predicting the temporal and spatial probability of orographic cloud cover in the Luquillo Experimental Forest in Puerto Rico using generalized linear (mixed) models.

    Treesearch

    Wei Wu; Charlesb Hall; Lianjun Zhang

    2006-01-01

    We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as “the percentage of the area covered by clouds in each pixel on the map” in this paper) at any hour and any place is a function of three topographic variables...

  17. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed ten years (1982-1991) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog and precipitation The global average cloud cover (average of day and night) is about 2% higher if we impose the moonlight criterion than if we use all observations. The difference is greater in winter than in summer, because of the fewer hours of darkness in the summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-1991 is found to be 55% for northern hemisphere land, 53% for southern hemisphere land, 66% for northern hemisphere ocean, and 70% for southern hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6% for nighttime 63.3%.

  18. Parametrization of Land Surface Temperature Fields with Optical and Microwave Remote Sensing in Brazil's Atlantic Forest

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Khan, A.; Carnaval, A. C.

    2016-12-01

    Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity

  19. Coastal fog and low cloud spatial patterns: do they indicate potential biodiversity refugia?

    NASA Astrophysics Data System (ADS)

    Torregrosa, A.

    2016-12-01

    Marine fog and low clouds transfer water and nutrients to coastal ecosystems through advection from the ocean and reduce heat effects by reflecting incoming shortwave radiation. These effects are known to benefit many species, vegetation communities, and habitats such as coastal redwood trees and their understory, maritime chaparral, and coastal streams harboring endangered salmon species. The California floristic region is the highest ranked hotspot in the U.S. and ranked 7th of 35 biodiversity hotspots worldwide in terms of the percent of its plant species that are found nowhere else (endemic). Many environmental drivers have been identified as contributing to California's remarkably high endemism and biodiversity, however, coastal low clouds have not typically been included. This could be due to the lack of data such as high resolution maps of coastal low cloud occurrence or the lack of long term records. Using a recent analysis of hourly National Weather Service satellite data, a stability index (SI) for coastal fog and low cloud cover was derived using two measures of variation and average summertime cloud cover to quantify long term spatial stability trends. Several discrete spatial clumps were identified that had both high temporal stability and high coastal low cloud cover. These areas show a strong correlation with a specific topographic landscape configuration with respect to wind direction. Point occurrence distribution maps of endemic coastal species were overlain with the SI to explore spatial correlation. The federally endangered species that showed very high spatial correlation included Yadon's Rein-orchid (Piperia yadonii), Monterey Spineflower (Chorizanthe pungens var. pungens), and Seaside Bird's-beak (Cordylanthus rigidus ssp. littoralis). Current estimated range maps are not consistent with the SI results suggesting a need to update estimated ranges. Biodiversity measures are being investigated in these areas to explore the hypothesis that they can be considered paleorefugia for species that have persisted over millennia in spite of a general increase in the aridity and temperature of the California climate.

  20. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.

    2018-01-01

    While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.

  1. Warming Early Mars With CH4

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2002-12-01

    The nature of the ancient climate of Mars remains one of the fundamental unresolved problems in martian research. While the present environment is hostile to life, images from the Mariner, Viking and Mars Global Surveyor missions, have shown geologic features on the martian surface that seem to indicate an earlier period of hydrologic activity. The fact that ancient valley networks and degraded craters have been seen on the martian surface indicates that the early martian climate may have been more Earth-like, with a warmer surface temperature. The presence of liquid water would require a greenhouse effect much larger than needed at present, as the solar constant, S0, was 25% lower 3.8 billion years ago when the channels are thought to have formed (1,2). Previous calculations have shown that gaseous CO2 and H2O alone could not have warmed the martian surface to the temperature needed to account for the presence of liquid water (3). It has been hypothesized that a CO2-H2O atmosphere could keep early Mars warm if it was filled with CO2 ice clouds in the upper martian troposphere (4). Obtaining mean martian surface temperatures above 273 K would require nearly 100% cloud cover, a condition that is unrealistic for condensation clouds on early Mars. Any reduction in cloud cover makes it difficult to achieve warm martian surface temperatures except at high pressures and CO2 clouds could cool the martian surface if they were low and optically thick (5). CO2 and CH4 have been suggested as important greenhouse gases on the early Earth. Our research focuses on the effects of increased concentrations of atmospheric greenhouse gases on the surface temperature of early Mars, with emphasis on the reduced greenhouse gas, CH4. To investigate the possible warming effect of CH4, we modified a one-dimensional, radiative-convective climate model used in previous studies of the early martian climate (5). New cloud-free temperature profiles for various surface pressures and CH4 mixing ratios will be presented. This use of climate modeling is important since it is the fundamental way that the magnitude of possible geochemical and biological CH4 sources can be related to predicted CH4 concentrations in the early martian atmosphere. References: 1) Gough, D. O. Solar Physics 74, 21-34 (1981). 2) Carr, M. H. Water on Mars (1996). 3) Kasting, J. F. Icarus 94, 1-13 (1991). 4) Forget, F., and Pierrehumbert R. T. Science 278, 1273-1276 (1997). 5) Mischna, M. A., Kasting J. F., Pavlov A., and Freedman R. Icarus 145, 546-554 (2000).

  2. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  3. Impact of the CO2 and H2O clouds of the Martian polar hood on the polar energy balance

    NASA Technical Reports Server (NTRS)

    Forget, Francois; Pollack, James B.

    1993-01-01

    Clouds covering extensive areas above the martian polar caps have regularly been observed during the fall and winter seasons of each hemisphere. These 'polar hoods' are thought to be made of H2O and CO2. In particular, the very cold temperatures observed during the polar night by Viking and Mariner 9 around both poles have been identified as CO2 clouds and several models, including GCM, have indicated that the CO2 can condense in the atmosphere at all polar latitudes. Estimating the impact of the polar hood clouds on the energy balance of the polar regions is necessary to model the CO2 cycle and address puzzling problems like the polar caps assymetry. For example, by altering the thermal radiation emitted to space, CO2 clouds alter the amount of CO2 that condenses during the fall and winter season. The complete set of Viking IRTM data was analyzed to define the spatial and temporal properties of the polar hoods, and how their presence affects the energy radiated by the atmosphere/caps system to space was estimated. The IRTM observations provide good spatial and temporal converage of both polar regions during fall, winter, and spring, when a combination of the first and the second Viking year is used. Only the IRTM brightness temperatures at 11, 15, and 20 microns are reliable at martian polar temperatures. To recover the integrated thermal fluxes from the IRTM data, a simple model of the polar hood, thought to consist of 'warm' H2O clouds lying above colder and opaque CO2 clouds was developed. Such a model is based on the analysis of the IRIS spectra, and is consistent with the IRTM data used.

  4. [Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].

    PubMed

    Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie

    2016-02-01

    Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1 at C-band and X-band. 89 GHz was greatly influenced by water vapor and its atmospheric transmittance was not more than 0.7. Atmospheric transmittances in Hailaer Region had a relatively stable value in summer, but had about 0.1 fluctuations with the local water vapor changes.

  5. A new NASA/MSFC mission analysis global cloud cover data base

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Jeffries, W. R., III

    1985-01-01

    A global cloud cover data set, derived from the USAF 3D NEPH Analysis, was developed for use in climate studies and for Earth viewing applications. This data set contains a single parameter - total sky cover - separated in time by 3 or 6 hr intervals and in space by approximately 50 n.mi. Cloud cover amount is recorded for each grid point (of a square grid) by a single alphanumeric character representing each 5 percent increment of sky cover. The data are arranged in both quarterly and monthly formats. The data base currently provides daily, 3-hr observed total sky cover for the Northern Hemisphere from 1972 through 1977 less 1976. For the Southern Hemisphere, there are data at 6-hr intervals for 1976 through 1978 and at 3-hr intervals for 1979 and 1980. More years of data are being added. To validate the data base, the percent frequency of or = 0.3 and or = 0.8 cloud cover was compared with ground observed cloud amounts at several locations with generally good agreement. Mean or other desired cloud amounts can be calculated for any time period and any size area from a single grid point to a hemisphere. The data base is especially useful in evaluating the consequence of cloud cover on Earth viewing space missions. The temporal and spatial frequency of the data allow simulations that closely approximate any projected viewing mission. No adjustments are required to account for cloud continuity.

  6. Intra-annual variability of cloud cover over the Mediterranean region based on NCEP/NCAR, MODIS and ECAD data sets

    NASA Astrophysics Data System (ADS)

    Ioannidis, Eleftherios; Lolis, Christos J.; Papadimas, Christos D.; Hatzianastassiou, Nikolaos; Bartzokas, Aristides

    2017-04-01

    The seasonal variability of total cloud cover in the Mediterranean region is examined for the period 1948-2014 using a multivariate statistical methodology. The data used consist of: i) daily gridded (1.875°x1.905°) values of total cloud cover over the broader Mediterranean region for the 66-year period 1948-2014, obtained from NCEP/NCAR Reanalysis data set, ii) daily gridded (1°x1°) values of total cloud cover for the period 2003-2014 obtained from the Moderate resolution Imaging Spectroradiometer (MODIS) satellite data set and iii) daily station cloud cover data for the period 2003-2014 obtained from the European Climate Assessment & Dataset (ECA&D). At first, the multivariate statistical method of Factor Analysis (S-mode) with varimax rotation is applied as a dimensionality reduction tool on the mean day to day intra-annual variation of NCEP/NCAR cloud cover for the period 1948-2014. According to the results, three main modes of intra-annual variation of cloud cover are found. The first mode is characterized by a winter maximum and a summer minimum and prevails mainly over the sea; a weak see-saw teleconnection over the Alps represents the opposite intra-annual marching. The second mode presents maxima in early autumn and late spring, and minima in late summer and winter, and prevails over the SW Europe and NW Africa inland regions. The third mode shows a maximum in June and a minimum in October and prevails over the eastern part of central Europe. Next, the mean day to day intra-annual variation of NCEP/NCAR cloud cover over the core regions of the above factors is calculated for the entire period 1948-2014 and the three 22-year sub-periods 1948-70, 1970-92 and 1992-2014. A comparison is carried out between each of the three sub-periods and the total period in order to reveal possible long-term changes in seasonal march of total cloud cover. The results show that cloud cover was reduced above all regions during the last 22-year sub-period 1992-2014 throughout the year, but especially in winter. Finally, given the different nature of the utilized NCEP/NCAR (Reanalysis), MODIS (satellite) and ECAD (stations) cloud cover data sets, an inter-comparison is made among them as it concerns the intra-annual variation of cloud cover for the common period 2003-2014. The results show a nice similarity among the three datasets, with some differences in magnitude during the cold period of the year.

  7. A~comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.

    2014-06-01

    A new heterogeneous ice nucleation parameterization that covers a~wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T colder than -60 °C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 °C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.

  8. A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.

    2014-12-01

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations.

  9. A Comprehensive Parameterization of Heterogeneous Ice Nucleation of Dust Surrogate: Laboratory Study with Hematite Particles and Its Application to Atmospheric Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle

    2014-12-10

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 °C to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by n s, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RH ice) in the chamber. Our measurementsmore » showed several different pathways to nucleate ice depending on T and RH ice conditions. For instance, almost independent freezing was observed at -60 °C < T < -50 °C, where RH ice explicitly controlled ice nucleation efficiency, while both T and RH ice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T colder than -60 °C revealed that higher RHice was necessary to maintain constant n s, whereas T may have played a significant role in ice nucleation at T warmer than -50 °C. We implemented new n s parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.« less

  10. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  11. Saharan Dust as a Causal Factor of Significant Cloud Cover Along the Saharan Air Layer in the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas

    2016-01-01

    The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.

  12. A Satellite Survey of Cloud Cover and Water Vapor in the Southwestern USA and Northern Mexico

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Avila, R.; Erasmus, A.; Djorgovski, S. G.; Walker, A. R.; Blum, R.

    2017-03-01

    Cloud cover and water vapor conditions in the southwestern USA and northern Mexico were surveyed as a preparatory work for the Thirty Meter Telescope (TMT) in situ site testing program. Although the telescope site is already selected, the TMT site testing team decided to make public these results for its usefulness for the community. Using 58 months of meteorological satellite observations between 1993 July and 1999 September, different atmospheric parameters were quantified from data of the 10.7 μm and of 6.7 μm windows. In particular, cloud cover and water vapor conditions were identified in preferred areas. As a result of the aerial analysis, 15 sites of existing and potential telescope were selected, compared, and ranked in terms of their observing quality. The clearest sites are located along the spine of the Baja peninsula and into southern California on mountain peaks above the temperature inversion layer. A steep gradient of cloudiness was observed along the coast where coastal cloud and fog are trapped below the inversion layer. Moving from west to east over the continent, a significant increase in cloudiness was observed. The analysis shows that San Pedro Mártir, San Gorgonio Mountain and San Jacinto Peak have the largest fraction of clear sky conditions (˜74%). The site with the optimal combination of clear skies and low precipitable water vapor is Boundary Peak, Nevada. An approach based in satellite data provided a reliable method for sites comparison.

  13. IOCCG Report Number 16, 2015 Ocean Colour Remote Sensing in Polar Seas . Chapter 2; The Polar Environment: Sun, Clouds, and Ice

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)

    2015-01-01

    The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.

  14. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated

    NASA Astrophysics Data System (ADS)

    Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Dubuisson, Philippe; Winker, David M.; Kato, Seiji

    2017-12-01

    According to climate model simulations, the changing altitude of middle and high clouds is the dominant contributor to the positive global mean longwave cloud feedback. Nevertheless, the mechanisms of this longwave cloud altitude feedback and its magnitude have not yet been verified by observations. Accurate, stable, and long-term observations of a metric-characterizing cloud vertical distribution that are related to the longwave cloud radiative effect are needed to achieve a better understanding of the mechanism of longwave cloud altitude feedback. This study shows that the direct measurement of the altitude of atmospheric lidar opacity is a good candidate for the necessary observational metric. The opacity altitude is the level at which a spaceborne lidar beam is fully attenuated when probing an opaque cloud. By combining this altitude with the direct lidar measurement of the cloud-top altitude, we derive the effective radiative temperature of opaque clouds which linearly drives (as we will show) the outgoing longwave radiation. We find that, for an opaque cloud, a cloud temperature change of 1 K modifies its cloud radiative effect by 2 W m-2. Similarly, the longwave cloud radiative effect of optically thin clouds can be derived from their top and base altitudes and an estimate of their emissivity. We show with radiative transfer simulations that these relationships hold true at single atmospheric column scale, on the scale of the Clouds and the Earth's Radiant Energy System (CERES) instantaneous footprint, and at monthly mean 2° × 2° scale. Opaque clouds cover 35 % of the ice-free ocean and contribute to 73 % of the global mean cloud radiative effect. Thin-cloud coverage is 36 % and contributes 27 % of the global mean cloud radiative effect. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated provides a simple formulation of the cloud radiative effect in the longwave domain and so helps us to understand the longwave cloud altitude feedback mechanism.

  15. Jovian Dark Spot

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A recently discovered black spot in Jupiter's clouds is darker than any feature ever before observed on the giant planet. The spot may be the result of a downward spiraling wind that blows away high clouds and reveals deeper, very dark cloud layers. These three panels depict the same area of Jupiter's atmosphere. A map of Jovian temperatures near 250 millibar pressure (top) panel is derived from the photopolarimeter-radiometer instrument on NASA's Galileo Jupiter orbiter. This map is compared with maps derived from images of the same area in visible light (middle panel)and thermal radiation sensitive to cloud-top temperatures (bottom panel).

    The single downward-pointing arrow in the top panel indicates the location of a warm area that corresponds to the position of a so-called 'black spot'(shown in the middle panel), a feature that is about a year old. Features this dark are rare on Jupiter. The bottom panel, sensitive to temperatures at Jupiter's cloud tops, shows this feature as a bright object, meaning that upper-level cold clouds are missing - allowing us to see deeper into Jupiter's warmer interior. The dark visible appearance of the feature than most likely represents the color of very deep clouds. The warm temperatures and cloud-free conditions imply that this feature is a region where dry upper-atmospheric gas is being forced to converge, is warmed up and then forced to descend, clearing out clouds. It is the opposite of wet, upwelling gas in areas such as Jupiter's Great Red Spot or white ovals. On the other hand, it is unlike the dry and relatively cloudless feature into which the Galileo probe descended in 1995, because that region had the same temperatures as its surroundings and did not appear nearly as dark as this new spot.

    The temperatures sampled by the photopolarimeter radiometer are near the top of Jupiter's troposphere, where wind motions control the atmosphere. The top row of arrows shows the location of temperature waves in a warm region of the atmosphere. These types of waves have never been seen before. What is interesting about these waves is both that they are 'channeled' within the warm band at the top of the panel, and that they appear to have no counterpart in the visible cloud structure. Thermal waves have already been seen in Jupiter that are independent of the cloud structure, but those waves were much larger in size. This is the first time Jupiter's temperatures have been mapped at a spatial resolution better than 2,000 kilometers (1,243 miles), allowing these waves to be detected.

    These maps include an area on Jupiter between approximately the equator and 40 degrees south latitude, covering about 60 degrees of longitude. They were taken in late September during the spacecraft's 17th orbit.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

  16. SAR observations in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Sheres, David

    1992-01-01

    The Gulf of Mexico (GOM) exhibits a wealth of energetic ocean features; they include the Loop Current with velocities of about 2 m/s and strong shear fronts, mesoscale eddies, double vortices, internal waves, and the outflow of the 'Mighty Mississippi' river. These energetic features can have a strong impact on the economies of the states surrounding the Gulf. Large fisheries, oil and gas production as well as pollution transport are relevant issues. These circulation features in the Gulf are invisible to conventional IR and visible satellite imagery during the Summer months due to cloud cover and uniform surface temperatures. Synthetic Aperture Radar (SAR) imagery of the Gulf does penetrate the cloud cover and shows a rich assembly of features there year-round. Below are preliminary results from GOM SAR imagery taken by SEASAT in 1978 and by the AIRSAR program in 1991.

  17. ITOS D AND E system design report, volume 1

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The configuration and functions of the ITOS D and E system are described. The system will expand the operational capability of the basic TIROS M/ITOS system. The ITOS D and E mission will utilize the capabilities of the two-stage DSV 3N-6 Delta launch vehicle to place the ITOS D and E spacecraft into a circular, near-polar, sun synchronous orbit at 790 nautical miles altitude. The ITOS D and E will provide the following primary data: (1) visible daytime observations of cloud cover, (2) daytime and nighttime observations of cloud cover as detected from radiance in infrared spectrum, and (3) vertical temperature profile of the atmosphere on a global basis for data processing. In addition, the ITOS D and E system will provide secondary data comprising solar proton density measurements obtained throughout the orbit.

  18. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    NASA Astrophysics Data System (ADS)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  19. Satellite Data Sets in the Polar Regions

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    We have generated about two decades of consistently derived geophysical parameters in the polar regions. The key parameters are sea ice concentration, surface temperature, albedo, and cloud cover statistics. Sea ice concentrations were derived from the Scanning Multichannel Microwave Radiometer (SMMR) data and the Special Scanning Cl Microwave Imager (SSM/I) data from several platforms using the enhanced Bootstrap Algorithm for the period 1978 through 1999. The new algorithm reduces the errors associated with spatial and temporal variations in the emissivity and surface temperatures of sea ice. Also, bad data at ocean/land interfaces are identified and deleted in an unsupervised manner. Surface ice temperature, albedo and cloud cover statistics are derived simultaneously from the Advanced Very High Resolution Radiometer (AVHRR) data from 1981 through 1999 and mapped at a higher resolution but the same format as the ice concentration data. The technique makes use these co-registered ice concentration maps to enable cloud masking to be done separately for open ocean, sea ice and land areas. The effect of inversion is minimized by taking into consideration the expected changes in the effect of inversion with altitude, especially in the Antarctic. A technique for ice type regional classification has also been developed using multichannel cluster analysis and a neural network. This provide a means to identify large areas of thin ice, first year ice, and older ice types. The data sets have been shown to be coherent with each other and provide a powerful tool for in depth studies of the currently changing Arctic and Antarctic environment.

  20. Cloud and Sun-Glint Statistics Derived from GOES and MODIS Observations Over the Intra-Americas Sea for GEO-CAPE Mission Planning

    NASA Technical Reports Server (NTRS)

    Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.

    2017-01-01

    Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (N(sub cf)) for solar zenith angle Theta(sub 0) less than 80 degrees was estimated for each 0.1 degree location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day [Ns(sub sg)] was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest N(sub cf) (less than 2.4) in all climatological months, and highest N(sub cf) was observed in the Gulf of Mexico (GoM) and Caribbean (greater than 4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Temperature maximum). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are greater than 10 degrees higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.

  1. Can cirrus clouds warm early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222,1, 81-99. Ramirez, R. M., Kopparapu, R., Zugger, M. E., Robinson, T. D., Freedman, R., & Kasting, J. F., 2014. Nature Geoscience, 7,1, 59-63. Urata, R.A., and Toon, O.B., 2013. Icarus 226,1, 229-250

  2. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2014-04-01

    Thermal structure and cloud features in the atmosphere of Venus are investigated using spectroscopic nightside measurements recorded by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission in the moderate resolution infrared mapping channel (M-IR, 1-5 μm). New methodical approaches and retrieval results for the northern hemisphere have been recently described by Haus et al. (Haus, R., Kappel, D., Arnold, G. [2013]. Planet. Space Sci. 89, 77-101. http://dx.doi.org/10.1016/j.pss.2013.09.020). Now, southern hemisphere maps of mesospheric temperature and cloud parameter fields are presented that cover variations with altitude, latitude, local time, and mission time. Measurements from the entire usable data archive are utilized comprising radiation spectra recorded during eight Venus solar days between April 2006 and October 2008. Zonal averages of retrieved temperature altitude profiles in both hemispheres are very similar and give evidence of global N-S axial symmetry of atmospheric temperature structure. Cold collar and warmer polar vortex regions exhibit the strongest temperature variability with standard deviations up to 8.5 K at 75°S and 63 km altitude compared with about 1.0 K at low and mid latitudes above 75 km. The mesospheric temperature field strongly depends on local time. At altitudes above about 75 km, the atmosphere is warmer in the second half of night, while the dawn side at lower altitudes is usually colder than the dusk side by about 8 K. Local minimum temperature of 220 K occurs at 03:00 h local time at 65 km and 60°S. Temperature standard deviation at polar latitudes is particularly large near midnight. Temperature variability with solar longitude is forced by solar thermal tides with a dominating diurnal component. The influence of observed cloud parameter changes on retrieved mesospheric zonal average temperature structure is moderate and does not exceed 2-3 K at altitudes between 60 and 75 km. The mesospheric thermal structure was essentially stable with Julian date between 2006 and 2008. Global N-S axial symmetry is also observed in cloud structures. Cloud top altitude at 1 μm slowly decreases from 71 km at the equator to 70 km at 45-50° and rapidly drops poleward of 50°. It reaches 61 km over both poles. Average particle size in the vertical cloud column increases from mid latitudes toward the poles and also toward the equator resulting in minimum and maximum zonal average cloud opacities of about 32 and 42 and a planetary average of 36.5 at 1 μm. Zonal averages of cloud features are similar at different solar days, but variations with local time are very complex and inseparably associated with the superrotation of the clouds.

  3. Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery

    NASA Astrophysics Data System (ADS)

    Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.

    2007-04-01

    This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.

  4. AIRS Water Vapor and Cloud Products Validate and Explain Recent Short Term Decreases in Global and Tropical OLR as Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    A strong equatorial SST cooling occurred from 160E westward to 120W during the period of September 2002 through August 2010, surrounded by a weaker warming ring to the west. This is the result of a transition from a strong El Nino in late 2002 to a strong La Nina in 2008. Late 2009 is characterized by the beginning of another El Nino. Average rates of change (ARC's) in 500mb specific humidity and cloud cover are in phase with those in the Sea surface temperature (SST). In the El Nino and surrounding region causing outgoing longwave radiation (OLR), to decrease significantly near the dateline and increase in the vicinity of Indonesia. Tropical OLR ARC's in these two areas cancel each other to first order. The negative zonal mean tropical OLR ARC from a drop in equatorial OLR in region 1 from 140W to 40E. This results from increasing water vapor and cloud cover in this area during La Nina with the reverse holding during El Nino.

  5. Analysis of the Meteorology Associated with the 1998 NASA Glenn Twin Otter Icing Flights

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.

    2000-01-01

    This document contains a basic analysis of the meteorology associated with the NASA Glenn Twin Otter icing encounters between December 1997 and March 1998. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A brief overview of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared and visible satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (7) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).

  6. Discrete post-processing of total cloud cover ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  7. BOREAS TF-8 NSA-OJP and SSA-OBS Ceilometer Data

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Fitzjarrald, David R.

    2000-01-01

    The BOREAS TF-8 team used ceilometers to collect data on the fraction of the sky covered with clouds and the cloud height. Included with these data is the surface-based lifting condensation level, derived from temperature and humidity values acquired at the flux tower at the NSA-OJP site. Ceilo-meter data were collected at the NSA-OJP site in 1994 and at the NSA-OJP and SSA-OBS sites in 1996. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  8. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm the surface.

  9. Clouds at CTIO and the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Jr., Eric

    An understanding of the weather patters at Cerro-Tololo Inter-American (CTIO) Observatory, the observing site for the Dark Energy Survey (DES), is important for assessing the efciency of DES operations in using observing time and for planning future operations. CTIO has maintained records of cloud-cover by quarters of nights since 1975. A comparison between these cloud records in the 2013-2014 DES observing season (DES year 1) and achieved observing efciency and exposure quality allows the DES collaboration to make better use of the historical records in survey planning. Plots and tables here relate human recorded cloud-cover to collection of good DESmore » data, show the variation of typical cloud-cover by month, and evaluate the relationship between the El Niño weather pattern and cloud-cover at CTIO.« less

  10. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.

  11. Movie of High Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jupiter's high-altitude clouds are seen in this brief movie made from seven frames taken by the narrow-angle camera of NASA's Cassini spacecraft. This is the first time a movie sequence of Jupiter has been made that illustrates the motions of the high-altitude clouds on a global scale.

    The images were taken at a wavelength that is absorbed by methane, one chemical in Jupiter's lower clouds. So, dark areas are relatively free of high clouds, and the camera sees through to the methane in a lower level. Bright areas are places with high, thick clouds that shield the methane below.

    Jupiter's equator and Great Red Spot are covered with high-altitude, hazy clouds.

    The movie covers the time period between Oct. 1 and Oct. 5, 2000, latitudes from 50 degrees north to 50 degrees south, and a 100-degree sweep of longitude. Those factors were the same for a Cassini movie of cloud motions previously released (PIA02829), but that movie used frames taken through a blue filter, which showed deeper cloud levels and sharper detail. Features in this methane-filter movie appear more diffuse.

    Among the nearly stationary features are the Red Spot and some bright ovals at mid-latitudes in both hemispheres. These are anticyclonic (counter-clockwise rotating) storms. They are bright in the methane band because of their high clouds associated with rising gas. They behave differently from terrestrial cyclones, which swirl in the opposite direction. The mechanism making the Red Spot and similar spots stable apparently has no similarity to the mechanism which feeds terrestrial cyclones.

    Some small-scale features are fascinating because of their brightness fluctuations. Such fluctuations observed in the methane band are probably caused by strong vertical motions, which form clouds rapidly, as in Earth's thunderstorms. Near the upper left corner in this movie, a number of smaller clouds appear to circulate counterclockwise around a dark spot, and these clouds fluctuate in brightness, so they may be candidates for lightning storms.

    A pattern of lighter areas between darker patches can be seen in the darkest band a little north of the bright equatorial region. This may be tied to a wave-like temperature variation across the planet. If confirmed, this would be the first time such large-scale stratospheric temperature waves have been visibly linked to variations in haze thickness.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  12. Shuttle landing facility cloud cover study: Climatological analysis and two tenths cloud cover rule evaluation

    NASA Technical Reports Server (NTRS)

    Atchison, Michael K.; Schumann, Robin; Taylor, Greg; Warburton, John; Wheeler, Mark; Yersavich, Ann

    1993-01-01

    The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings at the Kennedy Space Center (KSC) states: 'for scattered cloud layers below 10,000 feet, cloud cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go decision time (approximately 90 minutes before landing time)'. This rule was designed to protect against a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after the de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) developed and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Landing Facility for a five-year (1986-1990) period. The data indicate the best time to land the shuttle at KSC is during the summer while the worst time is during the winter. The analysis also shows the highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 UTC time periods. The worst time of the day to land a shuttle is near sunrise and during the afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations has shown that there is a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct., 700 mb northerly wind category, 1500 UTC category, and 1600 UTC category there is some evidence that the 0.2 cloud cover rule may be overly conservative. This possibility requires further investigation. As a result of these analyses, the AMU developed nomograms to help the Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (CCFF) forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future work will include updating the two tenths database, further analysis of the data for several categorizations, and developing a proof of concept artificial neural network to provide forecast guidance of weather constraint violations for shuttle landings.

  13. Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of Lake Lahontan

    USGS Publications Warehouse

    Hostetler, S.W.

    1991-01-01

    A model of lake ice was coupled with a model of lake temperature and evaporation to assess the possible effect of ice cover on the late-Pleistocene evaporation rate of Lake Lahontan. The simulations were done using a data set based on proxy temperature indicators and features of the simulated late-Pleistocene atmospheric circulation over western North America. When a data set based on a mean-annual air temperature of 3?? C (7?? C colder than present) and reduced solar radiation from jet-stream induced cloud cover was used as input to the model, ice cover lasting ??? 4 months was simulated. Simulated evaporation rates (490-527 mm a-1) were ??? 60% lower than the present-day evaporation rate (1300 mm a-1) of Pyramid Lake. With this reduced rate of evaporation, water inputs similar to the 1983 historical maxima that occurred in the Lahontan basin would have been sufficient to maintain the 13.5 ka BP high stand of Lake Lahontan. ?? 1991 Springer-Verlag.

  14. 350 Year Cloud Reconstruction Deduced from Northeast Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, A.; Sammarco, P. W.; Mikolajewicz, U.; Jury, M.; Zanchettin, D.

    2014-12-01

    Clouds are a major factor influencing the global climate and its response to external forcing through their implications for the global hydrological cycle, and hence for the planetary radiative budget. Clouds also contribute to regional climates and their variability through, e.g., the changes they induce in regional precipitation patterns. There have been very few studies of decadal and longer-term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data are too short to unambiguously discern any temporal trends in cloud cover. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Skeletons of scleractinian corals are considered to provide among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, d13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover for the northeastern Caribbean region. Using this proxy we have been able to reconstruct cloud cover conditions back to the year 1760 and thus determine historical cloud cover prior to the recent use of instrumental records. We will also discuss how our coral proxy record of cloud cover compares to paleo-climate model runs for the same time period.

  15. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000-2015.

    PubMed

    Wang, Xiaoyue; Wu, Chaoyang; Wang, Huanjiong; Gonsamo, Alemu; Liu, Zhengjia

    2017-11-07

    Understanding the changes in snow cover is essential for biological and hydrological processes in the Tibetan Plateau (TP) and its surrounding areas. However, the changes in snow cover phenology over the TP have not been well documented. Using Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data, we reported daily cloud-free snow cover product over the Tibetan Plateau (TP) for 2000-2015. Snow cover start (SCS), melt (SCM) and duration (SCD) dates were calculated for each hydrological year, and their spatial and temporal variations were analyzed with elevation variations. Our results show no widespread decline in snow cover over the past fifteen years and the trends of snow cover phenology over the TP has high spatial heterogeneity. Later SCS, earlier SCM, and thus decreased SCD mainly occurred in the areas with elevation below 3500 m a.s.l., while regions in central and southwestern edges of the TP showed advanced SCS, delayed SCM and consequently longer SCD. The roles of temperature and precipitation on snow cover penology varied in different elevation zones, and the impact of both temperature and precipitation strengthened as elevation increases.

  16. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    PubMed

    Wilson, Adam M; Jetz, Walter

    2016-03-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  17. Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Lohmann, Ulrike

    2003-08-01

    The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.

  18. A Earth Outgoing Longwave Radiation Climate Model

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Keng

    An Earth outgoing longwave radiation (OLWR) climate model has been constructed for radiation budget study. The model consists of the upward radiative transfer parameterization of Thompson and Warren (1982), the cloud cover model of Sherr et al. (1968) and a monthly average climatology defined by the data from Crutcher and Meserve (1971) and Taljaard et al. (1969). Additional required information is provided by the empirical 100mb water vapor mixing ratio equation of Harries (1976), and the mixing ratio interpolation scheme of Briegleb and Ramanathan (1982). Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesia and the Congo. There are regions in the tropics such that their OLWR is as large as that of the subtropics. In the high latitudes, where cold air contains less water vapor, OLWR is basically modulated by the surface temperature. Thus, the topographical heat capacity becomes a dominant factor in determining the distribution. Clouds enhance water vapor modulation of OLWR. Tropical clouds have the coldest cloud top temperatures. This again increases the longitudinal variation in the region. However, in the polar region, where temperature inversion is prominent, cloud top temperature is warmer than the surface. Hence, cloud has the effect of increasing OLWR. The implication of this cloud mechanism is that the latitudinal gradient of net radiation is thus further increased, and the forcing of the general atmospheric circulation is substantially different due to the increased additional available energy. The analysis of the results also suggests that to improve the performance of the Budyko-Sellers type energy balance climate model in the tropical region, the parameterization of the longwave cooling should include a water vapor absorbing term.

  19. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    DTIC Science & Technology

    2013-09-30

    Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...how changes in sea ice and sea surface conditions in the SIZ affect changes in cloud properties and cover . • Determine the role additional atmospheric...REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the

  20. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2010-01-01

    AIRS is a precision state of the art High Spectral Resolution Multi-detector IR grating array spectrometer that was launched into a polar orbit on EOS Aqua in 2002. AIRS measures most of the infra-red spectrum with very low noise from 650/cm to 2660/cm with a resolving power of 2400 at a spatial resolution of 13 km. The objectives of AIRS were to perform accurate determination of atmospheric temperature and moisture profiles in up to 90% partial cloud cover conditions for the purpose of improving numerical weather prediction and understanding climate processes. AIRS data has also been used to determine accurate trace gas profiles. A brief overview of the retrieval methodology used to analyze AIRS observations under partial cloud cover will be presented and sample results will be shown from the weather and climate perspectives.

  1. The impact of low-level cloud over the eastern subtropical Pacific on the ``Double ITCZ'' in LASG FGCM-0

    NASA Astrophysics Data System (ADS)

    Dai, Fushan; Yu, Rucong; Zhang, Xuehong; Yu, Yongqiang; Li, Jianglong

    2003-05-01

    Like many other coupled models, the Flexible coupled General Circulation Model (FGCM-0) suffers from the spurious “Double ITCZ”. In order to understand the “Double ITCZ” in FGCM-0, this study first examines the low-level cloud cover and the bulk stability of the low troposphere over the eastern subtropical Pacific simulated by the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3), which is the atmosphere component model of FGCM-0. It is found that the bulk stability of the low troposphere simulated by CCM3 is very consistent with the one derived from the National Center for Environmental Prediction (NCEP) reanalysis, but the simulated low-level cloud cover is much less than that derived from the International Satellite Cloud Climatology Project (ISCCP) D2 data. Based on the regression equations between the low-level cloud cover from the ISCCP data and the bulk stability of the low troposphere derived from the NCEP reanalysis, the parameterization scheme of low-level cloud in CCM3 is modified and used in sensitivity experiments to examine the impact of low-level cloud over the eastern subtropical Pacific on the spurious “Double ITCZ” in FGCM-0. Results show that the modified scheme causes the simulated low-level cloud cover to be improved locally over the cold oceans. Increasing the low-level cloud cover off Peru not only significantly alleviates the SST warm biases in the southeastern tropical Pacific, but also causes the equatorial cold tongue to be strengthened and to extend further west. Increasing the low-level cloud fraction off California effectively reduces the SST warm biases in ITCZ north of the equator. In order to examine the feedback between the SST and low-level cloud cover off Peru, one additional sensitivity experiment is performed in which the SST over the cold ocean off Peru is restored. It shows that decreasing the SST results in similar impacts over the wide regions from the southeastern tropical Pacific northwestwards to the western/central equatorial Pacific as increasing the low-level cloud cover does.

  2. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    NASA Technical Reports Server (NTRS)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  3. Laser applications to atmospheric sciences: A bibliography

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1975-01-01

    A bibliography is given of 1460 references of the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.

  4. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    DTIC Science & Technology

    2012-09-30

    Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...temperatures. These changes in turn will affect the evolution of the SIZ. An appropriate representation of this feedback loop in models is critical if we... modeling experiments as part of the atmospheric component of the Seasonal Ice Zone Reconnaissance Survey project (SIZRS). We will • Determine the role

  5. Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)

    NASA Technical Reports Server (NTRS)

    Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, J.; DeGenio, A.; DeMott, C.; Franklin, C.; Hannay, C.; Jakob, C.; Jiao, Y.; hide

    2011-01-01

    A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/ WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June July August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

  6. Changes in Extratropical Storm Track Cloudiness 1983-2008: Observational Support for a Poleward Shift

    NASA Technical Reports Server (NTRS)

    Bender, Frida A-M.; Rananathan, V.; Tselioudis, G.

    2012-01-01

    Climate model simulations suggest that the extratropical storm tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the International Satellite Cloud Climatology Project, ISCCP. Potential shifts in the storm tracks are examined using the observed cloud structures as proxies for cyclone activity. Different data analysis methods are employed, with the objective to address difficulties and uncertainties in using ISCCP data for regional trend analysis. In particular, three data filtering techniques are explored; excluding specific problematic regions from the analysis, regressing out a spurious viewing geometry effect, and excluding specific cloud types from the analysis. These adjustments all, to varying degree, moderate the cloud trends in the original data but leave the qualitative aspects of those trends largely unaffected. Therefore, our analysis suggests that ISCCP data can be used to interpret regional trends in cloudiness, provided that data and instrumental artefacts are recognized and accounted for. The variation in magnitude between trends emerging from application of different data correction methods, allows us to estimate possible ranges for the observational changes. It is found that the storm tracks, here represented by the extent of the midlatitude-centered band of maximum cloud cover over the studied ocean basins, experience a poleward shift as well as a narrowing over the 25 year period covered by ISCCP. The observed magnitudes of these effects are larger than in current generation climate models (CMIP3). The magnitude of the shift is particularly large in the northern hemisphere Atlantic. This is also the one of the four regions in which imperfect data primarily prevents us from drawing firm conclusions. The shifted path and reduced extent of the storm track cloudiness is accompanied by a regional reduction in total cloud cover. This decrease in cloudiness can primarily be ascribed to low level clouds, whereas the upper level cloud fraction actually increases, according to ISCCP. Independent satellite observations of radiative fluxes at the top of the atmosphere are consistent with the changes in total cloud cover. The shift in cloudiness is also supported by a shift in central position of the mid-troposphere meridional temperature gradient. We do not find support for aerosols playing a significant role in the satellite observed changes in cloudiness. The observed changes in storm track cloudiness can be related to local cloud-induced changes in radiative forcing, using ERBE and CERES radiative fluxes. The shortwave and the longwave components are found to act together, leading to a positive (warming) net radiative effect in response to the cloud changes in the storm track regions, indicative of positive cloud feedback. Among the CMIP3 models that simulate poleward shifts in all four storm track areas, all but one show decreasing cloud amount on a global mean scale in response to increased CO2 forcing, further consistent with positive cloud feedback. Models with low equilibrium climate sensitivity to a lesser extent than higher-sensitivity models simulate a poleward shift of the storm tracks.

  7. The effect of moonlight on observation of cloud cover at night, and application to cloud climatology

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1995-01-01

    Ten years of nighttime weather observations from the Northern Hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 deg, light from a partial moon at higher elevation, or twilight from the sun less than 9 deg bvelow the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. The diurnal cycles of total cloud cover we obtain are compared with those of the International Satellite Cloud Climatology Project (ISCCP) for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed 10 years (1982-91) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog, and precipitation. The global average cloud cover (average of day and night) is about 2% higher if the moonlight criterion is imposed than if all observations are used. The difference is greater in winter than in summer, because of the fewer hours of darkness in summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-91 is found to be 55% for Northern Hemisphere land, 53% for Southern Hemisphere land, 66% for Northern Hemisphere ocean, and 70% for Southern Hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6%; for nighttime 63.3%.

  8. Detection of long duration cloud contamination in hyper-temporal NDVI imagery

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.

    2012-04-01

    NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.

  9. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  10. New optical package and algorithms for accurate estimation and interactive recording of the cloud cover information over land and sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey; Gulev, Sergey

    2014-05-01

    Cloud fraction is a critical parameter for the accurate estimation of short-wave and long-wave radiation - one of the most important surface fluxes over sea and land. Massive estimates of the total cloud cover as well as cloud amount for different layers of clouds are available from visual observations, satellite measurements and reanalyses. However, these data are subject of different uncertainties and need continuous validation against highly accurate in-situ measurements. Sky imaging with high resolution fish eye camera provides an excellent opportunity for collecting cloud cover data supplemented with additional characteristics hardly available from routine visual observations (e.g. structure of cloud cover under broken cloud conditions, parameters of distribution of cloud dimensions). We present operational automatic observational package which is based on fish eye camera taking sky images with high resolution (up to 1Hz) in time and a spatial resolution of 968x648px. This spatial resolution has been justified as an optimal by several sensitivity experiments. For the use of the package at research vessel when the horizontal positioning becomes critical, a special extension of the hardware and software to the package has been developed. These modules provide the explicit detection of the optimal moment for shooting. For the post processing of sky images we developed a software realizing the algorithm of the filtering of sunburn effect in case of small and moderate could cover and broken cloud conditions. The same algorithm accurately quantifies the cloud fraction by analyzing color mixture for each point and introducing the so-called "grayness rate index" for every pixel. The accuracy of the algorithm has been tested using the data collected during several campaigns in 2005-2011 in the North Atlantic Ocean. The collection of images included more than 3000 images for different cloud conditions supplied with observations of standard parameters. The system is fully autonomous and has a block for digital data collection at the hard disk. The system has been tested for a wide range of open ocean cloud conditions and we will demonstrate some pilot results of data processing and physical interpretation of fractional cloud cover estimation.

  11. Dynamic Mesoscale Land-Atmosphere Feedbacks in Fragmented Forests in Amazonia

    NASA Astrophysics Data System (ADS)

    Rastogi, D.; Baidya Roy, S.

    2011-12-01

    This paper investigates land-atmosphere feedbacks in disturbed rainforests of Amazonia. Deforestation along the rapidly expanding highways and road network has created the unique fishbone land cover pattern in Rondonia, a state in southwestern Amazonia. Numerical experiments and observations show that sharp gradients in land cover due to the fishbone heterogeneity triggers mesoscale circulations. These circulations significantly change the spatial pattern of local hydrometeorology, especially convection, clouds and precipitation. The primary research question now is can these changes in local hydrometeorology affect vegetation growth in the clearings. If so, that would be a clear indication that land-atmosphere feedbacks can affect vegetation recovery in fragmented forests. A computationally-efficient modeling tool consisting of a mesoscale atmospheric model dynamically coupled with a plant growth model has been specifically developed to identify the atmospheric feedback pathways. Preliminary experiments focus on the seasonal-scale feedbacks during the dry season. Results show that temperature, incoming shortwave and precipitation are the three primary drivers through which the feedbacks operate. Increasing temperature increases respiratory losses generating a positive feedback. Increased cloud cover reduces incoming PAR and photosynthesis, resulting in a positive feedback. Increased precipitation reduces water stress and promotes growth resulting in a negative feedback. The net effect is a combination of these 3 feedback loops. These findings can significantly improve our understanding of ecosystem resiliency in disturbed tropical forests.

  12. Deployment of the third-generation infrared cloud imager: A two-year study of Arctic clouds at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Nugent, Paul Winston

    Cloud cover is an important but poorly understood component of current climate models, and although climate change is most easily observed in the Arctic, cloud data in the Arctic is unreliable or simply unavailable. Ground-based infrared cloud imaging has the potential to fill this gap. This technique uses a thermal infrared camera to observe cloud amount, cloud optical depth, and cloud spatial distribution at a particular location. The Montana State University Optical Remote Sensor Laboratory has developed the ground-based Infrared Cloud Imager (ICI) instrument to measure spatial and temporal cloud data. To build an ICI for Arctic sites required the system to be engineered to overcome the challenges of this environment. Of particular challenge was keeping the system calibration and data processing accurate through the severe temperature changes. Another significant challenge was that weak emission from the cold, dry Arctic atmosphere pushed the camera used in the instrument to its operational limits. To gain an understanding of the operation of the ICI systems for the Arctic and to gather critical data on Arctic clouds, a prototype arctic ICI was deployed in Barrow, AK from July 2012 through July 2014. To understand the long-term operation of an ICI in the arctic, a study was conducted of the ICI system accuracy in relation to co-located active and passive sensors. Understanding the operation of this system in the Arctic environment required careful characterization of the full optical system, including the lens, filter, and detector. Alternative data processing techniques using decision trees and support vector machines were studied to improve data accuracy and reduce dependence on auxiliary instrument data and the resulting accuracy is reported here. The work described in this project was part of the effort to develop a fourth-generation ICI ready to be deployed in the Arctic. This system will serve a critical role in developing our understanding of cloud cover in the Arctic, an important but poorly understood region of the world.

  13. FIRE aircraft observations of horizontal and vertical transport in marine stratocumulus

    NASA Technical Reports Server (NTRS)

    Paluch, Ilga R.; Lenschow, Donald H.

    1990-01-01

    A major goal of research on marine stratocumulus is to try to understand the processes that generate and dissipate them. One approach to studying this problem is to investigate the boundary layer structure in the vicinity of a transition from a cloudy to a cloud-free region to document the differences in structure on each side of the transition. Since stratiform clouds have a major impact on the radiation divergence in the boundary layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal inhomogeneity in air temperature and turbulence intensity. This leads to a considerable difference in horizontal and vertical transports between the cloudy and cloud-free regions. Measurements are used from the NCAR Electra aircraft during flights 5 (7 July 1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a LANDSAT overflight, and was designed to investigate the transition across a well-defined N-S cloud boundary, since the LANDSAT image can document the cloud cover in considerable detail. Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10 was flown at night in an area of scattered small cumuli and broken cloud patches.

  14. The initial giant umbrella cloud of the May 18th, 1980, explosive eruption of Mount St. Helens

    USGS Publications Warehouse

    Sparks, R.S.J.; Moore, J.G.; Rice, C.J.

    1986-01-01

    The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450??C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150??C and the flow consisted of a mixture of 3.25 ?? 1011 kg of pyroclasts and 5.0 ?? 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 ?? 1011 kg of pyroclasts and 1.0 ?? 1011 kg of air. ?? 1986.

  15. Microwat : a new Earth Explorer mission proposal to measure the Sea surface Temperature and the Sea Ice Concentration

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Aires, Filipe; Heygster, Georg

    2017-04-01

    Ocean surface characterization from satellites is required to understand, monitor and predict the general circulation of the ocean and atmosphere. With more than 70% global cloud coverage at any time, visible and infrared satellite observations only provide limited information. The polar regions are particularly vulnerable to the climate changes and are home to complex mesoscale mechanisms that are still poorly understood. They are also under very persis- tent cloudiness. Passive microwave observations can provide surface information such as Sea Surface Temperature (SST) and Sea Ice Concentration (SIC) regardless of the cloud cover, but up to now they were limited in spatial resolution. Here, we propose a passive microwave conically scanning imager, MICROWAT, in a polar orbit, for the retrieval of the SST and SIC, with a spatial resolution of 15km. It observes at 6 and 10GHz, with low-noise dual polarization receivers, and a foldable mesh antenna of 5m-diameter. Furthermore, MICROWAT will fly in tandem with MetOp-SG B to benefit from the synergy with scatterometers (SCA) and microwave imagers (MWI). MICROWAT will provide global SST estimates, twice daily, regardless of cloud cover, with an accuracy of 0.3K and a spatial resolution of 15km. The SIC will be derived with an accuracy of 3%. With its unprecedented "all weather" accurate SST and SIC at 15km, MICROWAT will provide the atmospheric and oceanic forecasting sys- tems with products compatible with their increasing spatial resolution and complexity, with impact for societal applications. It will also answer fundamental science questions related to the ocean, the atmosphere and their interactions. * Prigent, Aires, Bernardo, Orlhac, Goutoule, Roquet, & Donlon, Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition

  16. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  17. The CAUSES Model Intercomparison Project: Using hindcast approach to study the U.S. summertime surface warm temperature bias

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, C.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.

    2016-12-01

    The CAUSES (Clouds Above the United States and Errors at the Surface) is a joint GASS/RGCM/ASR model intercomparison project with an observational focus (data from the U.S. DOE ARM SGP site and other observations). The goal of this project is to evaluate the role of clouds, radiation and precipitation processes in contributing to the surface air temperature bias in the region of the central U.S., which is seen in several weather and climate models. In this project, we use a short-term hindcast approach and examine the error growth due to cloud-associated processes while the large-scale state remains close to observations. The study period is from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign that provides very frequent radiosondes (8 per day) and many extensive cloud and precipitation radar observations. Our preliminary analysis indicates that the warm surface air temperature bias in the mean diurnal cycle of the whole study period is very robust across all the participating models over the ARM SGP site. During the spring season (April-May), the daytime warm bias in most models is mostly due to excessive net surface shortwave flux resulting from insufficient deep convective cloud fraction or too optically thin clouds. The nighttime warm bias is likely due to the excessive downwelling longwave flux warming resulting from the persisting deep clouds. During the summer season (June-August), bias contribution from precipitation bias becomes important. The insufficient seasonal accumulated precipitation from the propagating convective systems originated from the Rockies contributes to lower soil moisture. Such condition drives the land surface to a dry state whereby radiative input can only be balanced by sensible heat loss through an increased surface air temperature. More information about the CAUSES project can be found through the following project webpage (http://portal.nersc.gov/project/capt/CAUSES/). (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-688818)

  18. Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Loeb, Norman G.; Minnis, Patrick; Francis, Jennifer A.; Charlock, Thomas P.; Rutan, David A.; Clothiaux, Eugene E.; Sun-Mack, Szedung

    2006-10-01

    The daytime cloud fraction derived by the Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm using Moderate Resolution Imaging Spectroradiometer (MODIS) radiances over the Arctic from March 2000 through February 2004 increases at a rate of 0.047 per decade. The trend is significant at an 80% confidence level. The corresponding top-of-atmosphere (TOA) shortwave irradiances derived from CERES radiance measurements show less significant trend during this period. These results suggest that the influence of reduced Arctic sea ice cover on TOA reflected shortwave radiation is reduced by the presence of clouds and possibly compensated by the increase in cloud cover. The cloud fraction and TOA reflected shortwave irradiance over the Antarctic show no significant trend during the same period.

  19. Do contrails significantly reduce daily temperature range?

    NASA Astrophysics Data System (ADS)

    Hong, Gang; Yang, Ping; Minnis, Patrick; Hu, Yong X.; North, Gerald

    2008-12-01

    One of the most visible anthropogenic phenomena in the atmosphere is the occurrence of contrails. The direct effects of contrails on surface temperature are investigated on the basis of the data sets for the cloud cover and surface temperature over the conterminous United States for the period 1971-2001. It is shown that the increase of the average daily temperature range (DTR) over the United States during the three-day grounding period of 11-14 September 2001 cannot be attributed to the absence of contrails, a subject was debated in several previous studies. The present analysis suggests that the DTR is attributed to the change of low cloudiness.

  20. Derivation of Tropospheric Column Ozone from the EPTOMS/GOES Co-Located Data Sets using the Cloud Slicing Technique

    NASA Technical Reports Server (NTRS)

    Ahn, C.; Ziemke, J. R.; Chandra, S.; Bhartia, P. K.

    2002-01-01

    A recently developed technique called cloud slicing used for deriving upper tropospheric ozone from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument combined together with temperature-humidity and infrared radiometer (THIR) is no longer applicable to the Earth Probe TOMS (EPTOMS) because EPTOMS does not have an instrument to measure cloud top temperatures. For continuing monitoring of tropospheric ozone between 200-500hPa and testing the feasibility of this technique across spacecrafts, EPTOMS data are co-located in time and space with the Geostationary Operational Environmental Satellite (GOES)-8 infrared data for 2001 and early 2002, covering most of North and South America (45S-45N and 120W-30W). The maximum column amounts for the mid-latitudinal sites of the northern hemisphere are found in the March-May season. For the mid-latitudinal sites of the southern hemisphere, the highest column amounts are found in the September-November season, although overall seasonal variability is smaller than those of the northern hemisphere. The tropical sites show the weakest seasonal variability compared to higher latitudes. The derived results for selected sites are cross validated qualitatively with the seasonality of ozonesonde observations and the results from THIR analyses over the 1979-1984 time period due to the lack of available ozonesonde measurements to study sites for 2001. These comparisons show a reasonably good agreement among THIR, ozonesonde observations, and cloud slicing-derived column ozone. With very limited co-located EPTOMS/GOES data sets, the cloud slicing technique is still viable to derive the upper tropospheric column ozone. Two new variant approaches, High-Low (HL) cloud slicing and ozone profile derivation from cloud slicing are introduced to estimate column ozone amounts using the entire cloud information in the troposphere.

  1. An evaluation of satellite-derived humidity and its relationship to convective development

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    An aircraft prototype of the High-Resolution Interferometer Sounder (HIS) was flown over Tennessee and northern Alabama during summer 1986. The HIS temperature and dewpoint soundings were examined on two flight days to determine their error characteristics and utility in mesoscale analyses. Random errors were calculated from structure functions while total errors were obtained by pairing the HIS soundings with radiosonde-derived profiles. Random temperature errors were found to be less than 1 C at most levels, but random dewpoint errors ranged from 1 to 5 C. Total errors of both parameters were considerably greater, with dewpoint errors especially large on the day having a pronounced subsidence inversion. Cumulus cloud cover on 15 June limited HIS mesoscale analyses on that day. Previously undetected clouds were found in many HIS fields of view, and these probably produced the low-level horizontal temperature and dewpoint variations observed in the retrievals. HIS dewpoints at 300 mb indicated a strong moisture gradient that was confirmed by GOES 6.7-micron imagery. HIS mesoscale analyses on 19 June revealed a tongue of humid air stretching across the study area. The moist region was confirmed by radiosonde data and imagery from the Multispectral Atmospheric Mapping Sensor (MAMS). Convective temperatures derived from HIS retrievals helped explain the cloud formation that occurred after the HIS overflights. Crude estimates of Bowen ratio were obtained from HIS data using a mixing-line approach. Values indicated that areas of large sensible heat flux were the areas of first cloud development. These locations were also suggested by GOES visible and infrared imagery. The HIS retrievals indicated that areas of thunderstorm formation were regions of greatest instability. Local landscape variability and atmospheric temperature and humidity fluctuations were found to be important factors in producing the cumulus clouds on 19 June. HIS soundings were capable of detecting some of this variability. The authors were impressed by HIS's performance on the two study days.

  2. Improving snow fraction spatio-temporal continuity using a combination of MODIS and Fengyun-2 satellites over China

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Wang, G.

    2017-12-01

    Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map. Then the combination snow fraction map is temporally reconstructed using MATLAB Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function to derive a completely daily cloud-free snow cover map under all the sky conditions.

  3. Using Satellite Data in Weather Forecasting: I

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Suggs, Ronnie J.; Lecue, Juan M.

    2006-01-01

    The GOES Product Generation System (GPGS) is a set of computer codes and scripts that enable the assimilation of real-time Geostationary Operational Environmental Satellite (GOES) data into regional-weather-forecasting mathematical models. The GPGS can be used to derive such geophysical parameters as land surface temperature, the amount of precipitable water, the degree of cloud cover, the surface albedo, and the amount of insolation from satellite measurements of radiant energy emitted by the Earth and its atmosphere. GPGS incorporates a priori information (initial guesses of thermodynamic parameters of the atmosphere) and radiometric measurements from the geostationary operational environmental satellites along with mathematical models of physical principles that govern the transfer of energy in the atmosphere. GPGS solves the radiative-transfer equation and provides the resulting data products in formats suitable for use by weather-forecasting computer programs. The data-assimilation capability afforded by GPGS offers the potential to improve local weather forecasts ranging from 3 hours to 2 days - especially with respect to temperature, humidity, cloud cover, and the probability of precipitation. The improvements afforded by GPGS could be of interest to news media, utility companies, and other organizations that utilize regional weather forecasts.

  4. TEMPERATURE SPECTRA OF INTERSTELLAR DUST GRAINS HEATED BY COSMIC RAYS. I. TRANSLUCENT CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvāns, Juris, E-mail: juris.kalvans@venta.lv

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas–grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f{sub T}, s{sup −1}, determines how often a certain temperature T{sub CR}, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f{sub T} and T{sub CR} spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μ m and such grains covered withmore » ice mantles of thickness 0.1 a and 0.3 a . Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A{sub V} = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T{sub CR} spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T{sub CR} values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20–30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.« less

  5. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    NASA Technical Reports Server (NTRS)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  6. GEWEX cloud assessment: A review

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  7. Analysis of the Meteorology Associated with the 1997 NASA Glenn Twin Otter Icing Events

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.

    2000-01-01

    This part of the document contains an analysis of the meteorology associated with the premier icing encounters from the January-March 1997 NASA Twin Otter dataset. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A detailed discussion of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type, (7) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (8) Plots of data from individual NEXRAD radars at times and elevation angles that have been matched to Twin Otter flight locations. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).

  8. Response of Alpine Grassland Vegetation Phenology to Snow Accumulation and Melt in Namco Basin

    NASA Astrophysics Data System (ADS)

    Chen, S.; Cui, X.; Liang, T.

    2018-04-01

    Snow/ice accumulation and melt, as a vital part of hydrological processes, is close related with vegetation activities. Taking Namco basin for example, based on multisource remote sensing data and the ground observation data of temperature and precipitation, phenological information was extracted by S-G filtering and dynamic threshold method. Daily snow cover fraction was calculated with daily cloud-free snow cover maps. Evolution characteristics of grassland vegetation greening, growth length and daily snow cover fraction and their relationship were analyzed from 2001 to 2013. The results showed that most of grassland vegetation had advanced greening and prolong growth length trend in Namco basin. There were negative correlations between snow cover fraction and vegetation greening or growth length. The response of vegetation phenology to snow cover fraction is more sensitive than that to temperature in spring. Meanwhile, vegetation growth condition turned worse with advanced greening and prolong growth length. To a certain extent, our research reveals the relationship between grassland vegetation growth cycle and snow in alpine ecosystem. It has provided reference to research the response mechanism of alpine grassland ecosystem to climate changes.

  9. Comparative climatology of four marine stratocumulus regimes

    NASA Technical Reports Server (NTRS)

    Hanson, Howard P.

    1990-01-01

    The climatology of marine stratocumulus (MSc) cloud regimes off the west coasts of California, Peru, Morocco, and Angola are examined. Long-term, annual averages are presented for several quantities of interest in the four MSc regimes. The climatologies were constructed using the Comprehensive Ocean-Atmosphere Data Set (COADS). A 40 year time series of observations was extracted for 32 x 32 deg analysis domains. The data were taken from the monthly-averaged, 2 deg product. The resolution of the analysis is therefore limited to scales of greater than 200 km with submonthly variability not resolved. The averages of total cloud cover, sea surface temperature, and surface pressure are presented.

  10. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions

    PubMed Central

    Wilson, Adam M.; Jetz, Walter

    2016-01-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties. PMID:27031693

  11. Cloud Radiative Effect in dependence on Cloud Type

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2015-04-01

    Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be used (Wacker et al. (2013)). References: Heinle, A., A. Macke and A. Srivastav (2010) Automatic cloud classification of whole sky images, Atmospheric Measurement Techniques. Wacker, S., J. Gröbner and L. Vuilleumier (2013) A method to calculate cloud-free long-wave irradiance at the surface based on radiative transfer modeling and temperature lapse rate estimates, Theoretical and Applied Climatology. Wacker, S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikis, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, Journal of Geophysical Research.

  12. Marine Cloud Brightening: regional applications to the weakening of hurricanes and reduction in coral bleaching

    NASA Astrophysics Data System (ADS)

    Gadian, A.; Hauser, R.; Kleypas, J. A.; Latham, J.; Parkes, B.; Salter, S.

    2013-12-01

    This study examines the potential to cool ocean surface waters in regions of hurricane genesis and early development. This would be achieved by seeding, with copious quantities of seawater cloud condensation nuclei (CCN), low-level maritime stratocumulus clouds covering these regions or those at the source of incoming currents. Higher cloud droplet density would increase these clouds' reflectivity to incoming sunlight, and possibly their longevity. This approach is a more localized application of the Marine Cloud Brightening (MCB) geoengineering technique promoting global cooling. By utilizing a climate ocean/atmosphere coupled model, HadGEM1, and by judicious seeding of maritime stratocumulus clouds, we demonstrate that we may be able to significantly reduce sea surface temperatures (SSTs) in hurricane development regions. Thus artificial seeding may reduce hurricane intensity; but how well the magnitude of this effect is yet to be determined. Increases in coral bleaching events over the last few decades have been largely caused by rising SSTs, and continued warming is expected to cause even greater increases through this century. Using thr same Global Climate Model to examine the potential of MCB to cool oceanic surface waters in three coral reef provinces. Our simulations indicate that under doubled CO2 conditions, the substantial increases in coral bleaching conditions from current values in three reef regions (Caribbean, French Polynesia, and the Great Barrier Reef) were eliminated when MCB was applied, which reduced the SSTs at these sites roughly to their original values. In this study we also illustrate how even regional application of MCB can affect the planetary meridional heat flux and the reduction in poleward heat transfer. (a) Change in annual average sea surface temperature, Celsius, between the 2xCO2 and CONTROL simulations. (b) Change in annual average sea surface temperature, Celsius, between the CONTROL and 2xCO2+MCB simulations. The dashed black boxes in both panels represent the three coral reef regions. In the Southern north Atlantic, the warmer SSTs in (a) is reduced to the current "control" temperatures, weakening hurricane formation.

  13. Evaluating the feasibility of global climate models to simulate cloud cover effect controlled by Marine Stratocumulus regime transitions

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Muelmenstaedt, Johannes; Rosenfeld, Daniel; Quaas, Johannes

    2017-04-01

    Marine stratocumulus clouds (MSC) occur in two main cloud regimes of open and closed cells that differ significantly by their cloud cover. Closed cells gradually get cleansed of high CCN concentrations in a process that involves initiation of drizzle that breaks the full cloud cover into open cells. The drizzle creates downdrafts that organize the convection along converging gust fronts, which in turn produce stronger updrafts that can sustain more cloud water that compensates the depletion of the cloud water by the rain. In addition, having stronger updrafts allow the clouds to grow relatively deep before rain starts to deplete its cloud water. Therefore, lower droplet concentrations and stronger rain would lead to lower cloud fraction, but not necessary also to lower liquid water path (LWP). The fundamental relationships between these key variables derived from global climate model (GCM) simulations are analyzed with respect to observations in order to determine whether the GCM parameterizations can represent well the governing physical mechanisms upon MSC regime transitions. The results are used to evaluate the feasibility of GCM's for estimating aerosol cloud-mediated radiative forcing upon MSC regime transitions, which are responsible for the largest aerosol cloud-mediated radiative forcing.

  14. On the existence of tropical anvil clouds

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  15. A new high resolution permafrost map of Iceland from Earth Observation data

    NASA Astrophysics Data System (ADS)

    Barnie, Talfan; Conway, Susan; Balme, Matt; Graham, Alastair

    2017-04-01

    High resolution maps of permafrost are required for ongoing monitoring of environmental change and the resulting hazards to ecosystems, people and infrastructure. However, permafrost maps are difficult to construct - direct observations require maintaining networks of sensors and boreholes in harsh environments and are thus limited in extent in space and time, and indirect observations require models or assumptions relating the measurements (e.g. weather station air temperature, basal snow temperature) to ground temperature. Operationally produced Land Surface Temperature maps from Earth Observation data can be used to make spatially contiguous estimates of mean annual skin temperature, which has been used a proxy for the presence of permafrost. However these maps are subject to biases due to (i) selective sampling during the day due to limited satellite overpass times, (ii) selective sampling over the year due to seasonally varying cloud cover, (iii) selective sampling of LST only during clearsky conditions, (iv) errors in cloud masking (v) errors in temperature emissivity separation (vi) smoothing over spatial variability. In this study we attempt to compensate for some of these problems using a bayesian modelling approach and high resolution topography-based downscaling.

  16. A CERES-like Cloud Property Climatology Using AVHRR Data

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.

    2015-12-01

    Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.

  17. Enhancement of Cloud Cover and Suppression of Nocturnal Drizzle in Stratocumulus Polluted by Haze

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ ship-track measurements that show no average change in cloud water relative to the surrounding clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. Our simulations also show that increases in cloud water from drizzle suppression (by increasing droplet concentrations) are favored at night or at extremely low droplet concentrations.

  18. Reconstructing spatial-temporal continuous MODIS land surface temperature using the DINEOF method

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Peng, Bin; Shi, Jiancheng

    2017-10-01

    Land surface temperature (LST) is one of the key states of the Earth surface system. Remote sensing has the capability to obtain high-frequency LST observations with global coverage. However, mainly due to cloud cover, there are always gaps in the remotely sensed LST product, which hampers the application of satellite-based LST in data-driven modeling of surface energy and water exchange processes. We explored the suitability of the data interpolating empirical orthogonal functions (DINEOF) method in moderate resolution imaging spectroradiometer LST reconstruction around Ali on the Tibetan Plateau. To validate the reconstruction accuracy, synthetic clouds during both daytime and nighttime are created. With DINEOF reconstruction, the root mean square error and bias under synthetic clouds in daytime are 4.57 and -0.0472 K, respectively, and during the nighttime are 2.30 and 0.0045 K, respectively. The DINEOF method can well recover the spatial pattern of LST. Time-series analysis of LST before and after DINEOF reconstruction from 2002 to 2016 shows that the annual and interannual variabilities of LST can be well reconstructed by the DINEOF method.

  19. Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.

    2010-01-01

    Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.

  20. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  1. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  2. Optical Algorithm for Cloud Shadow Detection Over Water

    DTIC Science & Technology

    2013-02-01

    REPORT DATE (DD-MM-YYYY) 05-02-2013 2. REPORT TYPE Journal Article 3. DATES COVERED (From ■ To) 4. TITLE AND SUBTITLE Optical Algorithm for Cloud...particularly over humid tropical regions. Throughout the year, about two-thirds of the Earth’s surface is always covered by clouds [1]. The problem...V. Khlopenkov and A. P. Trishchenko, "SPARC: New cloud, snow , cloud shadow detection scheme for historical I-km AVHHR data over Canada," / Atmos

  3. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.

  4. Observational evidence for cloud cover enhancement over western European forests.

    PubMed

    Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-11

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.

  5. Observational evidence for cloud cover enhancement over western European forests

    PubMed Central

    Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-01

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840

  6. Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    LaQuay, Ryan Matthew

    2011-01-01

    In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30 dates examined, 23 fell under the category of having good accuracy.

  7. Jupiter's Multi-level Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.

    By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.

    The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity, while yellowish regions at temperate latitudes may indicate tropospheric clouds with small particles which also allow leakage. A mix of high and low-altitude aerosols causes the aqua appearance of the Great Red Spot and equatorial region.

    The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov.

  8. Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)

    2001-01-01

    The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.

  9. Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting

    2017-09-01

    Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.

  10. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  11. The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.

    2004-01-01

    In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.

  12. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    NASA Astrophysics Data System (ADS)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  13. Cloud cover estimation optical package: New facility, algorithms and techniques

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail

    2017-02-01

    Short- and long-wave radiation is an important component of surface heat budget over sea and land. For estimating them accurate observations of the cloud cover are needed. While massively observed visually, for building accurate parameterizations cloud cover needs also to be quantified using precise instrumental measurements. Major disadvantages of the most of existing cloud-cameras are associated with their complicated design and inaccuracy of post-processing algorithms which typically result in the uncertainties of 20% to 30% in the camera-based estimates of cloud cover. The accuracy of these types of algorithm in terms of true scoring compared to human-observed values is typically less than 10%. We developed new generation package for cloud cover estimating, which provides much more accurate results and also allows for measuring additional characteristics. New algorithm, namely SAIL GrIx, based on routine approach, also developed for this package. It uses the synthetic controlling index ("grayness rate index") which allows to suppress the background sunburn effect. This makes it possible to increase the reliability of the detection of the optically thin clouds. The accuracy of this algorithm in terms of true scoring became 30%. One more approach, namely SAIL GrIx ML, we have used to increase the cloud cover estimating accuracy is the algorithm that uses machine learning technique along with some other signal processing techniques. Sun disk condition appears to be a strong feature in this kind of models. Artificial Neural Networks type of model demonstrates the best quality. This model accuracy in terms of true scoring increases up to 95,5%. Application of a new algorithm lets us to modify the design of the optical sensing package and to avoid the use of the solar trackers. This made the design of the cloud camera much more compact. New cloud-camera has already been tested in several missions across Atlantic and Indian oceans on board of IORAS research vessels.

  14. The evaluation of GCMs and a new cloud parameterisation using satellite and in-situ data as part of a Climate Process Team

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Wood, R.

    2012-12-01

    As part of one of the Climate Process Teams (CPTs) we have been testing the implementation of a new cloud parameterization into the CAM5 and AM3 GCMs. The CLUBB parameterization replaces all but the deep convection cloud scheme and uses an innovative PDF based approach to diagnose cloud water content and turbulence. We have evaluated the base models and the CLUBB parameterization in the SE Pacific stratocumulus region using a suite of satellite observation metrics including: Liquid Water Path (LWP) measurements from AMSRE; cloud fractions from CloudSat/CALIPSO; droplet concentrations (Nd) and Cloud Top Temperatures from MODIS; CloudSat precipitation; and relationships between Estimated Inversion Strength (calculated from AMSRE SSTs, Cloud Top Temperatures from MODIS and ECMWF re-analysis fields) and cloud fraction. This region has the advantage of an abundance of in-situ aircraft observations taken during the VOCALS campaign, which is facilitating the diagnosis of the model problems highlighted by the model evaluation. This data has also been recently used to demonstrate the reliability of MODIS Nd estimates. The satellite data needs to be filtered to ensure accurate retrievals and we have been careful to apply the same screenings to the model fields. For example, scenes with high cloud fractions and with output times near to the satellite overpass times can be extracted from the model for a fair comparison with MODIS Nd estimates. To facilitate this we have been supplied with instantaneous model output since screening would not be possible based on time averaged data. We also have COSP satellite simulator output, which allows a fairer comparison between satellite and model. For example, COSP cloud fraction is based upon the detection threshold of the satellite instrument in question. These COSP fields are also used for the model output filtering just described. The results have revealed problems with both the base models and the versions with the CLUBB parameterization. The CAM5 model produces realistic near-coast cloud cover, but too little further west in the stratocumulus to cumulus regions. The implementation of CLUBB has vastly improved this situation with cloud cover that is very similar to that observed. CLUBB also improves the Nd field in CAM5 by producing realistic near-coast increases and by removing high Nd values associated with the detrainment of droplets by cumulus clouds. AM3 has a lack of stratocumulus cloud near the South American coast and has much lower droplet concentrations than observed. VOCALS measurements showed that sulfate mass loadings were generally too high in both base models, whereas CCN concentrations were too low. This suggests a problem with the mass distribution partitioning of sulfate that is being investigated. Diurnal and seasonal comparisons have been very illuminating. CLUBB produces very little diurnal variation in LWP, but large variations in precipitation rates. This is likely to point to problems that are now being addressed by the modeling part of the CPT team, creating an iterative workflow process between the model developers and the model testers, which should facilitate efficient parameterization improvement. We will report on the latest developments of this process.

  15. Engaging Citizen Scientists across North America to Monitor Eclipse-driven Environmental Change through NASA GLOBE Observer, Results and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Riebeek Kohl, H.; Weaver, K.; Overoye, D.; Martin, A.; Andersen, T.

    2017-12-01

    How cool was the eclipse? NASA GLOBE Observer challenged citizen scientists across North America to answer that question by observing temperature and cloud changes throughout the August 2017 Total Solar Eclipse. The experiment was meant to chart the impact of changes in solar energy at Earth's surface across all regions that experienced the eclipse, both partial and total. Citizen scientists reported air temperature every 5-10 minutes from first contact to last contact through the free GLOBE Observer app. They also reported cloud cover and cloud type every 15-30 minutes or as changes happened as a proxy for changes in the atmosphere. No data were collected during totality, as we wanted citizen scientists to focus on the eclipse at that time. To recruit citizen scientists, members of the GLOBE Observer Team participated in six large outreach events across the path of totality. We also encouraged participation outside the path of totality though partnerships with informal education institutions and direct communication to the public through NASA communication channels. This presentation will report statistics on citizen science participation and lessons learned about citizen science as an outreach tool. Did participation in the experiment enhance a person's eclipse experience? Did citizen scientists find enough value in the experiment to continue to participate in GLOBE Observer, a long-term citizen science program, after the eclipse? We will also present early results of observed temperature and cloud changes.

  16. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    NASA Astrophysics Data System (ADS)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  17. Temperature Trends in the White Mountains of New Hampshire

    NASA Astrophysics Data System (ADS)

    Murray, G.; Kelsey, E. P.; Raudzens Bailey, A.

    2014-12-01

    Located at the summit of Mount Washington (1917 m asl; ~800 hPa), the highest peak in the northeastern United States, the Mount Washington Observatory has meticulously recorded hourly temperature, humidity, cloud-cover, and other atmospheric variables for over 80 years using the same standard procedures to ensure high-quality, homogeneous data. Nearby Hubbard Brook Experimental Forest (253 m asl; ~980 hPa), a Long-Term Ecological Research site, has recorded atmospheric and environmental data since 1956. Together, these two sites provide a unique opportunity to evaluate elevation-dependent climate changes. Using Sen's slope and the Mann Kendall non-parameteric test we examine annual and seasonal trends in minimum, maximum, and mean temperatures. Both Mount Washington and Hubbard Brook exhibit 56-yr warming trends for most seasons, however, the magnitudes and statistical significances are variable, suggesting the processes controlling these trends likely differ with elevation. Since 1957, for instance, spring maximum temperatures at Hubbard Brook have warmed 0.32 °C dec-1 and winter minimums have increased 0.54 °C dec-1, both well within the range reported for six neighboring low elevation stations from 1970-2012 (Wake et al, 2014a,b). In comparison, Mount Washington summit seasonal minimum temperature trends are typically weaker, with changes in winter minimums (the largest of the seasons) reaching only 0.33 °C dec-1. In this presentation, we highlight differences between these two long-term records and discuss possible role of moist processes and boundary layer/free troposphere exposure in causing their divergence. Authors are planning to study the effects of humidity and cloud-cover on summit temperatures and to investigate how changes in the frequency with which the summit is exposed to boundary layer and free tropospheric air masses influences these relationships.

  18. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.

  19. Nuclear winter - Global consequences of multiple nuclear explosions

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, C.

    1983-01-01

    The results of a computerized simulation of the potential global environmental effects of dust and smoke clouds that would be generated by a nuclear war are presented. Short term effects of blast, fire, and radiation are neglected in the series of physical models that include a nuclear war scenario, a particle microphysics model, and a radiative convective model. Account is taken of the altitude-dependent dust, smoke, radioactivity, and NO(x) injections, the temporal evolution of dust and smoke clouds, land and ocean environments, and temperature contrasts. A nuclear exchange would produce thousands of individual smoke and dust clouds rising up to 30 km altitude in the midlatitudes. The smoke, dust, and radioactive debris would cover the entire midlatitudes within 1-2 weeks. The smoke would arise from conflagrations of forests, suburbs, and urban areas. Obscuration of sunlight would induce subfreezing temperatures for several months, disruption of the global circulation patterns, and the arrival of a nuclear winter, followed and accompanied by radioactive fallout, pyrogenic air pollution, and UV-B flux enhancements. It is estimated that a total of only 100 Mtons would be sufficient to plunge the Northern Hemisphere summer to subfreezing temperatures lasting months. Since the probable exchange in a nuclear war would exceed 5000 Mtons, it is expected that many species, including humans, may not survive the war.

  20. Virtual Sensors: Using Data Mining to Efficiently Estimate Spectra

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; Oza, Nikunj; Stroeve, Julienne

    2004-01-01

    Detecting clouds within a satellite image is essential for retrieving surface geophysical parameters, such as albedo and temperature, from optical and thermal imagery because the retrieval methods tend to be valid for clear skies only. Thus, routine satellite data processing requires reliable automated cloud detection algorithms that are applicable to many surface types. Unfortunately, cloud detection over snow and ice is difficult due to the lack of spectral contrast between clouds and snow. Snow and clouds are both highly reflective in the visible wavelen,ats and often show little contrast in the thermal Infrared. However, at 1.6 microns, the spectral signatures of snow and clouds differ enough to allow improved snow/ice/cloud discrimination. The recent Terra and Aqua Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensors have a channel (channel 6) at 1.6 microns. Presently the most comprehensive, long-term information on surface albedo and temperature over snow- and ice-covered surfaces comes from the Advanced Very High Resolution Radiometer ( AVHRR) sensor that has been providing imagery since July 1981. The earlier AVHRR sensors (e.g. AVHRR/2) did not however have a channel designed for discriminating clouds from snow, such as the 1.6 micron channel available on the more recent AVHRR/3 or the MODIS sensors. In the absence of the 1.6 micron channel, the AVHRR Polar Pathfinder (APP) product performs cloud detection using a combination of time-series analysis and multispectral threshold tests based on the satellite's measuring channels to produce a cloud mask. The method has been found to work reasonably well over sea ice, but not so well over the ice sheets. Thus, improving the cloud mask in the APP dataset would be extremely helpful toward increasing the accuracy of the albedo and temperature retrievals, as well as extending the time-series of albedo and temperature retrievals from the more recent sensors to the historical ones. In this work, we use data mining methods to construct a model of MODIS channel 6 as a function of other channels that are common to both MODIS and AVHRR. The idea is to use the model to generate the equivalent of MODIS channel 6 for AVHRR as a function of the AVHRR equivalents to MODIS channels. We call this a Virtual Sensor because it predicts unmeasured spectra. The goal is to use this virtual channel 6. to yield a cloud mask superior to what is currently used in APP . Our results show that several data mining methods such as multilayer perceptrons (MLPs), ensemble methods (e.g., bagging), and kernel methods (e.g., support vector machines) generate channel 6 for unseen MODIS images with high accuracy. Because the true channel 6 is not available for AVHRR images, we qualitatively assess the virtual channel 6 for several AVHRR images.

  1. ASTER Images the Island of Hawaii

    NASA Image and Video Library

    2000-04-26

    These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum. Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing. Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences. http://photojournal.jpl.nasa.gov/catalog/PIA02604

  2. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.

    1981-01-01

    Plotted transects made from south Texas daytime HCMM data show the effect of subvisible cirrus (SCI) clouds in the emissive (IR) band but the effect is unnoticable in the reflective (VIS) band. The depression of satellite indicated temperatures ws greatest in the center of SCi streamers and tapered off at the edges. Pixels of uncontaminated land and water features in the HCMM test area shared identical VIS and IR digital count combinations with other pixels representing similar features. A minimum of 0.015 percent repeats of identical VIS-IR combinations are characteristic of land and water features in a scene of 30 percent cloud cover. This increases to 0.021 percent of more when the scene is clear. Pixels having shared VIS-IR combinations less than these amounts are considered to be cloud contaminated in the cluster screening method. About twenty percent of SCi was machine indistinguishable from land features in two dimensional spectral space (VIS vs IR).

  3. Near-IR extinction and backscatter coefficient measurements in low- and mid-altitude clouds

    NASA Technical Reports Server (NTRS)

    Sztankay, Z. G.

    1986-01-01

    Knowledge of the attenuation and backscattering properties of clouds is required to high resolution for several types of optical sensing systems. Such data was obtained in about 15 hours of flights through clouds in the vicinity of Washington, D.C. The flights were mainly through stratocumulus, altocumulus, stratus, and stratus fractus clouds and covered an altitude and temperature range of 300 to 3200 m and -13 to 17 C. Two instruments were flown, each of which measured the backscatter from close range in two range bins to independently determine both the extinction and backscatter coefficients. The extinction and backscatter coefficients can be obtained from the signals in the two channels of each instrument, provided that the aerosol is uniform over the measurement region. When this assumptions holds, the extinction coefficient is derived basically from the ratio of the signal in the two channels; the backscatter coefficient can then be obtained from the signal in either channel.

  4. International Coordination of and Contributions to Environmental Satellite Programs.

    DTIC Science & Technology

    1985-06-01

    the international coordination of, and contributions to, environmental satellite programs. It re- views the background and history of international...Earth’s atmos- phere, surface temperature, cloud cover, water-ice boundaries, * and proton and electron flux near the Earth. They have the capability of...Islands Madagascar Sweden Chile Malaysia Switzerland China, People’s Rep. of Mali Syria Colombia Malta Tahiti Costa Rica Martinique Taiwan Curacao

  5. Application of the CloudSat and NEXRAD Radars Toward Improvements in High Resolution Operational Forecasts

    NASA Technical Reports Server (NTRS)

    Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.

    2008-01-01

    As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.

  6. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  7. High resolution regional climate simulation of the Hawaiian Islands - Validation of the historical run from 2003 to 2012

    NASA Astrophysics Data System (ADS)

    Xue, L.; Newman, A. J.; Ikeda, K.; Rasmussen, R.; Clark, M. P.; Monaghan, A. J.

    2016-12-01

    A high-resolution (a 1.5 km grid spacing domain nested within a 4.5 km grid spacing domain) 10-year regional climate simulation over the entire Hawaiian archipelago is being conducted at the National Center for Atmospheric Research (NCAR) using the Weather Research and Forecasting (WRF) model version 3.7.1. Numerical sensitivity simulations of the Hawaiian Rainband Project (HaRP, a filed experiment from July to August in 1990) showed that the simulated precipitation properties are sensitive to initial and lateral boundary conditions, sea surface temperature (SST), land surface models, vertical resolution and cloud droplet concentration. The validations of model simulated statistics of the trade wind inversion, temperature, wind field, cloud cover, and precipitation over the islands against various observations from soundings, satellites, weather stations and rain gauges during the period from 2003 to 2012 will be presented at the meeting.

  8. Extension of four-dimensional atmospheric models. [and cloud cover data bank

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Lisa, A. S.; Tung, S. L.

    1975-01-01

    The cloud data bank, the 4-D atmospheric model, and a set of computer programs designed to simulate meteorological conditions for any location above the earth are described in turns of space vehicle design and simulation of vehicle reentry trajectories. Topics discussed include: the relationship between satellite and surface observed cloud cover using LANDSAT 1 photographs and including the effects of cloud shadows; extension of the 4-D model to the altitude of 52 km; and addition of the u and v wind components to the 4-D model of means and variances at 1 km levels from the surface to 25 km. Results of the cloud cover analysis are presented along with the stratospheric model and the tropospheric wind profiles.

  9. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  10. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie; Frey, R.

    2008-01-01

    Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.

  11. Abstract Art or Arbiters of Energy?

    NASA Technical Reports Server (NTRS)

    2002-01-01

    More than just the idle stuff of daydreams, clouds help control the flow of radiant energy around our world. Clouds are plentiful and widespread throughout Earth's atmosphere-covering up to 75 percent of our planet at any given time-so they play a dominant role in determining how much sunlight reaches the surface, how much sunlight is reflected back into space, how and where warmth is spread around the globe, and how much heat escapes from the surface and atmosphere back into space. Clouds are also highly variable. Clouds' myriad variations through time and space make them one of the greatest areas of uncertainty in scientists' understanding and predictions of climate change. In short, they play a central role in our world's climate system. The false-color image above shows a one-month composite of cloud optical thickness measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) and averaged globally for April 2001. Optical thickness is a measure of how much solar radiation is not allowed to travel through a column of atmosphere. Areas colored red and yellow indicate very cloudy skies, on average, while areas colored green and light blue show moderately cloudy skies. Dark blue regions show where there is little or no cloud cover. This data product is an important new tool for helping scientists understand the roles clouds play in our global climate system. MODIS gives scientists new capabilities for measuring the structure and composition of clouds. MODIS observes the entire Earth almost every day in 36 spectral bands ranging from visible to thermal infrared wavelengths, enabling it to quantify a wide suite of clouds' physical and radiative properties. Specifically, MODIS can determine whether a cloud is composed of ice or water particles (or some combination of the two), it can measure the effective radius of the particles within a cloud, it can determine the temperature and altitude of cloud tops, and it can observe how much sunlight passes through a cloud. MODIS is one of five sensors flying aboard NASA's Terra satellite, the flagship in NASA's Earth Observing System, launched in December 1999. For more information about this and other new MODIS products, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Atmosphere Group, NASA GSFC

  12. Clear-Sky Narrowband Albedo Variations Derived from VIRS and MODIS Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Chen, Yan; Arduini, Robert F.; Minnis, Patrick

    2004-01-01

    A critical parameter for detecting clouds and aerosols and for retrieving their microphysical properties is the clear-sky radiance. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the visible (VIS; 0.63 m) and near-infrared (NIR; 1.6 or 2.13 m) channels available on same satellites as the CERES scanners. Another channel often used for cloud and aerosol, and vegetation cover retrievals is the vegetation (VEG; 0.86- m) channel that has been available on the Advanced Very High Resolution Radiometer (AVHRR) for many years. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. Snow albedo is typically estimated without considering the underlying surface type. The albedo for a surface blanketed by snow, however, should vary with surface type because the vegetation often emerges from the snow to varying degrees depending on the vertical dimensions of the vegetation. For example, a snowcovered prairie will probably be brighter than a snowcovered forest because the snow typically falls off the trees exposing the darker surfaces while the snow on a grassland at the same temperatures will likely be continuous and, therefore, more reflective. Accounting for the vegetation-induced differences should improve the capabilities for distinguishing snow and clouds over different surface types and facilitate improvements in the accuracy of radiative transfer calculations between the snow-covered surface and the atmosphere, eventually leading to improvements in models of the energy budgets over land. This paper presents a more complete analysis of the CERES spectral clear-sky reflectances to determine the variations in clear-sky top-of-atmosphere (TOA) albedos for both snow-free and snow-covered surfaces for four spectral channels using data from Terra and Aqua.. The results should be valuable for improved cloud retrievals and for modeling radiation fields.

  13. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  14. Cold episodes in the Peruvian Central Andes: Composites, Types, and their Impacts over South America (1958-2014)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Roundy, P. E.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2015-12-01

    The Mantaro basin (MB) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during austral summer (January-March), that strongly damage crops. However, little is known about the causes and impacts of such cold episodes. The main goal of this study is thus to characterize cold episodes in the MB and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MB daily minimum temperature (Tmin) for the period 1958-2014 from Huayao station, located within the MB was used. A cold episode is defined when daily minimum temperature drops below its 10-percentile for at least one day. Additionally, to study the sensitivity between physical mechanisms associated with cold episodes and temperature, cold episodes are classified in three groups: Weak cold episodes (7.5 ≤ Tmin ≤ 10 percentile), strong cold episodes (Tmin ≤ 2.5 percentile), but excluding the 9 coldest events (Tmin ≤ 0 ͦ C), henceforth referred to as extraordinary cold episodes. Several gridded reanalysis were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events. Weak and strong cold episodes in the MB are mainly associated with a weakening of the Bolivian High-Nordeste Low system by tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the development of cloud cover (e.g., positive OLR anomalies over MB). The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below 10-percentile. Simultaneously, northeastern Brazil (NEB) registers negative OLR anomalies, strong convection and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. By contrast, extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. On interannual timescales, El Niño may limit the occurrence of all types of cold episodes in the MB through enhanced tropical tropospheric background warming.

  15. Toward the Characterization of Mixed-Phase Clouds Using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Andronache, C.

    2015-12-01

    Mixed-phase clouds consist of a mixture of ice particles and liquid droplets at temperatures below 0 deg C. They are present in all seasons in many regions of the world, account for about 30% of the global cloud coverage, and are linked to cloud electrification and aircraft icing. The mix of ice particles, liquid droplets, and water vapor is unstable, and such clouds are thought to have a short lifetime. A characteristic parameter is the phase composition of mixed-phase clouds. It affects the cloud life cycle and the rate of precipitation. This parameter is important for cloud parameters retrievals by radar, lidar, and satellite and is relevant for climate modeling. The phase transformation includes the remarkable Wegener-Bergeron-Findeisen (WBF) process. The direction and the rate of the phase transformations depend on the local thermodynamic and microphysical properties. Cloud condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and the dynamic response of clouds to aerosols. The complexity of dynamics and microphysics involved in mixed-phase clouds requires a set of observational and modeling tools that continue to be refined. Among these techniques, the remote sensing methods provide an increasing number of parameters, covering large regions of the world. Thus, a series of studies were dedicated to stratiform mixed-phase clouds revealing longer lifetime than previously thought. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water often occurs in vigorous continental convective storms. In this study, we use cases of convective clouds to discuss the feasibility of mixed-phase clouds characterization and potential advantages of remote sensing.

  16. A 350 Year Cloud Cover Reconstruction Deduced from Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Sammarco, Paul; Mikolajewicz, Uwe; Jury, Mark; Zanchettin, Davide

    2015-04-01

    Clouds are a major factor contributing to climate change with respect to a variety of effects on the earth's climates, primarily radiative effects, amelioration of heating, and regional changes in precipitation patterns. There have been very few studies of decadal and longer term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data is so short that it is difficult to discern any temporal trends. The skeletons of scleractinian corals are considered to contain among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3 crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, δ13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover and present a new reconstruction of cloud cover over the Caribbean Sea that extends back to the year 1760. We will show that there is good agreement between the main features of our coral proxy record of cloud cover and of reanalysis and climate simulations for the same time period.

  17. Some new worldwide cloud-cover models

    NASA Technical Reports Server (NTRS)

    Bean, S. J.; Somerville, P. N.

    1981-01-01

    Using daily measurements of day and night infrared, and incoming and absorbed solar radiation obtained from a Tiros satellite over a period of approximately 45 months, and integrated over 2.5 deg latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four 3-month periods, for each grid location, estimates a and b of the two parameters of the best-fit beta distribution were obtained. The (a, b) plane was divided into a number of regions. All the geographical locations whose (a, b) estimates were in the same region in the (a, b) plane were said to have the same cloud cover type for that season. For each season, the world is thus divided into separate cloud-cover types.

  18. Characterization of the Cloud-Topped Boundary Layer at the Synoptic Scale Using AVHRR Observations during the SEMAPHORE Experiment.

    NASA Astrophysics Data System (ADS)

    Mathieu, A.; Sèze, G.; Lahellec, A.; Guerin, C.; Weill, A.

    2003-12-01

    Satellite platforms NOAA-11 and -12 Advanced Very High Resolution Radiometer (AVHRR) data are used during the daytime to study large sheets of stratocumulus over the North Atlantic Ocean. The application concerns an anticyclonic period of the Structure des Echanges Mer Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherché Expérimentale (SEMAPHORE) campaign (10 17 November 1993). In the region of interest, the satellite images are recorded under large solar zenith angles. Extending the SEMAPHORE area, a region of about 3000 × 3000 km2 is studied to characterize the atmospheric boundary layer. A statistical cloud classification method is applied to discriminate for low-level and optically thick clouds. For AVHRR pixels covered with thick clouds, brightness temperatures are used to evaluate the boundary layer cloud-top temperature (CTT). The objective is to obtain accurate CTT maps for evaluation of a global model. In this application, the full-resolution fields are reduced to match model grid size. An estimate of overall temperature uncertainty associated with each grid point is also derived, which incorporates subgrid variability of the fields and quality of the temperature retrieval. Results are compared with the SEMAPHORE campaign measurements. A comparison with “DX” products obtained with the same dataset, but at lower resolution, is also presented. The authors claim that such instantaneous CTT maps could be as intensively used as classical SST maps, and both could be efficiently complemented with gridpoint error-bar maps. They may be used for multiple applications: (i) to provide a means to improve numerical weather prediction and climatological reanalyses, (ii) to represent a boundary layer global characterization to analyze the synoptic situation of field experiments, and (iii) to allow validation and to test development of large-scale and mesoscale models.

  19. THE 1.1 mm CONTINUUM SURVEY OF THE SMALL MAGELLANIC CLOUD: PHYSICAL PROPERTIES AND EVOLUTION OF THE DUST-SELECTED CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500more » μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.« less

  20. The 1.1 mm Continuum Survey of the Small Magellanic Cloud: Physical Properties and Evolution of the Dust-selected Clouds

    NASA Astrophysics Data System (ADS)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Komugi, Shinya; Kohno, Kotaro; Tosaki, Tomoka; Sorai, Kazuo; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo; Ezawa, Hajime; Oshima, Tai; Scott, Kimberly S.; Austermann, Jason E.; Matsuo, Hiroshi; Aretxaga, Itziar; Hughes, David H.; Kawabe, Ryohei; Wilson, Grant W.; Yun, Min S.

    2017-01-01

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg2 of the SMC with 1σ noise levels of 5-12 mJy beam-1, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μm, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μm). The 1.1 mm objects show dust temperatures of 17-45 K and gas masses of 4 × 103-3 × 105 M⊙, assuming single-temperature thermal emission from the cold dust with an emissivity index, β, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μm and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μm flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Cloud types and the tropical Earth radiation budget, revised

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  2. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies

    NASA Astrophysics Data System (ADS)

    Rogers, David C.

    A supercooled continuous flow, thermal gradient diffusion chamber has been developed to study the ice nucleating properties of natural or artificial aerosols. The chamber has concentric cylinder geometry with the cylinder axis alignment and airflow vertically downward. Sample airflow is 1 l min -1 and occupies the central 10% of the annular lamina; it is separated from the ice-covered walls by filtered sheath air. The wall temperatures are independently controlled over the range from about -4°C to -25°C, so that the vapor concentration at the location of the sample lamina can be set to a well defined value between ice saturation and a few percent water supersaturation. There is a range of temperature and supersaturation values across the sample region; for lamina center conditions of -15°C and +1% with respect to water, the range is -14.6 to -15.4°C and +0.53 to +1.31%. Errors in temperature control produce variations estimated as ±0.1°C and ±0.23%. Typical sample residence time is about 10 s. Ice crystals which form on active nuclei are detected optically at the outlet end of the chamber. To enhance the size difference between ice crystals and cloud droplets, the downstream 25% of the warm ice wall is covered with a thermally insulating vapor barrier which reduces the vapor concentration to ice saturation at the cold wall temperature, so cloud droplets evaporate. A mathematical model was developed to describe the temperature and vapor fields and to calculate the growth, evaporation, and sedimentation of water and ice particles. At 1% water supersaturation, the model predicts that ice particles will grow to about 5 μm diameter, and cloud droplets will achieve about 1 μm before they reach the evaporation section of the chamber. A different model was developed to describe the steady state airflow profile and location of the sample lamina. Experimental tests of the chamber were performed to characterize the airflow, to assess the ability of the technique to detect silver iodide ice nucleating aerosols and to distinguish ice crystals from water droplets.

  3. Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations

    NASA Astrophysics Data System (ADS)

    Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar; Forster, Piers M.; Hodnebrog, Øivind; Andrews, Timothy; Boucher, Olivier; Faluvegi, Gregory; Iversen, Trond; Kasoar, Matthew; Kharin, Viatcheslav; Kirkevâg, Alf; Lamarque, Jean-François; Olivié, Dirk; Richardson, Thomas; Shawki, Dilshad; Shindell, Drew; Smith, Christopher J.; Takemura, Toshihiko; Voulgarakis, Apostolos

    2017-11-01

    We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled-climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m-2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m-2 based on five of the models) is countered by negative rapid adjustments (-0.64 W m-2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small median global warming of 0.47 K per W m-2—about 20% lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.

  4. Modelling the Effects of Temperature and Cloud Cover Change on Mountain Permafrost Distribution, Northwest Canada

    NASA Astrophysics Data System (ADS)

    Bonnaventure, P. P.; Lewkowicz, A. G.

    2008-12-01

    Spatial models of permafrost probability for three study areas in northwest Canada between 59°N and 61°N were perturbed to investigate climate change impacts. The models are empirical-statistical in nature, based on basal temperature of snow (BTS) measurements in winter, and summer ground-truthing of the presence or absence of frozen ground. Predictions of BTS values are made using independent variables of elevation and potential incoming solar radiation (PISR), both derived from a 30 m DEM. These are then transformed into the probability of the presence or absence of permafrost through logistic regression. Under present climate conditions, permafrost percentages in the study areas are 44% for Haines Summit, British Columbia, 38% for Wolf Creek, Yukon, and 69% for part of the Ruby Range, Yukon (Bonnaventure and Lewkowicz, 2008; Lewkowicz and Bonaventure, 2008). Scenarios of air temperature change from -2K (approximating Neoglacial conditions) to +5K (possible within the next century according to the IPCC) were examined for the three sites. Manipulations were carried out by lowering or raising the terrain within the DEM assuming a mean environmental lapse rate of 6.5K/km. Under a -2K scenario, permafrost extent increased by 22-43% in the three study areas. Under a +5K warming, permafrost essentially disappeared in Haines Summit and Wolf Creek, while in the Ruby Range less than 12% of the area remained perennially frozen. It should be emphasized that these model predictions are for equilibrium conditions which might not be attained for several decades or longer in areas of cold permafrost. Cloud cover changes of -10% to +10% were examined through adjusting the partitioning of direct beam and diffuse radiation in the PISR input field. Changes to permafrost extent were small, ranging from -2% to -4% for greater cloudiness with changes of the opposite magnitude for less cloud. The results show that air temperature change has a much greater potential to affect mountain permafrost distribution in the long-term than the probable range of cloud cover changes. Modelled results for the individual areas respond according to the hypsometry of the terrain and the relative strength of elevation and PISR in the regression models. This study indicates that significant changes to the distribution and extent of mountain permafrost in northwest Canada can be expected in the next few decades. References Bonnaventure, P.P. and Lewkowicz, A.G. (2008). Mountain permafrost probability mapping using the BTS method in two climatically dissimilar locations, northwest Canada. Canadian Journal of Earth Sciences, 45, 443-455. Lewkowicz, A.G. and Bonnaventure, P.P. (2008). Interchangeability of local mountain permafrost probability models, northwest Canada. Permafrost and Periglacial Processes, 19, 49-62.

  5. Evaluation and Applications of Cloud Climatologies from CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Getzewitch, Brian; Vaughan, Mark

    2008-01-01

    Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.

  6. Earth Observations taken during Expedition Four

    NASA Image and Video Library

    2002-05-15

    ISS004-E-11807 (15 May 2002) --- This digital photograph, taken through the windows of the International Space Station on May 15, 2002, shows condensation trails over the Rhône Valley in the region west of Lyon, France. Condensation trails-or contrails-are straight lines of ice crystals that form in the wake of jet liners where air temperatures are lower than about -40 degrees Centigrade. Scientists have observed that newer contrails are thin whereas older trails have widened with time as a result of light winds. Because of this tendency for thin contrails to cover greater areas with time, it is estimated that these “artificial clouds” cover 0.1 per cent of the planet’s surface. Percentages are far higher in some places, say the scientists, such as southern California, the Ohio River Valley and parts of Europe, as illustrated here. The climatic impact of such clouds is poorly understood, which is why scientists continue to study them using images such as this.

  7. Near-surface air temperature lapse rate in a humid mountainous terrain on the southern slopes of the eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Kattel, Dambaru Ballab; Yao, Tandong; Panday, Prajjwal Kumar

    2018-05-01

    Based on climatic data from 18 stations on the southern slopes of the eastern Himalayas in Bhutan for the period from 1996 to 2009, this paper investigates monthly characteristics of the near-surface air temperature lapse rate (TLR). The station elevations used in this study range from 300 to 2760 m a. s. l. TLRs were evaluated using a linear regression model. The monthly values of maximum TLRs were always smaller than those of the minimum TLRs, which is in contrast to results from the surrounding mountainous regions. In this study, annual patterns of TLRs were somewhat consistent, particularly in the summer; during the other seasons, patterns contrasted to results from the southeastern Tibetan Plateau (China) and were almost comparable to results from Nepal. The shallowest observed values for TLRs in summer are due to intense latent heating at the higher elevation, associated with water vapor condensation from moist convection and evapotranspiration, and decreasing sensible heating at lower elevation, due to heavier rainfall, cloud, and forest cover. When compared to summer, the steeper TLRs in the non-monsoon season are due to sensible heating at the lower elevations, corresponding to dry and clear weather seasons, as well as increasing cooling at higher elevations, particularly in winter due to snow and cloud cover. Owing to lower albedo and higher aerodynamic roughness of forested areas, the TLRs were considerably reduced in daytime because of the dissipation of sensible heat to the atmospheric boundary layer. The distinct variation in diurnal TLR range is due to the diurnal variation in net radiation associated with reduced turbulent heating in the day and increased turbulent heating in the night, in addition to the effect of moisture and cloud cover. The shallower values of TLRs in this study when compared with the surrounding mountainous regions are due to high humidity, as well as the differing elevations and local climates.

  8. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  9. Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.

    2010-01-01

    The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.

  10. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  11. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  12. Phytoplankton in the Beaufort and Chukchi Seas: Distributions, Dynamics and Environmental Forcing

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Cota, Glenn F.; Comiso, Josefino C.

    2005-01-01

    Time-series of remotely sensed distributions of phytoplankton, sea ice, surface temperature, albedo, and clouds were examined to evaluate the impact of the variability of environmental conditions and physical forcing on the phytoplankton distribution in the Beaufort and Chukchi Seas. Large-scale distributions of these parameters were studied for the first time using weekly and monthly composites from April 1998 through September 2002. The basic data set used in this study are phytoplankton pigment concentration derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), ice concentration obtained from the Special Sensor Microwave Imager (SSM/I) and surface temperature, cloud cover, and albedo derived from the Advanced Very High Resolution Radiometer (AVHRR). Seasonal variations of the sea ice cover was observed to be the dominant environmental factor as the ice edge blooms followed the retreating marginal ice zones northward. Blooms were most prominent in the southwestern Chukchi Sea, and were especially persistent immediately north of the Bering Strait in nutrient- rich Anadyr water and in some fronts. Chlorophyll concentrations are shown to increase from a nominal value during onset of melt in April to a maximum value in mid-spring or summer depending on location. Large interannual variability of ice cover and phytoplankton distributions was observed with the year 1998 being uniquely associated with an early season occurrence of a massive bloom. This is postulated to be caused in part by a rapid response of phytoplankton to an early retreat of the sea ice cover in the Beaufort Sea region. Correlation analyses showed relatively high negative correlation between chlorophyll and ice concentration with the correlation being highest in May, the correlation coefficient being -0.45. 1998 was also the warmest among the five years globally and the sea ice cover was least extensive in the Beaufort-Khukchi Sea region, partly because of the 1997-98 El Nino. Strong correlations were noted between ice extent and surface temperature, the correlation coefficient being highest at - 0.79 in April, during the onset of the bloom period

  13. Antarctica Cloud Cover for October 2003 from GLAS Satellite Lidar Profiling

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hart, W. D.

    2005-01-01

    Seeing clouds in polar regions has been a problem for the imagers used on satellites. Both clouds and snow and ice are white, which makes clouds over snow hard to see. And for thermal infrared imaging both the surface and the clouds cold. The Geoscience Laser Altimeter System (GLAS) launched in 2003 gives an entirely new way to see clouds from space. Pulses of laser light scatter from clouds giving a signal that is separated in time from the signal from the surface. The scattering from clouds is thus a sensitive and direct measure of the presence and height of clouds. The GLAS instrument orbits over Antarctica 16 times a day. All of the cloud observations for October 2003 were summarized and compared to the results from the MODIS imager for the same month. There are two basic cloud types that are observed, low stratus with tops below 3 km and high cirrus form clouds with cloud top altitude and thickness tending at 12 km and 1.3 km respectively. The average cloud cover varies from over 93 % for ocean and coastal regions to an average of 40% over the East Antarctic plateau and 60-90% over West Antarctica. When the GLAS monthly average cloud fractions are compared to the MODIS cloud fraction data product, differences in the amount of cloud cover are as much as 40% over the continent. The results will be used to improve the way clouds are detected from the imager observations. These measurements give a much improved understanding of distribution of clouds over Antarctica and may show how they are changing as a result of global warming.

  14. On the remote measurement of evaporation rates from bare wet soil under variable cloud cover

    NASA Technical Reports Server (NTRS)

    Auer, S.

    1976-01-01

    Evaporation rates from a natural wet soil surface are calculated from an energy balance equation at 0.1-hour intervals. A procedure is developed for calculating the heat flux through the soil surface from a harmonic analysis of the surface temperature curve. The evaporation integrated over an entire 24-hour period is compared with daily evaporation rates obtained from published models.

  15. The relationship of marine stratus to synoptic conditions

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.; Hinton, Barry; Grimm, Peter; Kloesel, Kevin A.

    1990-01-01

    The marine stratus which persistently covered most of the eastern Pacific Ocean, had large clear areas during the FIRE Intensive Field Operations (IFO) in 1987. Clear zones formed inside the large oceanic cloud mass on almost every day during the IFO. The location and size of the clear zones varied from day to day implying that they were related to dynamic weather conditions and not to oceanic conditions. Forecasting of cloud cover for aircraft operations during the IFO was directed towards predicting when and where the clear and broken zones would form inside the large marine stratus cloud mass. The clear zones often formed to the northwest of the operations area and moved towards it. However, on some days the clear zones appeared to form during the day in the operations area as part of the diurnal cloud burn off. The movement of the clear zones from day to day were hard to follow because of the large diurnal changes in cloud cover. Clear and broken cloud zones formed during the day only to distort in shape and fill during the following night. The field forecasters exhibited some skill in predicting when the clear and broken cloud patterns would form in the operations area. They based their predictions on the analysis and simulations of the models run by NOAA's Numeric Meteorological Center. How the atmospheric conditions analyzed by one NOAA/NMC model related to the cloud cover is discussed.

  16. Cloud Properties Derived From GOES-7 for Spring 1994 ARM Intensive Observing Period Using Version 1.0.0 of ARM Satellite Data Analysis Program

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Garber, Donald P.; Ayers, J. Kirk; Doelling, David R.

    1995-01-01

    This document describes the initial formulation (Version 1.0.0) of the Atmospheric Radiation Measurement (ARM) program satellite data analysis procedures. Techniques are presented for calibrating geostationary satellite data with Sun synchronous satellite radiances and for converting narrowband radiances to top-of-the-atmosphere fluxes and albedos. A methodology is documented for combining geostationary visible and infrared radiances with surface-based temperature observations to derive cloud amount, optical depth, height, thickness, temperature, and albedo. The analysis is limited to two grids centered over the ARM Southern Great Plains central facility in north-central Oklahoma. Daytime data taken during 5 Apr. - 1 May 1994, were analyzed on the 0.3 deg and 0.5 deg latitude-longitude grids that cover areas of 0.9 deg x 0.9 deg and 10 deg x 14 deg, respectively. Conditions ranging from scattered low cumulus to thin cirrus and thick cumulonimbus occurred during the study period. Detailed comparisons with hourly surface observations indicate that the mean cloudiness is within a few percent of the surface-derived sky cover. Formats of the results are also provided. The data can be accessed through the World Wide Web computer network.

  17. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    NASA Astrophysics Data System (ADS)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  18. The variation of cloud amount and light rainy days under heavy pollution over South China during 1960-2009.

    PubMed

    Fu, Chuanbo; Dan, Li

    2018-01-01

    The ground observation data was used to analyze the variation of cloud amount and light precipitation over South China during 1960-2009. The total cloud cover (TCC) decreases in this period, whereas the low cloud cover (LCC) shows the obvious opposite change with increasing trends. LCP defined as low cloud cover/total cloud cover has increased, and small rainy days (< 10 mm day -1 ) decreased significantly (passing 0.001 significance level) during the past 50 years, which is attributed to the enhanced levels of air pollution in the form of anthropogenic aerosols. The horizontal visibility and sunshine duration are used to depict the anthropogenic aerosol loading. When horizontal visibility declines to 20 km or sunshine duration decreases to 5 h per day, LCC increases 52% or more and LCP increases significantly. The correlation coefficients between LCC and horizontal visibility or sunshine duration are - 0.533 and - 0.927, and the values between LCP and horizontal visibility or sunshine duration are - 0.849 and - 0.641, which pass 0.001 significance level. The results indicated that aerosols likely impacted the long-term trend of cloud amount and light precipitation over South China.

  19. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.

  20. Snow cover retrieval over Rhone and Po river basins from MODIS optical satellite data (2000-2009).

    NASA Astrophysics Data System (ADS)

    Dedieu, Jean-Pierre, ,, Dr.; Boos, Alain; Kiage, Wiliam; Pellegrini, Matteo

    2010-05-01

    Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the MODIS optical satellite sensor can be used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas (2,500 km range). However, as the pixel size is 500m x 500m, a MODIS pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the Sub-Pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Integrated into the EU-FP7 ACQWA Project (www.acqwa.ch), this approach was first applied over Alpine area of Rhone river basin upper Geneva Lake: Canton du Valais, Switzerland (5 375 km²). In a second step over Alps, rolling hills and plain areas in Po catchment for Val d'Aosta and Piemonte regions, Italy (37 190 km²). Watershed boundaries were provided respectively by GRID (Ch) and ARPA (It) partners. The complete satellite images database was extracted from the U.S. MODIS/NASA website (http://modis.gsfc.nasa.gov/) for MOD09_B1 Reflectance images, and from the MODIS/NSIDC website (http://nsidc.org/index.html) for MOD10_A2 snow cover images. Only the Terra platform was used because images are acquired in the morning and are therefore better correlated with dry snow surface, avoiding cloud coverage of the afternoon (Aqua Platform). The MOD9 Image reflectance and MOD10_A2 products were respectively analyzed to retrieve (i) Fractional Snow cover at sub-pixel scale, and (ii) maximum snow cover. All products were retrieved at 8-days over a complete time period of 10 years (2000-2009), giving 500 images for each river basin. Digital Model Elevation was given by NASA/SRTM database at 90-m resolution and used (i) for illumination versus topography correction on snow cover, (ii) geometric rectification of images. Geographic projection is WGS84, UTM 32. Fractional Snow cover mapping was derived from the NDSI linear regression method (Salomonson et al., 2004). Cloud mask was given by MODIS-NASA library (radiometric threshold) and completed by inverse slope regression to avoid lowlands fog confusing with thin snow cover (Po river basin). Maximum Snow Cover mapping was retrieved from the NSIDC database classification (Hall et al., 2001). Validation step was processed using comparison between MODIS Snow maps outputs and meteorological data provided by network of 87 meteorological stations: temperature, precipitation, snow depth measurement. A 0.92 correlation was observed for snow/non snow cover and can be considered as quite satisfactory, given the radiometric problems encountered in mountainous areas, particularly in snowmelt season. The 10-years time period results indicates a main difference between (i) regular snow accumulation and depletion in Rhone and (ii) the high temporal and spatial variability of snow cover for Po. Then, a high sensitivity to low variation of air temperature, often close to 1° C was observed. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s, particularly for Po river basin. Results will be combined with two hydrological models: Topkapi and Fest.

  1. Venus's winds and temperatures during the MESSENGER's flyby: An approximation to a three-dimensional instantaneous state of the atmosphere

    NASA Astrophysics Data System (ADS)

    Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.

    2017-04-01

    Even though many missions have explored the Venus atmospheric circulation, its instantaneous state is poorly characterized. In situ measurements vertically sampling the atmosphere exist for limited locations and dates, while remote sensing observations provide only global averages of winds at altitudes of the clouds: 47, 60, and 70 km. We present a three-dimensional global view of Venus's atmospheric circulation from data obtained in June 2007 by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express spacecrafts, together with ground-based observations. Winds and temperatures were measured for heights 47-110 km from multiwavelength images and spectra covering 40°N-80°S and local times 12 h-21 h. Dayside westward winds exhibit day-to-day changes, with maximum speeds ranging 97-143 m/s and peaking at variable altitudes within 75-90 km, while on the nightside these peak below cloud tops at ˜60 km. Our results support past reports of strong variability of the westward zonal superrotation in the transition region, and good agreement is found above the clouds with results from the Laboratoire de Météorologie Dynamique (LMD) Venus general circulation model.

  2. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  3. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  4. A Study of Tropical thin Cirrus Clouds with Supervised Learning

    NASA Astrophysics Data System (ADS)

    Rodier, S. D.; Hu, Y.; Vaughan, M. A.

    2007-12-01

    ABSTRACT Accurate knowledge of the temporal frequency and spatial extent of optically thin cirrus is crucial to climate feedback analysis. Current global warming theory asserts that when the atmospheric concentration of CO2 increases, the outgoing longwave radiation at non-window wavelengths is reduced. If the Earth's net radiative balance is to remain stable, ground temperatures must rise in response, thereby increasing thermal emission to space. Current models do not account for subsequent changes in cloud cover, because this aspect of the climate feedback system is so poorly understood. One possible response of the cloud-climate feedback process is an increase in the global occurrence of thin cirrus clouds, driven by the increase in longwave cooling in the upper troposphere that results from higher CO2 concentrations. Exacerbating the difficulty of assessing the situation is the fact that passive remote sensing instruments cannot reliably detect cirrus clouds with optical depths less than ~0.3, because these clouds do not reflect enough sunlight to create a sufficient contrast with the Earth's surface. Now, however, the presence of thin cirrus can for the first time be accurately detected and systematically monitored by the combination of active and passive sensors onboard the CALIPSO satellite. Nevertheless, the data record is still quite limited, as CALIPSO has been in orbit for only 16 months. We have therefore initiated a multi-platform data fusion study to establish a methodology for extending the limited set of CALIPSO measurements to the existing 30-year record of passive remote sensing data, and thus improve our understanding of cloud feedback mechanisms. Using nighttime data from the first 10 days in April 2007 as a training set, we applied a general regression neural network (GRNN) to collocated samples of sea surface temperature (SST) reported by AMSR, brightness temperatures (BT) from the CALIPSO imaging infrared radiometer (IIR), and optical depths (OD) derived from the CALIPSO lidar measurements. The result is an accurate mapping of the optical depths derived from the active sensors to the brightness temperatures computed from the passive sensor measurements. Applying the trained network to this combination of passive sensor parameters, optical depths as small as 0.1 can be reliably retrieved. The relative uncertainties in the retrieval are reasonable, and can be improved significantly by use of a much larger training set.

  5. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: to develop suitable validation data sets to evaluate the effectiveness of the ISCCP operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers: and to compare synoptic cloud data from a control run experiment of the Goddard Institute for Space Studies (GISS) climate model 2 with typical observed synoptic cloud patterns. Current investigations underway are listed and the progress made to date is summarized.

  6. A Battlefield Obscuration Model (Smoke & Dust)

    DTIC Science & Technology

    1979-10-01

    ia £ utace of clouds, izsclacioon (incoming radiation) during :he day ts dependent upon solar ali.::ude, which is a fuc nof time of: d&7 and time of...year. ’Irnn clouds exisc, chai~r cover and :b*ickness decrease incoming and ouzgoingS radiation. Z-a this syscea iasola:ion ts estimated b7 solar ...alzictude and =odi44ed -or existing condi:±ons of total cloud cover and cloud ceiling height. kc zig~ic, estimates of oucgoing radiacion are =ade by

  7. Cloud Forecast Simulation Model.

    DTIC Science & Technology

    1981-10-01

    creasing the kurtosis of the distribution, i.e., making it more negative (more platykurtic ). Case (a) might be the distribution of forecast cloud cover be...fore smoothing, and (b) might be the distribution after smoothing. Character- istically, smoothing makes cloud cover distributions less platykurtic ...19, this effect of smoothing can be described in terms of making the smoothed distribu- tion less platykurtic than the unsmoothed distribution

  8. Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.

    2017-12-01

    Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.

  9. Microphysical Characteristics of Clouds During the TRMM Field Campaign

    NASA Technical Reports Server (NTRS)

    Stith, Jeffrey L.

    2003-01-01

    Further analysis of the TRMM field campaign data was conducted to examine the growth of precipitation in updraft regions of the TRMM field campaign tropical clouds and to extend the earlier results to cover the whole TRMM data set collected by the University of North Dakota (UND). The results have been submitted for publication. In this paper, composite vertical profiles of liquid water, small particle concentration, and updraft/downdraft magnitudes were presented from each of the campaigns. They exhibited similar peak values for the two TRMM regions of LBA and Kwajalein. Updrafts were found to be favored locations for precipitation embryos in the form of liquid or frozen drizzle-sized droplets. Although liquid water concentrations decreased to undetectable levels between -5 and -18 C in most glaciating updrafts, occasional traces of liquid water were found in updrafts at colder temperatures, probably due to the persistence of liquid drizzle droplets. The updraft magnitudes where the traces of liquid water were observed at cold temperatures do not appear to be stronger than updrafts without liquid water at similar temperatures, however.

  10. AIRS First Light Data: Typhoon Ramasun, July 3, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of Tropical Cyclone Ramasun were obtained July 3, 2002 by the Atmospheric Infrared Sounder experiment system onboard NASA's Aqua spacecraft. The AIRS experiment, with its wide spectral coverage in four diverse bands, provides the ability to obtain complete 3-D observations of severe weather, from the surface, through clouds to the top of the atmosphere with unprecedented accuracy. This accuracy is the key to understanding weather patterns and improving weather predictions.

    Viewed separately, none of these images can provide accurate 3-D descriptions of the state of the atmosphere because of interference from clouds. However, the ability to make simultaneous observations at a wide range of wavelengths allows the AIRS experiment to 'see' through clouds.

    This visible light picture from the AIRS instrument provides important information about the location of the cyclone, cloud structure and distribution.

    The AIRS instrument image at 900 cm-1 (Figure 1) is from a 10 micron transparent 'window channel' that is little affected by water vapor but still cannot see through clouds. In clear areas (like the eye of the cyclone and over northwest Australia) it measures a surface temperature of about 300K (color encoded red). In cloudy areas it measures the cloud top temperature, about 200K for the cyclone, which translates to a cloud top height of about 50,000 feet.

    On the other hand, most clouds are relatively transparent in microwave, and the Advanced Microwave Sounding Instrument channel image (Figure 2) can see through all but the densest clouds. For example, Taiwan, which is covered by clouds, is clearly visible.

    The Humidity Sounder for Brazil instrument channel (Figure 3), also in the microwave, is more sensitive to both clouds and humidity. Only in clear, dry regions, such as the eye of the cyclone or the area north of Australia, does it see the surface. It is also severely affected by suspended ice particles formed by strong convection, which causes scattering and appears to be extremely cold. These blue areas indicate intense precipitation.

    The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

    The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.

  11. Relevance of long term time - Series of atmospheric parameters at a mountain observatory to models for climate change

    NASA Astrophysics Data System (ADS)

    Kancírová, M.; Kudela, K.; Erlykin, A. D.; Wolfendale, A. W.

    2016-10-01

    A detailed analysis has been made based on annual meteorological and cosmic ray data from the Lomnicky stit mountain observatory (LS, 2634 masl; 49.40°N, 20.22°E; vertical cut-off rigidity 3.85 GV), from the standpoint of looking for possible solar cycle (including cosmic ray) manifestations. A comparison of the mountain data with the Global average for the cloud cover in general shows no correlation but there is a possible small correlation for low clouds (LCC in the Global satellite data). However, whereas it cannot be claimed that cloud cover observed at Lomnicky stit (LSCC) can be used directly as a proxy for the Global LCC, its examination has value because it is an independent estimate of cloud cover and one that has a different altitude weighting to that adopted in the satellite-derived LCC. This statement is derived from satellite data (http://isccp.giss.nasa.gov/climanal7.html) which shows the time series for the period 1983-2010 for 9 cloud regimes. There is a significant correlation only between cosmic ray (CR) intensity (and sunspot number (SSN)) and the cloud cover of the types cirrus and stratus. This effect is mainly confined to the CR intensity minimum during the epoch around 1990, when the SSN was at its maximum. This fact, together with the present study of the correlation of LSCC with our measured CR intensity, shows that there is no firm evidence for a significant contribution of CR induced ionization to the local (or, indeed, Global) cloud cover. Pressure effects are the preferred cause of the cloud cover changes. A consequence is that there is no evidence favouring a contribution of CR to the Global Warming problem. Our analysis shows that the LS data are consistent with the Gas Laws for a stable mass of atmosphere.

  12. Millimeter-wave imaging sensor data evaluation

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Ibbott, Anthony C.

    1987-01-01

    A passive 3-mm radiometer system with a mechanically scanned antenna was built for use on a small aircraft or an Unmanned Aerial Vehicle to produce real near-real-time, moderate-resolution (0.5) images of the ground. One of the main advantages of this passive imaging sensor is that it is able to provide surveillance information through dust, smoke, fog and clouds when visual and IR systems are unusable. It can also be used for a variety of remote sensing applications, such as measurements of surface moisture, surface temperature, vegetation extent and snow cover. It is also possible to detect reflective objects under vegetation cover.

  13. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  14. Use of Field Observations for Understanding Controls of Polar Low Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    McFarquhar, G. M.

    2016-12-01

    Although arctic clouds have a net warming effect on the Arctic surface, their radiative effect is sensitive to cloud microphysical properties, namely the sizes, phases and shapes of cloud particles. Such cloud properties are influenced by the numbers, compositions and sizes of aerosols, meteorological conditions, and surface characteristics. Uncertainty in representing cloud-aerosol interactions in varying environmental conditions and associated feedbacks is a major cause in our lack of understanding of why the Arctic is warming faster than the rest of the Earth. Here, the understanding of cloud-aerosol interactions gained from past arctic field experiments is reviewed. Such studies have characterized the structure of single-layer mixed phase clouds that are ubiquitous in the Arctic and investigated different aerosol indirect effect mechanisms acting in these clouds. But, it is still unknown what controls the amount of supercooled water in arctic clouds (especially in complex frequently occurring multi-layer clouds), how probability distributions of cloud properties and radiative heating and their subsequent impact on temperature profiles and underlying snow and sea ice cover vary with aerosol loading and composition in different surface and meteorological conditions, how the composition and concentration of arctic aerosols and cloud microphysical properties vary annually and interannually, and how cloud-aerosol-radiative interactions can be better represented in models with varying temporal and spatial scales. These needs can be addressed in two ways. First, there is a need for comprehensive and routine aircraft, UAV and tethered balloon measurements in the presence of ground, air or space-based remote sensors over a variety of surface and meteorological conditions. Second, planned observational campaigns (the Measurements of Aerosols Radiation and Clouds over the Southern Oceans MARCUS and the Southern Oceans Cloud Radiation Transport Experimental Study SOCRATES) should provide cloud, aerosol, radiative and precipitation observations over the pristine and continually cloudy Southern Oceans that are remote from natural and continental anthropogenic aerosol sources should provide a process-oriented understanding of cloud-aerosol interactions in liquid and ice clouds.

  15. More Frequent Cloud Free Sky and Less Surface Solar Radiation in China from 1955-2000

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Kaiser, Dale P.; Leung, L. Ruby; Xu, Ming

    2006-01-01

    In this study, we used newly available data frorn extended weather stations and time period to reveal that much of China has experienced significant decreases in cloud cover over the last half of the Twentieth century. This conclusion is supported by analysis of the more reliably observed frequency of cloud-free sky and overcast sky. We estimated that the total cloud cover and low cloud cover in China have decreased 0.88% and 0.33% per decade, respectively, and cloud-free days have increased 0.60% and overcast days decreased 0.78% per decade from 1954-2001. Meanwhile, both solar radiation and pan evaporation have decreased in China, with'solar radiation decreasing 3.1 w/square m and pan evaporation decreasing 39 mm per decade. Combining these results with findings of previous studies, we speculated that increased air pollution may have produced a fog-like haze that reflected/absorbed radiation from the sun and resulted in less solar radiation reaching the surface, despite concurrent increasing trends in cloud-free sky over China.

  16. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  17. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  18. Cloud Detection by Fusing Multi-Scale Convolutional Features

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  19. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    NASA Astrophysics Data System (ADS)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  20. Sensitivity simulations of superparameterised convection in a general circulation model

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2015-04-01

    Cloud Resolving Models (CRMs) covering a horizontal grid spacing from a few hundred meters up to a few kilometers have been used to explicitly resolve small-scale and mesoscale processes. Special attention has been paid to realistically represent cloud dynamics and cloud microphysics involving cloud droplets, ice crystals, graupel and aerosols. The entire variety of physical processes on the small-scale interacts with the larger-scale circulation and has to be parameterised on the coarse grid of a general circulation model (GCM). Since more than a decade an approach to connect these two types of models which act on different scales has been developed to resolve cloud processes and their interactions with the large-scale flow. The concept is to use an ensemble of CRM grid cells in a 2D or 3D configuration in each grid cell of the GCM to explicitly represent small-scale processes avoiding the use of convection and large-scale cloud parameterisations which are a major source for uncertainties regarding clouds. The idea is commonly known as superparameterisation or cloud-resolving convection parameterisation. This study presents different simulations of an adapted Earth System Model (ESM) connected to a CRM which acts as a superparameterisation. Simulations have been performed with the ECHAM/MESSy atmospheric chemistry (EMAC) model comparing conventional GCM runs (including convection and large-scale cloud parameterisations) with the improved superparameterised EMAC (SP-EMAC) modeling one year with prescribed sea surface temperatures and sea ice content. The sensitivity of atmospheric temperature, precipiation patterns, cloud amount and types is observed changing the embedded CRM represenation (orientation, width, no. of CRM cells, 2D vs. 3D). Additionally, we also evaluate the radiation balance with the new model configuration, and systematically analyse the impact of tunable parameters on the radiation budget and hydrological cycle. Furthermore, the subgrid variability (individual CRM cell output) is analysed in order to illustrate the importance of a highly varying atmospheric structure inside a single GCM grid box. Finally, the convective transport of Radon is observed comparing different transport procedures and their influence on the vertical tracer distribution.

  1. MISR RICO Products

    Atmospheric Science Data Center

    2016-11-25

    ... microphysics of the transition to a mature rainshaft, organization of trade wind clouds, water budget of trade wind cumulus, and the ... (MISR) mission objectives involve providing accurate information on cloud cover, cloud-track winds, stereo-derived cloud-top ...

  2. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  3. Cloud-Aerosol Interaction and Its Impact on the Onset of the East Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K.-M.; Hsu, N. Christina; Tsay, Si-Chee

    2004-01-01

    Effect of aerosols from biomass burning on the early development of East Asian monsoon is investigated using various satellites and in situ observations including TOMS Aerosol Index (AI). GPCP precipitation, ISCCP cloud cover, and GISS surface air temperature. Based on TRMM fire produce and mean winds fields at 85Omb. we identified the source and interaction regions of aerosols and investigated aerosol-cloud-precipitation characteristics in those regions. During March-April, northern Thailand, Myanmar. and Laos are major source of smoke from the combustion of agricultural waste. Excessive smoke. represented by high AI, is observed especially during dry and cloud-free year. On the other hand. there is no ground source of smoke in the interaction region. The most of aerosols in this area are believed to be transported from the source region. AI is appeared to be correlated with more clouds and less precipitation in interaction region. It suggests that the aerosol-cloud interaction can alter the distribution of cloud and the characteristics of regional hydrology. Aerosol-induced changes in atmospheric stability and associated circulation turns out to be very important to pre-monsoon rainfall pattern in southern China. Prolonged biomass burning is especially effective in changing rainfall pattern during April and May. Results suggest that excessive aerosol transported from source region may intensify pre-monsoon rain band over central China in May and lead to early monsoon onset.

  4. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 405.

    DTIC Science & Technology

    1977-09-28

    Equilibrium Temperature at Earth’s Center 24 Equivalence in Plane Problem of Gravimetry with Variable Density of Masses 24 Prediction of Rock...circulation mechanisms can be regarded as models relating the distribution of tempera- ture, precipitation , cloud cover, etc. with the system of air...does the dura- tion of elementary circulation mechanisms have a direct relationship to a paucity of precipitation . Data for the period prior to 1918

  5. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  6. A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Müller, Rolf; Grooß, Jens-Uwe; Tritscher, Ines; Höpfner, Michael; Pitts, Michael; Orr, Andrew; Riese, Martin

    2018-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the European Space Agency (ESA) Envisat satellite operated from July 2002 to April 2012. The infrared limb emission measurements provide a unique dataset of day and night observations of polar stratospheric clouds (PSCs) up to both poles. A recent classification method for PSC types in infrared (IR) limb spectra using spectral measurements in different atmospheric window regions has been applied to the complete mission period of MIPAS. The method uses a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption on a combination of a well-established two-colour ratio method and multiple 2-D probability density functions of brightness temperature differences. The Bayesian classifier distinguishes between solid particles of ice, nitric acid trihydrate (NAT), and liquid droplets of supercooled ternary solution (STS), as well as mixed types. A climatology of MIPAS PSC occurrence and specific PSC classes has been compiled. Comparisons with results from the classification scheme of the spaceborne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite show excellent correspondence in the spatial and temporal evolution for the area of PSC coverage (APSC) even for each PSC class. Probability density functions of the PSC temperature, retrieved for each class with respect to equilibrium temperature of ice and based on coincident temperatures from meteorological reanalyses, are in accordance with the microphysical knowledge of the formation processes with respect to temperature for all three PSC types.This paper represents unprecedented pole-covering day- and nighttime climatology of the PSC distributions and their composition of different particle types. The dataset allows analyses on the temporal and spatial development of the PSC formation process over multiple winters. At first view, a more general comparison of APSC and AICE retrieved from the observations and from the existence temperature for NAT and ice particles based on the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis temperature data shows the high potential of the climatology for the validation and improvement of PSC schemes in chemical transport and chemistry-climate models.

  7. Correlation between atmospheric electric fields and cloud cover using a field mill and cloud observation data

    NASA Astrophysics Data System (ADS)

    Nakamori, Kota; Suzuki, Yasuki; Ohya, Hiroyo; Takano, Toshiaki; Kawamura, Yohei; Nakata, Hiroyuki; Yamashita, Kozo

    2017-04-01

    It is known that lightning and precipitations of rain droplets generated from thunderclouds are a generator of global atmospheric electric circuit. In the fair weather, the atmospheric electric fields (AEF) are downward (positive), while they are upward (negative) during lightning and precipitations. However, the correlations between the AEF, and the cloud parameters such as cloud cover, weather phenomenon, have been not revealed quantitatively yet. In this study, we investigate the correlations between the AEF and the cloud parameters, weather phenomenon using a field mill, the 95 GHz-FALCON (FMCW Radar for Cloud Observations)-I and all-sky camera observations. In this study, we installed a Boltek field mill on the roof of our building in Chiba University, Japan, (Geographic coordinate: 35.63 degree N, 140.10 degree E, the sea level: 55 m) on the first June, 2016. The sampling time of the AEF is 0.5 s. On the other hand, the FALCON-I has observed the cloud parameters far from about 76 m of the field mill throughout 24 hours every day. The vertical cloud profiles and the Doppler velocity of cloud particles can be derived by the FALCON-I with high distance resolutions (48.8 m) (Takano et al., 2010). In addition, the images of the clouds and precipitations are recorded with 30-s sampling by an all-sky camera using a CCD camera on the same roof during 05:00-22:00 LT every day. The distance between the field mill and the all-sky camera is 3.75 m. During 08:30 UT - 10:30 UT, on 4 July, 2016, we found the variation of the AEF due to the approach of thundercloud. The variation consisted of two patterns. One was slow variation due to the movement of thunderclouds, and the other was rapid variation associated with lightning discharges. As for the movement of thunderclouds, the AEF increased when the anvil was located over the field mill, which was opposite direction of the previous studies. This change might be due to the positive charges in the upper anvil more than 14 km altitude. As for the rapid variations of the AEF, 12 peaks of the AEF coincided with the occurrence of the lightning within 37 km. Moreover, we developed the automatic procedure to estimate the cloud cover from cloud optical images using the RGB color values. We estimated the correlation between the cloud cover and the AEF during June - November, 2016. The AEF decreased with increasing the cloud cover. This trend may be caused by the dielectric polarization due to the insert of the dielectric clouds into the global condenser. The standard deviation of AEF was small when the cloud cover increased. In this session, we will show the variations in the AEF during usual precipitations and snowing.

  8. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  9. Cloud and surface textural features in polar regions

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  10. Fewer clouds in the Mediterranean: consistency of observations and climate simulations

    PubMed Central

    Sanchez-Lorenzo, Arturo; Enriquez-Alonso, Aaron; Calbó, Josep; González, Josep-Abel; Wild, Martin; Folini, Doris; Norris, Joel R.; Vicente-Serrano, Sergio M.

    2017-01-01

    Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s–1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends. PMID:28148960

  11. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  12. Investigations into the climate of the South Pole

    NASA Astrophysics Data System (ADS)

    Town, Michael S.

    Four investigations into the climate of the South Pole are presented. The general subjects of polar cloud cover, the surface energy balance in a stable boundary layer, subsurface energy transfer in snow, and modification of water stable isotopes in snow after deposition are investigated based on the historical data set from the South Pole. Clouds over the South Pole. A new, accurate cloud fraction time series is developed based on downwelling infrared radiation measurements taken at the South Pole. The results are compared to cloud fraction estimates from visual observations and satellite retrievals of cloud fraction. Visual observers are found to underestimate monthly mean cloud fraction by as much as 20% during the winter, and satellite retrievals of cloud fraction are not accurate for operational or climatic purposes. We find associations of monthly mean cloud fraction with other meteorological variables at the South Pole for use in testing models of polar weather and climate. Surface energy balance. A re-examination of the surface energy balance at the South Pole is motivated by large discrepancies in the literature. We are not able to find closure in the new surface energy balance, likely due to weaknesses in the turbulent heat flux parameterizations in extremely stable boundary layers. These results will be useful for constraining our understanding and parameterization of stable boundary layers. Subsurface energy transfer. A finite-volume model of the snow is used to simulate nine years of near-surface snow temperatures, heating rates, and vapor pressures at the South Pole. We generate statistics characterizing heat and vapor transfer in the snow on submonthly to interannual time scales. The variability of near-surface snow temperatures on submonthly time scales is large, and has potential implications for revising the interpretation of paleoclimate records of water stable isotopes in polar snow. Modification of water stable isotopes after deposition. The evolution of water stable isotopes in near-surface polar snow is simulated using a Rayleigh fractionation model including the processes of pore-space diffusion, forced ventilation, and intra-ice-grain diffusion. We find isotopic enrichment of winter snow during subsequent summers as enriched water vapor is forced into the snow and deposits as frost. This process depends on snow and atmospheric temperatures, surface wind speed, accumulation rate, and surface morphology. We further find that differential enrichment between the present day and the Last Glacial Maximum (LGM) may exaggerate the greenlandic glacial-interglacial temperature difference derived from water stable isotopes. In Antarctica, present-day post-depositional modification is likely equal to that of the LGM due to the compensating factors of lower temperatures and lower accumulation rate during the LGM.

  13. Laminae development in opal-A precipitates associated with seasonal growth of the form-genus Calothrix (Cyanobacteria), Rehai geothermal area, Tengchong, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2015-04-01

    The western discharge apron at Meinuquan (Rehai geothermal area, Yunnan Province, China), which incorporates the upper terrace, terrace front, and lower terrace, is covered with laminated opal-A precipitates that have formed from the spring waters that flow across its surface. Laminae are formed of silicified Calothrix mats or featureless opal-A that contains no microbes, scattered spherical and rod-shaped microbes, and/or rare Calothrix. Rapid silicification of the Calothrix led to preservation of their basal heterocysts, vegetative cells, trichomes, tapering filaments, and laminated and splayed sheaths. The Calothrix mats grew during the dry season when there was maximum sunlight because of low cloud cover. During this time, the mats grew under stable conditions because the water that flowed across the discharge apron was sourced from the springs, and temperature and water geochemistry was more or less constant. Growth of the Calothrix mats decreased during the wet season (April to late September) when sunlight is reduced due to the extensive cloud cover associated with the monsoonal rains. During the wet season, water flowing over the discharge apron is a mixture of rainwater, runoff from the surrounding hillsides, and spring water. Such variable flow conditions, water temperatures, and water geochemistry curtailed microbe growth and impacted silica precipitation. The precipitates at Meinuquan are like those associated with some Icelandic hot springs. Although growth of Calothrix is controlled by sunlight in both settings, the periods of maximum sunlight in China (October-March) and Iceland (June-August) are at different times of the year because of their geographic locations.

  14. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  15. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE PAGES

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.; ...

    2016-07-19

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  16. Turbulence measurements using tethered balloon instrumentation during FIRE 1987

    NASA Technical Reports Server (NTRS)

    Hignett, Phillip

    1990-01-01

    As part of the surface-based observations conducted on San Nicolas Island, the U.K. Meteorological Office operated a set of turbulence probes attached to a balloon tether cable. Typically six probes were used, each capable of measuring momentum, heat, and humidity fluxes. Two probes were fitted with net radiometers, one positioned above cloud and the other below; a third probe carried a Lyman-alpha hygrometer fitted with a pre-heater for the measurement of total water content. Some preliminary results are presented from the 14th July describing the variation in structure of the cloudy boundary layer during the daytime. This day was characterized by a complete cloud cover, an inversion height of approximately 600 m. and north-westerly winds of approximately 6 m.s(-1). As an illustration the equivalent potential temperature derived from a profile ascent made between approximately 0830 and 0930 (PDT) is shown. The data has been smoothed to a height resolution of about 4 metres. At this time the cloud base was approximately 200 m. and very light drizzle was reaching the surface. The vertical velocity variance and potential temperature flux for two periods are shown; the first (shown by full lines) immediately follows the profile and the second (shown by dashed lines) is central around 1400 (PDT). The data have been normalized by their maximum values in the first period. Cloud base has now risen to approximately 300 m. There is a marked variation during the morning, particularly in sigma w. The net radiative flux above cloud top has by now reached its maximum value.

  17. Sea-ice, clouds and atmospheric conditions in the arctic and their interactions as derived from a merged C3M data product

    NASA Astrophysics Data System (ADS)

    Nag, Bappaditya

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aimed to explore the atmospheric conditions in the Arctic on an unprecedented spatial coverage spanning 70°N to 80°N through the use of a merged data product, C3MData (derived from NASA's A-Train Series). The following three topics provide outline on how this dataset can be used to accomplish a detailed analysis of the Arctic environment and provide the modelling community with first information to update their models aimed at better forecasts. (1)The three properties of the Arctic climate system to be studied using the C3MData are sea-ice, clouds, and the atmospheric conditions. The first topic is to document the present states of the three properties and also their time evolutions or their seasonal cycles. (2)The second topic is aimed at the interactions or the feedbacks processes among the three properties. For example, the immediate alteration in the fluxes and the feedbacks arising from the change in the sea-ice cover is investigated. Seasonal and regional variations are also studied. (3)The third topics is aimed at the processes in native spatial resolution that drive or accompany with sea ice melting and sea ice growth. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  18. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  19. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer

    Jakob, Christian

    2008-01-15

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  20. The Dependence of Homo- and Heterogeneously Formed Cirrus Clouds on Latitude, Season and Surface-type based on a New CALIPSO Remote Sensing Method

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Garnier, A.; Mejia, J.; Avery, M. A.; Erfani, E.

    2016-12-01

    A new CALIPSO infrared retrieval method sensitive to small ice crystals has been developed to measure the temperature dependence of the layer-average number concentration N, effective diameter De and ice water content in single-layer cirrus clouds (one cloud layer in the atmospheric column) that have optical depths between 0.3 and 3.0 and cloud base temperature T < 235 K. While retrievals of low N are not accurate, mid-to-high N can be retrieved with much lower uncertainty. This enables the retrieval to estimate the dominant ice nucleation mechanism (homo- or heterogeneous, henceforth hom and het) though which the cirrus formed. Based on N, hom or het cirrus can be estimated as a function of temperature, season, latitude and surface type. The retrieved properties noted above compare favorably with spatial-temporal coincident cirrus cloud in situ measurements from SPARTICUS case studies as well as the extensive in situ cirrus data set of Krämer et al. (2009, ACP). For our cirrus cloud selection, these retrievals show a pronounced seasonal cycle in the N. Hemisphere over land north of 30°N latitude in terms of both cloud amount and microphysics, with greater cloud cover, higher N and smaller De during the winter season. We postulate that this is partially due to the seasonal cycle of deep convection that replenishes the supply of ice nuclei (IN) at cirrus levels, with hom more likely when deep convection is absent. Over oceans, heterogeneous ice nucleation appears to prevail based on the lower N and higher De observed. Due to the relatively smooth ocean surface, lower amplitude atmospheric waves at cirrus cloud levels are expected. Over land outside the tropics during winter, hom cirrus tend to occur over mountainous terrain, possibly due to lower IN concentrations and stronger, more sustained updrafts in mountain-induced waves. Over pristine Antarctica, IN concentrations are minimal and the terrain near the coast is often high and rugged, allowing hom to dominate. Accordingly, over Antarctica cirrus clouds exhibit relatively high N and small De throughout the year. These retrievals allow us to parameterize De and the ice fall speed in CAM5 as a function of T, season, latitude and surface-type. Our goal is to estimate the radiative impact of hom cirrus north of 30°N latitude in winter relative to het cirrus before the AGU Fall Meeting.

  1. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data can be obtained from a digital elevation model (DEM) for the area of interest.

  2. Design, Evaluation and GCM-Performance of a New Parameterization for Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme (McRas)

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.

    1998-01-01

    A prognostic cloud scheme named McRAS (Microphysics of clouds with Relaxed Arakawa-Schubert Scheme) was developed with the aim of improving cloud-microphysics, and cloud-radiation interactions in GCMs. McRAS distinguishes convective, stratiform, and boundary-layer clouds. The convective clouds merge into stratiform clouds on an hourly time-scale, while the boundary-layer clouds do so instantly. The cloud condensate transforms into precipitation following the auto-conversion relations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, and diffuse both horizontally and vertically with a fully active cloud-microphysics throughout its life-cycle, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry. An evaluation of McRAS in a single column model (SCM) with the GATE Phase III data has shown that McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. An evaluation with the ARM-CART SCM data in a cloud model intercomparison exercise shows reasonable but not an outstanding accurate simulation. Such a discrepancy is common to almost all models and is related, in part, to the input data quality. McRAS was implemented in the GEOS II GCM. A 50 month integration that was initialized with the ECMWF analysis of observations for January 1, 1987 and forced with the observed sea-surface temperatures and sea-ice distribution and vegetation properties (biomes, and soils), with prognostic soil moisture, snow-cover, and hydrology showed a very realistic simulation of cloud process, incloud water and ice, and cloud-radiative forcing (CRF). The simulated ITCZ showed a realistic time-mean structure and seasonal cycle, while the simulated CRF showed sensitivity to vertical distribution of cloud water which can be easily altered by the choice of time constant and incloud critical cloud water amount regulators for auto-conversion. The CRF and its feedbacks also have a profound effect on the ITCZ. Even though somewhat weaker than observed, the McRAS-GCM simulation produces robust 30-60 day oscillations in the 200 hPa velocity potential. Two ensembles of 4-summer (July, August, September) simulations, one each for 1987 and 1988 show that the McRAS-GCM simulates realistic and statistically significant precipitation differences over India, Central America, and tropical Africa. Several seasonal simulations were performed with McRAS-GEOS II GCM for the summer (June-July- August) and winter (December-January-February) periods to determine how the simulated clouds and CRFs would be affected by: i) advection of clouds; ii) cloud top entrainment instability, iii) cloud water inhomogeneity correction, and (iv) cloud production and dissipation in different cloud-processes. The results show that each of these processes contributes to the simulated cloud-fraction and CRF.

  3. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  4. MOLECULAR CLOUDS AND CLUMPS IN THE BOSTON UNIVERSITY-FIVE COLLEGE RADIO ASTRONOMY OBSERVATORY GALACTIC RING SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathborne, J. M.; Johnson, A. M.; Jackson, J. M.

    2009-05-15

    The Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS) of {sup 13}CO J = 1 {yields} 0 emission covers Galactic longitudes 18{sup 0} < l < 55.{sup 0}7 and Galactic latitudes |b| {<=} 1{sup 0}. Using the SEQUOIA array on the FCRAO 14 m telescope, the GRS fully sampled the {sup 13}CO Galactic emission (46'' angular resolution on a 22'' grid) and achieved a spectral resolution of 0.21 km s{sup -1}. Because the GRS uses {sup 13}CO, an optically thin tracer, rather than {sup 12}CO, an optically thick tracer, the GRS allows a much better determination ofmore » column density and also a cleaner separation of velocity components along a line of sight. With this homogeneous, fully sampled survey of {sup 13}CO emission, we have identified 829 molecular clouds and 6124 clumps throughout the inner Galaxy using the CLUMPFIND algorithm. Here we present details of the catalog and a preliminary analysis of the properties of the molecular clouds and their clumps. Moreover, we compare clouds inside and outside of the 5 kpc ring and find that clouds within the ring typically have warmer temperatures, higher column densities, larger areas, and more clumps compared with clouds located outside the ring. This is expected if these clouds are actively forming stars. This catalog provides a useful tool for the study of molecular clouds and their embedded young stellar objects.« less

  5. Why do global climate models struggle to represent low-level clouds in the West African summer monsoon?

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor

    2017-04-01

    Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent mixing. Part of the differences between the models and ERA-Interim appear to be related to the different subgrid cloud schemes used. While nighttime tendencies in temperature and humidity are broadly realistic in most models, daytime tendencies show large variation in the vertical transport of heat and moisture. Many models simulate too low near-surface relative humidities, leading to insufficient low cloud cover, abundant solar radiation, and thus a too large diurnal cycle in temperature and relative humidity. Currently, targeted model sensitivity experiments are conducted to test possible feedback mechanisms between low clouds, radiation, boundary-layer dynamics, precipitation and the WAM circulation in the framework of the EU-funded DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project (http://www.dacciwa.eu).

  6. The effects of moon illumination, moon angle, cloud cover, and sky glow on night vision goggle flight performance

    NASA Astrophysics Data System (ADS)

    Loro, Stephen Lee

    This study was designed to examine moon illumination, moon angle, cloud cover, sky glow, and Night Vision Goggle (NVG) flight performance to determine possible effects. The research was a causal-comparative design. The sample consisted of 194 Fort Rucker Initial Entry Rotary Wing NVG flight students being observed by 69 NVG Instructor Pilots. The students participated in NVG flight training from September 1992 through January 1993. Data were collected using a questionnaire. Observations were analyzed using a Kruskal-Wallis one-way analysis of variance and a Wilcox matched pairs signed-ranks test for difference. Correlations were analyzed using Pearson's r. The analyses results indicated that performance at high moon illumination levels is superior to zero moon illumination, and in most task maneuvers, superior to >0%--50% moon illumination. No differences were found in performance at moon illumination levels above 50%. Moon angle had no effect on night vision goggle flight performance. Cloud cover and sky glow have selective effects on different maneuvers. For most task maneuvers, cloud cover does not affect performance. Overcast cloud cover had a significant effect on seven of the 14 task maneuvers. Sky glow did not affect eight out of 14 task maneuvers at any level of sky glow.

  7. On the impact of cloudiness on the characteristics of nocturnal downslope flows

    NASA Astrophysics Data System (ADS)

    Ye, Z. J.; Segal, M.; Garratt, J. R.; Pielke, R. A.

    1989-10-01

    The effects of cloud cover amount and the height of cloud base on nighttime thermally induced downslope flow were investigated using analytical and numerical model approaches. The conclusions obtained with the analytical and the numerical model evaluations agreed. It was concluded that, (i) as cloud cover increases and/or the height of cloud base decreases, the depth and the intensity of nighttime thermally-induced downslope flows may decrease by a factor reaching one sixth and one tenth, respectively, in the case of overcast low cloud; (ii) when skies suddenly cloud over around midnight, the development of the downslope flow is altered in different ways: a reduction in intensity; or a cessation of further development, depending on the fraction of cloud coverage, and (iii) with a sudden clearing of overcast low cloud around midnight, the depth and the intensity of the downslope flow increases significantly.

  8. Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Piazzolla, S.

    2002-01-01

    Cloud opacity is one of the main atmospheric physical phenomena that can jeopardize the successful completion of an optical link between a spacecraft and a ground station. Hence, the site location chosen for a telescope used for optical communications must rely on knowledge of weather and cloud cover statistics for the geographical area where the telescope itself is located.

  9. Assimilating Satellite SST Observations into a Diurnal Cycle Model

    NASA Astrophysics Data System (ADS)

    Pimentel, S.; Haines, K.; Nichols, N. K.

    2006-12-01

    The wealth of satellite sea surface temperature (SST) data now available opens the possibility of large improvements in SST estimation. However the use of such data is not straight forward; a major difficulty in assimilating satellite observations is that they represent a near surface temperature, whereas in ocean models the top level represents the temperature at a greater depth. During the day, under favourable conditions of clear skies and calm winds, the near surface temperature is often seen to have a diurnal cycle that is picked up in satellite observations. Current ocean models do not have the vertical or temporal resolution to adequately represent this daytime warming. The usual approach is to discard daytime observations as they are considered diurnally `corrupted'. A new assimilation technique is developed here that assimilates observations into a diurnal cycle model. The diurnal cycle of SSTs are modelled using a 1-D mixed layer model with fine near surface resolution and 6 hourly forcing from NWP analyses. The accuracy of the SST estimates are hampered by uncertainties in the forcing data. The extent of diurnal SST warming at a particular location and time is predominately governed by a non-linear response to cloud cover and sea surface wind speeds which greatly affect the air-sea fluxes. The method proposed here combines infrared and microwave SST satellite observations in order to derive corrections to the cloud cover and wind speed values over the day. By adjusting the forcing, SST estimation and air-sea fluxes should be improved and are at least more consistent with each other. This new technique for assimilating SST data can be considered a tool for producing more accurate diurnal warming estimates.

  10. Towards a long-term Science Exploitation Plan for the Sea and Land Surface Temperature Radiometer on Sentinel-3 and the Along-Track Scanning Radiometers

    NASA Astrophysics Data System (ADS)

    Remedios, John J.; Llewellyn-Jones, David

    2014-05-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3 is the latest satellite instrument in a series of dual-angle optical and thermal sensors, the Along-Track Scanning Radiometers (ATSRs). Operating on Sentinel-3, the SLSTR has a number of significant improvements compared to the original ATSRs including wider swaths for nadir and dual angles, emphasis on all surface temperature domains, dedicated fire channels and additional cloud channels. The SLSTR therefore provides some excellent opportunities to extend science undertaken with the ATSRs whilst also providing long-term data sets to investigate climate change. The European Space Agency, together with the Department of Energy and Climate Change, sponsored the production of an Exploitation Plan for the ATSRs. In the last year, this been extended to cover the SLSTR also. The plan enables UK and European member states to plan activities related to SLSTR in a long-term context. Covering climate change, oceanography, land surface, atmosphere and cryosphere science, particular attention is paid to the exploitation of long-term data sets. In the case of SLSTR, relevant products include sea, land, lake and ice surface temperatures; aerosols and clouds; fires and gas flares; land surface reflectances. In this presentation, the SLSTR and ATSR science Exploitation Plan will be outlined with emphasis on SLSTR science opportunities, on appropriate co-ordinating mechanisms and on example implementation plans. Particular attention will be paid to the challenges of linking ATSR records with SLSTR to provide consistent long-term data sets, and on the international context of such data sets. The exploitation plan approach to science may prove relevant and useful for other Sentinel instruments.

  11. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  12. Preparatory studies of zero-g cloud drop coalescence experiment

    NASA Technical Reports Server (NTRS)

    Telford, J. W.; Keck, T. S.

    1979-01-01

    Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.

  13. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection accuracy of the proposed method is better than related methods.

  14. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.

  15. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    NASA Astrophysics Data System (ADS)

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; Li, J.-L. F.

    2015-08-01

    In this study, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPL measurements are 1.0 km and 0.6 km, respectively, with the largest difference ( 1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. This result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.

  16. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    DOE PAGES

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; ...

    2015-07-20

    In this work, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPLmore » measurements are 1.0 km and 0.6 km, respectively, with the largest difference (~1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. In conclusion, this result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.« less

  17. Improved Soundings and Error Estimates using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2006-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.

  18. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Benjamin T.

    2010-01-01

    Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.

  19. Comparison of monthly nighttime cloud fraction products from MODIS and AIRS and ground-based camera over Manila Observatory (14.64N, 121.07E)

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2017-12-01

    Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.

  20. Effects of cloud cover and meteorology in estimating ground-level air pollution using MAIAC AOD in the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Liu, Y.

    2017-12-01

    Satellite aerosol optical depth (AOD) has been used to assess fine particulate matter (PM2.5) pollution worldwide. However, non-random missing AOD due to cloud cover or high surface reflectance can cause up to 80% data loss and bias model-estimated spatial and temporal trends of PM2.5. Previous studies filled the data gap largely by spatial smoothing which ignored the impact of cloud cover and meteorology on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a flexible Multiple Imputation (MI) method that combines cloud fraction, elevation, humidity, temperature, and spatiotemporal trends to impute the missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 were 0.81 and 0.73 (for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. This method provides reliable PM2.5 predictions with complete coverage at high resolution. By including all the pixels of all days into model development, this method corrected the sampling bias in satellite-driven air pollution modelling due to non-random missingness in AOD. Comparing with previously reported gap-filling methods, the MI method has the strength of not relying on ground PM2.5 measurements, therefore allows the prediction of historical PM2.5 levels prior to the establishment of regular ground monitoring networks.

  1. Discrimination Between Clouds and Snow in Landsat 8 Imagery: an Assessment of Current Methods and a New Approach

    NASA Astrophysics Data System (ADS)

    Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.

    2015-12-01

    Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.

  2. View of Earth from Apollo 10 taken from reproduction of tv transmission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A cloud-covered earth from about 12,800 nautical miles away is seen in this color reproduction taken from the second TV transmission made by the color television camera onboard the Apollo 10 spacecraft. The United States and Mexico are located at right center. The more cloud-free area is the western and southwestern part of the U.S. and northern Mexico. Clouds cover the eastern half of the U.S.

  3. Cloud cover archiving on a global scale - A discussion of principles

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.; Hughes, N. A.; Wilson, M.

    1981-01-01

    Monitoring of climatic variability and climate modeling both require a reliable global cloud data set. Examination is made of the temporal and spatial variability of cloudiness in light of recommendations made by GARP in 1975 (and updated by JOC in 1978 and 1980) for cloud data archiving. An examination of the methods of comparing cloud cover frequency curves suggests that the use of the beta distribution not only facilitates objective comparison, but also reduces overall storage requirements. A specific study of the only current global cloud climatology (the U.S. Air Force's 3-dimensional nephanalysis) over the United Kingdom indicates that discussion of methods of validating satellite-based data sets is urgently required.

  4. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  5. Toward all weather, long record, and real-time land surface temperature retrievals from microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Jimenez, Carlos; Prigent, Catherine; Aires, Filipe; Ermida, Sofia

    2017-04-01

    The land surface temperature can be estimated from satellite passive microwave observations, with limited contamination from the clouds as compared to the infrared satellite retrievals. With ˜60% cloud cover in average over the globe, there is a need for "all weather," long record, and real-time estimates of land surface temperature (Ts) from microwaves. A simple yet accurate methodology is developed to derive the land surface temperature from microwave conical scanner observations, with the help of pre-calculated land surface microwave emissivities. The method is applied to the Special Sensor Microwave/Imagers (SSM/I) and the Earth observation satellite (EOS) Advanced Microwave Scanning Radiometer (AMSR-E) observations?, regardless of the cloud cover. The SSM/I results are compared to infrared estimates from International Satellite Cloud Climatology Project (ISCCP) and from Advanced Along Track Scanning Radiometer (AATSR), under clear-sky conditions. Limited biases are observed (˜0.5 K for both comparisons) with a root-mean-square difference (RMSD) of ˜5 K, to be compared to the RMSE of ˜3.5 K between ISCCP et AATSR. AMSR-E results are compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky estimates. As both instruments are on board the same satellite, this reduces the uncertainty associated to the observations match-up, resulting in a lower RMSD of ˜ 4K. The microwave Ts is compared to in situ Ts time series from a collection of ground stations over a large range of environments. For 22 stations available in the 2003-2004 period, SSM/I Ts agrees very well for stations in vegetated environments (down to RMSD of ˜2.5 K for several stations), but the retrieval methodology encounters difficulties under cold conditions due to the large variability of snow and ice surface emissivities. For 10 stations in the year 2010, AMSR-E presents an all-station mean RMSD of ˜4.0 K with respect tom the ground Ts. Over the same stations, MODIS agrees better (RMSD of 2.4 K), ?but AMSR-E provides a larger number of Ts estimates by being able to measure under cloudy conditions, with an approximated ratio of 3 to 1 over the analysed stations. At many stations the RMSD of the AMSR-E clear and cloudy-sky are comparable, highlighting the ability of the microwave inversions to provide Ts under most atmospheric and surface conditions.

  6. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  7. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    NASA Astrophysics Data System (ADS)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response as a function of the catchments' elevation and land cover. The forested catchment, located at the higher elevations, had the highest seasonal streamflows. During the wet season, different land covers at the lower elevations were important in defining the streamflow responses between the deforested catchment and the catchment with intermediate forest cover. Streamflows were higher and the rainfall-runoff responses were faster in the deforested catchment than in the intermediate forest cover catchment. During the dry season, the catchments' elevation defined streamflows due to higher water inputs and lower evaporative demand at the higher elevations.

  8. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-07-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to properly account for supercooled clouds in both climate models and cloud property retrievals.

  9. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-12-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature-independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud optical thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to account for supercooled clouds properly in both climate models and cloud-property retrievals.

  10. The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ebert, Elizabeth

    1990-01-01

    The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.

  11. Spatial Correlations of Anomalies of Tropospheric Temperature and Water Vapor, Cloud Cover, and OLR with the El Nino Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Lee, Jae N.

    2014-01-01

    In this presentation, we will show AIRS Version-6 area weighted anomaly time series over the time period September 2002 through August 2014 of atmospheric temperature and water vapor profiles as a function of height. These anomaly time series show very different behaviors in the stratosphere and in the troposphere. Tropical mean stratospheric temperature anomaly time series are very strongly influenced by the Quasi-Biennial Oscillation (QBO) with large anomalies that propagate downward from 1 mb to 100 mb with a period of about two years. AIRS stratospheric temperature anomalies are in good agreement with those obtained by MLS over a common period. Tropical mean tropospheric temperature profile anomalies appear to be totally disconnected from those of the stratosphere and closely follow El Nino La Nina activity.

  12. Cloud Statistics and Discrimination in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Chan, M.; Comiso, J. C.

    2012-12-01

    Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice-sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.

  13. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  14. Effective cloud optical depth and enhancement effects for broken liquid water clouds in Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Marín, M. J.; Serrano, D.; Utrillas, M. P.; Núñez, M.; Martínez-Lozano, J. A.

    2017-10-01

    Partly cloudy skies with liquid water clouds have been analysed, founding that it is essential to distinguish data if the Sun is obstructed or not by clouds. Both cases can be separated considering simultaneously the Cloud Modification Factor (CMF) and the clearness index (kt). For partly cloudy skies and the Sun obstructed the effective cloud optical depth (τ) has been obtained by the minimization method for overcast skies. This method was previously developed by the authors but, in this case, taking into account partial cloud cover. This study has been conducted for the years 2011-2015 with the multiple scattering model SBDART and irradiance measurements for the UV Erythemal Radiation (UVER) and the broadband ranges. Afterwards a statistical analysis of τ has shown that the maximum value is much lower than for overcast skies and there is more discrepancy between the two spectral ranges regarding the results for overcast skies. In order to validate these results the effective cloud optical depth has been correlated with several transmission factors, giving similar fit parameters to those obtained for overcast skies except for the clearness index in the UVER range. As our method is not applicable for partly cloudy skies with the visible Sun, the enhancement of radiation caused by clouds when the Sun is visible has been studied. Results show that the average enhancement CMF values are the same for both ranges although enhancement is more frequent for low cloud cover in the UVER and medium-high cloud cover in the broadband range and it does not depend on the solar zenith angle.

  15. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  16. The origin of recombining plasma and the detection of the Fe-K line in the supernova remnant W 28

    NASA Astrophysics Data System (ADS)

    Okon, Hiromichi; Uchida, Hiroyuki; Tanaka, Takaaki; Matsumura, Hideaki; Tsuru, Takeshi Go

    2018-03-01

    Overionized recombining plasmas (RPs) have been discovered from a dozen mixed-morphology (MM) supernova remnants (SNRs). However, their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understanding the physical origin of RPs. We report on spatially resolved X-ray spectroscopy of W 28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W 28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are reproduced well by a combination of two RP models with different temperatures and ionization states, whereas that in the northeastern rim is explained with a single RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the northeastern rim also shows an excess emission of the Fe I K α line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic ray particles accelerated in W 28.

  17. The effects of cloud radiative forcing on an ocean-covered planet

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    Cumulus anvil clouds, whose importance has been emphasized by observationalists in recent years, exert a very powerful influence on deep tropical convection by tending to radiatively destabilize the troposphere. In addition, they radiatively warm the column in which they reside. Their strong influence on the simulated climate argues for a much more refined parameterization in the General Circulation Model (GCM). For Seaworld, the atmospheric cloud radiative forcing (ACRF) has a powerful influence on such basic climate parameters as the strength of the Hadley circulation, the existence of a single narrow InterTropical Convergence Zone (ITCZ), and the precipitable water content of the atmosphere. It seems likely, however, that in the real world the surface CRF feeds back negatively to suppress moist convection and the associated cloudiness, and so tends to counteract the effects of the ACRF. Many current climate models have fixed sea surface temperatures but variable land-surface temperatures. The tropical circulations of such models may experience a position feedback due to ACRF over the oceans, and a negative or weak feedback due to surface CRF over the land. The overall effects of the CRF on the climate system can only be firmly established through much further analysis, which can benefit greatly from the use of a coupled ocean-atmospheric model.

  18. The origin of recombining plasma and the detection of the Fe-K line in the supernova remnant W 28

    NASA Astrophysics Data System (ADS)

    Okon, Hiromichi; Uchida, Hiroyuki; Tanaka, Takaaki; Matsumura, Hideaki; Tsuru, Takeshi Go

    2018-06-01

    Overionized recombining plasmas (RPs) have been discovered from a dozen mixed-morphology (MM) supernova remnants (SNRs). However, their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understanding the physical origin of RPs. We report on spatially resolved X-ray spectroscopy of W 28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W 28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are reproduced well by a combination of two RP models with different temperatures and ionization states, whereas that in the northeastern rim is explained with a single RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the northeastern rim also shows an excess emission of the Fe I K α line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic ray particles accelerated in W 28.

  19. NASA ROVER, Tackling Citizen Science With Grand Challenges and Everyday Problems

    NASA Technical Reports Server (NTRS)

    Crecelius, Sarah; Chambers, Lin; Rogerson, Tina

    2015-01-01

    ROVER is the Citizen Science arm of the NASA Clouds and the Earth's Radiant Energy System (CERES) Students' Cloud Observations On-Line (S'COOL) Project. Since 2007, participants around the world have been making and reporting ground truth observations of clouds to assist in the validation of the NASA CERES satellite instrument. NASA scientists are very interested in learning how clouds affect our atmosphere, weather, and climate (relating to climate change). It is the clouds, in part, that affect the overall temperature and energy balance of the Earth. The more we know about clouds, the more we will know about our Earth as a system and citizen scientists are an important piece of that puzzle! As a ROVER cloud observer, all participants follow simple online tutorials to collect data on cloud type, height, cover and related conditions. Observations are sent to NASA to be matched to similar information obtained from satellites and sent back to participants for comparison and analysis. The supporting ROVER website houses a searchable database archiving all participant reports and matching satellite data. By involving Citizen Scientists in cloud observations and reporting we can gain a valuable set of data that would have been previously unavailable to science teams due to funding, manpower, and resource limitations or would have taken an unreasonable amount of time to collect. Reports from a wide range of Citizen Scientist locations are helpful to assess the satellite data under different conditions. With nothing more than their eyes and an internet connection participants provide a different perspective and analysis of clouds, adding to a more complete picture of what's happening in the atmosphere in which we live.

  20. Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Lolli, Simone; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2016-01-01

    One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.

  1. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  2. Cloud cover and horizontal plane eye damaging solar UV exposures.

    PubMed

    Parisi, A V; Downs, N

    2004-11-01

    The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7 degrees to approximately 80 degrees . The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBE(cat)) and photokeratitis (UVBE(pker)). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.

  3. Changes in Clouds Under a Combined CO2 Increase and Solar Decrease

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Ackerman, T. P.

    2017-12-01

    The Geoengineering Model Intercomparison Project (GeoMIP) provides an excellent opportunity to study the response of clouds and the large-scale circulation to opposing solar and greenhouse gas forcings. This study analyzes changes in cloud fraction in 10 fully coupled atmosphere-ocean global climate models in GeoMIP Experiment G1, in which CO2 concentrations are quadrupled and the solar constant is reduced in order to keep global mean temperature at preindustrial levels. There is general agreement among the models that the area coverage of low clouds (below the 680 hPa pressure level) decreases in this experiment compared to preindustrial conditions over most ocean and vegetated land areas. This reduction in low cloud fraction is related to decreases in boundary layer inversion strength over the ocean, and to plant physiological responses to increased CO2. Mid-level clouds (680-440 hPa) and high clouds (< 440 hPa) are reduced over the Atlantic and Pacific Oceans to the north and south of the ITCZ, while high clouds also increase over the center of the ITCZ. These changes are related to a weakening of the seasonal migration of the ITCZ in G1, which happens because the summer hemisphere is preferentially cooled by the solar reduction. To explore the link between clouds and the ITCZ migration, we examine changes in the seasonal cycle of cloud cover and in the instantaneous ITCZ width throughout the year. High cloud fraction increases in the global mean in most models, likely due to upper tropospheric cooling. An analysis of radiative effects using the Approximate Partial Radiation Perturbation method shows that, in the shortwave, cloud changes in G1 have a warming effect in most areas, mainly due to the reduction in low cloud fraction. This effect, along with the warming effect from the increase in high clouds, results in a larger solar reduction being necessary to compensate for the CO2 increase.

  4. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Heng; Gustafson, William I.; Wang, Hailong

    Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactionsmore » contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.« less

  6. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    NASA Astrophysics Data System (ADS)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for subvisible cirrus clouds a bimodal distribution with a secondary peak at about 44 sr was found suggesting a mixed composition. A dependence of the lidar ratio with cloud temperature (altitude) was not found, indicating that the clouds are vertically well mixed. The frequency of occurrence of cirrus clouds classified as subvisible (τ < 0. 03) were 41.6 %, whilst 37.8 % were thin cirrus (0. 03 < τ < 0. 3) and 20.5 % opaque cirrus (τ > 0. 3). Hence, in central Amazonia not only a high frequency of cirrus clouds occurs, but also a large fraction of subvisible cirrus clouds. This high frequency of subvisible cirrus clouds may contaminate aerosol optical depth measured by sun photometers and satellite sensors to an unknown extent.

  7. Automated Visibility & Cloud Cover Measurements with a Solid State Imaging System

    DTIC Science & Technology

    1989-03-01

    GL-TR-89-0061 SIO Ref. 89-7 MPL-U-26/89 AUTOMATED VISIBILITY & CLOUD COVER MEASUREMENTS WITH A SOLID-STATE IMAGING SYSTEM C) to N4 R. W. Johnson W. S...include Security Classification) Automated Visibility & Cloud Measurements With A Solid State Imaging System 12. PERSONAL AUTHOR(S) Richard W. Johnson...based imaging systems , their ics and control algorithms, thus they ar.L discussed sepa- initial deployment and the preliminary application of rately

  8. A Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Comiso, J. C.; Digirolamo, N. E.; Stock, L. V.; Riggs, G. A.; Shuman, C. A.

    2009-01-01

    We are developing a climate-data record (CDR of daily "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. The CDR will be continued in the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite era. Two algorithms remain under consideration. One algorithm under consideration is based on the split-window technique used in the Polar Pathfinder dataset (Fowler et al., 2000 & 21007). Another algorithm under consideration, developed by Comiso (2006), uses a single channel of AVHRR data (channel 4) in conjunction with meteorological-station data to account for atmospheric effects and drift between AVHRR instruments. Known issues being addressed in the production of the CDR are: tune-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds (Stroeve & Steffen, 1998; Wang and Key, 2005; Hall et al., 2008 and Koenig and Hall, submitted), time-series of satellite 1S'1" do not necessarily correspond to actual surface temperatures. The CDR will be validated by comparing results with automatic-,",eather station (AWS) data and with satellite-derived surface-temperature products. Regional "clear-sky" surface temperature increases in the Arctic, measured from AVHRR infrared data, range from 0.57+/-0.02 deg C (Wang and Key, 2005) to 0.72+/-0.10 deg C (Comiso, 2006) per decade since the early 1980s. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. References

  9. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cirrus Parameter Relationships Derived from Satellite and Lidar Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1996-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.

  10. Interactive Nature of Climate Change and Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Nazarenko, L.; Rind, D.; Tsigaridis, K.; Del Genio, A. D.; Kelley, M.; Tausnev, N.

    2017-01-01

    The effect of changing cloud cover on climate, based on cloud-aerosol interactions, is one of the major unknowns for climate forcing and climate sensitivity. It has two components: (1) the impact of aerosols on clouds and climate due to in-situ interactions (i.e., rapid response); and (2) the effect of aerosols on the cloud feedback that arises as climate changes - climate feedback response. We examine both effects utilizing the NASA GISS ModelE2 to assess the indirect effect, with both mass-based and microphysical aerosol schemes, in transient twentieth-century simulations. We separate the rapid response and climate feedback effects by making simulations with a coupled version of the model as well as one with no sea surface temperature or sea ice response (atmosphere-only simulations). We show that the indirect effect of aerosols on temperature is altered by the climate feedbacks following the ocean response, and this change differs depending upon which aerosol model is employed. Overall the effective radiative forcing (ERF) for the direct effect of aerosol-radiation interaction (ERFari) ranges between -0.2 and -0.6 W/sq m for atmosphere-only experiments while the total effective radiative forcing, including the indirect effect (ERFari+aci) varies between about -0.4 and -1.1 W/sq m for atmosphere-only simulations; both ranges are in agreement with those given in IPCC (2013). Including the full feedback of the climate system lowers these ranges to -0.2 to -0.5 W/sq m for ERFari, and -0.3 to -0.74 W/sq m for ERFari+aci. With both aerosol schemes, the climate change feedbacks have reduced the global average indirect radiative effect of atmospheric aerosols relative to what the emission changes would have produced, at least partially due to its effect on tropical upper tropospheric clouds.

  11. The 2014 coral bleaching and freshwater flood events in Kāne'ohe Bay, Hawai'i.

    PubMed

    Bahr, Keisha D; Jokiel, Paul L; Rodgers, Kuʻulei S

    2015-01-01

    Until recently, subtropical Hawai'i escaped the major bleaching events that have devastated many tropical regions, but the continued increases in global long-term mean temperatures and the apparent ending of the Pacific Decadal Oscillation (PDO) cool phase have increased the risk of bleaching events. Climate models and observations predict that bleaching in Hawai'i will occur with increasing frequency and increasing severity over future decades. A freshwater "kill" event occurred during July 2014 in the northern part of Kāne'ohe Bay that reduced coral cover by 22.5% in the area directly impacted by flooding. A subsequent major bleaching event during September 2014 caused extensive coral bleaching and mortality throughout the bay and further reduced coral cover in the freshwater kill area by 60.0%. The high temperature bleaching event only caused a 1.0% reduction in live coral throughout the portion of the bay not directly impacted by the freshwater event. Thus, the combined impact of the low salinity event and the thermal bleaching event appears to be more than simply additive. The temperature regime during the September 2014 bleaching event was analogous in duration and intensity to that of the large bleaching event that occurred previously during August 1996, but resulted in a much larger area of bleaching and coral mortality. Apparently seasonal timing as well as duration and magnitude of heating is important. Coral spawning in the dominant coral species occurs early in the summer, so reservoirs of stored lipid in the corals had been depleted by spawning prior to the September 2014 event. Warm months above 27 °C result in lower coral growth and presumably could further decrease lipid reserves, leading to a bleaching event that was more severe than would have happened if the high temperatures occurred earlier in the summer. Hawaiian reef corals decrease skeletal growth at temperatures above 27 °C, so perhaps the "stress period" actually started long before the bleaching threshold of 29 °C was reached. Hawai'i is directly influenced by the PDO which may become a factor influencing bleaching events in subtropical Hawai'i in much the same manner as variations in the El Niño Southern Oscillation (ENSO) influences bleaching events at low latitudes in the tropical Pacific. Records show that offshore temperatures measured by satellite will not always predict inshore bleaching because other factors (high cloud cover, high wind and wave action, tidal exchange rate) can limit inshore heating and prevent temperatures in the bay from reaching the bleaching threshold. Low light levels due to cloud cover or high turbidity can also serve to prevent bleaching.

  12. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi

    PubMed Central

    Jokiel, Paul L.; Rodgers, Kuʻulei S.

    2015-01-01

    Until recently, subtropical Hawaiʻi escaped the major bleaching events that have devastated many tropical regions, but the continued increases in global long-term mean temperatures and the apparent ending of the Pacific Decadal Oscillation (PDO) cool phase have increased the risk of bleaching events. Climate models and observations predict that bleaching in Hawaiʻi will occur with increasing frequency and increasing severity over future decades. A freshwater “kill” event occurred during July 2014 in the northern part of Kāneʻohe Bay that reduced coral cover by 22.5% in the area directly impacted by flooding. A subsequent major bleaching event during September 2014 caused extensive coral bleaching and mortality throughout the bay and further reduced coral cover in the freshwater kill area by 60.0%. The high temperature bleaching event only caused a 1.0% reduction in live coral throughout the portion of the bay not directly impacted by the freshwater event. Thus, the combined impact of the low salinity event and the thermal bleaching event appears to be more than simply additive. The temperature regime during the September 2014 bleaching event was analogous in duration and intensity to that of the large bleaching event that occurred previously during August 1996, but resulted in a much larger area of bleaching and coral mortality. Apparently seasonal timing as well as duration and magnitude of heating is important. Coral spawning in the dominant coral species occurs early in the summer, so reservoirs of stored lipid in the corals had been depleted by spawning prior to the September 2014 event. Warm months above 27 °C result in lower coral growth and presumably could further decrease lipid reserves, leading to a bleaching event that was more severe than would have happened if the high temperatures occurred earlier in the summer. Hawaiian reef corals decrease skeletal growth at temperatures above 27 °C, so perhaps the “stress period” actually started long before the bleaching threshold of 29 °C was reached. Hawaiʻi is directly influenced by the PDO which may become a factor influencing bleaching events in subtropical Hawaiʻi in much the same manner as variations in the El Niño Southern Oscillation (ENSO) influences bleaching events at low latitudes in the tropical Pacific. Records show that offshore temperatures measured by satellite will not always predict inshore bleaching because other factors (high cloud cover, high wind and wave action, tidal exchange rate) can limit inshore heating and prevent temperatures in the bay from reaching the bleaching threshold. Low light levels due to cloud cover or high turbidity can also serve to prevent bleaching. PMID:26290792

  13. Star Formation in the Filamentary Dark Cloud GF-9: a Multi-Wavelength Intra-Cloud Comparative Study

    NASA Astrophysics Data System (ADS)

    Ciardi, David Robert

    Filamentary dark clouds (FDCs) are a subclass of small molecular clouds containing small numbers of somewhat regularly spaced dense cores connected by lower density gas and dust. Most of the previous work performed on FDCs has concerned the star formation properties of individual dense cores within the FDCs and has not concerned the FDCs as entities of their own. As a result little is known about the general star formation properties of FDCs. The primary question addressed in this work is 'Within filamentary dark clouds, how does the star formation process within a core region compare to that within a filamentary region?' In order to address the above question, a multi-wavelength observational comparative study has been performed upon a representative dense core (hereafter, GF9-Core) and filamentary region (hereafter, GF9-Fila) within the FDC GF-9 (LDN 1082). At the Five College Radio Astronomy Observatory, the core and filamentary region were observed in the rotational transitions of 12CO/ (J=1/to0),/ 13CO/ (J=1/to0)/ and/ CS/ (J=2/to1) covering a region of 10' x 8'. The temperature, density and kinematic structures of the two regions were deduced from the radio imaging spectroscopy data and were used to estimate the energy balance of the regions. We also obtained 70, 100, 135 and 200 μm images from the Infrared Space Observatory (ISO) covering approximately 12' x 9' which were used to investigate the temperature and density distributions of the dust within the two regions. Finally, at the Wyoming Infrared Observatory using the Aerospace Corporation NICMOS3 camera, the core and filament were imaged in the near-infrared broadband filters J, H, and K-short covering a slightly smaller region of 7' x 7'. The near-infrared survey data were used to search for embedded Class I and Class II protostars and to investigate the density distribution of the dust. We have found that the evolutionary processes of the core region and the filament region proceed along similar evolutionary paths but are governed by the amount of mass within each region. GF9-Core has a greater mass and density than GF9-Fila, and therefore, gravity has a stronger influence on the fate of the dust and gas. Because of the larger mass, GF9-Core has proceeded along the star formation path and is currently engaged at the Class 0 protostar stage. In contrast, GF9-Fila is still in the earlier stages of contraction through ambipolar diffusion and may form a star sometime in the future.

  14. Potential reciprocal effect between land use / land cover change and climate change

    NASA Astrophysics Data System (ADS)

    Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel

    2016-04-01

    Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also, CORINE Land Cover (CLC) maps are used to study the environmental changes and to validate the obtained maps from remote sensing and photogrammetry data. On climate change, different sources of climate data were used in this research. Three rainfall datasets from the Global Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU) and Gridded Estimates of daily Areal Rainfall (CEH-GEAR) in the study area were compared at a resolution of 0.5 degrees. The dataset were available for the operational period 1975-2015. The historically observed rainfall datasets for the study area were obtained from the Met Office Integrated Data Archive System (MIDAS) Land and Marine downloaded through the British Atmospheric Data Centre (BADC) website, which includes the rainfall and the temperature, are collected from all the weather stations in the UK in the last 40 years. Only four gauging stations were available to represent the spatial variability of rainfall within and around the study area. The monthly rainfall time series were evaluated against a dataset based on four rain gauges. These data are processed and analysed statistically to find the changes in climate of the study area in the last 40 years. The potential reciprocal effect between the LULC change and the climate change is done by finding the correlation between LUCC and the variables Rainfall and Temperature. In addition, The Soil and Water Assessment Tool (SWAT) model is used to study the impact of LULC change on the water system and climate.

  15. Modeling the clouds on Venus: model development and improvement of a nucleation parameterization

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Bekki, Slimane; Vehkamäki, Hanna; Julin, Jan; Montmessin, Franck; Ortega, Ismael K.; Lebonnois, Sébastien

    2014-05-01

    As both the clouds of Venus and aerosols in the Earth's stratosphere are composed of sulfuric acid droplets, we use the 1-D version of a model [1,4] developed for stratospheric aerosols and clouds to study the clouds on Venus. We have removed processes and compounds related to the stratospheric clouds so that the only species remaining are water and sulfuric acid, corresponding to the stratospheric sulfate aerosols, and we have added some key processes. The model describes microphysical processes including condensation/evaporation, and sedimentation. Coagulation, turbulent diffusion, and a parameterization for two-component nucleation [8] of water and sulfuric acid have been added in the model. Since the model describes explicitly the size distribution with a large number of size bins (50-500), it can handle multiple particle modes. The validity ranges of the existing nucleation parameterization [7] have been improved to cover a larger temperature range, and the very low relative humidity (RH) and high sulfuric acid concentrations found in the atmosphere of Venus. We have made several modifications to improve the 2002 nucleation parameterization [7], most notably ensuring that the two-component nucleation model behaves as predicted by the analytical studies at the one-component limit reached at extremely low RH. We have also chosen to use a self-consistent cluster distribution [9], constrained by scaling it to recent quantum chemistry calculations [3]. First tests of the cloud model have been carried out with temperature profiles from VIRA [2] and from the LMD Venus GCM [5], and with a compilation of water vapor and sulfuric acid profiles, as in [6]. The temperature and pressure profiles do not evolve with time, but the vapour profiles naturally change with the cloud. However, no chemistry is included for the moment, so the vapor concentrations are only dependent on the microphysical processes. The model has been run for several hundreds of Earth days to reach a steady state. Preliminary results are evaluated against observations. [1] Jumelet et al., JGR, 2009. [2] Kliore et al., 1986. [3] Kurtén et al., BER, 2007 [4] Larsen et al., JGR, 2000. [5] Lebonnois et al. JGR, 2010. [6] McGouldrick and Toon, Icarus 191, 2007. [7] Vehkamäki et al. JGR, 2002 [9] Wilemski and Wyslouzil, J.Chem.Phys. 1995.

  16. Trends in Surface Temperature at High Latitudes

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record started. Also, the SST in the Arctic basin is observed to be anomalously high in 2007 when the perennial ice cover declined dramatically to its lowest extent. In the Antarctic, surface temperature trends are much more moderate with the most positive trends occurring in the Antarctic Peninsula and parts of Western Antarctica while some cooling are observed in the Antarctic Plateau and the Ross Sea. The trends in SST in the region is similar to global averages but precipitation from more evaporation may have a key role in the spatial distribution of surface temperature in the ice covered region

  17. Abstracts of papers presented at the Eleventh International Laser Radar Conference

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts of 39 papers discuss measurements of properties from the Earth's ocean surface to the mesosphere, made with techniques ranging from elastic and inelastic scattering to Doppler shifts and differential absorption. Topics covered include: (1) middle atmospheric measurements; (2) meteorological parameters: temperature, density, humidity; (3) trace gases by Raman and DIAL techniques; (4) techniques and technology; (5) plume dispersion; (6) boundary layer dynamics; (7) wind measurements; visibility and aerosol properties; and (9) multiple scattering, clouds, and hydrometers.

  18. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    DTIC Science & Technology

    2013-09-30

    by incorporating the proposed IR sensors and ground­sky temperature difference algorithm into a tethered balloon borne payload (Figure 6).This...a drop or balloon sonde, which is low cost but cannot be guided, and a typical UAV, which provides guidance flexibility but uses costly avionics and...air space using balloon launches The SmartSonde vehicle was first test flown under a bungee launch system and manual (R/C) control. After several

  19. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cirrus Parameter Relationships Derived from Satellite and Lidar Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1990-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the FIRE Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4-km visible (0.65 micro-m) and 8-km infrared window (11.5 micro-m) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 0.62 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance, extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface- based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature were ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperatures and cloud thicknesses from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. The parameterization of visible reflectance in terms of cloud optical depth and clear-sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous AVHRR data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloudy pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study of cirrus cloud scattering processes and remote sensing techniques.

  20. Characteristics of mid-level clouds over West Africa

    NASA Astrophysics Data System (ADS)

    Bourgeois, Elsa; Bouniol, Dominique; Couvreux, Fleur; Guichard, Françoise; Marsham, John; Garcia-Carreras, Luis; Birch, Cathryn; Parker, Doug

    2017-04-01

    Clouds have a major impact on the distribution of water and energy fluxes within the atmosphere. They also represent one of the main sources of uncertainties in global climate models as a result of the difficulty to parametrize cloud processes. However, in West Africa, the cloud type, occurrence and radiative effects have not been extensively documented. This region is characterized by a strong seasonality with precipitation occurring in the Sahel from June to September (monsoon season). This period also coincides with the annual maximum of the cloud cover. Taking advantage of the one-year ARM Mobile Facility (AMF) deployment in 2006 in Niamey (Niger), Bouniol et al (2012) documented the distinct cloud types and showed the frequent occurrence of mid-level clouds (around 6 km height) and their substantial impact on the surface short-wave and long-wave radiative fluxes. Furthermore, in a process-oriented evaluation of climate models, Roehrig et al (2013) showed that these mid-level clouds are poorly represented in numerical models. The aim of this work is to document the macro- and microphysical properties of mid-level clouds and the environment in which such clouds occur across West Africa. To document those clouds, we extensively make use of observations from lidar and cloud radar either deployed at ground-based sites (Niamey and Bordj Badji Mokhtar (Sahara)) or on-board the A-Train constellation (CloudSat/CALIPSO). These datasets reveal the temporal and spatial occurrence of those clouds. They are found throughout the year with a predominance around the monsoon season and are preferentially observed in the Southern and Western part of West Africa which could be linked to the dynamics of the Saharan heat low. Those clouds are usually quite thin (most of them are less than 1000m deep). A clustering method applied to this data allows us to identify three different types of clouds : one with low bases, one with high bases and another with large thicknesses. The first two clouds families are associated with potential temperature inversions at the top of the clouds. Complementary observations such as radiosondes and radiation measurements allow us to determine the thermodynamical stratification in which they occur as well as their radiative properties.

  1. Students as Ground Observers for Satellite Cloud Retrieval Validation

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Costulis, P. Kay; Young, David F.; Rogerson, Tina M.

    2004-01-01

    The Students' Cloud Observations On-Line (S'COOL) Project was initiated in 1997 to obtain student observations of clouds coinciding with the overpass of the Clouds and the Earth's Radiant Energy System (CERES) instruments on NASA's Earth Observing System satellites. Over the past seven years we have accumulated more than 9,000 cases worldwide where student observations are available within 15 minutes of a CERES observation. This paper reports on comparisons between the student and satellite data as one facet of the validation of the CERES cloud retrievals. Available comparisons include cloud cover, cloud height, cloud layering, and cloud visual opacity. The large volume of comparisons allows some assessment of the impact of surface cover, such as snow and ice, reported by the students. The S'COOL observation database, accessible via the Internet at http://scool.larc.nasa.gov, contains over 32,000 student observations and is growing by over 700 observations each month. Some of these observations may be useful for assessment of other satellite cloud products. In particular, some observing sites have been making hourly observations of clouds during the school day to learn about the diurnal cycle of cloudiness.

  2. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    NASA Astrophysics Data System (ADS)

    Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.

    2017-03-01

    We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  3. Integrated approach using multi-platform sensors for enhanced high-resolution daily ice cover product

    NASA Astrophysics Data System (ADS)

    Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean

    2016-09-01

    The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.

  4. Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Tan, Saichun; Shi, Guangyu

    2018-02-01

    Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%-16.64%) than daytime (12.74%-14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%-31.07%) and smallest in summer (4.46%-6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.

  5. Assessing Climatic Impacts due to Land Use Change over Southeast Asian Maritime Continent base on Mesoscale Model Simulations

    NASA Astrophysics Data System (ADS)

    Feng, N.; Christopher, S. A.; Nair, U. S.

    2014-12-01

    Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.

  6. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    NASA Technical Reports Server (NTRS)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  7. Trends in Total Cloud Amount Over China (1951 - 1994)

    DOE Data Explorer

    Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States).

    1999-01-01

    These total cloud amount time series for China are derived from the work of Kaiser (1998). The cloud data were extracted from a database of 6-hourly weather observations provided by the National Climate Center of the China Meteorological Administration (CMA) to the U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) through a bilateral research agreement. Surface-observed (visual) six-hourly observations [0200, 0800, 1400, and 2000 Beijing Time (BT)] of cloud amount (0-10 tenths of sky cover) were available from 196 Chinese stations covering the period 1954-94. Data from 1951-1953 were also available; however, they only included 0800, 1400, and 2000 BT observations.

  8. Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties

    DTIC Science & Technology

    2013-09-30

    such as MODIS . APPROACH 1. Task and acquire high resolution panchromatic and multispectral optical (e.g. Quickbird, Worldview, National Assets...does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4...cloud cover , an excessive percentage of the imagery acquired over drifting sites was cloud covered , and the vendor did not delay acquisitions or

  9. Normalized-Difference Snow Index (NDSI)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.

    2010-01-01

    The Normalized-Difference Snow Index (NDSI) has a long history. 'The use of ratioing visible (VIS) and near-infrared (NIR) or short-wave infrared (SWIR) channels to separate snow and clouds was documented in the literature beginning in the mid-1970s. A considerable amount of work on this subject was conducted at, and published by, the Air Force Geophysics Laboratory (AFGL). The objective of the AFGL work was to discriminate snow cover from cloud cover using an automated algorithm to improve global cloud analyses. Later, automated methods that relied on the VIS/NIR ratio were refined substantially using satellite data In this section we provide a brief history of the use of the NDSI for mapping snow cover.

  10. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    NASA Astrophysics Data System (ADS)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-08-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  11. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    NASA Astrophysics Data System (ADS)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-03-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  12. PHOTOMETRIC MONITORING OF THE COLDEST KNOWN BROWN DWARF WITH THE SPITZER SPACE TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esplin, T. L.; Luhman, K. L.; Cushing, M. C.

    2016-11-20

    Because WISE J085510.83-071442.5 (hereafter WISE 0855-0714) is the coldest known brown dwarf (∼250 K) and one of the Sun’s closest neighbors (2.2 pc), it offers a unique opportunity to study a planet-like atmosphere in an unexplored regime of temperature. To detect and characterize inhomogeneities in its atmosphere (e.g., patchy clouds, hot spots), we have performed time-series photometric monitoring of WISE 0855-0714 at 3.6 and 4.5 μ m with the Spitzer Space Telescope during two 23 hr periods that were separated by several months. For both bands, we have detected variability with peak-to-peak amplitudes of 4%–5% and 3%–4% in the firstmore » and second epochs, respectively. The light curves are semiperiodic in the first epoch for both bands, but they are more irregular in the second epoch. Models of patchy clouds have predicted a large increase in mid-infrared (mid-IR) variability amplitudes (for a given cloud covering fraction) with the appearance of water ice clouds at T {sub eff} < 375 K, so if such clouds are responsible for the variability of WISE 0855-0714, then its small amplitudes of variability indicate a very small deviation in cloud coverage between hemispheres. Alternatively, the similarity in mid-IR variability amplitudes between WISE 0855-0714 and somewhat warmer T and Y dwarfs may suggest that they share a common origin for their variability (i.e., not water clouds). In addition to our variability data, we have examined other constraints on the presence of water ice clouds in the atmosphere of WISE 0855-0714, including the recent mid-IR spectrum from Skemer et al. (2016). We find that robust evidence of such clouds is not yet available.« less

  13. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of representations of large-scale moisture transport, cloud microphysics, ice nucleation, and cumulus detrainment in order to improve the mixed-phase transition in GCMs.

  14. Evidence of Aerosol's Influence on Climate from Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Chen, S.; Fu, Q.; Huang, J.; Ge, J.; Su, J.

    2009-12-01

    Air pollution is a difficult problem during the process of industrialization in most developing countries. In China, the main air pollutants are inhaled aerosol particles. Because of the extremely high loading and rapid development, Beijing became a heavily polluted city, with a population of more than 16 million. The 2008 Olympic Summer Games provided a unique opportunity for the study of climate effects of aerosols due to many measurements taken to fight pollution caused by industrialization and economic growth.Surface temperature is the most intuitive meteorological factor and easy to get. Therefore, aerosol’s radiative effects on regional climate can be known by studying the relationship between aerosols and surface temperature in Beijing city in August 2008. However, many factors can affect the surface temperature and cloud is considered as a very important meteorological element in radiation balance. In order to remove the impact of clouds on surface temperature, here the ground temperature in clear sky days (when cloud cover is less than 2) are selected. Aerosol data from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Earth Observing System (EOS) Aqua shows that aerosol concentration decreased significantly in the area of Olympic venues in August 2008. Meanwhile, the ground-based observation data shows the surface temperature during the day (14LT) and night (02LT) in August 2008 is higher and lower than the mean temperature in August from 2002 to 2008, respectively. It is discovered that the distribution of satellite-retrieved aerosol optical Depth (AOD) in the whole area of Beijing in August of 2003 and 2004 is similar to that in 2008. We chosen four meteorological stations to analyze surface temperature and found that the diurnal changes of surface temperature are consistent with that in August of 2003, 2004 and 2008. Meanwhile, the decrease of AOD in the area of Olympic venues in August 2008 leads to the increase of precipitation, and furthermore produces more water vapor content with previous years. The effect of water vapor increase an asymmetric departure from the normal during the day and night and make the increase of daily temperature range caused by the decrease of aerosol concentration is not obvious in Beijing Olympic venues in August 2008.

  15. Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Hagensieker, Ron; Hochschild, Volker

    2016-08-01

    Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.

  16. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff, C, and reff, S show a continuous transition of cloud properties across snow-covered sea ice and open water and are consistent with estimates based on satellite data. It is shown that the uncertainties of the trispectral retrieval increase for high values of τ, and low reff, S but nevertheless allow the effective snow grain size in cloud-covered areas to be estimated.

  17. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    The uncertainty in the global climate sensitivity to an equilibrium doubling of carbon dioxide is often stated to be 1.5-4.5 K, largely due to uncertainties in cloud feedbacks. The lower end of this range is based on the assumption or prediction in some GCMs that cloud liquid water behaves adiabatically, thus implying that cloud optical thickness will increase in a warming climate if the physical thickness of clouds is invariant. Satellite observations of low-level cloud optical thickness and liquid water path have challenged this assumption, however, at low and middle latitudes. We attempt to explain the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurements (ARM) Cloud And Radiation Testbed (CART) site in the Southern Great Plains. We find that low cloud liquid water path is insensitive to temperature in winter but strongly decreases with temperature in summer. The latter occurs because surface relative humidity decreases with warming, causing cloud base to rise and clouds to geometrically thin. Meanwhile, inferred liquid water contents hardly vary with temperature, suggesting entrainment depletion. Physically, the temperature dependence appears to represent a transition from higher probabilities of stratified boundary layers at cold temperatures to a higher incidence of convective boundary layers at warm temperatures. The combination of our results and the earlier satellite findings imply that the minimum climate sensitivity should be revised upward from 1.5 K.

  18. Options to Improve Rain Snow Parameterization in Surface Based Models

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2017-12-01

    Precipitation phase determination is of upmost importance in a number of surface based hydrological, ecological, and safety models. However, precipitation phase at Earth's surface is a result of cloud and atmospheric properties not measured by surface weather stations. Nonetheless, they can be inferred from the available surface datum. This study uses 681,620 weather observations with air temperatures between -3 and 5°C and identified precipitation occurring at the time of the observation to determine simple, yet accurate, thresholds for precipitation phase determination schemes (PPDS). This dataset represents 38% and 42% of precipitation observations over a 16 year period for 85 Swedish, and 84 Norwegian weather stations. The misclassified precipitation (error) from PPDS using AT, dew-point temperature (DT) and wet-bulb temperature (WB) thresholds were compared using a single threshold PPDS. The Norwegian observations between -3 and 5°C resulted in 11.64%, 11.21%, and 8.42% error for DT (-0.2°C), AT (1.2°C), and WB (0.3°C) thresholds respectively. Individual station thresholds had a range of -0.7 to 1.2°C, -1.2 to 0.9°C, and -0.1 to 2.5°C for WB, DP, and AT respectively. To address threshold variance while decreasing error, weather stations were grouped into nine landscape categories; windward (WW) ocean, WW coast, WW fjord, WW hill, WW mountain, leeward (LW) mountain, LW hill, LW rolling hills, and LW coast. Landscape classification was based on location relative to the Scandinavian Mountains, and the % water or range of elevation within 15KM. Within landscapes, stations share similar land atmosphere exchanges which differ from other landscapes. These differences change optimal thresholds for PPDS between landscapes. Also tested were threshold temperature affects based on assumed atmospheric differences for the following observation groups; 1.) occurring before and after an air mass boundary, 2.) with different water temperatures and/or NAO phases, 3.) with snow cover, 4.) coupled with higher elevation stations and 5.) with different cloud heights. For example, in Norway, as the unsaturated layer depth beneath clouds increased, AT thresholds warmed. Cloud height adjusted AT thresholds reduced error by 5% before threshold adjustments for landscapes.

  19. Relationship Between Cirrus Particle Size and Cloud Top Temperature

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    The relationship between cirrus particle size and cloud top temperature is surveyed on a near-global scale. The cirrus particle size is retrieved assuming ice crystals are hexagonal columns and the cloud top temperature and the radiances in channel 1 and 3 of AVHRR used to retrieve ice particle sizes are from ISCCP product. The results show that for thick clouds over North America, the relation between particle size and cloud top temperature is consistent with a summary of this relationship based on aircraft measurement over that region for thick clouds. However, this relationship is not universal for other regions especially for for tropical zone, which has been found by other in situ measurements.

  20. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and thin liquid water clouds from the Southern Ocean. Low pressure systems over the Bellingshausen Sea produce outflow of cold, dry continental polar air, yielding predominantly tenuous ice cloud at Ross Island.

  1. Optically thin cirrus clouds over oceans and possible impact on sea surface temperature of warm pool in western Pacific

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Yoo, J.-M.; Dalu, G.; Kratz, P.

    1991-01-01

    Over the convectively active tropical ocean regions, the measurement made from space in the IR and visible spectrum have revealed the presence of optically thin cirrus clouds, which are quite transparent in the visible and nearly opaque in the IR. The Nimbus-4 IR Interferometer Spectrometer (IRIS), which has a field of view (FOV) of approximately 100 km, was utilized to examine the IR optical characteristics of these cirrus clouds. From the IRIS data, it was observed that these optically thin cirrus clouds prevail extensively over the warm pool region of the equatorial western Pacific, surrounding Indonesia. It is found that the seasonal cloud cover caused by these thin cirrus clouds exceeds 50 percent near the central regions of the warm pool. For most of these clouds, the optical thickness in the IR is less than or = 2. It is deduced that the dense cold anvil clouds associated with deep convection spread extensively and are responsible for the formation of the thin cirrus clouds. This is supported by the observation that the coverage of the dense anvil clouds is an order of magnitude less than that of the thin cirrus clouds. From these observations, together with a simple radiative-convective model, it is inferred that the optically thin cirrus can provide a greenhouse effect, which can be a significant factor in maintaining the warm pool. In the absence of fluid transports, it is found that these cirrus clouds could lead to a runaway greenhouse effect. The presence of fluid transport processes, however, act to moderate this effect. Thus, if a modest 20 W/sq m energy input is considered to be available to warm the ocean, then it is found that the ocean mixed-layer of a 50-m depth will be heated by approximately 1 C in 100 days.

  2. Ice formation in altocumulus clouds over Leipzig: Remote sensing measurements and detailed model simulations

    NASA Astrophysics Data System (ADS)

    Simmel, Martin; Bühl, Johannes; Ansmann, Albert; Tegen, Ina

    2014-05-01

    Over Leipzig, altocumulus clouds are frequently observed using a suite of remote sensing instruments. These observations cover a wide range of heights, temperatures, and microphysical properties of the clouds ranging from purely liquid to heavily frozen. For the current study, two cases were chosen to test the sensitivity of these clouds with respect to several microphysical and dynamical parameters such as aerosol properties (CCN, IN), ice particle shape as well as turbulence. The mixed-phase spectral microphysical model SPECS was coupled to a dynamical model of the Asai-Kasahara type resulting in the model system AK-SPECS. The relatively simple dynamics allows for a fine vertical resolution needed for the rather shallow cloud layers observed. Additionally, the proper description of hydrometeor sedimentation is important especially for the fast growing ice crystals to realistically capture their interaction with the vapour and liquid phase (Bergeron-Findeisen process). Since the focus is on the cloud microphysics, the dynamics in terms of vertical velocity profile is prescribed for the model runs and the feedback of the microphysics on dynamics by release or consumption of latent heat due to phase transfer is not taken into account. The microphysics focuses on (1) ice particle shape allowing hexagonal plates and columns with size-dependant axis ratios and (2) the ice nuclei (IN) budget realized with a prognostic temperature resolved field of potential IN allowing immersion freezing only when active IN and supercooled drops above a certain size threshold are present within a grid cell. Sensitivity studies show for both cases that ice particle shape seems to have the major influence on ice mass formation under otherwise identical conditions. This is due to the effect (1) on terminal fall velocity of the individual ice particle allowing for longer presence times in conditions supersaturated with respect to ice and (2) on water vapour deposition which is enhanced due to increased capacitance because of deviation from the spherical shape.

  3. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  4. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  5. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  6. Temperature Control of the Variability of Tropical Tropopause Layer Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Tseng, Hsiu-Hui; Fu, Qiang

    2017-10-01

    This study examines the temperature control of variability of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) by using 8 years (2006-2014) of observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). It is found that the temporal variability of vertical structure of TTL cirrus cloud fraction averaged between 15°N and 15°S can be well explained by the vertical temperature gradient below 17.5 km but by the local temperature above for both seasonal and interannual time scales. It is also found that the TTL cirrus cloud fraction at a given altitude is best correlated with the temperature at a higher altitude and this vertical displacement increases with a decrease of the cirrus altitude. It is shown that the TTL cirrus cloud fractions at all altitudes are significantly correlated with tropical cold point tropopause (CPT) temperature. The plausible mechanisms that might be responsible for the observed relations between TTL cirrus fraction and temperature-based variables are discussed, which include ice particle sediments, cooling associated with wave propagations, change of atmospheric stability, and vertical gradient of water vapor mixing ratio. We further examine the spatial covariability of TTL total cirrus cloud fraction and CPT temperature for the interannual time scale. It is found that the El Niño-Southern Oscillation and quasi-biennial oscillation are the leading factors in controlling the spatial variability of the TTL cirrus clouds and temperatures.

  7. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  8. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  9. Shallow cumulus rooted in photosynthesis

    NASA Astrophysics Data System (ADS)

    Vila-Guerau Arellano, J.; Ouwersloot, H.; Horn, G.; Sikma, M.; Jacobs, C. M.; Baldocchi, D.

    2014-12-01

    We investigate the interaction between plant evapotranspiration, controlled by photosynthesis (for a low vegetation cover by C3 and C4 grasses), and the moist thermals that are responsible for the formation and development of shallow cumulus clouds (SCu). We perform systematic numerical experiments at fine spatial scales using large-eddy simulations explicitly coupled to a plant-physiology model. To break down the complexity of the vegetation-atmospheric system at the diurnal scales, we design the following experiments with increasing complexity: (a) clouds that are transparent to radiation, (b) clouds that shade the surface from the incoming shortwave radiation and (c) plant stomata whose apertures react with an adjustment in time to cloud perturbations. The shading by SCu leads to a strong spatial variability in photosynthesis and the surface energy balance. As a result, experiment (b) simulates SCu that are characterized by less extreme and less skewed values of the liquid water path and cloud-base height. These findings are corroborated by the calculation of characteristics lengths scales of the thermals and clouds using autocorrelation and spectral analysis methods. We find that experiments (a) and (b) are characterized by similar cloud cover evolution, but different cloud population characteristics. Experiment (b), including cloud shading, is characterized by smaller clouds, but closer to each other. By performing a sensitivity analysis on the exchange of water vapor and carbon dioxide at the canopy level, we show that the larger water-use efficiency of C4 grass leads to two opposing effects that directly influence boundary-layer clouds: the thermals below the clouds are more vigorous and deeper driven by a larger buoyancy surface flux (positive effect), but are characterized by less moisture content (negative effect). We conclude that under the investigated mid-latitude atmospheric and well-watered soil conditions, SCu over C4 grass fields is characterized by larger cloud cover and an enhanced liquid water path compared to C3 grass fields.

  10. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    PubMed Central

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O’Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814

  11. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.

    PubMed

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  12. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    USGS Publications Warehouse

    Sharma, Sapna; Gray, Derek; Read, Jordan S.; O'Reilly, Catherine; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie; Hook, Simon; Lenters, John; Livingstone, David M.; McIntyre, Peter B.; Adrian, Rita; Allan, Mathew; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John E.; Baron, Jill S.; Brookes, Justin D; Chen, Yuwei; Daly, Robert; Ewing, Kye; de Eyto, Elvira; Dokulil, Martin; Hamilton, David B.; Havens, Karl; Haydon, Shane; Hetzenaeur, Harald; Heneberry, Jocelyn; Hetherington, Amy; Higgins, Scott; Hixson, Eric; Izmest'eva, Lyubov; Jones, Benjamin M.; Kangur, Kulli; Kasprzak, Peter; Kraemer, Benjamin; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Dörthe Müller-Navarra,; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Pius Niederhauser,; North, Ryan P.; Andrew Paterson,; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Daniel E. Schindler,; Geoffrey Schladow,; Schmidt, Silke R.; Tracey Schultz,; Silow, Eugene A.; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A.; Craig E. Williamson,; Kara H. Woo,

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  13. Changes of cloudiness over tropical land during the past few decades and its link to global climate change

    NASA Astrophysics Data System (ADS)

    Arias, P.; Fu, R.; Li, W.

    2007-12-01

    Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease of convective and total cloudiness over the Southern Amazon basin, due to an increase of LFC and atmospheric thermodynamic stability. Such an increase of surface SW radiation probably has contributed to the increasing in growth rate for the forests in the Amazon forests. Currently, the same analysis is being applied using radiosonde data from the Comprehensive Aerological Reference Data Set (CARDS) over the Amazon and Congo basins and the Southeast Asia. Our objective is to identify changes in cloudiness over tropical land and identify its underlying causes, especially the link to changes in surface temperature and humidity.

  14. Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony

    1992-01-01

    Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.

  15. A Combined Surface Temperature Dataset for the Arctic from MODIS and AVHRR

    NASA Astrophysics Data System (ADS)

    Dodd, E.; Veal, K. L.; Ghent, D.; Corlett, G. K.; Remedios, J. J.

    2017-12-01

    Surface Temperature (ST) changes in the Polar Regions are predicted to be more rapid than either global averages or responses in lower latitudes. Observations of STs and other changes associated with climate change increasingly confirm these predictions in the Arctic. Furthermore, recent high profile events of anomalously warm temperatures have increased interest in Arctic surface temperatures. It is, therefore, particularly important to monitor Arctic climate change. Satellites are particularly relevant to observations of Polar Regions as they are well-served by low-Earth orbiting satellites. Whilst clouds often cause problems for satellite observations of the surface, in situ observations of STs are much sparser. Previous work at the University of Leicester has produced a combined land, ocean and ice ST dataset for the Arctic using ATSR data (AAST) which covers the period 1995 to 2012. In order to facilitate investigation of more recent changes in the Arctic (2010 to 2016) we have produced another combined surface temperature dataset using MODIS and AVHRR; the Metop-A AVHRR and MODIS Arctic Surface Temperature dataset (AMAST). The method of cloud-clearing, use of auxiliary data for ice classification and the ST retrievals used for each surface-type in AMAST will be described. AAST and AMAST were compared in the time period common to both datasets. We will provide results from this intercomparison, as well as an assessment of the impact of utilising data from wide and narrow swath sensors. Time series of ST anomalies over the Arctic region produced from AMAST will be presented.

  16. Long-Term Time Variability of Thermal Emission in Jupiter

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Fisher, Brendan; Yanamandra-Fisher, Padma; Greathouse, Thomas; Sinclair, James; Greco, Jennifer; Boydstun, Kimberly; Wakefield, Laura; Kim, Sonia; Fujiyoshi, Takuya

    2015-04-01

    Mid-infrared images of Jupiter's thermal emission in discrete filters between 4.8 and 24.5 μm from 1996 to the present day, spanning over a Jovian year, enable time-domain studies of its temperature field, minor-constituent distribution and cloud properties. The behavior of stratospheric (~10-mbar) and upper-tropospheric (~100-400 mbar) temperatures is generally consistent with predictions of seasonal variability. There also appear to be long-term periodicities of tropospheric temperatures, with meridionally dependent amplitudes, phases and periods. Temperatures near and south of the equator vary the least. During the 'global upheaval' or the corresponding 'revival' events that have produced dramatic changes in Jupiter's visible appearance and cloud cover, there were few large-scale variations of zonal mean temperatures in the stratosphere or troposphere, although there are colder discrete regions associated with the updraft events that marked the early stages of revivals. Changes in visible albedo during the upheavals are accompanied by increases in cloudiness at 700 mbar and higher pressures, along with increases in the ammonia-gas mixing ratio. In contrast to all these changes, the meridional distribution of the 240-mbar para-hydrogen fraction appears to be time-invariant. Jupiter also exhibits prominent temperature waves in both the upper troposphere and stratosphere that move slowly westward in System III. J. Sinclair is supported by a NASA Postdoctoral Program fellowship; J. Greco, K. Boydstun, L. Wakefield and S. Kim were supported by Caltech Summer Undergraduate Research Fellowships while resident at JPL.

  17. Using Long-term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds over Global Oceans

    DOE PAGES

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; ...

    2017-11-16

    Long-term (1981-2011) satellite climate data records (CDRs) of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effect (AIE) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 < AOT < 0.3 is identifiedmore » as the sensitive regime of the conventional first AIE where CDER is more susceptible to AOT than the other cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT < 0.08). Aerosol invigoration signature is also revealed by the concurrent increase of CDER, COD, and CWP with increasing AOT for a polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. Furthermore, the sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.« less

  18. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans

    NASA Astrophysics Data System (ADS)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K.

    2018-01-01

    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 < AOT < 0.3 is identified as the sensitive regime of the conventional first AIE where CDER is more susceptible to AOT than the other cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT < 0.08). Aerosol invigoration signature is also revealed by the concurrent increase of CDER, COD, and CWP with increasing AOT for a polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. The sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.

  19. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans.

    PubMed

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K

    2018-01-16

    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 < AOT < 0.3 is identified as the sensitive regime of the conventional first AIE where CDER is more susceptible to AOT than the other cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT < 0.08). Aerosol invigoration signature is also revealed by the concurrent increase of CDER, COD, and CWP with increasing AOT for a polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. The sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.

  20. Using Long-term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds over Global Oceans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan

    Long-term (1981-2011) satellite climate data records (CDRs) of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effect (AIE) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 < AOT < 0.3 is identifiedmore » as the sensitive regime of the conventional first AIE where CDER is more susceptible to AOT than the other cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT < 0.08). Aerosol invigoration signature is also revealed by the concurrent increase of CDER, COD, and CWP with increasing AOT for a polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. Furthermore, the sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.« less

  1. 10-Year Observations of Cloud and Surface Longwave Radiation at Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Yeo, H.; Kim, S. W.; Kim, B. M.; Kim, J. H.; Shiobara, M.; Choi, T. J.; Son, S. W.; Kim, M. H.; Jeong, J. H.; Kim, S. J.

    2015-12-01

    Arctic clouds play a key role in surface radiation budget and may influence sea ice and snow melting. In this study, 10-year (2004-2013) observations of cloud from Micro-Pulse Lidar (MPL) and surface longwave (LW) radiation at Ny-Ålesund, Svalbard are analyzed to investigate cloud radiative effect. The cloud fraction (CF) derived from MPL shows distinct monthly variation, having higher CF (0.90) in summer and lower CF (0.79) in winter. Downward longwave radiation (DLW) during wintertime (Nov., Dec., Jan., and Feb.) decreases as cloud base height (CBH) increases. The DLW for CBH < 1km (264.7±35.4 W m-2) is approximately 1.46 times larger than that for cloud-free (181.8±25.8 W m-2) conditions. The temperature difference (ΔT) and DLW difference (ΔDLW), which are calculated as the difference of monthly mean temperature and DLW between all-sky and cloud-free conditions, are positively correlated (R2 = 0.83). This implies that an increase of DLW may influence surface warming, which can result in snow and sea ice melting. However, dramatic changes in surface temperature, cloud and DLW are observed with a time scale of a few days. The averaged surface temperature on the presence of low-level clouds (CBH < 2km) and under cloud-free conditions are estimated to be -6.9±6.1°C and -14.5±5.7°C, respectively. The duration of low-level clouds, showing relatively high DLW and high surface temperature, is about 2.5 days. This suggests that DLW induced by low-level clouds may not have a critical effect on surface temperature rising and sea ice melting.

  2. Landscape dynamics and different climate forcings in eastern Mongolia

    NASA Astrophysics Data System (ADS)

    Moore, N. J.; John, R.; Chen, J.

    2017-12-01

    Central and Eastern Mongolia have witnessed significant decreasing greening from the period 2000-2012. This decline may be partially, directly due to increased grazing pressure from livestock. Our study objective is to understand how landscape change may be altering heat fluxes and precipitation. Using the RAMS 6.0 regional climate model, we simulated the spatiotemporal changes in growing-season precipitation and atmospheric behavior under: (a) observed vegetation, and (b) aggressively reduced vegetation, to prognose likely locations and changes of the regional climate that might have resulted from land cover changes (2001-2010). We simulated a dzud/drought year (using forcing from 2001) and a wet year (using forcing from 2003). Our simulations show increased cloud cover and reduced daily temperature ranges for northeastern Mongolia where forest growth has expanded. Localized differences of 60 W/m2 of sensible heat flux were found when degraded landscape cover replaced older, more dense cover. More importantly, the overall trend towards reduced vegetation cover was responsible for higher screen height temperatures and reduced soil moisture throughout much of the domain, together with a shift of moisture southward of Inner Mongolia. Thus, even with improved chances for convection, soil moisture reductions of 5-10% would lead to overall even drier conditions. In the steppe regions around the Gobi desert, more complex patterns are evident and landscape drivers are less clear.

  3. Simulation of the Aerosol-Atmosphere Interaction in the Dead Sea Area with COSMO-ART

    NASA Astrophysics Data System (ADS)

    Vogel, Bernhard; Bangert, Max; Kottmeier, Christoph; Rieger, Daniel; Schad, Tobias; Vogel, Heike

    2014-05-01

    The Dead Sea is a unique environment located in the Dead Sea Rift Valley. The fault system of the Dead Sea Rift Valley marks the political borders between Israel, Jordan, and Palestine. The Dead Sea region and the ambient Eastern Mediterranean coastal zone provide a natural laboratory for studying atmospheric processes ranging from the smallest scale of cloud processes to regional weather and climate. The virtual institute DESERVE is designed as a cross-disciplinary and cooperative international project of the Helmholtz Centers KIT, GFZ, and UFZ with well-established partners in Israel, Jordan and Palestine. One main focus of one of the work packages is the role of aerosols in modifying clouds and precipitation and in developing the Dead Sea haze layer as one of the most intriguing questions. The haze influences visibility, solar radiation, and evaporation and may even affect economy and health. We applied the online coupled model system COSMO-ART, which is able to treat the feedback processes between aerosol, radiation, and cloud formation, for a case study above the Dead Sea and adjacent regions. Natural aerosol like mineral dust and sea salt as well as anthropogenic primary and secondary aerosol is taken into account. Some of the observed features like the vertical double structure of the haze layer are already covered by the simulation. We found that absorbing aerosol like mineral dust causes a temperature increase in parts of the model domain. In other areas a decrease in temperature due to cirrus clouds modified by elevated dust layers is simulated.

  4. THERMTRAJ: A FORTRAN program to compute the trajectory and gas film temperatures of zero pressure balloons

    NASA Technical Reports Server (NTRS)

    Horn, W. J.; Carlson, L. A.

    1983-01-01

    A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.

  5. Climatic modification by CO2, H2O, and aerosol

    NASA Technical Reports Server (NTRS)

    Rasool, I.

    1972-01-01

    Research is reported on the effects of increasing the CO2, aerosols, and water content of the atmosphere on the surface temperature and climatology. An atmospheric model is described with the incoming solar radiation for a planetary albedo of 33 percent, surface temperature of 288 K, relative humidity of 75 percent, cloud cover of 48 percent, CO2 of 0.3 parts per thousand, and aerosol density of two million per square centimeter. The results show that if the CO2 increases by a factor of 1000 or more, the total pressure of the atmosphere increases, and the earth may become as hot as Venus. It is also shown that as the amount of dust particles in the atmosphere increases, the solar radiation decreases, and the surface temperature lowers.

  6. CloudSat Overflight of Hurricane Bud

    NASA Image and Video Library

    2006-07-13

    The image at the top of figure 1 is from a geostationary imager. The colors relate to the temperature of the clouds. The higher the clouds, the lower the temperature. The highest, coldest clouds are located near the center of the hurricane.

  7. Use of MODIS Snow-Cover Maps for Detecting Snowmelt Trends in North America

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Riggs, George A.; Robinson, David A.; Hoon-Starr, Jody A.

    2012-01-01

    Research has shown that the snow season in the Northern Hemisphere has been getting shorter in recent decades, consistent with documented global temperature increases. Specifically, the snow is melting earlier in the spring allowing for a longer growing season and associated land-cover changes. Here we focus on North America. Using the Moderate-Resolution Imaging Radiometer (MODIS) cloud-gap-filled standard snow-cover data product we can detect a trend toward earlier spring snowmelt in the approx 12 years since the MODIS launch. However, not all areas in North America show earlier spring snowmelt over the study period. We show examples of springtime snowmelt over North America, beginning in March 2000 and extending through the winter of 2012 for all of North America, and for various specific areas such as the Wind River Range in Wyoming and in the Catskill Mountains in New York. We also compare our approx 12-year trends with trends derived from the Rutgers Global Snow Lab snow cover climate-data record.

  8. Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project

    USGS Publications Warehouse

    Hansen, M.C.; Egorov, Alexey; Roy, David P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, Thomas R.

    2011-01-01

    Vegetation Continuous Field (VCF) layers of 30 m percent tree cover, bare ground, other vegetation and probability of water were derived for the conterminous United States (CONUS) using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data sets from the Web-Enabled Landsat Data (WELD) project. Turnkey approaches to land cover characterization were enabled due to the systematic WELD Landsat processing, including conversion of digital numbers to calibrated top of atmosphere reflectance and brightness temperature, cloud masking, reprojection into a continental map projection and temporal compositing. Annual, seasonal and monthly WELD composites for 2008 were used as spectral inputs to a bagged regression and classification tree procedure using a large training data set derived from very high spatial resolution imagery and available ancillary data. The results illustrate the ability to perform Landsat land cover characterizations at continental scales that are internally consistent while retaining local spatial and thematic detail.

  9. Land-atmosphere-aerosol coupling in North China during 2000­-2013

    NASA Astrophysics Data System (ADS)

    Wei, J.; Jin, Q.; Yang, Z. L.; Zhou, L.

    2017-12-01

    North China is one of the most densely populated regions in the world. To its west, north, and northwest, the world's largest afforestation project has been going on for decades. At the same time, North China has been suffering from air pollution because of its large fossil fuel consumption. Here we show that the changes in land cover and aerosol concentration are coupled with the variations of land surface temperature, cloud cover, and surface solar radiation during the summer 2000-2013. Model experiments show that the interannual variation of aerosol concentration in North China is mainly a result of the varying atmospheric circulation. The increasing vegetation cover due to afforestation has enhanced surface evapotranspiration (ET) and cooled the local surface, and precipitation is observed to be increasing with ET. The model with prescribed increasing vegetation cover can simulate the increasing ET but cannot reproduce the increasing precipitation. Although this may be caused by model biases, the lack of aerosol processes in the model could also be a potential cause.

  10. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  11. Meteorological Modeling of Wintertime Cold Air Pool Stagnation Episodes in the Uintah and Salt Lake Basins

    NASA Astrophysics Data System (ADS)

    Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.

    2014-12-01

    High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.

  12. The science benefits of and the antenna requirements for microwave remote sensing from geostationary orbit

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)

    1991-01-01

    The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.

  13. The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2000-01-01

    Mars Pathfinder made numerous discoveries, one of which was a deep temperature inversion that extended from about 15 km down to 8 km above the surface. It has been suggested by Haberle et al. (1999. J. Geophys. Res. 104, 8957-8974.) that radiative cooling by a water ice cloud may generate such an inversion. Clouds can strongly affect the local air temperature due to their ability to radiate efficiently in the infrared and due to the low air mass of the martian atmosphere, which allows the temperature to change during the relatively short lifetime of a cloud. We utilize a time-dependent microphysical aerosol model coupled to a radiative--convective model to explore the effects water ice clouds have on the local martian temperature profile. We constrain the dust and water vapor abundance using data from the Viking Missions and Mars Pathfinder. Water t ice clouds with visible optical depths of r > 0.1 form readily in these simulations. These clouds alter the local air temperature directly, through infrared cooling, and indirectly, by redistributing atmospheric dust. With this model we are able to reproduce the temperature inversions observed by Mars Pathfinder and Mars Global t Surveyor 2000 Academic Press

  14. Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Self, S.

    1980-01-01

    Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.

  15. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  16. Variability of Clouds Over a Solar Cycle

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2002-01-01

    One of the most controversial aspects of climate studies is the debate over the natural and anthropogenic causes of climate change. Historical data strongly suggest that the Little Ice Age (from 1550 to 1850 AD when the mean temperature was colder by about 1 C) was most likely caused by variability of the sun and not greenhouse molecules (e.g., CO2). However, the known variability in solar irradiance and modulation of cosmic rays provides too little energy, by many orders of magnitude, to lead to climate changes in the troposphere. The conjecture is that there is a 'trigger mechanism'. This idea may now be subjected to a quantitative test using recent global datasets. Using the best available modern cloud data from International Satellite Cloud Climatology Project (ISCCP), Svensmark and Friis-Christensen found a correlation of a large variation (3-4%) in global cloud cover with the solar cycle. The work has been extended by Svensmark and Marsh and Svensmark. The implied forcing on climate is an order of magnitude greater than any previous claims. Are clouds the long sought trigger mechanism? This discovery is potentially so important that it should be corroborated by an independent database, and, furthermore, it must be shown that alternative explanations (i.e., El Nino) can be ruled out. We used the ISCCP data in conjunction with the Total Ozone Mapping Spectrometer (TOMS) data to carry out in in depth study of the cloud trigger mechanism.

  17. Constraining Methane Abundance and Cloud Properties from the Reflected Light Spectra of Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Marley, M. S.; Lewis, N. K.

    2015-12-01

    We have assembled an atmospheric retrieval package for the reflected light spectra of gas- and ice- giants in order to inform the design and estimate the scientific return of future space-based coronagraph instruments. Such instruments will have a working bandpass of ~0.4-1 μm and a resolving power R~70, and will enable the characterization of tens of exoplanets in the Solar neighborhood. The targets will be chosen form known RV giants, with estimated effective temperatures of ~100-600 K and masses between 0.3 and 20 MJupiter. In this regime, both methane and clouds will have the largest effects on the observed spectra. Our retrieval code is the first to include cloud properties in the core set of parameters, along with methane abundance and surface gravity. We consider three possible cloud structure scenarios, with 0, 1 or 2 cloud layers, respectively. The best-fit parameters for a given model are determined using a Monte Carlo Markov Chain ensemble sampler, and the most favored cloud structure is chosen by calculating the Bayes factors between different models. We present the performance of our retrieval technique applied to a set of representative model spectra, covering a SNR range form 5 to 20 and including possible noise correlations over a 25 or 100 nanometer scale. Further, we apply the technique to more realistic cases, namely simulated observations of Jupiter, Saturn, Uranus, and the gas-giant HD99492c. In each case, we determine the confidence levels associated with the methane and cloud detections, as a function of SNR and noise properties.

  18. Evidence for Limited Indirect Aerosol Forcing in Stratocumulus

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.

    2003-01-01

    Increases in cloud cover and condensed water contribute more than half of the indirect aerosol effect in an ensemble of general circulation model (GCM) simulations estimating the global radiative forcing of anthropogenic aerosols. We use detailed simulations of marine stratocumulus clouds and airborne observations of ship tracks to show that increases in cloud cover and condensed water in reality are far less than represented by the GCM ensemble. Our results offer an explanation for recent simplified inverse climate calculations indicating that indirect aerosol effects are greatly exaggerated in GCMs.

  19. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    NASA Astrophysics Data System (ADS)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation observations at the site. CALIPSO data with near-simultaneous colocation are added for multi-layered cloud cases which may have high clouds aloft beyond the ground measurements. Multi-month statistics of performance and case studies will be shown. Additional efforts for algorithm refinements will be also discussed.

  20. CloudSat Takes a 3D Slice of Hurricane Matthew

    NASA Image and Video Library

    2016-10-07

    NASA's CloudSat flew east of Hurricane Matthew's center on Oct. 6 at 11:30 a.m. PDT (2:30 p.m. EDT), intersecting parts of Matthew's outer rain bands and revealing Matthew's anvil clouds (thick cirrus cloud cover), with cumulus and cumulonimbus clouds beneath (lower image). Reds/pinks are larger water/ice droplets. http://photojournal.jpl.nasa.gov/catalog/PIA21095

  1. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua

    2018-05-01

    Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.

  2. Synchronous NDVI and Surface Air Temperature Trends in Newfoundland: 1982 to 2003

    NASA Technical Reports Server (NTRS)

    Neigh, C. S. R.; Tucker, C. J.; Townshend, J. R. G.

    2007-01-01

    The northern regions of the earth are currently experiencing rapid change in temperature and precipitation. This region contains -40% of carbon stored in the world's soil which has accumulated from the last ice age (over 10,000 years ago). The carbon has remained to this point due to reduced decomposition from the short growing seasons and subfreezing temperatures. The influence of climate upon plant growth can have significant consequences to the carbon cycle balance in this region and could potentially alter and release this long term store of carbon to the atmosphere, resulting in a negative feedback enhancing climate warming. These changes have the potential to alter ecosystems processes, which impact human well being. This paper investigated a global satellite record of increases in vegetation growth from 1982 to 2003 developed at GSFC. It was found that, Newfoundland's vegetation growth during the 1990s exceeded global measurements. A number of potential causes were investigated to understand the mechanistic environmental drivers that could alter the productivity of this ecosystem. Possible drivers of change included: human influence of land use change on vegetation cover; changes in precipitation; temperature; cloud cover; snow cover; and growing season length. We found that humans had a minimal influence on vegetation growth in Newfoundland. Less than 6% of the island was logged during the investigation. We found a strong correlation of vegetation growth to a lengthening of the growing season of -9 and -17 days from 1982-1990 and 1991-1999. A distinct drop in plant growth and air temperature was found in 1990 to 1991 from the volcanic eruption of Mt. Pinatubo that reduced global surface air temperatures. These results document the influences of air temperature upon northern forest plant growth and the cooling effects of major volcanic eruptions in this ecological system.

  3. Cloud Impacts on Pavement Temperature in Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  4. A Public-Private-Academic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis, Melinda; Benjamin, Stan; James, Eric

    Executive Summary NOAA is making major contributions to the solar forecasting project in three areas. First, it is improving its forecasts of solar irradiance, clouds, and aerosols in its numerical weather prediction models. Second, it is providing advanced satellite products for DOE's FOA awardees to use in their forecast systems. Third, it is using high-quality ground-based measurements from SURFRAD and ISIS stations to verify and validate forecast model output. This reports covers results from all three areas for the period May 1, 2014 - April 30, 2015. Modeling In its modeling effort, NOAA continues work to improve the skill ofmore » solar forecasts from the Earth System Research Lab (ESRL) research versions of the 13-km Rapid Refresh (RAP) and the 3-km High-Resolution Rapid Refresh (HRRR) models, which are in turn transitioned into operations at the National Centers for Environmental Prediction (NCEP). A major milestone was achieved in September 2014 with the initial operational implementation of the HRRR at NCEP. In the ESRL research versions of the models, testing and development, in both real-time runs and retrospective experiments, is guided by an extensive in-house verification system. Early in the SFIP project, we developed the capability to verify our model forecasts against the high-quality surface radiation measurements from the SURFRAD and ISIS networks. This highlighted some shortcomings with the RAP and HRRR forecasts of incoming shortwave radiation. Most of our effort during Phase 1 of SFIP was focused on addressing these problems with a variety of model system improvements. The RAP and HRRR models during the warm season of 2014 had a noticeable warm and dry bias in near-surface conditions over most of the central and eastern United States, and our new SURFRAD/ISIS verification revealed that there was also a large excess of incoming global horizontal irradiance in the models. We hypothesized that a lack of cloud cover (particularly low-level cloud cover) in the models was resulting in too much heating of the land surface. This, in turn, caused unrealistically strong surface heat fluxes and turbulent mixing in the planetary boundary layer (PBL), which further reduced the already deficient cloud cover. We addressed these issues with a combination of data assimilation system modifications and model physics improvements. Many of our data assimilation changes were made with a view towards improving the near-term representation of clouds and precipitation. One of these changes involved better accounting for regions of weak reflectivity in the RAP cloud / hydrometeor assimilation system, in order to improve the representation of light precipitation in the RAP initial conditions and provide more realistic initial cloud cover. Additional modifications more accurately accounted for radar beam blockage and data gaps (particularly in the western United States), which improves shorter lead times forecasts of clouds and precipitation. We have also tested the assimilation of new data sources within the RAP and the HRRR, including radar radial velocity data and surface mesonet observations. Within the HRRR, we have tested the cycling of the 3-km land surface fields to allow a higher-resolution treatment of land surface processes. In terms of model physics development for SFIP, we have implemented a shallow cumulus scheme within the RAP, and have made numerous improvements to the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme to address insufficient low-level cloud cover in the models. We have conducted tests incorporating the radiation effects of (parameterized) boundary-layer clouds within the modified MYNN PBL scheme (independent of the convective schemes). The Grell-Freitas-Olson shallow cumulus scheme has also been tested within the 3-km HRRR. Finally, we have also modified the RUC land surface model (LSM) treatment of the vegetation wilting point, reducing it to increase evapotranspiration and increase cloud cover in the boundary layer. All of these changes work in tandem to significantly improve the model forecasts of cloud cover, incoming shortwave radiation, and near-surface temperature and moisture. Satellite The role of NOAA/NESDIS in the Solar Forecasting Improvement Project is to provide Advanced Satellite Products (ASPs) for the two forecasting teams at NCAR and IBM. The ASPs are cloud, surface, and atmosphere products derived from geostationary satellite imagery at the highest possible spatial and temporal resolution - such quantities as cloud mask, cloud probability, cloud transmission, cloud top height, cloud top temperature, cloud effective particle size, etc. Ancillary data, such as elevation and numerical weather prediction fields are provided in the files at the same resolution as well. There are at this time 147 different variables in the ASP output, including quality flags and processing information. The main goals for Year 1 of the project were to implement an Advanced Satellite Products system for the use of the IBM and NCAR teams, begin validation, and make any needed changes based on feedback from the teams. ASP files are being produced every GOES Imager acquisition, which occur on a 15-30 minute schedule. Processing is done on a dedicated computer, with a turn-around time of 8-21 minutes from image acquisition to results available on ftp. Several helpful visualizations of the data are also created for users on web pages. Users have been provided with a document titled "User's Guide for 1km Cloud Products Derived from GOES Imager Data using CLAVR-x", which discusses the basics of the source imagery, the process by which it is turned into Advanced Satellite Products, and considerations users should make when using the data. Validation of selected variables from the older 4km version of the products was also included. Future work will concentrate on validation of the 1km products and improving the turn-around time, product variety, and product quality as needed. Ground Observations In the ground-based measurement effort, NOAA's main objectives are to provide high quality radiation products for validation and verification of short-term to day-ahead solar forecasts. More specifically for the three year project, our goals include (1) Maintaining and providing data from our 7 SURFRAD and 7 ISIS; (2) Update ISIS radiation measurements from 3 min to 1 min data: (3) Purchase and install new pyrheliometers for direct solar irradiance measurements at the 7 SURFRAD sites; (4) Building, testing, and deploying two mobile SURFRAD stations at two utility plants in collaboration with DOE sponsored partners, and includes ongoing maintenance and processing of the data at the mobile sites; (5) Upgrading the data acquisition and communications at 7 SURFRAD sites and 7 ISIS sites; (6) Providing radiation data at the 7 SURFRAD sites in near real-time; (7) Develop and provide aerosol optical depth and cloud images and cloud fraction at our two mobile sites; (8) Provide data recovery rates each year; (9) Provide temporally and spatially averaged radiation products for comparison to HRRR and RAP solar forecasts and advanced satellite products; (10) Provide a data-set for analysis of conversion of direct and diffuse to sloped surfaces; (11) and as time permits develop and provide spectral solar irradiance, cloud optical depth and spectral albedo from the mobile sites. Milestones this year include working with the DOE sponsored teams to find locations to deploy two mobile SURFRAD stations. One existing unit was deployed at a 30MW PV facility in the San Luis Valley in collaboration with Xcel and the NCAR team in August, 2014. The second unit was built and tested at our facilities in Boulder, CO and deployed near Green Mountain Power's Education Center in Rutland, VT in collaboration with Green Mountain Power and the IBM Team in October, 2014. Data processing was implemented and the radiation data from these two mobile sites have been made available on our ftp server in near real-time. We also are providing images and cloud fraction from the TSI cameras for these two mobile sites on our ftp site. Another milestone was upgrading our data acquisition and communication systems at 7 SURFRAD and 7 ISIS sites. We accelerated our schedule for these upgrades to provide timely radiation products. These upgrades allow more reliable and near-real time radiation data delivery to the DOE sponsored teams to meet their goals. Lastly, we changed the data rate at the ISIS sites from 3 min to 1 min.« less

  5. Macrophysical and optical properties of midlatitude high-altitude clouds from 4 ground-based lidars and collocated CALIOP observations

    NASA Astrophysics Data System (ADS)

    Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03

  6. Comparasion of Cloud Cover restituted by POLDER and MODIS

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.

    2009-04-01

    PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part of a positive bias in any latitude and in any viewing angle with an order of 10% between the POLDER cloud amount and the so-called MODIS "combined" cloud amount. Nevertheless it is worthy to note that a negative bias of about 10% is obtained between the POLDER cloud amount and the MODIS "day-mean" cloud amount. Main differences between the two MODIS cloud amount values are known to be due to the filtering of remaining aerosols or cloud edges. due to both this high spatial resolution of MODIS and the fact that "combined" cloud amount filters cloud edges, we can also explain why appear the high positive bias regions over subtropical ocean in south hemisphere and over east Africa in summer. Thanks to several channels in the thermal infrared spectral domain, MODIS detects probably much better the thin cirrus especially over land, thus causing a general negative bias for ice clouds. The multi-spectral capability of MODIS also allows for a better detection of low clouds over snow or ice, Hence the (POLDER-MODIS) cloud amount difference is often negative over Greenland, Antarctica, and over the continents at middle-high latitudes in spring and autumn associated to the snow coverage. The multi-spectral capability of MODIS also makes the discrimination possible between the biomass burning aerosols and the fractional clouds over the continents. Thus a positive bias appears in central Africa in summer and autumn associated to important biomass burning events. Over transition region between desert and non-desert, the presence of large negative bias (POLDER-MODIS) of cloud amount maybe partly due to MODIS pixel falsely labeled the desert as cloudy, where MODIS algorithm uses static desert mask. This is clearly highlighted in south of Sahara in spring and summer where we find a bias negative with an order of -0.1. What is more, thanks to its multi-angular capability, POLDER can discriminate the sun-glint region thus minimizing the dependence of cloud amount on view angle. It makes the detection of high clouds easier over a black surface thanks to its polarization character.

  7. Producing Global Science Products for the Moderate Resolution Imaging Spectroradiometer (MODIS) in MODAPS

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward J.; Tilmes, Curt A.; Ye, Gang; Devine, Neal; Smith, David E. (Technical Monitor)

    2000-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) was launched on NASA's EOS-Terra spacecraft December 1999. With 36 spectral bands covering the visible, near wave and short wave infrared. MODIS produces over 40 global science data products, including sea surface temperature, ocean color, cloud properties, vegetation indices land surface temperature and land cover change. The MODIS Data Processing System (MODAPS) produces 400 GB/day of global MODIS science products from calibrated radiances generated in the Earth Observing System Data and Information System (EOSDIS). The science products are shipped to the EOSDIS for archiving and distribution to the public. An additional 200 GB of products are shipped each day to MODIS team members for quality assurance and validation of their products. In the sections that follow, we will describe the architecture of the MODAPS, identify processing bottlenecks encountered in scaling MODAPS from 50 GB/day backup system to a 400 GB/day production system and discuss how these were handled.

  8. The evolution of grain mantles and silicate dust growth at high redshift

    NASA Astrophysics Data System (ADS)

    Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney

    2018-05-01

    In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.

  9. Integration of MODIS Snow, Cloud and Land Area Coverage Data with SNOTEL to Generate Inter-Annual and Within-Season Snow Depletion Curves and Maps

    NASA Astrophysics Data System (ADS)

    Qualls, R. J.; Woodruff, C.

    2017-12-01

    The behavior of inter-annual trends in mountain snow cover would represent extremely useful information for drought and climate change assessment; however, individual data sources exhibit specific limitations for characterizing this behavior. For example, SNOTEL data provide time series point values of Snow Water Equivalent (SWE), but lack spatial content apart from that contained in a sparse network of point values. Satellite observations in the visible spectrum can provide snow covered area, but not SWE at present, and are limited by cloud cover which often obscures visibility of the ground, especially during the winter and spring in mountainous areas. Cloud cover, therefore, often limits both temporal and spatial coverage of satellite remote sensing of snow. Among the platforms providing the best combination of temporal and spatial coverage to overcome the cloud obscuration problem by providing frequent overflights, the Aqua and Terra satellites carrying the MODIS instrument package provide 500 m, daily resolution observations of snow cover. These were only launched in 1999 and the early 2000's, thus limiting the historical period over which these data are available. A hybrid method incorporating SNOTEL and MODIS data has been developed which accomplishes cloud removal, and enables determination of the time series of watershed spatial snow cover when either SNOTEL or MODIS data are available. This allows one to generate spatial snow cover information for watersheds with SNOTEL stations for periods both before and after the launch of the Aqua and Terra satellites, extending the spatial information about snow cover over the period of record of the SNOTEL stations present in a watershed. This method is used to quantify the spatial time series of snow over the 9000 km2 Upper Snake River watershed and to evaluate inter-annual trends in the timing, rate, and duration of melt over the nearly 40 year period from the early 1980's to the present, and shows promise for generating snow cover depletion maps for drought and climate change scenarios.

  10. Controlled generation of large volumes of atmospheric clouds in a ground-based environmental chamber

    NASA Technical Reports Server (NTRS)

    Hettel, H. J.; Depena, R. G.; Pena, J. A.

    1975-01-01

    Atmospheric clouds were generated in a 23,000 cubic meter environmental chamber as the first step in a two part study on the effects of contaminants on cloud formation. The generation procedure was modeled on the terrestrial generation mechanism so that naturally occurring microphysics mechanisms were operative in the cloud generation process. Temperature, altitude, liquid water content, and convective updraft velocity could be selected independently over the range of terrestrially realizable clouds. To provide cloud stability, a cotton muslin cylinder 29.3 meters in diameter and 24.2 meters high was erected within the chamber and continuously wetted with water at precisely the same temperature as the cloud. The improved instrumentation which permitted fast, precise, and continual measurements of cloud temperature and liquid water content is described.

  11. A Method for Obtaining High Frequency, Global, IR-Based Convective Cloud Tops for Studies of the TTL

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Ueyama, Rei; Jensen, Eric; Schoeberl, Mark

    2017-01-01

    Models of varying complexity that simulate water vapor and clouds in the Tropical Tropopause Layer (TTL) show that including convection directly is essential to properly simulating the water vapor and cloud distribution. In boreal winter, for example, simulations without convection yield a water vapor distribution that is too uniform with longitude, as well as minimal cloud distributions. Two things are important for convective simulations. First, it is important to get the convective cloud top potential temperature correctly, since unrealistically high values (reaching above the cold point tropopause too frequently) will cause excessive hydration of the stratosphere. Second, one must capture the time variation as well, since hydration by convection depends on the local relative humidity (temperature), which has substantial variation on synoptic time scales in the TTL. This paper describes a method for obtaining high frequency (3-hourly) global convective cloud top distributions which can be used in trajectory models. The method uses rainfall thresholds, standard IR brightness temperatures, meteorological temperature analyses, and physically realistic and documented corrections IR brightness temperature corrections to derive cloud top altitudes and potential temperatures. The cloud top altitudes compare well with combined CLOUDSAT and CALIPSO data, both in time-averaged overall vertical and horizontal distributions and in individual cases (correlations of .65-.7). An important finding is that there is significant uncertainty (nearly .5 km) in evaluating the statistical distribution of convective cloud tops even using lidar. Deep convection whose tops are in regions of high relative humidity (such as much of the TTL), will cause clouds to form above the actual convection. It is often difficult to distinguish these clouds from the actual convective cloud due to the uncertainties of evaluating ice water content from lidar measurements. Comparison with models show that calculated cloud top altitudes are generally higher than those calculated by global analyses (e.g., MERRA). Interannual variability in the distribution of convective cloud top altitudes is also investigated.

  12. The New Weather Radar for America's Space Program in Florida: A Temperature Profile Adaptive Scan Strategy

    NASA Technical Reports Server (NTRS)

    Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction when geo-locating the radar beam (i.e., beam height and arc distance), including non-standard refraction based on the user-input temperature profile. In addition to temperature profile adaptivity, this paper will also summarize the other requirements for this scan strategy program such as detection of low-level boundaries, detection of anvil clouds, reducing the Cone Of Silence, and allowing for times when deep convective clouds will not occur. The adaptive technique will be carefully compared to and benchmarked against the new fixed scan strategy. Specific environmental scenarios in which the adaptive scan strategy is able to optimize and improve coverage and resolution at critical heights, scan time, and/or sample numbers relative to the fixed scan strategy will be presented.

  13. Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year

    NASA Astrophysics Data System (ADS)

    Klein, A. G.; Thapa, S.

    2017-12-01

    The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.

  14. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and resultant differences in phase and magnitude between LST and microwave brightness temperature. Additional factors such as topography and vegetation cover are under investigation. In addition, the potential of extrapolating the obtained land emissivity maps to different window and sounding channels has been also investigated in this study. The extrapolation of obtained emissivities to different incident angles is also under investigation. Land emissivity maps have been developed at different AMSR-E frequencies. Obtained product has been validated and compared to global land use distribution. Moreover, global soil moisture AMSR-E product maps have been also used to assess to the spatial distribution of the emissivity. Moreover, obtained emissivity maps seem to be consistent with landuse/land cover maps. They also agree well with land emissivity maps obtained from the ISCCP database and developed using SSM/I observations (for frequencies over 19 GHz).

  15. Regional distribution of the high-altitude clouds over the Indian subcontinent and surrounding oceanic regions based on seven years of satellite observations

    NASA Astrophysics Data System (ADS)

    Meenu, S.; Rajeev, K.; Parameswaran, K.; Suresh Raju, C.

    2006-12-01

    Quantitative estimates of the spatio-temporal variations in deep convective events over the Indian subcontinent, Arabian Sea, Bay of Bengal, and tropical Indian Ocean are carried out using the data obtained from Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA-14 and NOAA-16 during the period 1996-2003. Pixels having thermal IR brightness temperature (BT) less than 245K are considered as high altitude clouds and those having BT<220 K are considered as very high altitude clouds. Very deep convective clouds are observed over north Bay of Bengal during the Asian summer monsoon season when the mean cloud top temperature reaches as low as 190K. Over the Head Bay of Bengal (HBoB) from June to September, more than 50% of the observed clouds are deep convective type and more than half of these deep convective clouds are very deep convective clouds. Histogram analysis of the cloud top temperatures during this period shows that over HBoB the most prominent cloud top temperature of the deep convective clouds is ~205K over the HBoB while that over southeast Arabian Sea (SEAS) is ~220K. This indicates that most probably the cloud top altitude over HBoB is ~2 km larger than that over SEAS during the Asian summer monsoon period. Another remarkable feature observed during the Asian summer monsoon period is the significantly low values of deep convective clouds observed over the south Bay of Bengal close to Srilanka, which appears as a large pool of reduced cloud amount surrounded by regions of large-scale deep convection. Over both SEAS and HBoB, the total, deep convective and very deep convective cloud amounts as well as their corresponding cloud top temperatures (or the altitude of the cloud top) undergo large seasonal variations, while such variations are less prominent over the eastern equatorial Indian Ocean.

  16. Assessing the accuracy of MISR and MISR-simulated cloud top heights using CloudSat- and CALIPSO-retrieved hydrometeor profiles

    NASA Astrophysics Data System (ADS)

    Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally

    2017-03-01

    Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.

  17. Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models.

    PubMed

    Medeiros, Brian; Nuijens, Louise

    2016-05-31

    Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.

  18. Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models

    PubMed Central

    Nuijens, Louise

    2016-01-01

    Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925

  19. Solar system formation and the distribution of volatile species

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1994-01-01

    To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction which has been chemically altered in the solar nebula itself (and perhaps giant planet nebulae).

  20. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

Top