Downward shortwave surface irradiance from 17 sites for the FIRE/SRB Wisconsin experiment
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Hay, John E.; Robinson, David A.; Cox, Stephen K.; Wardle, David I.; Lecroy, Stuart R.
1990-01-01
A field experiment was conducted in Wisconsin during Oct. to Nov. 1986 for purposes of both intensive cirrus cloud measurments and SRB algorithm validation activities. The cirrus cloud measurements were part of the FIRE. Tables are presented which show data from 17 sites in the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment/Surface Radiation Budget (FIRE/SRB) Wisconsin experiment region. A discussion of intercomparison results and calibration inconsistencies is also included.
CRYSTAL: The Cirrus Regional Study of Tropical Anvils and Layers
NASA Technical Reports Server (NTRS)
Delnore, Victor E.; Cox, Stephen K.; Curran, Robert J.
1999-01-01
CRYSTAL the Cirrus Regional Study of Tropical Anvils and Layers is part of the ongoing series of field experiments to study clouds and their impact on world weather and climate, and will attempt to improve the application of cloud effects in global climate models. CRYSTAL is being planned as two parts: a limited CRYSTAL field campaign in 2001 to examine towering clouds and anvil genesis over the Everglades of Florida, and the main CRYSTAL field campaign in the summer of 2003 in the Tropical Western Pacific. The latter is timed to take advantage of several cloud measurement satellites that will be operational at that time. This paper discusses some of the issues to be addressed in CRYSTAL, gives a brief description of the research plan, and describes its relationship to other important field experiments.
Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walden, V. P.; Hudson, S. R.; Cohen, L.
The Norwegian Young Sea Ice (N-ICE) experiment was conducted aboard the R/V Lance research vessel from January through June 2015. The primary purpose of the experiment was to better understand thin, first-year sea ice. This includes understanding of how different components of the Arctic system affect sea ice, but also how changing sea ice affects the system. A major part of this effort is to characterize the atmospheric conditions throughout the experiment. A micropulse lidar (MPL) (S/N: 108) was deployed from the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility as part of the atmospheric suitemore » of instruments. The MPL operated successfully throughout the entire experiment, acquiring data from 21 January 2015 through 23 June 2015. The MPL was the essential instrument for determining the phase (water, ice or mixed) of the lower-level clouds over the sea ice. Data obtained from the MPL during the N-ICE experiment show large cloud fractions over young, thin Arctic sea ice from January through June 2015 (north of Svalbard). The winter season was characterized by frequent synoptic storms and large fluctuations in the near-surface temperature. There was much less synoptic activity in spring and summer as the near-surface temperature rose to 0 C. The cloud fraction was lower in winter (60%) than in the spring and summer (80%). Supercooled liquid clouds were observed for most of the deployment, appearing first in mid-February. Spring and summer clouds were characterized by low, thick, uniform clouds.« less
NASA Technical Reports Server (NTRS)
Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven
2008-01-01
Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.
Parts Engineering Experiences, Philosophies and Trends
NASA Technical Reports Server (NTRS)
Shaw, Harry; Day, John H. (Technical Monitor)
2000-01-01
This document is the presentation viewgraphs of the NASA presentations to NASDA, outlining the philosophy and trends of the experiences with engineering parts. Included in the presentations: are (1) the assurance of COTS boards for Space flight, and (2) Peer Review for Ice, Cloud and land Elevation Satellite (ICESat) GPS flight receivers EEE parts. The emphasis is on the methods for qualification of available parts for space flight.
Lidar Studies of Extinction in Clouds in the ECLIPS Project
NASA Technical Reports Server (NTRS)
Martin, C.; Platt, R.; Young, Stuart A.; Patterson, Graeme P.
1992-01-01
The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS. Two periods for observation were chosen, Sep. - Dec. 1989 and Apr. - Jul. 1992 into which investigators were requested to fit 30 days of observations. These would be either continuous, or arranged to coincide with NOAA satellite overpasses to obtain AVHRR data. The distribution of the ECLIPS international effort as in 1991 is shown. The main gaps in the global distribution are in the tropics and the Southern Hemisphere.
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.
1991-01-01
The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.
Artificial ionospheric modification: The Metal Oxide Space Cloud experiment
NASA Astrophysics Data System (ADS)
Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.
2017-05-01
Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.
Lunar and Planetary Science XXXVI, Part 9
NASA Technical Reports Server (NTRS)
2005-01-01
The following topics were discussed: Monitoring floods with NASA's ST6 autonomous spacecraft experiment; Dynamical cloud models constrained by high resolution spectroscopy of zodiacal light; The oxygen isotopic composition of the sun and implications for oxygen processing in molecular clouds; A nochian/hisperian hiatus and erosive reactivation of martian valley networks; Hard x-ray spectro-microscopy techniques; Thermoluminescence studies of carbonaceous chondrites, etc.
Response to marine cloud brightening in a multi-model ensemble
NASA Astrophysics Data System (ADS)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars; Boucher, Olivier; Cole, Jason N. S.; Ji, Duoying; Jones, Andy; Haywood, Jim; Kravitz, Ben; Lenton, Andrew; Moore, John C.; Niemeier, Ulrike; Phipps, Steven J.; Schmidt, Hauke; Watanabe, Shingo; Egill Kristjánsson, Jón
2018-01-01
Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to -1.9 W m-2, with a substantial inter-model spread of -0.6 to -2.5 W m-2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020-2069) -0.96 [-0.17 to -1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of -2.35 [-0.57 to -2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.
NASA Astrophysics Data System (ADS)
Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.
2005-12-01
During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct of the seeding experiment, particularly in the lateness of treatment in the storm cycle. The prevalence of capping inversions and the sensitivity of clouds to the level of the inversions as well as to wind shear will be shown using several data sets (soundings, aircraft, radar, numerical models). Concurrent physical measurements with the randomized experiment provided new insights into the physical processes of precipitation that developed in summertime convective clouds over the UAE that in turn helped in the interpretation of the statistical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnis, Patrick
2013-06-28
During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products andmore » raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.« less
NASA Astrophysics Data System (ADS)
Sud, Y. C.; Walker, G. K.
1999-09-01
A prognostic cloud scheme named McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme) has been designed and developed with the aim of improving moist processes, microphysics of clouds, and cloud-radiation interactions in GCMs. McRAS distinguishes three types of clouds: convective, stratiform, and boundary layer. The convective clouds transform and merge into stratiform clouds on an hourly timescale, while the boundary layer clouds merge into the stratiform clouds instantly. The cloud condensate converts into precipitation following the autoconversion equations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, as well as diffuse both horizontally and vertically with a fully interactive cloud microphysics throughout the life cycle of the cloud, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry.An evaluation of McRAS in a single-column model (SCM) with the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) Phase III data has shown that, together with the rest of the model physics, McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. The time history and time mean in-cloud water and ice distribution, fractional cloudiness, cloud optical thickness, origin of precipitation in the convective anvils and towers, and the convective updraft and downdraft velocities and mass fluxes all simulate a realistic behavior. Some of these diagnostics are not verifiable with data on hand. These SCM sensitivity tests show that (i) without clouds the simulated GATE-SCM atmosphere is cooler than observed; (ii) the model's convective scheme, RAS, is an important subparameterization of McRAS; and (iii) advection of cloud water substance is helpful in simulating better cloud distribution and cloud-radiation interaction. An evaluation of the performance of McRAS in the Goddard Earth Observing System II GCM is given in a companion paper (Part II).
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.
1998-01-01
We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.
A Search for Binary Systems in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Brown, Cody; Nidever, David L.
2018-06-01
The Large and Small Magellanic Clouds are two of the closest dwarf galaxies to our Milky Way and offer an excellent laboratory to study the evolution of galaxies. The close proximity of these galaxies provide a chance to study individual stars in detail and learn about stellar properties and galactic formation of the Clouds. The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the SDSS-IV, has gathered high quality, multi-epoch, spectroscopic data on a multitude of stars in the Magellanic Clouds. The time-series data can be used to detect and characterize binary stars and make the first spectroscopic measurements of the field binary fraction of the Clouds. I will present preliminary results from this project.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, George T.; Ackerman, Steven A.; Frey, Richard
2007-01-01
The MODIS Airborne Simulator (MAS) and MODIS/ASTER Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.3 (12.9 m for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Clouds and Climate Coupling Experiment (TC4) conducted over Central America and surrounding Pacific and Atlantic Oceans between July 17 and August 8, 2007. Multispectral images in eight distinct bands were used to derive a confidence in clear sky (or alternatively the probability of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of this cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm as that implemented operationally to process MODIS cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER date in TC4, is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals used three distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to MISR data to infer the cloud optical thickness of liquid water clouds from MISR. Results of this analysis will be presented and discussed.
Error reduction in three-dimensional metrology combining optical and touch probe data
NASA Astrophysics Data System (ADS)
Gerde, Janice R.; Christens-Barry, William A.
2010-08-01
Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.
Response to marine cloud brightening in a multi-model ensemble
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars; ...
2018-01-19
In this paper we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to –1.9 Wm –2, with a substantial inter-model spread of –0.6 to –2.5 Wm –2. The large spread is partly relatedmore » to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) –0.96 [–0.17 to –1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of –2.35 [–0.57 to –2.96]% due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
Response to marine cloud brightening in a multi-model ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars
In this paper we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to –1.9 Wm –2, with a substantial inter-model spread of –0.6 to –2.5 Wm –2. The large spread is partly relatedmore » to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) –0.96 [–0.17 to –1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of –2.35 [–0.57 to –2.96]% due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
NASA Technical Reports Server (NTRS)
Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)
2001-01-01
Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.
Green Ocean Amazon 2014/15 Manaus Pollution Study Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keutsch, Frank N.
This work was part of the larger Green Ocean Amazon 2014/15 (GOAmazon 2014/15) experiment, which extended through the wet and dry seasons from January 2014 through December 2015 and which took place around the urban region of Manaus, Brazil in central Amazonia. This work was conducted as part of this experiment at the main U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground research site “T3” circa 100 km west of Manaus during two intensive operational periods, “IOP1” and “IOP2” (February 1 to March 31, 2014, and August 15 to October 15, 2014, respectively). Funding formore » this work was provided by the National Science Foundation AGS 1321987/1628491. The GoAmazon experiment was designed to enable the study of how aerosols and surface fluxes influence cloud cycles under clean conditions, as well as how aerosol and cloud life cycles, including cloud-aerosol-precipitation interactions, are influenced by pollutant outflow from a tropical megacity. These observations provide a data set vital to constrain tropical rain forest model parameterizations for organic aerosols, cloud and convection schemes, and terrestrial vegetation components and how these are perturbed by pollution. Research objectives specific to this work and the T3 ground site included studies of how outflow of pollution from Manaus modulated the photochemically driven conversion of emitted precursors to aerosol precursors and aerosol.« less
Cloud rise model for radiological dispersal devices events
NASA Astrophysics Data System (ADS)
Sharon, Avi; Halevy, Itzhak; Sattinger, Daniel; Yaar, Ilan
2012-07-01
As a part of the preparedness and response to possible radiological terror events, it is important to model the evolution of the radioactive cloud immediately after its formation, as a function of time, explosive quantity and local meteorological conditions. One of the major outputs of a cloud rise models is the evaluation of cloud top height, which is an essential input for most of the succeeding atmospheric dispersion models. This parameter strongly affects the radiological consequences of the event. Most of the cloud rise models used today, have been developed according to experiments were large quantities of explosives were used, within the range of hundreds of kilograms of TNT. The majority of these models, however, fail to address Radiological Dispersion Devices (RDD) events, which are typically characterized by smaller amounts of TNT. In this paper, a new, semi-empirical model that describes the vertical evolution of the cloud up to its effective height as a function of time, explosive quantity, atmospheric stability and horizontal wind speed, is presented. The database for this model is taken from five sets of experiments done in Israel during 2006-2009 under the "Green Field" (GF) project, using 0.25-100 kg of TNT.
Enhancing data utilization through adoption of cloud-based data architectures (Invited Paper 211869)
NASA Astrophysics Data System (ADS)
Kearns, E. J.
2017-12-01
A traditional approach to data distribution and utilization of open government data involves continuously moving those data from a central government location to each potential user, who would then utilize them on their local computer systems. An alternate approach would be to bring those users to the open government data, where users would also have access to computing and analytics capabilities that would support data utilization. NOAA's Big Data Project is exploring such an alternate approach through an experimental collaboration with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Azure, and the Open Commons Consortium. As part of this ongoing experiment, NOAA is providing open data of interest which are freely hosted by the Big Data Project Collaborators, who provide a variety of cloud-based services and capabilities to enable utilization by data users. By the terms of the agreement, the Collaborators may charge for those value-added services and processing capacities to recover their costs to freely host the data and to generate profits if so desired. Initial results have shown sustained increases in data utilization from 2 to over 100 times previously-observed access patterns from traditional approaches. Significantly increased utilization speed as compared to the traditional approach has also been observed by NOAA data users who have volunteered their experiences on these cloud-based systems. The potential for implementing and sustaining the alternate cloud-based approach as part of a change in operational data utilization strategies will be discussed.
Airborne observations of the microphysical structure of two contrasting cirrus clouds
NASA Astrophysics Data System (ADS)
O'Shea, S. J.; Choularton, T. W.; Lloyd, G.; Crosier, J.; Bower, K. N.; Gallagher, M.; Abel, S. J.; Cotton, R. J.; Brown, P. R. A.; Fugal, J. P.; Schlenczek, O.; Borrmann, S.; Pickering, J. C.
2016-11-01
We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment. A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing while the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit, and size. However, a number of common features were observed in the 2-D stereo data set, including a distinct bimodal size distribution within the higher-temperature regions of the clouds. This may result from a combination of local heterogeneous nucleation and large particles sedimenting from aloft. Both clouds had small ice crystals (<100 µm) present at all levels However, this small ice mode is not present in observations from a holographic probe. This raises the possibility that the small ice observed by optical array probes may at least be in part an instrument artifact due to the counting of out-of-focus large particles as small ice. The concentrations of ice crystals were a factor 10 higher in the actively growing cloud with the stronger updrafts, with a mean concentration of 261 L-1 compared to 29 L-1 in the decaying case. Particles larger than 700 µm were largely absent from the decaying cirrus case. A comparison with ice-nucleating particle parameterizations suggests that for the developing case the ice concentrations at the lowest temperatures are best explained by homogenous nucleation.
NASA Astrophysics Data System (ADS)
Gleason, Alyx; Bedard, Jamie; Bellis, Matthew; CMS Collaboration
2016-03-01
In the summer of 2015, we hosted 10 high school teachers for a three-day ``Physics at the Frontier'' Workshop. The mornings were spent learning about particle physics, CMS and the LHC, and radiation safety while the afternoons were spent building turn-key cloud chambers for use in their classrooms. The basic cloud chamber design uses Peltier thermoelectric coolers, rather than dry ice, and instructions can be found in multiple places online. For a robust build procedure and for easy use in the classroom, we redesigned parts of the construction process to make it easier to put together while holding costs below 200 per chamber. In addition to this new design, we also created a website with instructions for those who are interested in building their own using this design. This workshop was funded in part by a minigrant for Outreach and Education from the USCMS collaboration. Our experience with the workshop and the lessons learned from the cloud chamber design will be discussed. This work was funded in part by NSF Grants PHY-1307562 and a USCMS-administered minigrant for Outreach and Education.
NASA Astrophysics Data System (ADS)
Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.
2016-07-01
Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km deep. Clouds tend to precipitate when the cloud is thicker than 500-600 m. Distributions of cloud field characteristics (depth, radar reflectivity, Doppler velocity, precipitation) were well identified in the reflectivity-velocity diagram from the cloud radar observations. Two types of precipitation features were observed for shallow marine cumulus clouds that may impact boundary layer differently: first, a classic cloud-base precipitation where precipitation shafts were observed to emanate from the cloud base; second, cloud-top precipitation where precipitation shafts emanated mainly near the cloud tops, sometimes accompanied by precipitation near the cloud base. The second type of precipitation was more frequently observed during the experiment. Only 42-44 % of the clouds sampled were non-precipitating throughout the entire cloud layer and the rest of the clouds showed precipitation somewhere in the cloud, predominantly closer to the cloud top.
The EOS CERES Global Cloud Mask
NASA Technical Reports Server (NTRS)
Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.
1996-01-01
To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.
2010-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.
NASA Technical Reports Server (NTRS)
Mcdougal, D.
1986-01-01
The International Satellite Cloud Climatology Project's (ISCCP) First ISCCP Regional Experiment (FIRE) project is a program to validate the cloud parameters derived by the ISCCP. The 4- to 5-year program will concentrate on clouds in the continental United States, particularly cirrus and marine stratocumulus clouds. As part of the validation process, FIRE will acquire satellite, aircraft, balloon, and surface data. These data (except for the satellite data) will be amalgamated into one common data set. Plans are to generate a standardized format structure for use in the PCDS. Data collection will begin in April 1986, but will not be available to the general scientific community until 1987 or 1988. Additional pertinent data sets already reside in the PCDS. Other qualifications of the PCDS for use in this validation program were enumerated.
Response to marine cloud brightening in a multi-model ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stjern, Camilla W.; Muri, Helene; Ahlm, Lars
Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to −1.9 W m −2, with a substantial inter-model spread of −0.6 to −2.5 W m −2. The large spread is partly related to the considerable differences inmore » clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) −0.96 [−0.17 to −1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of −2.35 [−0.57 to −2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Storey, R. W., Jr.
1977-01-01
The experiment included surface level and airborne in situ cloud measurements of the exhaust effluents from the Titan IIIC solid rocket boosters. Simultaneous visible spectrum photographic pictures of the ground cloud as well as infrared imaging of the cloud were obtained to study the cloud rise, growth, and direction of travel within the earth's surface mixing layer. The NASA multilayer diffusion model predictions of cloud growth, direction of travel, and expected surface level effluent concentrations were made prior to launch and after launch using measured meteorological conditions. Prelaunch predictions were used to position the effluent monitoring instruments, and the postlaunch predictions were compared with the measured data. Measurement results showed that surface level effluent values were low, often below the detection limits of the instrumentation. The maximum surface level hydrogen chloride concentration measured 50 parts per billion at about 8 km from the launch pad. The maximum observed in-cloud (airborne measurement) hydrogen chloride concentration was 7 per million.
Heat and moisture fluxes within a nighttime maritime stratus cloud during CASP II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gultepe, I.; Issac, G.
Stratus clouds in the lower part of the atmosphere over the ocean or land can play an important role in boundary layer processes and in climate change. Physical, dynamical, and radiative processes within marine stratus clouds on both cloud and regional scale are studied for the first time during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) (Albrecht et al., 1988). These clouds can effect the nowcasting, pollution transfer, and radiative processes (Nicholls and Leighton, 1986). Similar to the FIRE stratus project, the Canadian Atlantic Storms Program (CASP) II field project was planned to obtain a bettermore » understanding of cloud physical, dynamical, radiative characteristics, and mesoscale structure of Canadian east coast storms. Here the dynamical and microphysical data, and a radiative transfer model are used to better understand a developing nighttime stratus cloud over the ocean during CASP II which took place over Atlantic Canada. Observations collected by the Convair aircraft of the National Research Council (NRC) of Canada during the CASP II field project on February 6, 1991 are presented.« less
Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment.
NASA Astrophysics Data System (ADS)
Silverman, Bernard A.; Sukarnjanaset, Wathana
2000-07-01
A randomized, warm-rain enhancement experiment was carried out during 1995-98 in the Bhumibol catchment area in northwestern Thailand. The experiment was conducted in accordance with a randomized, floating single-target design. The seeding targets were semi-isolated, warm convective clouds, contained within a well-defined experimental unit, that, upon qualification, were selected for seeding or not seeding with calcium chloride particles in a random manner. The seeding was done by dispensing the calcium chloride particles at an average rate of 21 kg km1 per seeding pass into the updrafts of growing warm convective clouds (about 1-2 km above cloud base) that have not yet developed or, at most, have just started to develop a precipitation radar echo. The experiment was carried out by the Bureau of Royal Rainmaking and Agricultural Aviation (BRRAA) of the Ministry of Agriculture and Cooperatives as part of its Applied Atmospheric Resources Research Program, Phase 2.During the 4 yr of the experiment, a total of 67 experimental units (34 seeded and 33 nonseeded units) were qualified in accordance with the experimental design. Volume-scan data from a 10-cm Doppler radar at 5-min intervals were used to track each experimental unit, from which various radar-estimated properties of the experimental units were obtained. The statistical evaluation of the experiment was based on a rerandomization analysis of the single ratio of seeded to unseeded experimental unit lifetime properties. In 1997, the BRRAA acquired two sophisticated King Air 350 cloud-physics aircraft, providing the opportunity to obtain physical measurements of the aerosol characteristics of the environment in which the warm clouds grow, of the hydrometeor characteristics of seeded and unseeded clouds, and of the calcium chloride seeding plume dimensions and particle size distribution-information directly related to the effectiveness of the seeding conceptual model that was not directly available up to then.The evaluation of the Thailand warm-rain enhancement experiment has provided statistically significant evidence and supporting physical evidence that the seeding of warm convective clouds with calcium chloride particles produced more rain than was produced by their unseeded counterparts. An exploratory analysis of the time evolution of the seeding effects resulted in a significant revision to the seeding conceptual model.
Storm-based Cloud-to-Ground Lightning Probabilities and Warnings
NASA Astrophysics Data System (ADS)
Calhoun, K. M.; Meyer, T.; Kingfield, D.
2017-12-01
A new cloud-to-ground (CG) lightning probability algorithm has been developed using machine-learning methods. With storm-based inputs of Earth Networks' in-cloud lightning, Vaisala's CG lightning, multi-radar/multi-sensor (MRMS) radar derived products including the Maximum Expected Size of Hail (MESH) and Vertically Integrated Liquid (VIL), and near storm environmental data including lapse rate and CAPE, a random forest algorithm was trained to produce probabilities of CG lightning up to one-hour in advance. As part of the Prototype Probabilistic Hazard Information experiment in the Hazardous Weather Testbed in 2016 and 2017, National Weather Service forecasters were asked to use this CG lightning probability guidance to create rapidly updating probability grids and warnings for the threat of CG lightning for 0-60 minutes. The output from forecasters was shared with end-users, including emergency managers and broadcast meteorologists, as part of an integrated warning team.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Hou, A.; Lau, W. K.; Shie, C.; Tao, W.; Lin, X.; Chou, M.; Olson, W. S.; Grecu, M.
2006-05-01
The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model during the South China Sea Monsoon Experiment (SCSMEX) is compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) radiation and cloud retrievals. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. Mesoscale organization is adequately simulated except when environmental wind shear is very weak. The partitions between convective and stratiform rain are also close to TMI and PR classification. However, the model simulated rain spectrum is quite different from either TMI or PR measurements. The model produces more heavy rains and light rains (less than 0.1 mm/hr) than the observations. The model also produces heavier vertical hydrometer profiles of rain, graupel when compared with TMI retrievals and PR radar reflectivity. Comparing GCE simulated OLR and cloud properties with CERES measurements found that the model has much larger domain averaged OLR due to smaller total cloud fraction and a much skewed distribution of OLR and cloud top than CERES observations, indicating that the model's cloud field is not wide spread, consistent with the model's precipitation activity. These results will be used as guidance for improving the model's microphysics.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan
2003-01-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.
2010-08-16
Cloud formations are seen through the window of NASA DC-8 aircraft during a flight, Tuesday, Aug. 17, 2010, over the Gulf of Mexico where researchers were studying weather patterns as part of trhe Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
NASA EVEX Experiment Launches from the Marshall Islands
2017-12-08
Red and white vapor clouds filled the skies over the Marshall Islands as part of NASA’s Equatorial Vortex Experiment (EVEX). The red cloud was formed by the release of lithium vapor and the white tracer clouds were formed by the release of trimethyl aluminum (TMA). These clouds allowed scientists on the ground from various locations in the Marshall Islands to observe the neutral winds in the ionosphere. Credit: NASA/Jon Grant --- The Equatorial Vortex Experiment (EVEX) was successfully conducted during the early morning hours (eastern time) May 7 from Roi Namur, Republic of the Marshall Islands. A NASA Terrier-Oriole sounding rocket was launched at 3:39 a.m. EDT and was followed by a launch of Terrier-Improved Malemute sounding rocket 90 seconds later. Preliminary indications are that both rockets released their vapor clouds of lithium or trimethyl aluminum, which were observed from various locations in the area, and all science instruments on the rockets worked as planned. More information on EVEX can be found at www.nasa.gov/mission_pages/sounding-rockets/news/evex.html These were the second and third rockets of four planned for launch during this year’s campaign in the Marshall Islands. The first and fourth rockets are supporting the Metal Oxide Space Cloud experiment (MOSC), which is studying radio frequency propagation. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Instrumentation for surveying the lower part of the atmosphere in extremes conditions
NASA Astrophysics Data System (ADS)
Gobinddass, Marie-Line; Molinie, Jack; Richard, Sandrine; Jean-Louis, Sabrina
To observe atmospheric phenomena such as clouds, precipitation and wind in order to understand how they form and evolve meteorologists use few instruments which allows to measure parameters as temperature, pressure and humidity. In the specific case of Kourou region where the French Space Agency is located the environment and safeguard group works on protecting biodiversity in and around the center. By considering a few scientific challenges in atmospheric science one of the main topics of this work consists on the understanding of the fluctuation of the atmosphere due to natural or industrials perturbations. We have considered a few experiences with many instruments in a large space of more than 1200 km per square. To differentiate and try to quantify industrial cloud from natural cloud or from natural atmosphere, the idea of using a drone has been experimented. The ratio of the cost of such experimentation with the relevance of the results which can be obtained will be discussed here. It is necessary to take into account the turbulence in the atmosphere due to industrial acid cloud or hot cloud. Finally, instead of taking the risk of having airbone measurements with a pilot we have thought of the tetherball due to it lower cost and for security reason. The technical experiment and few type of results will be presented here.
MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.
The diverse use of clouds by CMS
Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; ...
2015-12-23
The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of themore » trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.« less
T-28 data acquisition during COHMEX 1986
NASA Technical Reports Server (NTRS)
Musil, Dennis J.; Smith, Paul L.
1986-01-01
As part of the 1986 Cooperative Huntsville Meteorological Experiment (COHMEX) a cloud physics instrumented T-28 aircraft was used in conjunction with multiple ground based Doppler radars to characterize hydrometeors and updraft structure within developing summertime cumulus and cumulonimbus cloud systems near Huntsville, Alabama. Instrumentation aboard the aircraft included a Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP), a PMS 2D Cloud Probe and a PMS 2D Precipitation Probe, as well as a hail spectrometer and a foil impactor. Hydrometeor spectra were obtained in the interior of mature thunderstorms over the size range from cloud droplets through hailstones. In addition, vertical wind speed, temperature, Johnson-Williams (JW) liquid water content and electric field measurements were made. Significant microphysical differences exist between these clouds and summertime cumulonimbus clouds which develop over the Central Plains. One notable difference in clouds displaying similar radar reflectivities is that COHMEX hydrometeors are typically smaller and more numerous than those observed in the Central Plains. The COHMEX cloud microphysical measurements represent ground truth values for the remote sensing instrumentation which was flown over the cloud tops at altitudes between 60,000 and 70,000 ft aboard NASA U-2 and ER-2 aircraft. They are also being used jointly with a numerical cloud model to assist in understanding the development of summertime subtropical clouds.
NASA Astrophysics Data System (ADS)
Hair, J. W.; Hostetler, C. A.; Brian, C.; Ziemba, L. D.; Alexandrov, M. D.; Hu, Y.; Crosbie, E.; Scarino, A. J.; Butler, C. F.; Moore, R.; Berkoff, T.; Harper, D. B.; Cook, A. L.; Hare, R. J.; Lee, J.; Anderson, B. E.
2017-12-01
The NASA Langley High Spectral Resolution lidar (HSRL) and the NASA GISS Research Scanning Polarimeter (RSP) were deployed onboard the NASA C-130 during two field campaigns as part of the NASA's Earth Venture-Suborbital (EVS) North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) during November 2015 and May 2016. The main objectives of NAAMES are to study the phases of the North Atlantic annual plankton cycle and to investigate remote marine aerosols and their impact on boundary layer clouds. Lidar retrievals of the cloud-top extinction and lidar ratio (extinction/backscatter ratio) of boundary layer clouds are presented. These retrievals are unique and are enabled by two characteristics of the lidar: employment of the high-spectral-resolution lidar technique and the high-vertical-resolution (1.25 m) the Langley HSRL instrument. The HSRL lidar ratio retrievals are compared to estimates derived from Research Scanning Polarimeter data to assess consistency between the two remote sensors. The measurements of effective size and variance from RSP are combined with the HSRL cloud top extinction to retrieve the cloud droplet number concentrations (CDNC). The lidar+polarimeter CDNC estimates are compared to those from the Cloud Droplet Probe (CDP) that is part of the NASA Langley Aerosol Research Group Experiment (LARGE) instrument suite. Histograms of the CNDC measurements from remote sensors are shown to highlight the observed differences in CDNC between the November and May deployments.
Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas
2016-03-01
As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.
Aerosols and polar stratospheric clouds measurements during the EASOE campaign
NASA Technical Reports Server (NTRS)
Haner, D.; Godin, S.; Megie, G.; David, C.; Mitev, V.
1992-01-01
Preliminary results of observations performed using two different lidar systems during the EASOE (European Arctic Stratospheric Ozone Experiment), which has taken place in the winter of 1991-1992 in the northern hemisphere lattitude regions, are presented. The first system is a ground based multiwavelength lidar intended to perform measurements of the ozone vertical distribution in the 5 km to 40 km altitude range. It was located in Sodankyla (67 degrees N, 27 degrees E) as part of the ELSA experiment. The objectives of the ELSA cooperative project is to study the relation between polar stratospheric cloud events and ozone depletion with high vertical resolution and temporal continuity, and the evolution of the ozone distribution in relation to the position of the polar vortex. The second system is an airborne backscatter lidar (Leandre) which allows for the study of the 3-D structure and the optical properties of polar stratospheric clouds. The Leandre instrument is a dual-polarization lidar system, emitting at 532 nm, which allows for the determination of the type of clouds observed, according to the usual classification of polar stratospheric clouds. More than 60 hours of flight were performed in Dec. 1991, and Jan. and Feb. 1992 in Kiruna, Sweden. The operation of the Leandre instrument has led to the observation of the short scale variability of the Pinatubo volcanic cloud in the high latitude regions and to several episodes of polar stratospheric clouds. Preliminary analysis of the data is presented.
NASA Astrophysics Data System (ADS)
Xu, Jianxin; Liang, Hong
2013-07-01
Terrestrial laser scanning creates a point cloud composed of thousands or millions of 3D points. Through pre-processing, generating TINs, mapping texture, a 3D model of a real object is obtained. When the object is too large, the object is separated into some parts. This paper mainly focuses on problem of gray uneven of two adjacent textures' intersection. The new algorithm is presented in the paper, which is per-pixel linear interpolation along loop line buffer .The experiment data derives from point cloud of stone lion which is situated in front of west gate of Henan Polytechnic University. The model flow is composed of three parts. First, the large object is separated into two parts, and then each part is modeled, finally the whole 3D model of the stone lion is composed of two part models. When the two part models are combined, there is an obvious fissure line in the overlapping section of two adjacent textures for the two models. Some researchers decrease brightness value of all pixels for two adjacent textures by some algorithms. However, some algorithms are effect and the fissure line still exists. Gray uneven of two adjacent textures is dealt by the algorithm in the paper. The fissure line in overlapping section textures is eliminated. The gray transition in overlapping section become more smoothly.
Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission
NASA Technical Reports Server (NTRS)
Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.
1993-01-01
Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.
NASA Astrophysics Data System (ADS)
Pedruzo-Bagazgoitia, Xabier; Lohou, Fabienne; Dione, Cheikh; Lothon, Marie; Kalthoff, Norbert; Adler, Bianca; Babić, Karmen; Vilà-Guerau de Arellano, Jordi
2017-04-01
The role of boundary-layer clouds as part of the Western African Monsoon system is investigated. The system encompasses the interaction between large-scale phenomena such as the (southerly) monsoon flow, the African Easterly Jet and the (northerly) Harmattan wind, and the role of smaller scale processes driven by turbulence and the sea-vegetation transition on the lower troposphere, such as the frequently observed nocturnal low-level jet. As observed during the DACCIWA project campaign, low stratocumulus clouds recurrently appear inland during the night, sometimes prevailing until the next afternoon while in other cases they break up in the morning and disappear or transform to convective clouds. These observations rise two research questions: Do surface conditions affect the cloud breakup? Is the direct or diffuse character of radiation relevant for the cloud transition? In our study we focus on the local effect of the surface and radiation on the breakup of stratocumulus and the subsequent transition to convective clouds during the morning transition. We design an idealized Large Eddy Simulation (LES) experiment in which the surface is coupled to the cloud dynamics based on radiosoundings launched during the campaign at the supersite of Savé (Benin), which is located about 180 km north of the Gulf of Guinea. This experiment includes the most relevant factors for the evolution of the boundary layer and stratocumulus in the morning. By systematically breaking down the complexity of the system, we study the relevance of atmospheric stability (by modifying the atmospheric lapse rates), and the partition of evaporation and sensible heat flux on the evolution, break up and transition of the stratocumulus cloud layer. Previous studies have shown that diffuse radiation controlled by clouds and aerosols can locally enhance evaporation. Therefore, particular emphasize is put on the determination of the role of direct and diffuse radiation during the cloud transition on the vegetated canopy, and the impact on the surface fluxes and cloud dynamics.
NASA Astrophysics Data System (ADS)
Bauer, S. E.; Menon, S.
2010-12-01
Attention has been drawn to black carbon aerosols, as a target for short-term mitigation of climate warming. This measure seems attractive because soot is assumed to warm the atmosphere and at the same time has a lifetime of just a few days. Therefore regulating soot emissions could, as a short-term action, potentially buy time by slowing global warming until regulations for longer lived greenhouse gases are set in place. Currently the scientific community debates the impacts of such mitigation measures, especially when considering indirect effects. We tested with the GISS/MATRIX model, a global climate model including detailed aerosol microphysics, the effect of reducing fossil fuel emissions and bio-fuel emissions and found that opposite changes in cloud droplet number concentration lead to positive cloud forcing numbers in the bio-fuel reduction case and negative forcing numbers in the diesel mitigation case. Similar experiments have been carried out and have recently been published by other modeling groups, finding partly similar partly contradicting results to our study. In this presentation we want to explain the differences in black carbon research carried out with complex microphysical models, by focusing on the treatment of mixing state, and separation between forcings and feedbacks.
Learning in the cloud: a new challenge for a global teaching system in optics and photonics
NASA Astrophysics Data System (ADS)
Sultana, Razia; Christ, Andreas; Feisst, Markus; Curticapean, Dan
2014-07-01
Nowadays, it is assumed of many applications, companies and parts of the society to be always available online. However, according to [Times, Oct, 31 2011], 73% of the world population do not use the internet and thus aren't "online" at all. The most common reasons for not being "online" are expensive personal computer equipment and high costs for data connections, especially in developing countries that comprise most of the world's population (e.g. parts of Africa, Asia, Central and South America). However it seems that these countries are leap-frogging the "PC and landline" age and moving directly to the "mobile" age. Decreasing prices for smart phones with internet connectivity and PC-like operating systems make it more affordable for these parts of the world population to join the "always-online" community. Storing learning content in a way accessible to everyone, including mobile and smart phones, seems therefore to be beneficial. This way, learning content can be accessed by personal computers as well as by mobile and smart phones and thus be accessible for a big range of devices and users. A new trend in the Internet technologies is to go to "the cloud". This paper discusses the changes, challenges and risks of storing learning content in the "cloud". The experiences were gathered during the evaluation of the necessary changes in order to make our solutions and systems "cloud-ready".
Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission
NASA Technical Reports Server (NTRS)
Knobelspiesse, Kirk; Redemann, Jens
2014-01-01
The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.
NASA Technical Reports Server (NTRS)
Knobelspiesse, Kirk; Redemann, Jens
2014-01-01
The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.
A Numerical Study of Cirrus Clouds. Part I: Model Description.
NASA Astrophysics Data System (ADS)
Liu, Hui-Chun; Wang, Pao K.; Schlesinger, Robert E.
2003-04-01
This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run to address objectives (a) and (b), respectively.As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation. The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT) for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical and radiative properties as functions of ice crystal habit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan
We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less
NASA Technical Reports Server (NTRS)
Khaiyer, M. M.; Doelling, D. R.; Palikonda, R.; Mordeen, M. L.; Minnis, P.
2007-01-01
This poster presentation reviews the process used to validate the GOES-10 satellite derived cloud and radiative properties. The ARM Mobile Facility (AMF) deployment at Pt Reyes, CA as part of the Marine Stratus Radiation Aerosol and Drizzle experiment (MASRAD), 14 March - 14 September 2005 provided an excellent chance to validate satellite cloud-property retrievals with the AMF's flexible suite of ground-based remote sensing instruments. For this comparison, NASA LaRC GOES10 satellite retrievals covering this region and period were re-processed using an updated version of the Visible Infrared Solar-Infrared Split-Window Technique (VISST), which uses data taken at 4 wavelengths (0.65, 3.9,11 and 12 m resolution), and computes broadband fluxes using improved CERES (Clouds and Earth's Radiant Energy System)-GOES-10 narrowband-to-broadband flux conversion coefficients. To validate MASRAD GOES-10 satellite-derived cloud property data, VISST-derived cloud amounts, heights, liquid water paths are compared with similar quantities derived from available ARM ground-based instrumentation and with CERES fluxes from Terra.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1989-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4 km visible (0.65 microns) and 8 km infrared window (11.5 microns) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance mode. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8 km for the 71 scenes. An average visible scattering efficiency of 2.1 was found for this data set. The results reveal a significant dependence of scattering efficiency on cloud temperature.
NASA Astrophysics Data System (ADS)
Jackson-Booth, N.
2016-12-01
Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.
STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cziczo, D.
2016-03-01
The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part because they are normally close to the Earth’s surface and only contain large concentrations of liquid droplets. Ice and mixed-phase clouds have been less studied even though they have extensive global coverage and dominate precipitation formation. Because they require low temperatures to form, both cloud types are infrequently found at ground level, resulting in more difficult field studies. Complex mixtures of liquid and ice elements, normallymore » at much lower concentrations than found in warm clouds, require precise separation techniques and accurate identification of phase. Because they have proved so difficult to study, the climatic impact of ice-containing clouds remains unresolved. In this study, cloud condensation nuclei (CCN) concentrations and associated single particles’ composition and size were measured at a high-elevation research site—Storm Peak Lab, east of Steamboat Springs, Colorado, operated by the Desert Research Institute. Detailed composition analyses were presented to compare CCN activation with single-particle composition. In collaboration with the scientists of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), our goal was to relate these findings to the cloud characteristics and the effect of anthropogenic activities.« less
NASA Astrophysics Data System (ADS)
Maheskumar, R. S.; Padmakumari, B.; Konwar, Mahen; Morwal, S. B.; Deshpande, C. G.
2018-06-01
In-situ observations of cloud microphysical properties, carried out over different parts of Indian sub-continent using an instrumented research aircraft during Phase-I of Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) from June to September 2009, were studied. Different cloud probes were used to characterize the hydrometeor and precipitation types in the monsoon clouds. The results revealed that all liquid phase hydrometeors were present at temperatures -12 °C to 15 °C. Most of the presence of rain drops were found in the liquid water content (LWC) range from 0.5 to 2 g/m3. In general, rain drops are initiated when the droplet effective radius (Re) exceeded 12 μm. Rain dominated at the tops of young growing convective clouds even at temperatures colder than -10 °C. Mixed phase hydrometeors were present at temperatures from -2 °C to -18 °C. The cases where mixed phase precipitation occurred at temperatures warmer than about -7 °C were associated with influx of transported dust aerosol at the upper (supercooled) region of these cloud systems. Ice only hydrometeors were found at temperatures extending from -10 °C to -22 °C. Most of the monsoon rain is produced by warm and cold cloud/mixed-phase processes in the cloud. The combined Re from two different cloud probes is useful for validation of satellite derived cloud microphysical parameter.
Game Theory Based Trust Model for Cloud Environment
Gokulnath, K.; Uthariaraj, Rhymend
2015-01-01
The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365
HNSciCloud - Overview and technical Challenges
NASA Astrophysics Data System (ADS)
Gasthuber, Martin; Meinhard, Helge; Jones, Robert
2017-10-01
HEP is only one of many sciences with sharply increasing compute requirements that cannot be met by profiting from Moore’s law alone. Commercial clouds potentially allow for realising larger economies of scale. While some small-scale experience requiring dedicated effort has been collected, public cloud resources have not been integrated yet with the standard workflows of science organisations in their private data centres; in addition, European science has not ramped up to significant scale yet. The HELIX NEBULA Science Cloud project - HNSciCloud, partly funded by the European Commission, addresses these points. Ten organisations under CERN’s leadership, covering particle physics, bioinformatics, photon science and other sciences, have joined to procure public cloud resources as well as dedicated development efforts towards this integration. The HNSciCloud project faces the challenge to accelerate developments performed by the selected commercial providers. In order to guarantee cost efficient usage of IaaS resources across a wide range of scientific communities, the technical requirements had to be carefully constructed. With respect to current IaaS offerings, dataintensive science is the biggest challenge; other points that need to be addressed concern identity federations, network connectivity and how to match business practices of large IaaS providers with those of public research organisations. In the first section, this paper will give an overview of the project and explain the findings so far. The last section will explain the key points of the technical requirements and present first results of the experience of the procurers with the services in comparison to their’on-premise’ infrastructure.
Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, R. Michael; Lewis, Ernie
2016-09-01
At the beginning of the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) experiment, we recognized that the crew on the ship’s bridge would like to see a display of the meteorological data that was being collected. While a display on the bridge would be marginally useful to the science, it was decided to make a display for the bridge. A display was programmed in Lab View and a personal computer (PC) was set up in themore » bridge. This remained in operation until the ship went to dry dock for upgrades and service. Part of the upgrade was a new meteorological system for the ship. After this time there was no need for the ARM display and so it was not re-installed for the remainder of the program.« less
NASA Astrophysics Data System (ADS)
Kniffka, Anke; Knippertz, Peter; Fink, Andreas
2017-04-01
This contribution presents first results of numerical sensitivity experiments that are carried out in the framework of the project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa). DACCIWA aims to investigate the impact of the drastic increase in anthropogenic emissions in West Africa on the local weather and climate, for example through cloud-aerosol interactions or impacts on radiation and stability. DACCIWA organised a major international field campaign in West Africa in June-July 2016 and involves a wide range of modelling activities. Several studies have shown - and first results of the DACCIWA campaign confirm - that extensive ultra-low stratus clouds form in the southern parts of West Africa (8°W-8°E, 5-10°N) at night in connection with strong nocturnal low-level jets. The clouds persist long after sunrise and have therefore a substantial impact on the surface radiation budget and consequently on the diurnal evolution of the daytime, convectively mixed boundary layer. The objective of this study is to investigate the sensitivity of the West African monsoon system and its diurnal cycle to the radiative effects of these low clouds. The study is based on a series of daily 5-day sensitivity simulations using ICON, the operational numerical weather prediction model of the German Weather Service during the months July - September 2006. In these simulations, low clouds are made transparent, by artificially lowering the optical thickness information passed on to the model's radiation scheme. Results reveal a noticeable influence of the low-level cloud cover on the atmospheric mean state of our region of interest and beyond. Also the diurnal development of the convective boundary layer is influenced by the cloud modification. In the transparent-cloud experiments, the cloud deck tends to break up later in the day and is shifted to a higher altitude, thereby causing a short-lived intensification around 11 LT. The average rainfall patterns are modified as well, though no conclusion on the long-term impact on rainfall can be made due to the forced initial conditions in the presented experiment. In the future, the impact on the development of the West African monsoon system will be assessed.
Interactions among Radiation, Convection, and Large-Scale Dynamics in a General Circulation Model.
NASA Astrophysics Data System (ADS)
Randall, David A.; Harshvardhan; Dazlich, Donald A.; Corsetti, Thomas G.
1989-07-01
We have analyzed the effects of radiatively active clouds on the climate simulated by the UCLA/GLA GCM, with particular attention to the effects of the upper tropospheric stratiform clouds associated with deep cumulus convection, and the interactions of these clouds with convection and the large-scale circulation.Several numerical experiments have been performed to investigate the mechanisms through which the clouds influence the large-scale circulation. In the `NODETLQ' experiment, no liquid water or ice was detrained from cumulus clouds into the environment; all of the condensate was rained out. Upper level supersaturation cloudiness was drastically reduced, the atmosphere dried, and tropical outgoing longwave radiation increased. In the `NOANVIL' experiment, the radiative effects of the optically thich upper-level cloud sheets associated with deep cumulus convection were neglected. The land surface received more solar radiation in regions of convection, leading to enhanced surface fluxes and a dramatic increase in precipitation. In the `NOCRF' experiment, the longwave atmospheric cloud radiative forcing (ACRF) was omitted, paralleling the recent experiment of Slingo and Slingo. The results suggest that the ACRF enhances deep penetrative convection and precipitation, while suppressing shallow convection. They also indicate that the ACRF warms and moistens the tropical troposphere. The results of this experiment are somewhat ambiguous, however; for example, the ACRF suppresses precipitation in some parts of the tropics, and enhances it in others.To isolate the effects of the ACRF in a simpler setting, we have analyzed the climate of an ocean-covered Earth, which we call Seaworld. The key simplicities of Seaworld are the fixed boundary temperature with no land points, the lack of mountains, and the zonal uniformity of the boundary conditions. Results are presented from two Seaworld simulations. The first includes a full suite of physical parameterizations, while the second omits all radiative effects of the clouds. The differences between the two runs are, therefore, entirely due to the direct and indirect and indirect effects of the ACRF. Results show that the ACRF in the cloudy run accurately represents the radiative heating perturbation relative to the cloud-free run. The cloudy run is warmer in the middle troposphere, contains much more precipitable water, and has about 15% more globally averaged precipitation. There is a double tropical rain band in the cloud-free run, and a single, more intense tropical rain band in the cloudy run. The cloud-free run produces relatively weak but frequent cumulus convection, while the cloudy run produces relatively intense but infrequent convection. The mean meridional circulation transport nearly twice as much mass in the cloudy run. The increased tropical rising motion in the cloudy run leads to a deeper boundary layer and also to more moisture in the troposphere above the boundary layer. This accounts for the increased precipitable water content of the atmosphere. The clouds lead to an increase in the intensity of the tropical easterlies, and cause the midlatitude westerly jets to shift equatorward.Taken together, our results show that upper tropospheric clouds associated with moist convection, whose importance has recently been emphasized in observational studies, play a very complex and powerful role in determining the model results. This points to a need to develop more realistic parameterizations of these clouds.
Science support for the Earth radiation budget experiment
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.
1994-01-01
The work undertaken as part of the Earth Radiation Budget Experiment (ERBE) included the following major components: The development and application of a new cloud retrieval scheme to assess errors in the radiative fluxes arising from errors in the ERBE identification of cloud conditions. The comparison of the anisotropy of reflected sunlight and emitted thermal radiation with the anisotropy predicted by the Angular Dependence Models (ADM's) used to obtain the radiative fluxes. Additional studies included the comparison of calculated longwave cloud-free radiances with those observed by the ERBE scanner and the use of ERBE scanner data to track the calibration of the shortwave channels of the Advanced Very High Resolution Radiometer (AVHRR). Major findings included: the misidentification of cloud conditions by the ERBE scene identification algorithm could cause 15 percent errors in the shortwave flux reflected by certain scene types. For regions containing mixtures of scene types, the errors were typically less than 5 percent, and the anisotropies of the shortwave and longwave radiances exhibited a spatial scale dependence which, because of the growth of the scanner field of view from nadir to limb, gave rise to a view zenith angle dependent bias in the radiative fluxes.
ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L Ruby
The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amountmore » and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.« less
The Influence of Microphysical Cloud Parameterization on Microwave Brightness Temperatures
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail M.; Gasiewski, Albin J.; Wang, James R.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The microphysical parameterization of clouds and rain-cells plays a central role in atmospheric forward radiative transfer models used in calculating passive microwave brightness temperatures. The absorption and scattering properties of a hydrometeor-laden atmosphere are governed by particle phase, size distribution, aggregate density., shape, and dielectric constant. This study identifies the sensitivity of brightness temperatures with respect to the microphysical cloud parameterization. Cloud parameterizations for wideband (6-410 GHz observations of baseline brightness temperatures were studied for four evolutionary stages of an oceanic convective storm using a five-phase hydrometeor model in a planar-stratified scattering-based radiative transfer model. Five other microphysical cloud parameterizations were compared to the baseline calculations to evaluate brightness temperature sensitivity to gross changes in the hydrometeor size distributions and the ice-air-water ratios in the frozen or partly frozen phase. The comparison shows that, enlarging the rain drop size or adding water to the partly Frozen hydrometeor mix warms brightness temperatures by up to .55 K at 6 GHz. The cooling signature caused by ice scattering intensifies with increasing ice concentrations and at higher frequencies. An additional comparison to measured Convection and Moisture LA Experiment (CAMEX 3) brightness temperatures shows that in general all but, two parameterizations produce calculated T(sub B)'s that fall within the observed clear-air minima and maxima. The exceptions are for parameterizations that, enhance the scattering characteristics of frozen hydrometeors.
What Undergraduates Think about Clouds and Fog
ERIC Educational Resources Information Center
Rappaport, Elliot D.
2009-01-01
Weather events are part of every student's experience, and are controlled by basic principles involving the behavior of matter and energy. Despite this, many students have difficulty explaining simple atmospheric phenomena, even after exposure to primary and secondary science curricula. This study investigated the level to which undergraduates…
Final Report of Research Conducted For DE-AI02-08ER64546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Minnis
2012-03-28
Research was conducted for 3-4 years to use ARM data to validate satellite cloud retrievals and help the development of improved techniques for remotely sensing clouds and radiative fluxes from space to complement the ARM surface measurement program. This final report summarizes the results and publications during the last 2 years of the studies. Since our last report covering the 2009 period, we published four papers that were accepted during the previous reporting period and revised and published a fifth one. Our efforts to intercalibrate selected channels on several polar orbiting and geostationary satellite imagers, which are funded in partmore » by ASR, resulted in methods that were accepted as part of the international Global Space-based Intercalibration System (GSICS) calibration algorithms. We developed a new empirical method for correcting the spectral differences between comparable channels on various imagers that will be used to correct the calibrations of the satellite data used for ARM. We documented our cloud retrievals for the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex; ARM participated with an AAF contribution) in context of the entire experiment. We used our VOCALS satellite data along with the aircraft measurements to better understand the relationships between aerosols and liquid water path in marine stratus clouds. We continued or efforts to validate and improve the satellite cloud retrievals for ARM and using ARM data to validate retrievals for other purposes.« less
NASA Technical Reports Server (NTRS)
Doug, Xiquan; Mace, Gerald G.; Minnis, Patrick; Young, David F.
2001-01-01
To study Arctic stratus cloud properties and their effect on the surface radiation balance during the spring transition season, analyses are performed using data taken during three cloudy and two clear days in May 1998 as part of the First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE). Radiative transfer models are used in conjunction with surface- and satellite-based measurements to retrieve the layer-averaged microphysical and shortwave radiative properties. The surface-retrieved cloud properties in Cases 1 and 2 agree well with the in situ and satellite retrievals. Discrepancies in Case 3 are due to spatial mismatches between the aircraft and the surface measurements in a highly variable cloud field. Also, the vertical structure in the cloud layer is not fully characterized by the aircraft measurements. Satellite data are critical for understanding some of the observed discrepancies. The satellite-derived particle sizes agree well with the coincident surface retrievals and with the aircraft data when they were collocated. Optical depths derived from visible-channel data over snow backgrounds were overestimated in all three cases, suggesting that methods currently used in satellite cloud climatologies derive optical depths that are too large. Use of a near-infrared channel with a solar infrared channel to simultaneously derive optical depth and particle size appears to alleviate this overestimation problem. Further study of the optical depth retrieval is needed. The surface-based radiometer data reveal that the Arctic stratus clouds produce a net warming of 20 W m(exp -2) in the surface layer during the transition season suggesting that these clouds may accelerate the spring time melting of the ice pack. This surface warming contrasts with the net cooling at the top of the atmosphere (TOA) during the same period. All analysis of the complete FIRE ACE data sets will be valuable for understanding the role of clouds during the entire melting and refreezing process that occurs annually in the Arctic.
Spectral absorption of marine stratocumulus clouds derived from in situ cloud radiation measurements
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1990-01-01
A multiwavelength scanning radiometer was used to measure the angular distribution of scattered radiation deep within a cloud layer at discrete wavelengths between 0.5 and 2.3 microns. The relative angular distribution of the intensity field at each wavelength is used to determine the similarity parameter, and hence single scattering albedo, of the cloud at that wavelength using the diffusion domain method. In addition to the spectral similarity parameter, the analysis provides a good estimate of the optical thickness of the cloud beneath the aircraft. In addition to the radiation measurements, microphysical and thermodynamic measurements were obtained from which the expected similarity parameter spectrum was calculated using accepted values of the refractive index of liquid water and the transmission function of water vapor. An analysis is presented for the results obtained for a 50 km section of clean marine stratocumulus clouds on 10 July 1987. These observations were obtained off the coast of California from the University of Washington Convair C-131A aircraft as part of the First ISCCP Regional Experiment (FIRE). A comparison of the experimentally-derived similarity parameter spectrum with that expected theoretically from the cloud droplet size distribution measured simultaneously from the aircraft is presented. The measurements and theory are in very close agreement for this case of clean maritime clouds.
NASA Technical Reports Server (NTRS)
Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.;
2001-01-01
CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.
Remote sensing of smoke, clouds, and radiation using AVIRIS during SCAR experiments
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Remer, Lorraine; Kaufman, Yorman J.
1995-01-01
During the past two years, researchers from several institutes joined together to take part in two SCAR experiments. The SCAR-A (Sulfates, Clouds And Radiation - Atlantic) took place in the mid-Atlantic region of the United States in July, 1993. remote sensing data were acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), the MODIS Airborne Simulator (MAS), and a RC-10 mapping camera from an ER-2 aircraft at 20 km. In situ measurements of aerosol and cloud microphysical properties were made with a variety of instruments equipped on the University of Washington's C-131A research aircraft. Ground based measurements of aerosol optical depths and particle size distributions were made using a network of sunphotometers. The main purpose of SCAR-A experiment was to study the optical, physical and chemical properties of sulfate aerosols and their interaction with clouds and radiation. Sulfate particles are believed to affect the energy balance of the earth by directly reflecting solar radiation back to space and by increasing the cloud albedo. The SCAR-C (Smoke, Clouds And Radiation - California) took place on the west coast areas during September - October of 1994. Sets of aircraft and ground-based instruments, similar to those used during SCAR-A, were used during SCAR-C. Remote sensing of fires and smoke from AVIRIS and MAS imagers on the ER-2 aircraft was combined with a complete in situ characterization of the aerosol and trace gases from the C-131A aircraft of the University of Washington and the Cesna aircraft from the U.S. Forest Service. The comprehensive data base acquired during SCAR-A and SCAR-C will contribute to a better understanding of the role of clouds and aerosols in global change studies. The data will also be used to develop satellite remote sensing algorithms from MODIS on the Earth Observing System.
Bare Proton Contribution to the d / u Ratio in the Proton Sea
NASA Astrophysics Data System (ADS)
Fish, Aaron
2017-09-01
From perturbative processes, such as gluon splitting, we expect there to be symmetric distributions of d and u partons in the proton. partons in the proton. However, experiment has shown an excess of d over u . This has been qualitatively explained by the Meson Cloud Model (MCM), in which the non-perturbative processes of proton fluctuations into meson-baryon pairs, allowed by the Heisenberg uncertainty principle, create the flavor asymmetry. The x dependence of d and u in the nucleon sea is determined from a convolution of meson-baryon splitting functions and the parton distribution functions (pdfs) of the mesons and baryons in the cloud, as well as a contribution from the leading term in the MCM, the ``bare proton.'' We use a statistical model to calculate pdfs for the hadrons in the cloud, but modify the model for the bare proton in order to avoid double counting. We evolved our distributions in Q2 for comparison to experimental data from the Fermilab E866/NuSea experiment. We present predictions for the d / u ratio that is currently being examined by Fermilab's SeaQuest experiment, E906. This work is supported in part by the National Science Foundation under Grant No.1516105.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-03-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.
NASA Technical Reports Server (NTRS)
Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.;
1998-01-01
An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.
NASA Astrophysics Data System (ADS)
Malleus, Elina; Kikas, Eve; Marken, Tiivi
2017-06-01
The purpose of this research was to explore children's understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud formation and rain in kindergarten (age 5-7), second (age 8-9) and fourth (age 10-11) grade children, who were questioned on the basis of structured interview technique. In order to represent consistency in children's answers, three different types of clouds were introduced (a cirrus cloud, a cumulus cloud, and a rain cloud). Our results indicate that children in different age groups gave a similarly high amount of synthetic answers, which suggests the need for teachers to understand the formation process of different misconceptions to better support the learning process. Even children in kindergarten may have conceptions that represent different elements of scientific understanding and misconceptions cannot be considered age-specific. Synthetic understanding was also shown to be more consistent (not depending on cloud type) suggesting that gaining scientific understanding requires the reorganisation of existing concepts, that is time-consuming. Our results also show that the appearance of the cloud influences children's answers more in kindergarten where they mostly related rain cloud formation with water. An ability to create abstract connections between different concepts should also be supported at school as a part of learning new scientific information in order to better understand weather-related processes.
Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks.
NASA Astrophysics Data System (ADS)
Russell, Lynn M.; Noone, Kevin J.; Ferek, Ronald J.; Pockalny, Robert A.; Flagan, Richard C.; Seinfeld, John H.
2000-08-01
Polycyclic aromatic hydrocarbons (PAHs) have been sampled in marine stratiform clouds to identify the contribution of anthropogenic combustion emissions in activation of aerosol to cloud droplets. The Monterey Area Ship Track experiment provided an opportunity to acquire data on the role of organic compounds in ambient clouds and in ship tracks identified in satellite images. Identification of PAHs in cloud droplet residual samples indicates that several PAHs are present in cloud condensation nuclei in anthropogenically influenced air and do result in activated droplets in cloud. These results establish the presence of combustion products, such as PAHs, in submicrometer aerosols in anthropogenically influenced marine air, with enhanced concentrations in air polluted by ship effluent. The presence of PAHs in droplet residuals in anthropogenically influenced air masses indicates that some fraction of those combustion products is present in the cloud condensation nuclei that activate in cloud. Although a sufficient mass of droplet residuals was not collected to establish a similar role for organics from measurements in satellite-identified ship tracks, the available evidence from the fraction of organics present in the interstitial aerosol is consistent with part of the organic fraction partitioning to the droplet population. In addition, the probability that a compound will be found in cloud droplets rather than in the unactivated aerosol and the compound's water solubility are compared. The PAHs studied are only weakly soluble in water, but most of the sparse data collected support more soluble compounds having a higher probability of activation.
NASA Technical Reports Server (NTRS)
Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.
2004-01-01
Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.
MODIS Retrievals of Cloud Optical Thickness and Particle Radius
NASA Technical Reports Server (NTRS)
Platnick, S.; King, M. D.; Ackerman, S. A.; Gray, M.; Moody, E.; Arnold, G. T.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides an unprecedented opportunity for global cloud studies with 36 spectral bands from the visible through the infrared, and spatial resolution from 250 m to 1 km at nadir. In particular, all solar window bands useful for simultaneous retrievals of cloud optical thickness and particle size (0.67, 0.86, 1.2, 1.6, 2.1, and 3.7 micron bands) are now available on a single satellite instrument/platform for the first time. An operational algorithm for the retrieval of these optical and cloud physical properties (including water path) have been developed for both liquid and ice phase clouds. The product is archived into two categories: pixel-level retrievals at 1 km spatial resolution (referred to as a Level-2 product) and global gridded statistics (Level-3 product). An overview of the MODIS cloud retrieval algorithm and early level-2 and -3 results will be presented. A number of MODIS cloud validation activities are being planned, including the recent Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign conducted in August/September 2000. The later part of the experiment concentrated on MODIS validation in the Namibian stratocumulus regime off the southwest coast of Africa. Early retrieval results from this regime will be discussed.
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Barlow, Roy W.
1990-01-01
Satellite images often show significant variations in the structure of marine stratocumulus clouds on scales ranging from 10 to 1000 km. This is illustrated where a GOES West satellite image shows a well-defined variation in cloud structure near 32 N, 122 W on 30 June 1987. Aircraft measurements were made with the UK C-130 and the NCAR Electra on this day as part of the FIRE Marine Stratocumulus Intensive Field Observations (IFO). The mean, turbulent, and the microphysical structure of the clouds sampled in these two areas are compared an an attempt is made to explain the differences in cloud structure. In an attempt to identify any systematic differences between the measurements made with the two aircraft, data were analyzed that were collected on 14 July 1987 with the C-130 and the Electra flying in close formation at an altitude of 250 m. The microphysical and turbulence data are being compared in an attempt to explain the differences in the cloud liquid water content obtained with the two aircraft and the differences in cloud structure shown by the GOES image. In addition, data are being analyzed for three other days during the experiment when coordinated downstream flights were made with the Electra and the C-130.
NASA Astrophysics Data System (ADS)
Schlesinger, Robert E.
1988-05-01
An anelastic three-dimensional model is used to investigate the effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared mature isolated midlatitude thunderstorms. Three comparative experiments are performed, differing only with respect to the stratospheric stability. The assumed stratospheric lapse rate is 0 K km1 (isothermal) in the first experiment, 3 K km1 in the second, and 3 K km1 (inversion) in the third.Kinematic storm structure is very similar in all three cases, especially in the troposphere. A strong quasi-steady updraft evolves splitting into a dominant cyclonic overshooting right-mover and a weaker anticyclonic left-mover that does not reach the tropopause. Strongest downdrafts occur at low to middle levels between the updrafts, and in the lower stratosphere a few kilometers upshear and downshear of the tapering updraft summit.Each storm shows a cloud-top thermal couplet, relatively cold near and upshear of the summit, and with a `close-in' warm region downshear. Both cold and warm regions become warmer, with significant morphological changes and a lowering of the cloud summit, as stratospheric stability is increased, though the temperature spread is not greatly affected.The coldest and highest cloud-top points are nearly colocated in the absence of a stratospheric inversion, but the coldest point is offset well upshear of the summit when an inversion is present. The cold region as a whole in each case shows at least a transient `V' shape, with the arms pointing downshear, although this shape is persistent only with the inversion.In the experiment with a 3 K km1 stratospheric lapse rate (weakest stability), the warm region is small and separates into two spots with secondary cold spots downshear of them. The warm region becomes larger, and remains single, as stratospheric stability increase. In each run, the warm regions are not accompanied by corresponding cloud-top height minima except very briefly.The cold cloud-top points are near or slightly downwind of relative vertical velocity maxima, usually positive, while the warm points are imbedded in subsidence downwind of the principal cloud-top downdraft core. The storm-relative cloud-top horizontal wind fields are consistent with the `V' shape of the cold region, showing strong diffluent flow directed downshear along the flanks from an upshear stagnation zone.
Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.
2018-04-01
N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.
Preparatory studies of zero-g cloud drop coalescence experiment
NASA Technical Reports Server (NTRS)
Telford, J. W.; Keck, T. S.
1979-01-01
Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.
Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less
Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment
Wood, Robert; Luke, Ed; Wyant, Matthew; ...
2014-04-27
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less
Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Lowmore » clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.« less
Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar
NASA Technical Reports Server (NTRS)
Orr, Brad W.; Kropfli, Robert A.
1993-01-01
During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.
Cloud and Radiation Studies during SAFARI 2000
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)
2001-01-01
Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir). These retrievals will be discussed and compared with in situ observations.
Integration of Cloud resources in the LHCb Distributed Computing
NASA Astrophysics Data System (ADS)
Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel
2014-06-01
This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.
2012-09-30
Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...temperatures. These changes in turn will affect the evolution of the SIZ. An appropriate representation of this feedback loop in models is critical if we... modeling experiments as part of the atmospheric component of the Seasonal Ice Zone Reconnaissance Survey project (SIZRS). We will • Determine the role
NASA Astrophysics Data System (ADS)
Jensen, Logan; Citizen CATE Experiment 2017 Team
2018-01-01
The Citizen Continental America Telescopic Eclipse (CATE) Experiment was designed to fill in the current data gap for the solar corona from approximately 1 to 2.5 solar radii. Using the total solar eclipse, the project took advantage of the unique opportunity to study this region of the corona from 68 identical sites across the United States. Before the 2017 eclipse, image reduction pipelines and advanced processing techniques were researched and implemented using data that had been collected from the 2016 Indonesian eclipse as a test set. This would speed up the turnaround from data to science after the 2017 eclipse.When processing the 2016 eclipse data, cirrus clouds became apparent moving across the field of view. These would interfere with future processing goals for the data such as coronal filament tracing and polar plume measurements. As the clouds moved across the field they did not completely obscure any part of the image, instead they produced variable, moving absorption across the CATE field of view. This had the effect of creating a noisy signal for each pixel. A noise reduction procedure based on a Kalman filter was developed to effectively remove the clouds from the data. Initial results from the 2016 eclipse data are presented.
Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery
NASA Astrophysics Data System (ADS)
Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.
2015-04-01
Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.
A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Wen, Guoyong; Coakley, James A.; Remer, Lorraine A.; Loeb, Norman G.; Cahalan, Robert F.
2008-07-01
In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3-D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper only addresses the cloud-clear sky radiative transfer interaction part. It provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. This assumption leads to a larger increase of AOT for shorter wavelengths, or to a "bluing" of aerosols near clouds. The assumption that contribution from molecular scattering dominates over aerosol scattering and surface reflection is justified for the case of shorter wavelengths, dark surfaces, and an aerosol layer below the cloud tops. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1984-01-01
The present investigation is concerned with results from an initial set of comparative experiments in a project which utilize a three-dimensional convective storm model. The modeling results presented are related to four comparative experiments, designated Cases A through D. One of two scientific questions considered involves the dynamical processes, either near the cloud top or well within the cloud interior, which contribute to organize cloud thermal patterns such as those revealed by IR satellite imagery for some storms having strong internal cloud-scale rotation. The second question is concerned with differences, in cloud-top height and temperature field characteristics, between thunderstorms with and without significant internal cloud-scale rotation. The four experiments A-D are compared with regard to both interior and cloud-top configurations in the context of the second question. A particular strong-shear experiment, Case B, is analyzed to address question one.
NASA Astrophysics Data System (ADS)
Cui, Zhiqiang; Carslaw, Kenneth S.; Yin, Yan; Davies, Stewart
2006-03-01
The effects of aerosols on a deep convective cloud in a midlatitude continental environment are studied using an axisymmetric cloud model with a sectional treatment of aerosol and hydrometeor microphysical processes. Simulations are conducted using observations from the Cooperative Convective Precipitation Experiments (CCOPE). The isolated cloud occurred in an environment with low wind shear and with relatively dry air in the midtroposphere and upper troposphere. By varying the concentration of aerosol particles in the accumulation mode within realistic limits for a continental environment, the simulated cloud exhibited different properties. The overall impact as the aerosol concentration increased is that (1) the cloud development was inhibited; (2) the precipitation was suppressed; (3) the maximum values of liquid water content decreased, but the maximum values of droplet number concentration increased before the dissipating stage; (4) a clear tendency was found for ice crystals to be larger and less numerous in the anvil cloud; and (5) there was a significant reduction of the inflow in the lower 2 km of the atmosphere. In the relatively dry environment in the midtroposphere, the latent heat changes associated with the Wegener-Bergeron-Findeisen mechanism played an important role in the upper part of the cloud at altitudes below the homogeneous freezing level. In particular, immersion freezing and latent heat release were much more rapid in the base simulation than in the increased aerosol simulation. Less latent heat release and insufficient inflow together impeded the development of the cloud with the higher aerosol loading. Our simulations suggest that continental clouds existing below the homogeneous freezing level could show an opposite response of cloud top height and anvil crystal concentrations to changes in aerosol to what has previously been reported for clouds ascending to higher levels.
An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Hare, J. E.; Snider, J. B.
1990-08-01
As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.
2007-01-01
3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.
ETO cloud studies for FIRE 2, part 1
NASA Technical Reports Server (NTRS)
Sassen, Kenneth
1992-01-01
This research program in support of Project FIRE (First ISCCP Regional Experiment) involved two efforts. The results of the first effort, which were in direct support of the Extended Time Observations (ETO) component, are described here. Over the period from June 1990 through May 1991, our remote sensing systems were applied to providing ground-truth cirrus cloud observations for a total of 71 NOAA polar orbiting satellite overpasses. (Chronological tables of this effort are provided.) The primary remote sensor was a dual-polarization ruby (0.694 microns wavelength) lidar, although mid-way through the program we added a number of radiometers to assess the surface radiation budget and cirrus cloud infrared emittance, and some supplemental observations from a Ka-band (8.6 mm) radar were also collected. These studies were conducted from the Facility for Atmospheric Remote Sensing (FARS) at 40 degrees 46 minutes 00 seconds north latitude and 111 degrees 49 minutes 38 seconds east longitude. We also investigated the unusual characteristics of a subset of ETO case studies involving cirrus that generated solar and lunar corona displays. As we reported recently (reprint attached), these cirrus were atypically high and cold in relation to our total midlatitude cloud sample, and were comprised of unexpectedly small ice crystals from 10 to 30 microns in dimension. This finding lends some credence to the so-called cirrus small particle radiative anomaly, but only for very cold (less than -60 C) cirrus clouds. In a supplement, we will describe the design and testing of a prototype cirrus cloud polar nephelometer, which we constructed as part of our second research effort, to allow scattering phase functions to be obtained in future in situ cirrus research.
The impact of parametrized convection on cloud feedback.
Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming
2015-11-13
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. © 2015 The Authors.
The impact of parametrized convection on cloud feedback
Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming
2015-01-01
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. PMID:26438278
Artificial plasma experiments. Chemical release observations associated with the CRRES program
NASA Technical Reports Server (NTRS)
Mende, Stephen B.
1994-01-01
This report submitted is the final report and covers work performed under the contract for the period Apr. 12, 1985 - Dec. 23, 1993. The CRRES program investigated earth plasma environment by active experiments in which metal vapors were injected into the upper atmosphere and magnetosphere. The vapor clouds perturb the ambient ionospheric / magnetospheric environment and the effects could be monitored by passive observing instruments. Our part of the CRRES program, the Artificial Plasma Experiment program, was a ground based and aircraft based investigation to observe artificial chemical releases by optical techniques.
Cloud microphysical background for the Israel-4 cloud seeding experiment
NASA Astrophysics Data System (ADS)
Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel
2015-05-01
The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.
NASA Astrophysics Data System (ADS)
Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor
2017-04-01
Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent mixing. Part of the differences between the models and ERA-Interim appear to be related to the different subgrid cloud schemes used. While nighttime tendencies in temperature and humidity are broadly realistic in most models, daytime tendencies show large variation in the vertical transport of heat and moisture. Many models simulate too low near-surface relative humidities, leading to insufficient low cloud cover, abundant solar radiation, and thus a too large diurnal cycle in temperature and relative humidity. Currently, targeted model sensitivity experiments are conducted to test possible feedback mechanisms between low clouds, radiation, boundary-layer dynamics, precipitation and the WAM circulation in the framework of the EU-funded DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project (http://www.dacciwa.eu).
NASA Astrophysics Data System (ADS)
Takemura, T.; Chin, M.
2014-12-01
It is important to understand relative contributions of each regional and sector emission of aerosols and their precursor gases to the regional and global mean radiative forcing of aerosol-radiation and aerosol-cloud interactions. This is because it is useful for international cooperation on controls of air pollution and anthropogenic climate change along most suitable reduction path of their emissions from each region and sector. The Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the United Nations researches the intercontinental transport of air pollutants including aerosols with strong support of the Aerosol Comparisons between Observations and Models (AeroCOM). The ongoing AeroCOM Phase III/HTAP2 experiment assesses relative contributions of regional and sector sources of aerosols and their precursor gases to the air quality using global aerosol transport models with latest emission inventories. In this study, the extended analyses on the relative contributions of each regional and sector emission to the radiative forcing of aerosol-radiation and aerosol-cloud interactions are done from the AeroCOM Phase III/HTAP2 experiment. Simulated results from MIROC-SPRINTARS and other some global aerosol models participating in the the AeroCOM Phase III/HTAP2 experiment are assessed. Acknowledgements: This study is based on the AeroCOM Phase III/HTAP2 experiment and partly supported by the Environment Research and Technology Development Fund (S-12-3) of the Ministry of the Environment, Japan.
NASA Astrophysics Data System (ADS)
Perez Montes, Diego A.; Añel Cabanelas, Juan A.; Wallom, David C. H.; Arribas, Alberto; Uhe, Peter; Caderno, Pablo V.; Pena, Tomas F.
2017-04-01
Cloud Computing is a technological option that offers great possibilities for modelling in geosciences. We have studied how two different climate models, HadAM3P-HadRM3P and CESM-WACCM, can be adapted in two different ways to run on Cloud Computing Environments from three different vendors: Amazon, Google and Microsoft. Also, we have evaluated qualitatively how the use of Cloud Computing can affect the allocation of resources by funding bodies and issues related to computing security, including scientific reproducibility. Our first experiments were developed using the well known ClimatePrediction.net (CPDN), that uses BOINC, over the infrastructure from two cloud providers, namely Microsoft Azure and Amazon Web Services (hereafter AWS). For this comparison we ran a set of thirteen month climate simulations for CPDN in Azure and AWS using a range of different virtual machines (VMs) for HadRM3P (50 km resolution over South America CORDEX region) nested in the global atmosphere-only model HadAM3P. These simulations were run on a single processor and took between 3 and 5 days to compute depending on the VM type. The last part of our simulation experiments was running WACCM over different VMS on the Google Compute Engine (GCE) and make a comparison with the supercomputer (SC) Finisterrae1 from the Centro de Supercomputacion de Galicia. It was shown that GCE gives better performance than the SC for smaller number of cores/MPI tasks but the model throughput shows clearly how the SC performance is better after approximately 100 cores (related with network speed and latency differences). From a cost point of view, Cloud Computing moves researchers from a traditional approach where experiments were limited by the available hardware resources to monetary resources (how many resources can be afforded). As there is an increasing movement and recommendation for budgeting HPC projects on this technology (budgets can be calculated in a more realistic way) we could see a shift on the trends over the next years to consolidate Cloud as the preferred solution.
The Apparent Bluing of Aerosols Near Clouds
NASA Technical Reports Server (NTRS)
Marshak, Alexander
2008-01-01
Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. I describe a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. This assumption leads to a larger increase of AOT for shorter wavelengths, or to a "bluing" of aerosols near clouds. Examples from the MODIS observations that illustrate the apparent bluing of aerosols near clouds will be discussed.
NASA Astrophysics Data System (ADS)
Barré, Jérôme; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-09-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known "true" state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
NASA Technical Reports Server (NTRS)
Barre, Jerome; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-01-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known 'true' state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
West Antarctica as a Natural Laboratory for Single- and Mixed-Phase Cloud Microphysics
NASA Astrophysics Data System (ADS)
Wilson, A.; Scott, R. C.; Lubin, D.
2016-12-01
As part of the ARM West Antarctic Radiation Experiment (AWARE), a micropulse lidar (MPL) and a shortwave spectroradiometer were deployed to the West Antarctic Ice Sheet (WAIS) Divide Ice Camp during December 2015 and January 2016. Contrasting meteorological conditions gave rise to several distinct episodes of mixed-phase clouds, liquid water clouds, and entirely glaciated clouds. These phases were readily distinguished in the polarization signature from the MPL. The spectroradiometer measured downwelling hemispheric irradiance in the wavelength interval 0.35-2.2 microns, with 3-nanometer resolution at visible and 10-nanometer resolution at near-infrared wavelengths. Under overcast sky conditions, this measured irradiance is sensitive to total cloud optical depth for wavelengths shorter than 1.1 microns, and is sensitive at both cloud phase and effective particle size in the 1.6-micron window. For single-phase clouds, the spectral irradiance in the 1.6-micron window shows marked contrasts between liquid and ice water. For mixed phase clouds, this spectral dependence of the 1.6-micron irradiance is consistent with the prevailing phase, but in all cases the irradiance is small than that under a liquid water cloud having the same total optical depth. Radiative transfer retrievals of effective particle size from the 1.6-micron irradiance data reveal liquid water effective radii typically 2 microns smaller than found in the spring and summertime high Arctic. Most of the clouds sampled here were within 2 km of the surface, and there are comprehensive ancillary data including sondes four times daily, additional microwave radiometer data, and broadband radiometry. This AWARE data set from WAIS Divide provides a unique opportunity for testing and improving cloud microphysical parameterizations in extreme cold and pristine conditions.
Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.;
2000-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.
Influence of the Surface and Cloud Nonuniformities in the Solar Energy Fluxes in the Arctic
NASA Technical Reports Server (NTRS)
Rozwadowska, A.; Cahalan, R. F.; Einaudi, Franco (Technical Monitor)
2000-01-01
Solar energy fluxes reaching the surface and absorbed by it are basic components of the energy balance of the Arctic. They depend mainly on the solar zenith angle, a state of the atmosphere, especially the cloudiness, and the surface albedo. However, they can also be modified by variabilities in the surface albedo and cloud optical thickness. The surface of the Arctic can be highly nonuniform. The surface of the Arctic Ocean, which covers the huge part of the Arctic can be view as a mosaic of sea water, sea ice, snow and, in the melting period, melting ponds. In our paper, results are presented of Monte Carlo simulations of the expected influence of nonuniform cloud structure and nonuniform surface albedo on radiative fluxes at the Arctic surface. In particular, the plane parallel biases in the surface absorptance and atmospheric transmittance are studied. The bias is defined as the difference between the real absorptance or transmittance (i.e. nonuniform conditions) averaged over a given area, and the uniform or plane parallel case with the same mean cloud optical thickness and the same mean surface albedo. The dependence of the biases is analysed with respect to the following: domain averaged values of the cloud optical thickness and surface albedo, scales of their spatial variabilities, correlation between cloud optical thickness and cloud albedo variabilities, cloud height, and the solar zenith angle. Ranges of means and standard deviations of the input parameters typical of Arctic conditions are obtained from the SHEBA experiment.
CAUSES: Clouds Above the United States and Errors at the Surface
NASA Astrophysics Data System (ADS)
Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.
2015-12-01
The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)
CAUSES: Clouds Above the United States and Errors at the Surface
NASA Astrophysics Data System (ADS)
Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, Y.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Lo, M. H.
2014-12-01
The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)
Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment
NASA Technical Reports Server (NTRS)
Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew;
2015-01-01
Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.
3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim
2007-01-01
To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.
On-Board Cryospheric Change Detection By The Autonomous Sciencecraft Experiment
NASA Astrophysics Data System (ADS)
Doggett, T.; Greeley, R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Baker, V.; Dohm, J.; Ip, F.
2004-12-01
The Autonomous Sciencecraft Experiment (ASE) is operating on-board Earth Observing - 1 (EO-1) with the Hyperion hyper-spectral visible/near-IR spectrometer. ASE science activities include autonomous monitoring of cryopsheric changes, triggering the collection of additional data when change is detected and filtering of null data such as no change or cloud cover. This would have application to the study of cryospheres on Earth, Mars and the icy moons of the outer solar system. A cryosphere classification algorithm, in combination with a previously developed cloud algorithm [1] has been tested on-board ten times from March through August 2004. The cloud algorithm correctly screened out three scenes with total cloud cover, while the cryosphere algorithm detected alpine snow cover in the Rocky Mountains, lake thaw near Madison, Wisconsin, and the presence and subsequent break-up of sea ice in the Barrow Strait of the Canadian Arctic. Hyperion has 220 bands ranging from 400 to 2400 nm, with a spatial resolution of 30 m/pixel and a spectral resolution of 10 nm. Limited on-board memory and processing speed imposed the constraint that only partially processed Level 0.5 data with dark image subtraction and gain factors applied, but not full radiometric calibration. In addition, a maximum of 12 bands could be used for any stacked sequence of algorithms run for a scene on-board. The cryosphere algorithm was developed to classify snow, water, ice and land, using six Hyperion bands at 427, 559, 661, 864, 1245 and 1649 nm. Of these, only 427 nm does overlap with the cloud algorithm. The cloud algorithm was developed with Level 1 data, which introduces complications because of the incomplete calibration of SWIR in Level 0.5 data, including a high level of noise in the 1377 nm band used by the cloud algorithm. Development of a more robust cryosphere classifier, including cloud classification specifically adapted to Level 0.5, is in progress for deployment on EO-1 as part of continued ASE operations. [1] Griffin, M.K. et al., Cloud Cover Detection Algorithm For EO-1 Hyperion Imagery, SPIE 17, 2003.
A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.
2008-01-01
In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.
NASA Astrophysics Data System (ADS)
Gaczkowski, B.; Preibisch, T.; Stanke, T.; Krause, M. G. H.; Burkert, A.; Diehl, R.; Fierlinger, K.; Kroell, D.; Ngoumou, J.; Roccatagliata, V.
2015-12-01
Context. The Lupus I cloud is found between the Upper Scorpius (USco) and the Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. Aims: We want to study how collisions of large-scale interstellar gas flows form and influence new dense clouds in the ISM. Methods: We performed LABOCA continuum sub-mm observations of Lupus I that provide for the first time a direct view of the densest, coldest cloud clumps and cores at high angular resolution. We complemented these data with Herschel and Planck data from which we constructed column density and temperature maps. From the Herschel and LABOCA column density maps we calculated probability density functions (PDFs) to characterize the density structure of the cloud. Results: The northern part of Lupus I is found to have, on average, lower densities, higher temperatures, and no active star formation. The center-south part harbors dozens of pre-stellar cores where density and temperature reach their maximum and minimum, respectively. Our analysis of the column density PDFs from the Herschel data show double-peak profiles for all parts of the cloud, which we attribute to an external compression. In those parts with active star formation, the PDF shows a power-law tail at high densities. The PDFs we calculated from our LABOCA data trace the denser parts of the cloud showing one peak and a power-law tail. With LABOCA we find 15 cores with masses between 0.07 and 1.71 M⊙ and a total mass of ≈8 M⊙. The total gas and dust mass of the cloud is ≈164 M⊙ and hence ~5% of the mass is in cores. From the Herschel and Planck data we find a total mass of ≈174 M⊙ and ≈171 M⊙, respectively. Conclusions: The position, orientation, and elongated shape of Lupus I, the double-peak PDFs and the population of pre-stellar and protostellar cores could be explained by the large-scale compression from the advancing USco H I shell and the UCL wind bubble. The Atacama Pathfinder Experiment (APEX) is a collaboration between the Max-Planck-Institut für Radioastronomie (MPIfR), the European Southern Observatory (ESO), and the Onsala Space Observatory (OSO).Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final APEX cube and Herschel N and T maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A36
NASA Astrophysics Data System (ADS)
Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.
On Using Home Networks and Cloud Computing for a Future Internet of Things
NASA Astrophysics Data System (ADS)
Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg
In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).
NASA Astrophysics Data System (ADS)
Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.
2015-04-01
It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water was almost twice (81.1 μS/cm) as that in the absence of LRTAD (47.7 μS/cm), (2) the average conductivity in rainwater was slightly higher (15.0 μS/cm vs 12.8 μS/cm), and (3) the average pH was slightly higher for both cloud and rainwater samples (average of 6.41 for cloud water and 6.37 for rainwater). Detailed results on the chemical composition (water-soluble ions, trace metals, total organic carbon and total nitrogen) of cloud and rainwater, cloud microphysics, and on how these properties are affected in the presence of dust events will be presented at the meeting.
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Deshpande, Sunil P.; Johnson, Nicholas L.
1997-01-01
A flight experiment flown onboard the Mir space station as a part of the Euromir 95 mission is considered. The aim of the experiment was to develop a greater understanding of the effects of the space environment on materials. In addition to the active enumeration of particle impacts and trajectories, the aim was to capture hypervelocity particles for their return to earth. Postflight measurements were performed to determine the flux density, diameters and subsequent effects on various optical thermal control and structural materials. Sensors actively measured the atomic oxygen flux, the contamination depostion and their effects during the mission. Two clouds of small particles were detected during a period of 100 days onboard Mir. It is concluded that the measured momenta of these particles suggests that their size and velocity are such that they cause damage to optics and thermal control surfaces.
NASA Astrophysics Data System (ADS)
Moran, Michael D.; Pielke, Roger A.
1996-03-01
The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations.
Atmospheric Science Data Center
2013-01-23
FIRE III ACE Data Sets The First International Satellite Cloud ... Regional Experiment (FIRE) - Arctic Cloud Experiment (ACE) was conducted April through July of 1998. It was held in conjunction with ... Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud systems. The main facility was ...
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
Airborne observations of cloud properties on HALO during NARVAL
NASA Astrophysics Data System (ADS)
Konow, Heike; Hansen, Akio; Ament, Felix
2016-04-01
The representation of cloud and precipitation processes is one of the largest sources of uncertainty in climate and weather predictions. To validate model predictions of convective processes over the Atlantic ocean, usually satellite data are used. However, satellite products provide just a coarse view with poor temporal resolution of convective maritime clouds. Aircraft-based observations offer a more detailed insight due to lower altitude and high sampling rates. The research aircraft HALO (High Altitude Long Range Research Aircraft) is operated by the German Aerospace Center (DLR). With a ceiling of 15 km, and a range of 10,000 km and more than 10 hours it is able to reach remote regions and operate from higher altitudes than most other research aircraft. Thus, it provides the unique opportunity to exploit regions of the atmosphere that cannot be easily accessed otherwise. Measurements conducted on HALO provide more detailed insights than achievable from satellite data. Therefore, this measurement platform bridges the gap between previous airborne measurements and satellites. The payload used for this study consists of, amongst others, a suite of passive microwave radiometers, a cloud radar, and a water vapor DIAL. To investigate cloud and precipitation properties of convective maritime clouds, the NARVAL (Next-generation Aircraft Remote-Sensing for Validation Studies) campaign was conducted in winter 2013/2014 out of Barbados and Keflavik (Iceland). This campaign was one of the first that took place on the HALO aircraft. During the experiment's two parts 15 research flights were conducted (8 flights during NARVAL-South out of Barbados to investigate trade-wind cumuli and 7 flights out of Keflavik with focus on mid-latitude cyclonic systems). Flight durations were between five and nine hours, amounting to roughly 118 flight hours overall. 121 dropsondes were deployed. In fall 2016 two additional aircraft campaigns with the same payload will take place: The second phase of NARVAL will focus on trade-wind cumuli observations and the NAWDEX (North-Atlantik Waveguide EXperiment) campaign will investigate the warm sector and frontal zones of mid-latitude cyclones. During the first NARVAL campaign, a broad range of cloud regimes from shallow cumuli to cumulonimbus and cold fronts was observed. Derived cloud covers from different instruments on board HALO varied by as much as 25 % since cloud radar, microwave radiometers, lidar and dropsondes measure different aspects of clouds. A cloud mask combining these observations provides a complimentary view of clouds and allows for identification of joint cloud characteristics (e.g., cloud top of ice or water clouds, cloud depth). We will present benefits gained from this combination of measurements and provide a more comprehensive view on clouds and cloud properties in different cloud regimes. Furthermore, we will give an overview of the plans for future campaigns and demonstrate what new insights we can gain from these airborne observations within the scope of past and future campaigns.
Pulling Down the Clouds: The O'odham Intellectual Tradition during the "Time of Famine"
ERIC Educational Resources Information Center
Martinez, David
2010-01-01
Members of the Pima, or Akimel O'odham, community, despite their experiment with a pre-1934 constitutional government, not to mention their conversion to Christianity and sending their children to school, have not generated writers and activists as did their tribal peers in other parts of the United States such as Oklahoma, the Upper Plains, and…
Understanding the tropical warm temperature bias simulated by climate models
NASA Astrophysics Data System (ADS)
Brient, Florent; Schneider, Tapio
2017-04-01
The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.
A practical approach to virtualization in HEP
NASA Astrophysics Data System (ADS)
Buncic, P.; Aguado Sánchez, C.; Blomer, J.; Harutyunyan, A.; Mudrinic, M.
2011-01-01
In the attempt to solve the problem of processing data coming from LHC experiments at CERN at a rate of 15PB per year, for almost a decade the High Enery Physics (HEP) community has focused its efforts on the development of the Worldwide LHC Computing Grid. This generated large interest and expectations promising to revolutionize computing. Meanwhile, having initially taken part in the Grid standardization process, industry has moved in a different direction and started promoting the Cloud Computing paradigm which aims to solve problems on a similar scale and in equally seamless way as it was expected in the idealized Grid approach. A key enabling technology behind Cloud computing is server virtualization. In early 2008, an R&D project was established in the PH-SFT group at CERN to investigate how virtualization technology could be used to improve and simplify the daily interaction of physicists with experiment software frameworks and the Grid infrastructure. In this article we shall first briefly compare Grid and Cloud computing paradigms and then summarize the results of the R&D activity pointing out where and how virtualization technology could be effectively used in our field in order to maximize practical benefits whilst avoiding potential pitfalls.
Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.
1972-01-01
A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.
NASA Astrophysics Data System (ADS)
Bluestein, H. B.; Unruh, W. P.
1989-12-01
A severe-storm intercept field program was held in Oklahoma and nearby parts of Texas during the 1987-38 spring seasons. The purpose of the experiment was to use, for the first time, a low-power, portable, continuous-wave (CW), 3-cm Doppler radar to obtain wind spectra in tornadoes from a distance of less than 10 km.We discuss measurements of spectra we recorded in a tornado, a funnel cloud, and two wall clouds. Photographic documentation is also given to aid in the interpretation of our data. Wind speeds as high as 60 m s1 were measured in the tornado. It was found that deploying the portable Doppler radar from a storm-intercept vehicle may increase substantially the number of measurements of wind speeds in tornadoes.The radar has recently been modified so that it has frequency modulation (FM) capability, and hence can obtain wind spectra within range bins. A plan is presented for using the radar to find the source of vorticity in tornadoes.
A new task scheduling algorithm based on value and time for cloud platform
NASA Astrophysics Data System (ADS)
Kuang, Ling; Zhang, Lichen
2017-08-01
Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.
Atmospheric microphysical experiments on an orbital platform
NASA Technical Reports Server (NTRS)
Eaton, L. R.
1974-01-01
The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.
Creating cloud-free Landsat ETM+ data sets in tropical landscapes: cloud and cloud-shadow removal
Sebastián Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez
2007-01-01
Clouds and cloud shadows are common features of visible and infrared remotelysensed images collected from many parts of the world, particularly in humid and tropical regions. We have developed a simple and semiautomated method to mask clouds and shadows in Landsat ETM+ imagery, and have developed a recent cloud-free composite of multitemporal images for Puerto Rico and...
NASA Astrophysics Data System (ADS)
Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; Abel, S.
2016-12-01
Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions. Our understanding of aerosol-cloud interactions in the SE Atlantic is severely limited. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We describe first results from various synergistic, international research activities aimed at studying aerosol-cloud interactions in the region: NASA's airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployment in August/September of 2016, the DoE's LASIC (Layered Atlantic Smoke Interactions with Clouds) deployment of the ARM Mobile Facility to Ascension Island (June 2016 - October 2017), the ground-based components of CNRS' AEROCLO-sA (Aerosols Clouds and Fog over the west coast of southern Africa), and ongoing regional-scale integrative, process-oriented science efforts as part of SEALS-sA (Sea Earth Atmosphere Linkages Study in southern Africa). We expect to describe experimental setups as well as showcase initial aerosol and cloud property distributions. Furthermore, we discuss the implementation of future activities in these programs in coordination with the UK Met Office's CLARIFY (CLoud-Aerosol-Radiation Interactions and Forcing) experiment in 2017.
NASA Technical Reports Server (NTRS)
Hodges, D. B.
1976-01-01
An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.
Contrasting cloud composition between coupled and decoupled marine boundary layer clouds
NASA Astrophysics Data System (ADS)
Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2016-10-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
NASA Astrophysics Data System (ADS)
Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.
2018-03-01
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.
The cloud chamber as a field diagnostic tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, A
1967-10-19
This document presents the Pros and Cons of using a cloud chamber for field use. Historical aspects are briefly discussed. A cloud chamber experiment on Midi Mist is described. Plans for fielding an experiment on Hupmobile are presented.
Shallow cumulus rooted in photosynthesis
NASA Astrophysics Data System (ADS)
Vila-Guerau Arellano, J.; Ouwersloot, H.; Horn, G.; Sikma, M.; Jacobs, C. M.; Baldocchi, D.
2014-12-01
We investigate the interaction between plant evapotranspiration, controlled by photosynthesis (for a low vegetation cover by C3 and C4 grasses), and the moist thermals that are responsible for the formation and development of shallow cumulus clouds (SCu). We perform systematic numerical experiments at fine spatial scales using large-eddy simulations explicitly coupled to a plant-physiology model. To break down the complexity of the vegetation-atmospheric system at the diurnal scales, we design the following experiments with increasing complexity: (a) clouds that are transparent to radiation, (b) clouds that shade the surface from the incoming shortwave radiation and (c) plant stomata whose apertures react with an adjustment in time to cloud perturbations. The shading by SCu leads to a strong spatial variability in photosynthesis and the surface energy balance. As a result, experiment (b) simulates SCu that are characterized by less extreme and less skewed values of the liquid water path and cloud-base height. These findings are corroborated by the calculation of characteristics lengths scales of the thermals and clouds using autocorrelation and spectral analysis methods. We find that experiments (a) and (b) are characterized by similar cloud cover evolution, but different cloud population characteristics. Experiment (b), including cloud shading, is characterized by smaller clouds, but closer to each other. By performing a sensitivity analysis on the exchange of water vapor and carbon dioxide at the canopy level, we show that the larger water-use efficiency of C4 grass leads to two opposing effects that directly influence boundary-layer clouds: the thermals below the clouds are more vigorous and deeper driven by a larger buoyancy surface flux (positive effect), but are characterized by less moisture content (negative effect). We conclude that under the investigated mid-latitude atmospheric and well-watered soil conditions, SCu over C4 grass fields is characterized by larger cloud cover and an enhanced liquid water path compared to C3 grass fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoning; Zhang, He; Liu, Xiaodong
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less
NASA Astrophysics Data System (ADS)
Xie, Xiaoning; Zhang, He; Liu, Xiaodong; Peng, Yiran; Liu, Yangang
2017-05-01
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ɛ exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius (Re) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled as the dispersion effect), which can help reconcile global climate models (GCMs) with the satellite observations. However, the total dispersion effects on both Re and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). In order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of Re and Au explicitly accounting for ɛ are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ɛ reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. Additionally, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m-2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m-2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δɛ/ΔNc).
Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...
2017-05-12
Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less
Point-cloud-to-point-cloud technique on tool calibration for dental implant surgical path tracking
NASA Astrophysics Data System (ADS)
Lorsakul, Auranuch; Suthakorn, Jackrit; Sinthanayothin, Chanjira
2008-03-01
Dental implant is one of the most popular methods of tooth root replacement used in prosthetic dentistry. Computerize navigation system on a pre-surgical plan is offered to minimize potential risk of damage to critical anatomic structures of patients. Dental tool tip calibrating is basically an important procedure of intraoperative surgery to determine the relation between the hand-piece tool tip and hand-piece's markers. With the transferring coordinates from preoperative CT data to reality, this parameter is a part of components in typical registration problem. It is a part of navigation system which will be developed for further integration. A high accuracy is required, and this relation is arranged by point-cloud-to-point-cloud rigid transformations and singular value decomposition (SVD) for minimizing rigid registration errors. In earlier studies, commercial surgical navigation systems from, such as, BrainLAB and Materialize, have flexibility problem on tool tip calibration. Their systems either require a special tool tip calibration device or are unable to change the different tool. The proposed procedure is to use the pointing device or hand-piece to touch on the pivot and the transformation matrix. This matrix is calculated every time when it moves to the new position while the tool tip stays at the same point. The experiment acquired on the information of tracking device, image acquisition and image processing algorithms. The key success is that point-to-point-cloud requires only 3 post images of tool to be able to converge to the minimum errors 0.77%, and the obtained result is correct in using the tool holder to track the path simulation line displayed in graphic animation.
Cloud Migration Experiment Configuration and Results
2017-12-01
ARL-TR-8248 ● DEC 2017 US Army Research Laboratory Cloud Migration Experiment Configuration and Results by Michael De Lucia...or reconstruction of the document. ARL-TR-8248 ● DEC 2017 US Army Research Laboratory Cloud Migration Experiment Configuration...and Results by Michael De Lucia Computational and Information Sciences Directorate, ARL Justin Wray and Steven S Collmann ICF International
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent
2012-01-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Shenk, W. E.; Skillman, W.
1974-01-01
An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.
2006-01-01
Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.
Estimating the Influence of Biological Ice Nuclei on Clouds with Regional Scale Simulations
NASA Astrophysics Data System (ADS)
Hummel, Matthias; Hoose, Corinna; Schaupp, Caroline; Möhler, Ottmar
2014-05-01
Cloud properties are largely influenced by the atmospheric formation of ice particles. Some primary biological aerosol particles (PBAP), e.g. certain bacteria, fungal spores or pollen, have been identified as effective ice nuclei (IN). The work presented here quantifies the IN concentrations originating from PBAP in order to estimate their influences on clouds with the regional scale atmospheric model COSMO-ART in a six day case study for Western Europe. The atmospheric particle distribution is calculated for three different PBAP (bacteria, fungal spores and birch pollen). The parameterizations for heterogeneous ice nucleation of PBAP are derived from AIDA cloud chamber experiments with Pseudomonas syringae bacteria and birch pollen (Schaupp, 2013) and from published data on Cladosporium spores (Iannone et al., 2011). A constant fraction of ice-active bacteria and fungal spores relative to the total bacteria and spore concentration had to be assumed. At cloud altitude, average simulated PBAP number concentrations are ~17 L-1 for bacteria and fungal spores and ~0.03 L-1 for birch pollen, including large temporal and spatial variations of more than one order of magnitude. Thus, the average, 'diagnostic' in-cloud PBAP IN concentrations, which only depend on the PBAP concentrations and temperature, without applying dynamics and cloud microphysics, lie at the lower end of the range of typically observed atmospheric IN concentrations . Average PBAP IN concentrations are between 10-6 L-1 and 10-4 L-1. Locally but not very frequently, PBAP IN concentrations can be as high as 0.2 L-1 at -10° C. Two simulations are compared to estimate the cloud impact of PBAP IN, both including mineral dust as an additional background IN with a constant concentration of 100 L-1. One of the simulations includes additional PBAP IN which can alter the cloud properties compared to the reference simulation without PBAP IN. The difference in ice particle and cloud droplet concentration between both simulations is a result of the heterogeneous ice nucleation of PBAP. In the chosen case setup, two effects can be identified which are occurring at different altitudes. Additional PBAP IN directly enhance the ice crystal concentration at lower parts of a mixed-phase cloud. This increase comes with a decrease in liquid droplet concentration in this part of a cloud. Therefore, a second effect takes place, where less ice crystals are formed by dust-driven heterogeneous as well as homogeneous ice nucleation in upper parts of a cloud, probably due to a lack of liquid water reaching these altitudes. Overall, diagnostic PBAP IN concentrations are very low compared to typical IN concentration, but reach maxima at temperatures where typical IN are not very ice-active. PBAP IN can therefore influence clouds to some extent. Iannone, R., Chernoff, D. I., Pringle, A., Martin, S. T., and Bertram, A. K.: The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere, Atmos. Chem. Phys., 11, 1191-1201, 10.5194/acp-11-1191-2011, 2011. Schaupp, C.: Untersuchungen zur Rolle von Bakterien und Pollen als Wolkenkondensations- und Eiskeime in troposphärischen Wolken, Ph.D. thesis, Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany, 2013.
2015-09-30
hired to conduct WRF model experiments. • We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with... WRF simulations under different synoptic conditions will help to more 10 clearly identify the deficiencies in the representation of these processes
Could geoengineering research help answer one of the biggest questions in climate science?
NASA Astrophysics Data System (ADS)
Wood, Robert; Ackerman, Thomas; Rasch, Philip; Wanser, Kelly
2017-07-01
Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in quantifying the radiative forcing of climate, and hinders our ability to determine Earth's climate sensitivity to greenhouse gas increases. Representation of aerosol-cloud interactions in global models is particularly challenging because these interactions occur on typically unresolved scales. Observational studies show influences of aerosol on clouds, but correlations between aerosol and clouds are insufficient to constrain aerosol forcing because of the difficulty in separating aerosol and meteorological impacts. In this commentary, we argue that this current impasse may be overcome with the development of approaches to conduct control experiments whereby aerosol particle perturbations can be introduced into patches of marine low clouds in a systematic manner. Such cloud perturbation experiments constitute a fresh approach to climate science and would provide unprecedented data to untangle the effects of aerosol particles on cloud microphysics and the resulting reflection of solar radiation by clouds. The control experiments would provide a critical test of high-resolution models that are used to develop an improved representation aerosol-cloud interactions needed to better constrain aerosol forcing in global climate models.
14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria
Code of Federal Regulations, 2013 CFR
2013-01-01
... all clouds in the specified volume, computed as follows: (i) The cloud base to be averaged is the..., height-integrated radar reflectivity (VAHIRR) of clouds, are used with the lightning flight commit... the purpose of this appendix: Anvil cloud means a stratiform or fibrous cloud formed by the upper...
14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria
Code of Federal Regulations, 2012 CFR
2012-01-01
... all clouds in the specified volume, computed as follows: (i) The cloud base to be averaged is the..., height-integrated radar reflectivity (VAHIRR) of clouds, are used with the lightning flight commit... the purpose of this appendix: Anvil cloud means a stratiform or fibrous cloud formed by the upper...
14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria
Code of Federal Regulations, 2014 CFR
2014-01-01
... all clouds in the specified volume, computed as follows: (i) The cloud base to be averaged is the..., height-integrated radar reflectivity (VAHIRR) of clouds, are used with the lightning flight commit... the purpose of this appendix: Anvil cloud means a stratiform or fibrous cloud formed by the upper...
Digital all-sky polarization imaging of partly cloudy skies.
Pust, Nathan J; Shaw, Joseph A
2008-12-01
Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.
Investigating the Accuracy of Point Clouds Generated for Rock Surfaces
NASA Astrophysics Data System (ADS)
Seker, D. Z.; Incekara, A. H.
2016-12-01
Point clouds which are produced by means of different techniques are widely used to model the rocks and obtain the properties of rock surfaces like roughness, volume and area. These point clouds can be generated by applying laser scanning and close range photogrammetry techniques. Laser scanning is the most common method to produce point cloud. In this method, laser scanner device produces 3D point cloud at regular intervals. In close range photogrammetry, point cloud can be produced with the help of photographs taken in appropriate conditions depending on developing hardware and software technology. Many photogrammetric software which is open source or not currently provide the generation of point cloud support. Both methods are close to each other in terms of accuracy. Sufficient accuracy in the mm and cm range can be obtained with the help of a qualified digital camera and laser scanner. In both methods, field work is completed in less time than conventional techniques. In close range photogrammetry, any part of rock surfaces can be completely represented owing to overlapping oblique photographs. In contrast to the proximity of the data, these two methods are quite different in terms of cost. In this study, whether or not point cloud produced by photographs can be used instead of point cloud produced by laser scanner device is investigated. In accordance with this purpose, rock surfaces which have complex and irregular shape located in İstanbul Technical University Ayazaga Campus were selected as study object. Selected object is mixture of different rock types and consists of both partly weathered and fresh parts. Study was performed on a part of 30m x 10m rock surface. 2D and 3D analysis were performed for several regions selected from the point clouds of the surface models. 2D analysis is area-based and 3D analysis is volume-based. Analysis conclusions showed that point clouds in both are similar and can be used as alternative to each other. This proved that point cloud produced using photographs which are both economical and enables to produce data in less time can be used in several studies instead of point cloud produced by laser scanner.
Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing
NASA Astrophysics Data System (ADS)
Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim
2011-03-01
Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.
Ice clouds optical properties in the Far Infrared from the ECOWAR-COBRA Experiment
NASA Astrophysics Data System (ADS)
Rizzi, Rolando; Tosi, Ennio
ECOWAR-COBRA (Earth COoling by WAter vapouR emission -Campagna di Osservazioni della Banda Rotazionale del vapor d'Acqua) field campaign took place in Italy from 3 to 17 March 2007 with the main goal of studying the scarcely sensed atmospheric emission occurring beyond 17 microns. Instrumentation involved in the campaign included two different Fourier Transforms Spectrometers (FTS) : REFIR-PAD (at Testa Grigia Station, 3500 m a.s.l.) and FTIR-ABB (at Cervinia Station, 1990 m a.s.l.). In this work cloudy sky data have been ana-lyzed. A cloud properties retrieval methodology (RT-RET), based on high spectral resolution measurements in the atmospheric window (800-1000 cm-1), is applied to both FTS sensors. Cloud properties determined from the infrared retrievals are compared with those obtained from Raman lidar taken by the BASIL Lidar system that was operating at Cervinia station. Cloud microphysical and optical properties retrieved by RT-RET are used to perform forward simulations over the entire FTSs measurements spectral interval. Results are compared to FTS data to test the ability of single scattering ice crystals models to reproduce cloudy sky radiances in the Far Infra-Red (FIR) part of the spectrum. New methods to retrieve cloud optical and microphysical properties exploiting high spectral resolution FIR measurements are also investigated.
Citizen Science in Libraries: Results and Insights from a Unique NASA Collaboration
NASA Astrophysics Data System (ADS)
Janney, D. W.; Schwerin, T. G.; Riebeek Kohl, H.; Dusenbery, P.; LaConte, K.; Taylor, J.; Weaver, K. L. K.
2017-12-01
Libraries are local community centers and hubs for learning, with more and more libraries responding to the need to increase science literacy and support 21st century skills by adding STEM programs and resources for patrons of all ages. A collaboration has been developed between two NASA Science Mission Directorate projects - the NASA Earth Science Education Collaborative and NASA@ My Library - each bringing unique STEM assets and networks to support library staff and bring authentic STEM experiences and resources to learners in public library settings. The collaboration used Earth Day 2017 as a high profile event to engage and support 100 libraries across the U.S. (>50% serving rural communities), in developing locally-relevant programs and events that incorporated cloud observing and resources using NASA GLOBE Observer (GO) citizen science program. GO cloud observations are helping NASA scientists understand clouds from below (the ground) and above (from space). Clouds play an important role in transferring energy from the Sun to different parts of the Earth system. Because clouds can change rapidly, scientists need frequent observations from citizen scientists. Insights from the library focus groups and evaluation include promising practices, requested resources, programming ideas and approaches, particularly approaches to leveraging NASA subject matter experts and networks, to support local library programming.
NASA Astrophysics Data System (ADS)
Rasch, Philip J.; Wood, Robert; Ackerman, Thomas P.
2017-04-01
Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in radiative forcing of climate, confounding estimates of climate sensitivity to increases in greenhouse gases. Projections of future warming are also thus strongly dependent on estimates of aerosol effects on clouds. I will discuss the opportunities for improving estimates of aerosol effects on clouds from controlled field experiments where aerosol with well understood size, composition, amount, and injection altitude could be introduced to deliberately change cloud properties. This would allow scientific investigation to be performed in a manner much closer to a lab environment, and facilitate the use of models to predict cloud responses ahead of time, testing our understanding of aerosol cloud interactions.
Additional confirmation of the validity of laboratory simulation of cloud radiances
NASA Technical Reports Server (NTRS)
Davis, J. M.; Cox, S. K.
1986-01-01
The results of a laboratory experiment are presented that provide additional verification of the methodology adopted for simulation of the radiances reflected from fields of optically thick clouds using the Cloud Field Optical Simulator (CFOS) at Colorado State University. The comparison of these data with their theoretically derived counterparts indicates that the crucial mechanism of cloud-to-cloud radiance field interaction is accurately simulated in the CFOS experiments and adds confidence to the manner in which the optical depth is scaled.
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
NASA Technical Reports Server (NTRS)
Abbott, M. R.; Zion, P. M.
1984-01-01
As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.
Extended time observations of California marine stratocumulus clouds from GOES for July 1983-1987
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Harrison, Edwin F.; Young, David F.
1990-01-01
One of the goals of the First ISCCP Regional Experiment (FIRE) is to relate the relatively small scale (spatial and temporal) Intensive Field Observations (IFO) to larger time and space domains embodied in the Extended Time Observations (ETO) phase of the experiment. The data analyzed as part of the ETO are to be used to determine some climatological features of the limited area which encompasses the Marine Stratocumulus IFO which took place between 29 June and 19 July 1987 off the coast of southern California.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
NASA Astrophysics Data System (ADS)
Marín, M. J.; Serrano, D.; Utrillas, M. P.; Núñez, M.; Martínez-Lozano, J. A.
2017-10-01
Partly cloudy skies with liquid water clouds have been analysed, founding that it is essential to distinguish data if the Sun is obstructed or not by clouds. Both cases can be separated considering simultaneously the Cloud Modification Factor (CMF) and the clearness index (kt). For partly cloudy skies and the Sun obstructed the effective cloud optical depth (τ) has been obtained by the minimization method for overcast skies. This method was previously developed by the authors but, in this case, taking into account partial cloud cover. This study has been conducted for the years 2011-2015 with the multiple scattering model SBDART and irradiance measurements for the UV Erythemal Radiation (UVER) and the broadband ranges. Afterwards a statistical analysis of τ has shown that the maximum value is much lower than for overcast skies and there is more discrepancy between the two spectral ranges regarding the results for overcast skies. In order to validate these results the effective cloud optical depth has been correlated with several transmission factors, giving similar fit parameters to those obtained for overcast skies except for the clearness index in the UVER range. As our method is not applicable for partly cloudy skies with the visible Sun, the enhancement of radiation caused by clouds when the Sun is visible has been studied. Results show that the average enhancement CMF values are the same for both ranges although enhancement is more frequent for low cloud cover in the UVER and medium-high cloud cover in the broadband range and it does not depend on the solar zenith angle.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy... Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of Airborne Radioactive... identifying the need for posting of airborne radioactivity areas in accordance with § 835.603(d). b. The air...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarquhar, Greg
We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign,more » over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.« less
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.
1972-01-01
The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.
NASA Technical Reports Server (NTRS)
Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.
1974-01-01
The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.
NASA Astrophysics Data System (ADS)
Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.
2017-11-01
Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Norris, Peter M.
2013-01-01
Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart
2016-12-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).
Junocam: Juno's Outreach Camera
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Caplinger, M. A.; Ingersoll, A.; Ravine, M. A.; Jensen, E.; Bolton, S.; Orton, G.
2017-11-01
Junocam is a wide-angle camera designed to capture the unique polar perspective of Jupiter offered by Juno's polar orbit. Junocam's four-color images include the best spatial resolution ever acquired of Jupiter's cloudtops. Junocam will look for convective clouds and lightning in thunderstorms and derive the heights of the clouds. Junocam will support Juno's radiometer experiment by identifying any unusual atmospheric conditions such as hotspots. Junocam is on the spacecraft explicitly to reach out to the public and share the excitement of space exploration. The public is an essential part of our virtual team: amateur astronomers will supply ground-based images for use in planning, the public will weigh in on which images to acquire, and the amateur image processing community will help process the data.
Inverted Polarity Thunderstorms Linked with Elevated Cloud Base Height
NASA Astrophysics Data System (ADS)
Cummins, K. L.; Williams, E.
2016-12-01
The great majority of thunderstorms worldwide exhibit gross positive dipole structure, produce intracloud lightning that reduces this positive dipole (positive intracloud flashes), and produce negative cloud-to-ground lightning from the lower negative end of this dipole. During the STEPS experiment in 2000 much new evidence for thunderstorms (or cells within multi-cellular storms) with inverted polarity came to light, both from balloon soundings of electric field and from LMA analysis. Many of the storms with inverted polarity cells developed in eastern Colorado. Fleenor et al. (2009) followed up after STEPS to document a dominance of positive polarity CG lightning in many of these cases. In the present study, surface thermodynamic observations (temperature and dew point temperature) have been used to estimate the cloud base heights and temperatures at the time of the Fleenor et al. lightning observations. It was found that when more than 90% of the observed CG lightning polarity within a storm is negative, the cloud base heights were low (2000 m AGL or lower, and warmer, with T>10 C), and when more than 90% of the observed CG lightning within a storm was positive, the cloud base heights were high (3000 m AGL or higher, and colder, with T< 2 C). Multi-cellular storms or temporally-evolving storms with mixed polarity were generally associated with intermediate cloud base heights. These findings on inverted polarity thunderstorms are remarkably consistent with results in other parts of the world where strong instability prevails in the presence of high cloud base height: the plateau regions of China (Liu et al., 1989; Qie et al., 2005), and in pre-monsoon India (Pawar et al., 2016), particularly when mixed polarity cases are excluded. Calculations of adiabatic cloud water content for lifting from near 0 oC cast some doubt on earlier speculation (Williams et al., 2005) that the graupel particles in these inverted polarity storms attain a wet growth condition, and so exhibit positive charging following laboratory experiments. This mechanism will be contrasted with the possibility of positive graupel charging associated with small droplet sizes (consistent with high cloud base) or through involvement of ice nuclei (Pawar et al., 2016) in the semiarid environments that frequently accompany inverted polarity storms.
Konishi, Yuki; Hayashi, Hiroaki; Takegami, Kazuki; Fukuda, Ikuma; Ueno, Junji
2014-01-01
A cloud chamber is a detector that can visualize the tracks of charged particles. Hayashi, et al. suggested a visualization experiment in which X-rays generated by diagnostic X-ray equipment were directed into a cloud chamber; however, there was a problem in that the wall of the cloud chamber scattered the incoming X-rays. In this study, we developed a new cloud chamber with entrance windows. Because these windows are made of thin film, we were able to direct the X-rays through them without contamination by scattered X-rays from the cloud chamber wall. We have newly proposed an experiment in which beta-particles emitted from radioisotopes are directed into a cloud chamber. We place shielding material in the cloud chamber and visualize the various shielding effects seen with the material positioned in different ways. During the experiment, electrons scattered in the air were measured quantitatively using GM counters. We explained the physical phenomena in the cloud chamber using Monte Carlo simulation code EGS5. Because electrons follow a tortuous path in air, the shielding material must be placed appropriately to be able to effectively block their emissions. Visualization of the tracks of charged particles in this experiment proved effective for instructing not only trainee radiological technologists but also different types of healthcare professionals.
Aerosol effects on clouds and precipitation over the eastern China
NASA Astrophysics Data System (ADS)
Wang, W. C.; Chen, G.; Song, Y.
2017-12-01
Anthropogenic aerosols (sulfates, nitrates and black carbons) can act as cloud condensation nuclei to regulate cloud droplet number and size, thereby changing cloud radiative properties and atmospheric short- and long-wave radiation. These together with aerosol direct radiative effects in turn alter the circulation with likely effects on the spatial distribution of cloud and precipitation. We conduct WRF model simulations over the eastern China to investigate the aerosol-cloud-climate interactions. In general, more aerosols yield more but smaller cloud droplets and larger cloud water content, whereas the changes of vertical distribution of cloud cover exhibit strong regional variations. For example, the low-cloud fraction and water content increase by more than 10% over the west part of the Yangtze-Huai River Valley (YHRV) and the southeast coastal region, but decrease over the east part of the YHRV, and high-cloud fraction decreases in South and North China but increases in the YHRV. The radiative forcing of aerosols and cloud changes are compared, with focus on the effects of changes of vertical distribution of cloud properties (microphysics and fraction). The precipitation changes are found to be closely associated with the circulation change, which favors more (and longer duration) rainfall over the YHRV but less (and shorter) rainfall over other regions. Details of the circulation change and its associations with clouds and precipitation will be presented.
Microphysical Characteristics of Tropical Clouds
NASA Technical Reports Server (NTRS)
Grainger, Cedric A.; Anderson, Nicholas
2004-01-01
This report summarizes the analysis of data collected by the University of North Dakota Citation II measurement platform during three TRMM Field measurement campaigns. The Citation II made cloud measurements during TEFLUN B in Florida, the LBA program in Brazil, and KWAJEX in Kwajalein. The work performed can be divided into two parts. The first part consisted of reformatting the Citation data into a form more easily used to compare to the satellite information. The second part consisted of examination of the cloud data in order to characterize the properties of the tropical clouds. The reformatting of the Citation data was quite labor intensive and, due to the fact that the aircraft was involved in three of the field campaigns, it required a substantial number of person-hours to complete. Much of the analysis done on the second part was done in conjunction with the thesis work of Nicholas Anderson, then a graduate student at the University of North Dakota.
2011-03-17
NASA Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn largest moon, Titan. Methane clouds in the troposphere, the lowest part of the atmosphere, appear white here.
NASA Technical Reports Server (NTRS)
Starr, D. OC.; Cox, S. K.
1985-01-01
A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.
Cloud Statistics for NASA Climate Change Studies
NASA Technical Reports Server (NTRS)
Wylie, Donald P.
1999-01-01
The Principal Investigator participated in two field experiments and developed a global data set on cirrus cloud frequency and optical depth to aid the development of numerical models of climate. Four papers were published under this grant. The accomplishments are summarized: (1) In SUCCESS (SUbsonic aircraft: Contrail & Cloud Effects Special Study) the Principal Investigator aided weather forecasters in the start of the field program. A paper also was published on the clouds studied in SUCCESS and the use of the satellite stereographic technique to distinguish cloud forms and heights of clouds. (2) In SHEBA (Surface Heat Budget in the Arctic) FIRE/ACE (Arctic Cloud Experiment) the Principal Investigator provided daily weather and cloud forecasts for four research aircraft crews, NASA's ER-2, UCAR's C-130, University of Washington's Convert 580, and the Canadian Atmospheric Environment Service's Convert 580. Approximately 105 forecasts were written. The Principal Investigator also made daily weather summaries with calculations of air trajectories for 54 flight days in the experiment. The trajectories show where the air sampled during the flights came from and will be used in future publications to discuss the origin and history of the air and clouds sampled by the aircraft. A paper discussing how well the FIRE/ACE data represent normal climatic conditions in the arctic is being prepared. (3) The Principal Investigator's web page became the source of information for weather forecasting by the scientists on the SHEBA ship. (4) Global Cirrus frequency and optical depth is a continuing analysis of global cloud cover and frequency distribution are being made from the NOAA polar orbiting weather satellites. This analysis is sensitive to cirrus clouds because of the radiative channels used. During this grant three papers were published which describe cloud frequencies, their optical properties and compare the Wisconsin FM Cloud Analysis to other global cloud data such as the International Satellite Cloud Climatology Program (ISCCP) and the Stratospheric Aerosol and Gas Experiment (SAGE). A summary of eight years of HIRS data will be published in late 1998. Important information from this study are: 1) cirrus clouds cover most of the earth, 2) they are found about 40% of the time globally, 3) in the tropics cirrus cloud frequencies are even higher, from 80-100%, 4) there is slight evidence that cirnis cloud cover is increasing in the northern hemisphere at about 0.5% per year, and 5) cirrus clouds have an average infrared transmittance of about 40% of the terrestrial radiation. (5) Global Cloud Frequency Statistics published on the Principal Investigator's web page have been used in the planning of the future CRYSTAL experiment and have been used for refinements of a global numerical model operated at the Colorado State University.
Experiments- Skylab General (Apollo Telescope Mount) S082
2013-10-23
S74-15583 (July 1973) --- A huge solar eruption can be seen in this Spectroheliogram obtained during the Skylab 3 mission by the Extreme Ultraviolet Spectrograph/Spectroheliograph SO82A Experiment aboard the Skylab space station in Earth orbit. SO82 is one of the Apollo Telescope Mount experiments. The SO82 "A" instrument covers the wavelength region from 150-650 angstroms (EUV regions). The magnitude of the eruption can be visualized by comparing it with the small white dot that represents the size of Earth. This photograph reveals for the first time that helium erupting from the sun can stay together to altitudes of up to 500,000 miles. After being ejected from the sun, the gas clouds seem to have come to a standstill, as though blocked by an unseen wall. Some materials appear to have been directed back toward the sun as a rain, distinguished by fine threads. At present it is a challenge to explain this mystery--what forces expelled these huge clouds, then blocked its further progress, yet allowed the cloud to maintain its threads. Both magnetic fields and gravity must play a part, but these curious forms seem to defy explanation based on magnetic and gravitational fields alone. The EUV spectroheliograph was designed and constructed by the U.S. Naval Research Laboratory and the Ball Brothers Research Corporation under the direction of Dr. R. Tousey, the principal investigator for this NASA experiment. On the left may be seen the sun's image in emission from iron atoms which have lost 14 electrons by collision in the sun's million-degree coronal plasma gas. Photo credit: NASA
A Cloud-Based Car Parking Middleware for IoT-Based Smart Cities: Design and Implementation
Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji
2014-01-01
This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide ‘best’ car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm. PMID:25429416
A cloud-based car parking middleware for IoT-based smart cities: design and implementation.
Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji
2014-11-25
This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide 'best' car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm.
Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign
NASA Astrophysics Data System (ADS)
Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan
2017-04-01
During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.
Boot of Italy taken during Expedition Six
2003-02-25
ISS006-E-33736 (25 February 2003) --- The boot of Italy crosses the image in this southwest-looking view taken by an Expedition Six crewmember onboard the International Space Station (ISS). The spine of Italy is highlighted with snow and the largely cloud-covered Mediterranean Sea is at the top. The Adriatic Sea transverses most of the bottom of the image and Sicily appears top left beyond the toe of the boot. The heel lies out of the left side of the image. Corsica and Sardinia appear right of center partly under cloud. The floor of the Po River valley, lower right, is obscured by haze. Experience gained from similar haze events, in which atmospheric pressure, humidity and visibility and atmospheric chemistry were known, suggests that the haze as industrial smog. Industrial haze from the urban region of the central and upper Po valley accumulates to visible concentrations under conditions of high atmospheric pressure and the surrounding mountains prevent easy dispersal. This view illustrates the markedly different color and texture of cloud versus industrial aerosol haze.
DETERMINATION OF CLOUD PARAMETERS FOR NEROS II FROM DIGITAL SATELLITE DATA
As part of the input for their regional-scale photochemical oxidant model of air pollution, known as the Regional Oxidant Model, requires statistical descriptions of total cloud amount, cumulus cloud amount, and cumulus cloud top height for certain regions and dates. These statis...
Proceedings of a Workshop on Polar Stratospheric Clouds: Their Role in Atmospheric Processes
NASA Technical Reports Server (NTRS)
Hamill, P. (Editor); Mcmaster, L. R. (Editor)
1984-01-01
The potential role of polar stratospheric clouds in atmospheric processes was assessed. The observations of polar stratospheric clouds with the Nimbus 7 SAM II satellite experiment were reviewed and a preliminary analysis of their formation, impact on other remote sensing experiments, and potential impact on climate were presented. The potential effect of polar stratospheric clouds on climate, radiation balance, atmospheric dynamics, stratospheric chemistry and water vapor budget, and cloud microphysics was assessed. Conclusions and recommendations, a synopsis of materials and complementary material to support those conclusions and recommendations are presented.
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
NASA Technical Reports Server (NTRS)
Purgold, Gerald C.; Wheeler, Robert J.; Whitlock, Charles H.
1992-01-01
Tables and figures are presented which show local site observations of cloud fractions, the number of cloud layers, direction of movement, and precipitation data collected during the FIRE (First ISCCP Regional Experiment) Phase 2 Cirrus Intensive Field Observations (IFO) conducted in Coffeyville, Kansas during November and December, 1991. Selected data are also presented at the times of the TIROS Operational Vertical Sounder (TOVS) satellite overpass. Several major scientific projects have used surface-based observations of clouds to compare directly with those being observed from satellites. Characterizing the physical properties of clouds is extremely useful in obtaining a more accurate analysis of the effect of clouds and their movements on weather and climate. It is the purpose of this paper to report data collected during the FIRE Phase 2 IFO experiment and to provide a brief history of such a surface-based system and the technical information required for recording local cloud parameters.
NASA Astrophysics Data System (ADS)
Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho
2016-12-01
Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.
2015-09-30
to conduct WRF model experiments. We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with the...level winds might be more important forcing for sea ice. In addition, evaluation of Polar- WRF simulations under different synoptic conditions will help
The role of marine organic ice nuclei in a global climate model
NASA Astrophysics Data System (ADS)
Hummel, Matthias; Egill Kristjansson, Jon
2016-04-01
Ice particle concentrations are a key parameter for cold clouds, exerting a strong influence on cloud lifetime, precipitation release, and the cloud radiative effect. The availability of ice-nucleating particles (INPs) and the temperature range in which they become activated determine the rate of ice formation in clouds (Hoose und Möhler, 2012). Particles from marine sources may contribute to ice formation in clouds, as they are abundant in the atmosphere and some of them have been found to be ice-nucleating active, but the extent of their influence on clouds is not known (Wilson et al., 2015). Wilson et al. (2015) collected marine INPs from the sea surface microlayer and analyzed their ice nucleation efficiency with a cold stage. Even in cirrus clouds, marine INPs may play a role, as their ice nucleation surface site density as a function of RHice at -40° C has been shown to be larger than for mineral dusts (ATD, kaolinite, and feldspar). In this study, we test the influence of marine organic aerosols on clouds via immersion freezing with the earth system model NorESM2 (Version 2 of the Norwegian Earth System Model; Bentsen et al., 2013). The model is based on the Community Earth System Model (CESM1.2) and its atmospheric part (CAM5 Oslo) is based on the Community Atmosphere Model (CAM5.3). The parameterization of ice nucleation of marine INPs is expressed as an exponential function of temperature multiplied by the total organic content. Marine organic aerosols are part of the sea spray aerosol and are ejected during bubble bursting. INPs are associated with exudates or other macromolecules mainly from diatoms. Hence, their concentration is related to the sea salt aerosols in the model simulation. Our first results indicate that the high marine INP concentrations at around 850 hPa occur at high latitudes. These regions have low mineral dust concentrations, which might increase the influence of marine INP on clouds. However, they do not coincide with regions of high winds and therefore large sea spray aerosol concentrations, contrary to model simulations in Wilson et al. (2015) with the global aerosol process model (GLOMAP), but are shifted further polewards. Therefore, marine INP concentrations strongly depend on temperature and do not necessarily coincide with large sea spray concentrations. At mid-latitudes, marine INP concentrations rank below dust INP by at least one order of magnitude. Further, this presentation will describe the influence of marine INP on cloud properties and give an estimate of the cloud radiative effect of marine INP. Bentsen, M., I. Bethke, et al. (2013): The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev. 6(3): 687-720. Hoose, C. und O. Möhler (2012): Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys. 12(20): 9817-9854. Wilson, T. W., L. A. Ladino, et al. (2015): A marine biogenic source of atmospheric ice-nucleating particles, Nature 525(7568): 234-238.
Wehner, Rüdiger; Müller, Martin
2006-08-15
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This "signature" of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant's compound eyes and is channeled into two rather separate systems of navigation.
NASA Astrophysics Data System (ADS)
Farley, Richard D.
1987-07-01
This paper reports on simulations of a multicellular hailstorm case observed during the 1983 Alberta Hail Project. The field operations on that day concentrated on two successive feeder cells which were subjected to controlled seeding experiments. The fist of these cells received the placebo treatment and the second was seeded with dry ice. The principal tool of this study is a modified version of the two-dimensional, time dependent hail category model described in Part I of this series of papers. It is with this model that hail growth processes are investigated, including the simulated effects of cloud seeding techniques as practiced in Alberta.The model simulation of the natural case produces a very good replication of the observed storm, particularly the placebo feeder cell. This is evidenced, in particular, by the high degree of fidelity of the observed and modeled radar reflectivity in terms of magnitudes, structure, and evolution. The character of the hailfall at the surface and the scale of the storm are captured nicely by the model, although cloud-top heights are generally too high, particularly for the mature storm system.Seeding experiments similar to those conducted in the field have also been simulated. These involve seeding the feeder cell early in its active development phase with dry ice (CO2) or silver iodide (AgI) introduced near cloud top. The model simulations of these seeded cases capture some of the observed seeding signatures detected by radar and aircraft. In these model experiments, CO2 seeding produced a stronger response than AgI seeding relative to inhibiting hail formation. For both seeded cases, production of precipitating ice was initially enhanced by the seeding, but retarded slightly in the later stages, the net result being modest increases in surface rainfall, with hail reduced slightly. In general, the model simulations support several subhypotheses of the operational strategy of the Alberta Research Council regarding the earlier formation of ice, snow, and graupel due to seeding.
Cool neutral hydrogen in the direction of an anonymous OB association
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bania, T.M.
1983-08-01
H I self-absorption is seen in the direction l = 55./sup 0/6 probably physically associated with an anonymous OB association which has the Cepheid GY Sagittae as a member. The cool H I is in two clouds at least 15 pc in diameter located 3.25 kpc from the Sun. If their temperature is approx. =50 K, the cloud masses are approx. =10/sup 3/ M/sub sun/. The neutral atomic hydrogen clouds are probably warm envelopes surrounding cold molecular cloud cores because CO observations in this region show two molecular clouds nearly coincident with the absorbing H i gas. Since the OBmore » association is only approx. =10/sup 7/ years old, these clouds are likely to be part of the original cloud complex from which the stellar cluster formed. The H i clouds are part of the larger Arecibo survey of self-absorption which suggests that many of the Arecibo clouds are associated with heretofore unidentified star clusters. Even if this is generally not the case, the Arecibo objects have accurate kinematic distances and thus provide a new sample of cool H I clouds whose thermodynamic properties can be studied.« less
Observed aerosol effects on marine cloud nucleation and supersaturation
NASA Astrophysics Data System (ADS)
Russell, Lynn M.; Sorooshian, Armin; Seinfeld, John H.; Albrecht, Bruce A.; Nenes, Athanasios; Leaitch, W. Richard; Macdonald, Anne Marie; Ahlm, Lars; Chen, Yi-Chun; Coggon, Matthew; Corrigan, Ashley; Craven, Jill S.; Flagan, Richard C.; Frossard, Amanda A.; Hawkins, Lelia N.; Jonsson, Haflidi; Jung, Eunsil; Lin, Jack J.; Metcalf, Andrew R.; Modini, Robin; Mülmenstädt, Johannes; Roberts, Greg C.; Shingler, Taylor; Song, Siwon; Wang, Zhen; Wonaschütz, Anna
2013-05-01
Aerosol particles in the marine boundary layer include primary organic and salt particles from sea spray and combustion-derived particles from ships and coastal cities. These particle types serve as nuclei for marine cloud droplet activation, although the particles that activate depend on the particle size and composition as well as the supersaturation that results from cloud updraft velocities. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) 2011 was a targeted aircraft campaign to assess how different particle types nucleate cloud droplets. As part of E-PEACE 2011, we studied the role of marine particles as cloud droplet nuclei and used emitted particle sources to separate particle-induced feedbacks from dynamical variability. The emitted particle sources included shipboard smoke-generated particles with 0.05-1 μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke) and combustion particles from container ships with 0.05-0.2 μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components) [1]. Three central aspects of the collaborative E-PEACE results are: (1) the size and chemical composition of the emitted smoke particles compared to ship-track-forming cargo ship emissions as well as background marine particles, with particular attention to the role of organic particles, (2) the characteristics of cloud track formation for smoke and cargo ships, as well as the role of multi-layered low clouds, and (3) the implications of these findings for quantifying aerosol indirect effects. For comparison with the E-PEACE results, the preliminary results of the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) 2012 provided evidence of the cloud-nucleating roles of both marine organic particles and coastal urban pollution, with simultaneous measurements of the effective supersaturations of the clouds in the California coastal region.
Can Oort clouds pollute their parent stars after they become white dwarfs?
NASA Astrophysics Data System (ADS)
Veras, D.; Shannon, A.; Gänsicke, B. T.
2017-09-01
Comets impact the Sun frequently. In fact, coronographs like those which are part of Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph Experiment (LASCO) reveal that a comet grazes the Sun every few days, with a total of about 2400 grazers from 1996 to 2008. This frequency underscores an outstanding question in the quest to understand planetary systems: what types of small bodies - pebbles, asteroids, comets or moons - are the primary polluter of white dwarfs? We determine how often remnant exo-Oort clouds, freshly excited from post-main-sequence stellar mass loss, dynamically inject comets inside the white dwarf's Roche radius. We improve upon previous studies by considering a representative range of single white dwarf masses (0.52-1.00 M⊙) and incorporating different cloud architectures, giant branch stellar mass loss, stellar flybys, Galactic tides and a realistic escape ellipsoid in self-consistent numerical simulations that integrate beyond 8 Gyr ages of white dwarf cooling. We find that ˜10^(-5) of the material in an exo-Oort cloud is typically amassed onto the white dwarf, and that hydrogen deposits accumulate even as the cloud dissipates. This accumulation may account for the relatively large amount of trace hydrogen, 10^(22) -10^(25) g, that is determined frequently among white dwarfs with cooling ages ≥1 Gyr. Our results also reaffirm the notion that exo-Oort cloud comets are not the primary agents of the metal budgets observed in polluted white dwarf atmospheres.
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Ackerman, A. S.; Allen, G.; Beringer, J.; Comstock, J. M.; Field, P. R.; Gallagher, M.; Hacker, J. M.; Hume, T.; Jakob, C.; Liu, G.; Long, C. N.; Mather, J. H.; May, P. T.; McCoy, R. F.; McFarlane, S. A.; McFarquhar, G. M.; Minnis, P.; Petch, J. C.; Schumacher, C.; Turner, D. D.; Whiteway, J. A.; Williams, C. R.; Williams, P. I.; Xie, S.; Zhang, M.
2008-12-01
The 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) is 'the first field program in the tropics that attempted to describe the evolution of tropical convection, including the large-scale heat, moisture, and momentum budgets at 3-hourly time resolution, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment' [May et al., 2008]. A cloud- resolving model (CRM) intercomparison based on TWP-ICE is now being undertaken by the Atmospheric Radiation Measurement (ARM), GEWEX Cloud Systems Study (GCSS), and Stratospheric Processes And their Role in Climate (SPARC) programs. We summarize the 16-day case study and the wealth of data being used to provide initial and boundary conditions, and evaluate some preliminary findings in the context of existing theories of moisture evolution in the tropical tropopause layer (TTL). Overall, simulated cloud fields evolve realistically by many measures. Budgets indicate that simulated convective flux convergence of water vapor is always positive or near zero at TTL elevations, except locally at lower levels during the driest suppressed monsoon conditions, while simulated water vapor deposition to hydrometeors always exceeds sublimation on average at all TTL elevations over 24-hour timescales. The next largest water vapor budget term is generally the nudging required to keep domain averages consistent with observations, which is at least partly attributable to large-scale forcing terms that cannot be derived from measurements. We discuss the primary uncertainties.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Shenk, W. E.; Skillman, W. C.
1975-01-01
Low level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. The aerial photographs were also used to make a positive identification in a satellite picture of the cloud observed by the low level aircraft. The experiment was conducted over the tropical oceans in the vicinity of Florida, Puerto Rico, Panama and in the Western Gulf of Mexico. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at the cloud base. The magnitude of the vector difference between the cloud motion and the cloud base wind is less than 1.3 m/sec for 67% of the cases with track lengths of 1 hour or longer. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/sec.
NASA Astrophysics Data System (ADS)
Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.
2012-12-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds
NASA Astrophysics Data System (ADS)
Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel
2014-06-01
The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.
NASA Astrophysics Data System (ADS)
Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel
2017-03-01
A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.
International Conference on Aerosols, Clouds and the Indian Monsoon
NASA Astrophysics Data System (ADS)
Singh, Ramesh P.; Tare, Vinod; Tripathi, S. N.
2005-06-01
In recent years, dense haze and fog problems in the northern parts of India have affected the 460 million people living in the Indo-Gangetic basin. Substantial Indian research activities related to aerosols, clouds, and monsoon are taking place in the central and southern parts of India. To attract attention to the problems, a three-day International Conference on Aerosols, Clouds and Indian Monsoon was recently held at the Indian Institute of Technology, Kanpur, in the central part of the Indo-Gangetic basin. About 120 delegates from India, Germany, Greece, Japan, Taiwan, and the United States attended the conference.
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
NASA Technical Reports Server (NTRS)
Stanfield, Ryan E.; Dong, Xiquan; Xi, Baike; Del Genio, Anthony D.; Minnis, Patrick; Doelling, David; Loeb, Norman
2014-01-01
In Part I of this study, the NASA GISS Coupled Model Intercomparison Project (CMIP5) and post-CMIP5 (herein called C5 and P5, respectively) simulated cloud properties were assessed utilizing multiple satellite observations, with a particular focus on the southern midlatitudes (SMLs). This study applies the knowledge gained from Part I of this series to evaluate the modeled TOA radiation budgets and cloud radiative effects (CREs) globally using CERES EBAF (CE) satellite observations and the impact of regional cloud properties and water vapor on the TOA radiation budgets. Comparisons revealed that the P5- and C5-simulated global means of clear-sky and all-sky outgoing longwave radiation (OLR) match well with CE observations, while biases are observed regionally. Negative biases are found in both P5- and C5-simulated clear-sky OLR. P5-simulated all-sky albedo slightly increased over the SMLs due to the increase in low-level cloud fraction from the new planetary boundary layer (PBL) scheme. Shortwave, longwave, and net CRE are quantitatively analyzed as well. Regions of strong large-scale atmospheric upwelling/downwelling motion are also defined to compare regional differences across multiple cloud and radiative variables. In general, the P5 and C5 simulations agree with the observations better over the downwelling regime than over the upwelling regime. Comparing the results herein with the cloud property comparisons presented in Part I, the modeled TOA radiation budgets and CREs agree well with the CE observations. These results, combined with results in Part I, have quantitatively estimated how much improvement is found in the P5-simulated cloud and radiative properties, particularly over the SMLs and tropics, due to the implementation of the new PBL and convection schemes.
CLOUDCLOUD : general-purpose instrument monitoring and data managing software
NASA Astrophysics Data System (ADS)
Dias, António; Amorim, António; Tomé, António
2016-04-01
An effective experiment is dependent on the ability to store and deliver data and information to all participant parties regardless of their degree of involvement in the specific parts that make the experiment a whole. Having fast, efficient and ubiquitous access to data will increase visibility and discussion, such that the outcome will have already been reviewed several times, strengthening the conclusions. The CLOUD project aims at providing users with a general purpose data acquisition, management and instrument monitoring platform that is fast, easy to use, lightweight and accessible to all participants of an experiment. This work is now implemented in the CLOUD experiment at CERN and will be fully integrated with the experiment as of 2016. Despite being used in an experiment of the scale of CLOUD, this software can also be used in any size of experiment or monitoring station, from single computers to large networks of computers to monitor any sort of instrument output without influencing the individual instrument's DAQ. Instrument data and meta data is stored and accessed via a specially designed database architecture and any type of instrument output is accepted using our continuously growing parsing application. Multiple databases can be used to separate different data taking periods or a single database can be used if for instance an experiment is continuous. A simple web-based application gives the user total control over the monitored instruments and their data, allowing data visualization and download, upload of processed data and the ability to edit existing instruments or add new instruments to the experiment. When in a network, new computers are immediately recognized and added to the system and are able to monitor instruments connected to them. Automatic computer integration is achieved by a locally running python-based parsing agent that communicates with a main server application guaranteeing that all instruments assigned to that computer are monitored with parsing intervals as fast as milliseconds. This software (server+agents+interface+database) comes in easy and ready-to-use packages that can be installed in any operating system, including Android and iOS systems. This software is ideal for use in modular experiments or monitoring stations with large variability in instruments and measuring methods or in large collaborations, where data requires homogenization in order to be effectively transmitted to all involved parties. This work presents the software and provides performance comparison with previously used monitoring systems in the CLOUD experiment at CERN.
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.
2005-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.
Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES
NASA Astrophysics Data System (ADS)
Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.
2017-12-01
The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.
CloudSat Takes a 3D Slice of Hurricane Matthew
2016-10-07
NASA's CloudSat flew east of Hurricane Matthew's center on Oct. 6 at 11:30 a.m. PDT (2:30 p.m. EDT), intersecting parts of Matthew's outer rain bands and revealing Matthew's anvil clouds (thick cirrus cloud cover), with cumulus and cumulonimbus clouds beneath (lower image). Reds/pinks are larger water/ice droplets. http://photojournal.jpl.nasa.gov/catalog/PIA21095
NASA Astrophysics Data System (ADS)
Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn
2015-04-01
Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054
NASA Astrophysics Data System (ADS)
Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.
2016-12-01
The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloud retrievals from ORACLES, compared with standard RSP low-level cloud retrieval method that has been validated against in situ observations.
NASA Astrophysics Data System (ADS)
Roberts, G.; Mauger, G.; Hadley, O.; Ramanathan, V.
2006-07-01
Measurements of aerosol and cloud properties in the Eastern Pacific Ocean were taken during an airborne experiment on the University of Wyoming's King Air during April 2004 as part of the Cloud Indirect Forcing Experiment (CIFEX). We observed a wide variety of aerosols, including those of long-range transport from Asia, clean marine boundary layer, and North American emissions. These aerosols, classified by their size distribution and history, were found in stratified layers between 500 to 7500 m above sea level and thicknesses from 100 to 3000 m. A comparison of the aerosol size distributions to measurements of cloud condensation nuclei (CCN) provides insight to the CCN activity of the different aerosol types. The overall ratio of measured to predicted CCN concentration (NCCN) is 0.56 ± 0.41 with a relationship of NCCN,measured = NCCN,predicted0.846±0.002 for 23 research flights and 1884 comparisons. Such a relationship does not accurately describe a CCN closure; however, it is consistent with our measurements that high CCN concentrations are more influenced by anthropogenic sources, which are less CCN active. While other CCN closures have obtained results closer to the expected 1:1 relationship, the different aerosol types (and presumably differences in aerosol chemistry) are responsible for the discrepancy. The measured NCCN at 0.3% supersaturation (Sc) ranged from 20 cm-3 (pristine) to 350 cm-3 (anthropogenic) with an average of 106 ± 54 cm-3 over the experiment. The inferred supersaturation in the clouds sampled during this experiment is ˜0.3%. CCN concentrations of cloud-processed aerosol were well predicted using an ammonium sulfate approximation for Sc ≤ 0.4%. Predicted NCCN for other aerosol types (i.e., Asian and North American aerosols) were high compared to measured values indicating a less CCN active aerosol. This study highlights the importance of chemical effects on CCN measurements and introduces a CCN activation index as a method of classifying the efficiency of an aerosol to serve as CCN relative to an ammonium sulfate particle. This index ranged from close to unity for cloud processed aerosols to as low as 0.31 for aged aerosols transported from Asia. We also compare the performance of two CCN instruments (static thermal diffusion chamber and streamwise continuous flow chamber) on a 45 minute level leg where we observe an aged layer and a nucleation event. More than 50% of the aged aerosol served as CCN at 0.2% Sc, primarily owing to their large size, while CCN concentrations during the nucleation event were close to 0 cm-3. CCN concentrations from both instruments agreed within instrument errors; however, the continuous flow chamber effectively captured the rapid transition in aerosol properties.
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.; Lin, Ruei-Fong
1993-01-01
The radiation field over a broken stratocumulus cloud deck is simulated by the Monte Carlo method. We conducted four experiments to investigate the main factor for the observed shortwave reflectively over the FIRE flight 2 leg 5, in which reflectivity decreases almost linearly from the cloud center to cloud edge while the cloud top height and the brightness temperature remain almost constant through out the clouds. From our results, the geometry effect, however, did not contribute significantly to what has been observed. We found that the variation of the volume extinction coefficient as a function of its relative position in the cloud affects the reflectivity efficiently. Additional check of the brightness temperature of each experiment also confirms this conclusion. The cloud microphysical data showed some interesting features. We found that the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid. However, whether the shift of cloud droplet spectrum toward the larger end is not certain. The decrease of number density from cloud center to cloud edges seems to have more significant effects on the optical properties.
Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE
NASA Astrophysics Data System (ADS)
Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.
2003-12-01
Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each resolution. Results are compared with the radar reflectivity techniques employed by the NOAA ETL MMCR and the PARSL 94 GHz radars located at the CRYSTAL-FACE Eastern & Western Ground Sites, respectively. This technique is most likely to yield improvements for low and midlevel layer clouds that have little thermal variability in cloud height.
Integration of cloud-based storage in BES III computing environment
NASA Astrophysics Data System (ADS)
Wang, L.; Hernandez, F.; Deng, Z.
2014-06-01
We present an on-going work that aims to evaluate the suitability of cloud-based storage as a supplement to the Lustre file system for storing experimental data for the BES III physics experiment and as a backend for storing files belonging to individual members of the collaboration. In particular, we discuss our findings regarding the support of cloud-based storage in the software stack of the experiment. We report on our development work that improves the support of CERN' s ROOT data analysis framework and allows efficient remote access to data through several cloud storage protocols. We also present our efforts providing the experiment with efficient command line tools for navigating and interacting with cloud storage-based data repositories both from interactive sessions and grid jobs.
Mars Odyssey View of Morning Clouds in Canyon
2016-04-05
Light blue clouds fill Coprates Chasma on Mars, part of Valles Marineris, the vast Grand Canyon of Mars. The clouds are mostly ice crystals and they appear blue in color in this image from NASA Mars Odyssey.
NASA Technical Reports Server (NTRS)
Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick
2014-01-01
The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.
Small-Scale Spatial Variability of Ice Supersaturation and Cirrus in the TTL
NASA Astrophysics Data System (ADS)
DiGangi, J. P.; Podolske, J. R.; Rana, M.; Slate, T. A.; Diskin, G. S.
2014-12-01
The processes controlling cloud formation and evolution represent a significant uncertainty in models of global climate change. High altitude cirrus clouds contribute a large portion of this uncertainty due to their altitude and abundance. The mechanism behind the formation of cirrus clouds depends on the characteristics and composition of ice supersaturation (ISS) regions, regions where the relative humidity with respect to ice (RHi) is greater than 100%. Small-scale dynamics have recently been shown to have a strong effect on the RHi of the UT/LS, and therefore on cirrus cloud formation. Until now, there has been insufficient data in the Tropical Tropopause Layer (TTL) to investigate these effects. The Airborne Tropical TRopopause EXperiment (ATTREX) was a series of campaigns focused on improving our understanding of humidity in the TTL. During this campaign, the NASA Langley/Ames Diode Laser Hygrometer was part of the payload on the NASA Global Hawk, resulting in measurements of humidity with as low as 1-2 m vertical resolution at altitudes up to 19 km. We will present observations from ATTREX describing the small scale spatial variability of water vapor along transects of ISSRs and cirrus clouds, as well as the dynamics driving the formation of ISS regions. These results will be discussed in context with results from prior UT/LS campaigns, such as DC3 and HIPPO.
Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Marshak, A.; Cahalan, R. F.; Lau, William K. M. (Technical Monitor)
2002-01-01
Data from three cloudy days (March 3, 21, 29, 2000) of the ARM Enhanced Shortwave Experiment II (ARESE II) were analyzed. Grand averages of broadband absorptance among three sets of instruments were compared. Fractional solar absorptances were approx. 0.21-0.22 with the exception of March 3 when two sets of instruments gave values smaller by approx. 0.03-0.04. The robustness of these values was investigated by looking into possible sampling problems with the aid of 500 nm spectral fluxes. Grand averages of 500 nm apparent absorptance cover a wide range of values for these three days, namely from a large positive (approx. 0.011) average for March 3, to a small negative (approximately -0.03) for March 21, to near zero (approx. 0.01) for March 29. We present evidence suggesting that a large part of the discrepancies among the three days is due to the different nature of clouds and their non-uniform sampling. Hence, corrections to the grand average broadband absorptance values may be necessary. However, application of the known correction techniques may be precarious due to the sparsity of collocated flux measurements above and below the clouds. Our analysis leads to the conclusion that only March 29 fulfills all requirements for reliable estimates of cloud absorption, that is, the presence of thick, overcast, homogeneous clouds.
NASA Technical Reports Server (NTRS)
Hunt, R. J.; Wu, S. T.
1976-01-01
The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.
The 1980 stratospheric-tropospheric exchange experiment
NASA Technical Reports Server (NTRS)
Margozzi, A. P. (Editor)
1983-01-01
Data are presented from the Stratospheric-Tropospheric Water Vapor Exchange Experiment. Measurements were made during 11 flights of the NASA U-2 aircraft which provided data from horizontal traverser and samplings in and about the tops of extensive cirrus-anvil clouds produced by overshooting cumulus turrets. Aircraft measurements were made of water vapor, ozone, ambient and cloud top temperature, fluorocarbons, nitrous oxide, nitric acid, aerosols, and ice crystal populations. Balloonsondes were flown about twice daily providing data on ozone, wind fields, pressure and temperature to altitudes near 30 km. Satellite photography provided detailed cloud and cloud top temperature information. Descriptions of individual experiments and detailed compilations of all results are provided.
Atmospheric Science Data Center
2014-03-18
... Regional Experiment (FIRE) - Arctic Cloud Experiment (ACE) was conducted April through July of 1998. It was held in conjunction with ... Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud systems. The main facility was ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
...--Intersection of Cloud Computing and Mobility Forum and Workshop AGENCY: National Institute of Standards and.../intersection-of-cloud-and-mobility.cfm . SUPPLEMENTARY INFORMATION: NIST hosted six prior Cloud Computing Forum... interoperability, portability, and security, discuss the Federal Government's experience with cloud computing...
Formation of massive, dense cores by cloud-cloud collisions
NASA Astrophysics Data System (ADS)
Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.
2018-03-01
We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.
Formation of massive, dense cores by cloud-cloud collisions
NASA Astrophysics Data System (ADS)
Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.
2018-05-01
We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.
CERN Computing in Commercial Clouds
NASA Astrophysics Data System (ADS)
Cordeiro, C.; Field, L.; Garrido Bear, B.; Giordano, D.; Jones, B.; Keeble, O.; Manzi, A.; Martelli, E.; McCance, G.; Moreno-García, D.; Traylen, S.
2017-10-01
By the end of 2016 more than 10 Million core-hours of computing resources have been delivered by several commercial cloud providers to the four LHC experiments to run their production workloads, from simulation to full chain processing. In this paper we describe the experience gained at CERN in procuring and exploiting commercial cloud resources for the computing needs of the LHC experiments. The mechanisms used for provisioning, monitoring, accounting, alarming and benchmarking will be discussed, as well as the involvement of the LHC collaborations in terms of managing the workflows of the experiments within a multicloud environment.
The Mixed-Phase Arctic Cloud Experiment (M-PACE)
NASA Technical Reports Server (NTRS)
Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.; Yannuzzi, V. T.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M. R.; Mather, J. H.;
2007-01-01
The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.
1976-07-01
A AD PROPAGATION OF HIGH POWER PULSES OF 10.6 pm RADIATION FROM A C02 TEA LASER OF NOVEL DESIGN THROUGH CLOUDS PRODUCED BY ADIABATIC E•XPANS:’)N IN...PART A: CO2 LASER uEVELOPMENT Al High Power CO2 TEA Laser 2 A2 CW CO2 Laser 6 References 8 Diagrams 9 PART 8: CLOUD PROLDUCTION 61 Cloud Chamber...offer versatility, efficienr-y and high power . This report is concerned with the attenuation of 10.eum radiatiins, both high power pulsL.o and 04, by
Pilot Judgment Training and Evaluation. Volume 3.
1982-06-01
Information Manual. 3-1 8. Flight computer . _ 9. Basic navigation: aeronautical charts (sectional and world 4- aeronautical charts); airspace... clouds , traffic, etc., when you needed to and still maintained the course. 4-13 I___________________ -- -I ~ =~- I- -- INSTRUCTOR LESSON PLAN PART I...maintain basic VFR. PART III Observable Behavior Sought: The student will make proper diversions from clouds to maintain basic VFR. PART IV Reinforcements
On the remote sensing of cloud properties from satellite infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H. Y. M.
1984-01-01
A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.
The Ethics of Cloud Computing.
de Bruin, Boudewijn; Floridi, Luciano
2017-02-01
Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.
NASA Astrophysics Data System (ADS)
Breard, Eric C. P.; Lube, Gert
2017-01-01
Pyroclastic density currents (PDCs) are the most lethal threat from volcanoes. While there are two main types of PDCs (fully turbulent, fully dilute pyroclastic surges and more concentrated pyroclastic flows encompassing non-turbulent to turbulent transport) pyroclastic flows, which are the subject of the present study, are far more complex than dilute pyroclastic surges and remain the least understood type despite their far greater hazard, greater runout length and ability to transport vast quantities of material across the Earth's surface. Here we present large-scale experiments of natural volcanic material and gas in order to provide the missing quantitative view of the internal structure and gas-particle transport mechanisms in pyroclastic flows. We show that the outer flow structure with head, body and wake regions broadly resembles current PDC analogues of dilute gravity currents. However, the internal structure, in which lower levels consist of a concentrated granular fluid and upper levels are more dilute, contrasts significantly with the internal structure of fully dilute gravity currents. This bipartite vertical structure shows strong analogy to current conceptual models of high-density turbidity currents, which are responsible for the distribution of coarse sediment in marine basins and of great interest to the hydrocarbon industry. The lower concentrated and non-turbulent levels of the PDC (granular-fluid basal flow) act as a fast-flowing carrier for the more dilute and turbulent upper levels of the current (ash-cloud surge). Strong kinematic coupling between these flow parts reduces viscous dissipation and entrainment of ambient air into the lower part of the ash-cloud surge. This leads to a state of forced super-criticality whereby fast and destructive PDCs can endure even at large distances from volcanoes. Importantly, the basal flow/ash-cloud surge coupling yields a characteristically smooth rheological boundary across the non-turbulent/turbulent interface, as well as vertical velocity and density profiles in the ash-cloud surge, which strongly differ from current theoretical predictions. Observed generation of successive pulses of high dynamic pressure within the upper dilute levels of the PDC may be important to understand the destructive potential of PDCs. The experiments further show that a wide range in the degree of coupling between particle and gas phases is critical to the vertical and longitudinal segregation of the currents into reaches that have starkly contrasting sediment transport capacities. In particular, the formation of mesoscale turbulence clusters under strong particle-gas feedback controls vertical stratification inside the turbulent upper levels of the current (ash-cloud surge) and triggers significant transfers of mass and momentum from the ash-cloud surge onto the granular-fluid basal flow. These results open up new pathways to advance current computational PDC hazard models and to describe and interpret PDCs as well as other types of high-density gravity currents transported across the surfaces of Earth and other planets and across marine basins.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1996-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.
NASA Technical Reports Server (NTRS)
Phillips, Vaughan T. J.; Andronache, Constantin; Sherwood, Steven C.; Bansemer, Aaron; Conant, William C.; Demott, Paul J.; Flagan, Richard C.; Heymsfield, Andy; Jonsson, Haflidi; Poellot, Micheal;
2005-01-01
Simulations of a cumulonimbus cloud observed in the Cirrus regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) with an advanced version of the Explicit Microphysics Model (EMM) are presented. The EMM has size-resolved aerosols and predicts the time evolution of sizes, bulk densities and axial ratios of ice particles. Observations by multiple aircraft in the troposphere provide inputs to the model, including observations of the ice nuclei and of the entire size distribution of condensation nuclei. Homogeneous droplet freezing is found to be the source of almost all of the ice crystals in the anvil updraught of this particular model cloud. Most of the simulated droplets that freeze to form anvil crystals appear to be nucleated by activation of aerosols far above cloud base in the interior of the cloud ("secondary" or "in cloud" droplet nucleation). This is partly because primary droplets formed at cloud base are invariably depleted by accretion before they can reach the anvil base in the updraught, which promotes an increase with height of the average supersaturation in the updraught aloft. More than half of these aerosols, activated far above cloud base, are entrained into the updraught of this model cloud from the lateral environment above about 5 km above mean sea level. This confirms the importance of remote sources of atmospheric aerosol for anvil glaciation. Other nucleation processes impinge indirectly upon the anvil glaciation by modifying the concentration of supercooled droplets in the upper levels of the mixed-phase region. For instance, the warm-rain process produces a massive indirect impact on the anvil crystal concentration, because it determines the mass of precipitation forming in the updraught. It competes with homogeneous freezing as a sink for cloud droplets. The effects from turbulent enhancement of the warm-rain process and from the nucleation processes on the anvil ice properties are assessed.
Homomorphic encryption experiments on IBM's cloud quantum computing platform
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Joel A
The major goals of this project were to make unique measurements, as part of the DOE sponsored Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign, of the volatility and molecular composition of organic aerosol, as well as gas-phase concentrations of oxygenated organic compounds that interact and affect organic aerosol. In addition, we aimed to conduct a similar set of measurements as part of a collaborative set of environmental simulation chamber experiments at PNNL, the aim of which was to simulate the atmospheric oxidation of key biogenic volatile organic compounds (BVOC) and study the associated formation and evolution of secondarymore » organic aerosol (SOA). The target BVOC were a set of monoterpenes, isoprene, and related intermediates such as IEPOX. The ultimate goal of such measurements are to develop a more detailed mechanistic understanding of the sensitivity of SOA mass formation and lifetime to precursor and environmental conditions. Molecular composition and direct volatility measurements provide robust tracers of chemical processing and properties. As such, meeting these goals will allow for stronger constraints on the types of processes and their fundamental descriptions needed to simulate aerosol particle number and size, and cloud nucleating ability in regional and global earth system models.« less
Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment
NASA Astrophysics Data System (ADS)
Jackson-Booth, N.; Selzer, L.
2015-12-01
Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.
2017-12-01
Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534
Goulds Belt, Interstellar Clouds, and the Eocene-Oligocene Helium-3 Spike
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2015-01-01
Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent small meteoroids with embedded helium to the Earth, perhaps explaining part or all of the (sup 3) He spike seen in the sedimentary record at the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits.
Structures observed on the spot radiance fields during the FIRE experiment
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Smith, Leonard; Desbois, Michel
1990-01-01
Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.
The representation of low-level clouds during the West African monsoon in weather and climate models
NASA Astrophysics Data System (ADS)
Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas
2016-04-01
The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and radiation data) and ground-based eye observations of clouds and radiation measurements from weather stations. Our results show that many of the climate models have great difficulties representing the diurnal cycle of winds and clouds, leading to associated errors in radiation. Typical errors include a substantial underestimation of the lowest clouds accompanied by an overestimation of clouds at the top of the monsoon layer, indicating systematic problems in vertical exchange processes, which are also reflected in large errors in jet speed. Consequently, many models show a too flat diurnal cycle in cloudiness. This contribution is part of the EU-funded DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project that aims to investigate the impact of the drastic increase in anthropogenic emissions in West Africa on the local weather and climate, for example through cloud-aerosol interactions. The analysis of the capability of state-of-the-art numerical models to represent low-level cloudiness presented here is an important requisite for the planned assessments of the influence of anthropogenic aerosol.
NASA Astrophysics Data System (ADS)
Kodama, C.; Noda, A. T.; Satoh, M.
2012-06-01
This study presents an assessment of three-dimensional structures of hydrometeors simulated by the NICAM, global nonhydrostatic atmospheric model without cumulus parameterization, using multiple satellite data sets. A satellite simulator package (COSP: the CFMIP Observation Simulator Package) is employed to consistently compare model output with ISCCP, CALIPSO, and CloudSat satellite observations. Special focus is placed on high thin clouds, which are not observable in the conventional ISCCP data set, but can be detected by the CALIPSO observations. For the control run, the NICAM simulation qualitatively captures the geographical distributions of the high, middle, and low clouds, even though the horizontal mesh spacing is as coarse as 14 km. The simulated low cloud is very close to that of the CALIPSO low cloud. Both the CloudSat observations and NICAM simulation show a boomerang-type pattern in the radar reflectivity-height histogram, suggesting that NICAM realistically simulates the deep cloud development process. A striking difference was found in the comparisons of high thin cirrus, showing overestimated cloud and higher cloud top in the model simulation. Several model sensitivity experiments are conducted with different cloud microphysical parameters to reduce the model-observation discrepancies in high thin cirrus. In addition, relationships among clouds, Hadley circulation, outgoing longwave radiation and precipitation are discussed through the sensitivity experiments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. C Appendix C to Part 835—Derived Air... Material a. The data presented in appendix C are to be used for controlling occupational exposures in...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. C Appendix C to Part 835—Derived Air... Material a. The data presented in appendix C are to be used for controlling occupational exposures in...
Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget
NASA Technical Reports Server (NTRS)
Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)
2001-01-01
The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.
Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation
NASA Astrophysics Data System (ADS)
Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.
2006-12-01
Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the experiments.
Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths
NASA Technical Reports Server (NTRS)
Rind, David; Lonergan, P.; Shah, K.
1999-01-01
The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows little geographical relationship to the high cloud input. Considering whether these effects would be observable, changing upper level cloud cover by as little as 0.4% produces warming greater than 2 standard deviations in the Microwave Sounding Unit (MSU) channels 4, 2 and 2r, in flight path regions and in the subtropics. Despite the simplified nature of these experiments, the results emphasize the sensitivity of the modeled climate to high level cloud cover changes, and thus the potential ability of aircraft to influence climate by altering clouds in the upper troposphere.
Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation.
Giorio, Chiara; Monod, Anne; Brégonzio-Rozier, Lola; DeWitt, Helen Langley; Cazaunau, Mathieu; Temime-Roussel, Brice; Gratien, Aline; Michoud, Vincent; Pangui, Edouard; Ravier, Sylvain; Zielinski, Arthur T; Tapparo, Andrea; Vermeylen, Reinhilde; Claeys, Magda; Voisin, Didier; Kalberer, Markus; Doussin, Jean-François
2017-10-12
Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.
NASA Astrophysics Data System (ADS)
Nishi, N.; Hamada, A.; Hirose, H.; Hotta, S.; Suzuki, J.
2016-12-01
We have made a quantitative research of the clouds and precipitation during Baiu: the rainy season within the East Asia, using recent satellite observation datasets. As the precipitation dataset, we utilized the Global Satellite Mapping of Precipitation (GSMaP), whose primary source is passive microwave observations. As the cloud dataset, we used our original database CTOP, in which the cloud top height and optical depth are estimated only with the infrared split-window channels of the geostationary satellites. Lookup tables are made by training the infrared observations with the direct cloud observation by CloudSat and CALIPSO. This technique was originally developed only for the tropics but we extended it to the mid-latitude by estimating temperature at the cloud top instead of the height. We analyzed the properties of northward shift of the Baiu precipitation zone over the East China Sea. Abrupt northward shift in mid-June has already been reported. We showed here that the abrupt shift is limited to the western half of the East China Sea. We also analyzed the zonal difference of the precipitation amount in the East China Sea. In the central latitudinal range (30-33N), the amount is larger in the eastern part of the sea. There is no significant zonal contrast in both the activity of the low pressure and the front, while the sea surface temperature in the eastern part is slightly larger than in the western part. The zonal gradient is much smaller than that in the southern region near the Kuroshio Current, but may possibly affect the zonal contrast of the precipitation. By using CTOP cloud top data, we also calculated the occurrence ratio of the cloud with various thresholds of the top height. The ratio of clouds with the tops higher than 12 km in the East China Sea is clearly lower than those over the Continental area and the main Japanese islands.
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.
2004-01-01
Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.
NASA Astrophysics Data System (ADS)
Oschlisniok, J.; Tellmann, S.; Pätzold, M.; Häusler, B.; Andert, T.; Bird, M.; Remus, S.
2012-09-01
The planet Venus is shrouded within a roughly 20 km thick cloud layer, which extends from the lower to the middle atmosphere (ca. 50 - 70 km). While the clouds are mostly composed of sulfuric acid droplets, a haze layer of sulfuric acid vapor exists below the clouds. Within the cloud and the sub - cloud region Radio signal strength variations (intensity scintillations) caused by atmospheric waves and a decrease in the signal intensity caused by absorption by H2SO4 are observed by radio occultation experiments. The Venus Express spacecraft is orbiting Venus since 2006. The Radio Science Experiment VeRa probes the atmosphere with radio signals at 3.6 cm (XBand) and 13 cm (S-Band) wavelengths. The disturbance of the radio signal intensity is used to investigate the cloud region with respect to atmospheric waves. The absorption of the signal is used to determine the abundance of H2SO4 near the cloud base. This way a detailed study of the H2SO4 abundance within the cloud and sub - cloud region is possible. Results from the intensity scintillations within the cloud deck are presented and compared with gravity wave studies based on temperature variations inferred from VeRa soundings. Vertical absorptivity profiles and resulting sulfuric acid vapor profiles are presented and compared with previous missions. A distinct latitudinal dependence and a southern northern symmetry are clearly visible.
Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size
NASA Astrophysics Data System (ADS)
Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas
2014-05-01
The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume nucleation rate coefficients. This contribution will show the results from the re-analysis of AIDA homogeneous freezing experiments with pure water droplets and will discuss the comparison to the literature data.
Evaluation of ERA-interim and MERRA Cloudiness in the Southern Oceans
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.
2014-01-01
The Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive observations, but they also reveal that low-level clouds in other parts of the cyclones are also not properly represented in the reanalyses. The two reanalyses are in fairly good agreement for the dynamic and thermodynamic characteristics of the cyclones, suggesting that the cloud, convection, or boundary layer schemes are the problem instead. An examination of the lower-tropospheric stability distribution in the cyclones from both reanalyses suggests that the parameterization of shallow cumulus clouds may contribute in a large part to the problem. However, the differences in the cloud schemes and in particular in the precipitation processes, which may also contribute, cannot be excluded.
NASA Astrophysics Data System (ADS)
Yu, P.; Wu, H.; Liu, C.; Xu, Z.
2018-04-01
Diagnosis of water leakage in metro tunnels is of great significance to the metro tunnel construction and the safety of metro operation. A method that integrates laser scanning and infrared thermal imaging is proposed for the diagnosis of water leakage. The diagnosis of water leakage in this paper is mainly divided into two parts: extraction of water leakage geometry information and extraction of water leakage attribute information. Firstly, the suspected water leakage is obtained by threshold segmentation based on the point cloud of tunnel. And the real water leakage is obtained by the auxiliary interpretation of infrared thermal images. Then, the characteristic of isotherm outline is expressed by solving Centroid Distance Function to determine the type of water leakage. Similarly, the location of leakage silt and the direction of crack are calculated by finding coordinates of feature points on Centroid Distance Function. Finally, a metro tunnel part in Shanghai was selected as the case area to make experiment and the result shown that the proposed method in this paper can be used to diagnosis water leakage disease completely and accurately.
NASA Astrophysics Data System (ADS)
Lantz, K. O.; Long, C. S.; Buller, D.; Berwick, M.; Buller, M.; Kane, I.; Shane, J.
2012-12-01
The UV Index (UVI) is a measure of the skin-damaging UV radiation levels at the Earth's surface. Clouds, haze, air pollution, total ozone, surface elevation, and ground reflectivity affect the levels of UV radiation reaching the ground. The global UV Index was developed as a simple tool to educate the public for taking precautions when exposed to UV radiation to avoid sun-burning, which has been linked to the development of skin cancer. The purpose of this study was to validate an algorithm to modify a cloud-free UV Index forecast for cloud conditions as observed by adults in real-time. The cloud attenuation algorithm is used in a smart-phone application to modify a clear-sky UV Index forecast. In the United States, the Climate Prediction Center of the National Oceanic and Atmospheric Administration's (NOAA) issues a daily UV Index Forecast. The NOAA UV Index is an hourly forecast for a 0.5 x 0.5 degree area and thus has a degree of uncertainty. Cloud cover varies temporally and spatially over short times and distances as weather conditions change and can have a large impact on the UV radiation. The smart-phone application uses the cloud-based UV Index forecast as the default but allows the user to modify a cloud-free UV Index forecast when the predicted sky conditions do not match observed conditions. Eighty four (n=84) adults were recruited to participate in the study through advertisements posted online and in a university e-newsletter. Adults were screened for eligibility (i.e., 18 or older, capable to traveling to test site, had a smart phone with a data plan to access online observation form). A sky observation measure was created to assess cloud fraction. The adult volunteers selected from among four photographs the image that best matched the cloud conditions they observed. Images depicted no clouds (clear sky), thin high clouds, partly cloudy sky, and thick clouds (sky completely overcast). When thin high clouds or partly cloudy images were selected, adults estimated the percentage of the sky covered by clouds. Cloud fraction was calculated by assigning 0% if the clear-sky image was selected, 100% if the overcast thick cloud image was selected, and 10% to 90% as indicated by adults, if high thin clouds or partly cloudy images were selected. The observed cloud fraction from the adult volunteers was compared to the cloud fraction determined by a Total Sky Imager. A cloud modification factor based on the observed cloud fraction was applied to the cloud-free UV Index forecast. This result was compared to the NOAA cloudy sky UV Index forecast and to the concurrent UV Index measurements from three broadband UV radiometers and a Brewer spectrophotometer calibrated using NIST traceable standards.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Alvarez, Joseph M.; Young, David F.; Sassen, Kenneth; Grund, Christian J.
1990-01-01
The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) provide an opportunity to examine the relationships between the satellite observed radiances and various parameters which describe the bulk properties of clouds, such as cloud amount and cloud top height. Lidar derived cloud altitude data, radiosonde data, and satellite observed radiances are used to examine the relationships between visible reflectance, infrared emittance, and cloud top temperatures for cirrus clouds.
Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Skillman, W. C.
1979-01-01
A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.
NASA Technical Reports Server (NTRS)
Wu, M.-L.
1985-01-01
In order to develop the remote sensing techniques to infer cloud physical parameters, a multispectral cloud radiometer (MCR) was mounted on a NASA high-altitude aircraft in conjunction with the Cooperative Convective Precipitation Experiment in 1981. The MCR has seven spectral channels, of which three are centered near windows associated with water vapor bands in the near infrared, two are centered near the oxygen A band at 0.76 microns, one is centered at the 1.14-micron water vapor band, and one is centered in the thermal infrared. The reflectance and temperature measured on May 31, 1981, are presented together with theoretical calculations. The results indicate that the MCR produces quality measurements. Therefore several cloud parameters can be derived with good accuracy. The parameters are the cloud-scaled optical thickness, cloud top pressure, volume scattering coefficient, particle thermodynamic phase, effective mean particle size, and cloud-top temperature.
What Goes Up Must Come Down: The Lifecycle of Convective Clouds (492nd Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Michael
Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds’ updrafts and downdrafts—which resemble airflow in a convection oven—and many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earth’s climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earth’s climate systemmore » before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.« less
Commissioning the CERN IT Agile Infrastructure with experiment workloads
NASA Astrophysics Data System (ADS)
Medrano Llamas, Ramón; Harald Barreiro Megino, Fernando; Kucharczyk, Katarzyna; Kamil Denis, Marek; Cinquilli, Mattia
2014-06-01
In order to ease the management of their infrastructure, most of the WLCG sites are adopting cloud based strategies. In the case of CERN, the Tier 0 of the WLCG, is completely restructuring the resource and configuration management of their computing center under the codename Agile Infrastructure. Its goal is to manage 15,000 Virtual Machines by means of an OpenStack middleware in order to unify all the resources in CERN's two datacenters: the one placed in Meyrin and the new on in Wigner, Hungary. During the commissioning of this infrastructure, CERN IT is offering an attractive amount of computing resources to the experiments (800 cores for ATLAS and CMS) through a private cloud interface. ATLAS and CMS have joined forces to exploit them by running stress tests and simulation workloads since November 2012. This work will describe the experience of the first deployments of the current experiment workloads on the CERN private cloud testbed. The paper is organized as follows: the first section will explain the integration of the experiment workload management systems (WMS) with the cloud resources. The second section will revisit the performance and stress testing performed with HammerCloud in order to evaluate and compare the suitability for the experiment workloads. The third section will go deeper into the dynamic provisioning techniques, such as the use of the cloud APIs directly by the WMS. The paper finishes with a review of the conclusions and the challenges ahead.
How to deal with petabytes of data: the LHC Grid project
NASA Astrophysics Data System (ADS)
Britton, D.; Lloyd, S. L.
2014-06-01
We review the Grid computing system developed by the international community to deal with the petabytes of data coming from the Large Hadron Collider at CERN in Geneva with particular emphasis on the ATLAS experiment and the UK Grid project, GridPP. Although these developments were started over a decade ago, this article explains their continued relevance as part of the ‘Big Data’ problem and how the Grid has been forerunner of today's cloud computing.
Baumgardner, Ralph E; Isil, Selma S; Lavery, Thomas F; Rogers, Christopher M; Mohnen, Volker A
2003-03-01
Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition.
NASA Astrophysics Data System (ADS)
Chambers, L. H.; Taylor, J.; Ellis, T. D.; McCrea, S.; Rogerson, T. M.; Falcon, P.
2016-12-01
In 1997, NASA's Clouds and the Earth's Radiant Energy System (CERES) team began engaging K-12 schools as ground truth observers of clouds. CERES seeks to understand cloud effects on Earth's energy budget; thus accurate detection and characterization of clouds is key. While satellite remote sensing provides global information about clouds, it is limited in time and resolution. Ground observers, on the other hand, can observe clouds at any time of day (and sometimes night), and can see small and thin clouds that are challenging to detect from space. In 2006, two active sensing satellites, CloudSat and CALIPSO, were launched into the A-Train, which already contained 2 CERES instruments on the Aqua spacecraft. The CloudSat team also engaged K-12 schools to observe clouds, through The GLOBE Program, with a specialized observation protocol customized for the narrow radar swath. While providing valuable data for satellite assessment, these activities also engage participants in accessible, authentic science that gets people outdoors, helps them develop observation skills, and is friendly to all ages. The effort has evolved substantially since 1997, adopting new technology to provide a more compelling experience to citizen observers. Those who report within 15 minutes of the passage of a wide range of satellites (Terra, Aqua, CloudSat, CALIPSO, NPP, as well as a number of geostationary satellites) are sent a satellite image centered on their location and are invited to extend the experience beyond simple observation to include analysis of the two different viewpoints. Over the years these projects have collected large amounts of cloud observations from every continent and ocean basin on Earth. A number of studies have been conducted comparing the ground observations to the satellite results. This presentation will provide an overview of those results and also describe plans for a coordinated, thematic cloud observation and data analysis activity going forward.
Antiparticle cloud temperatures for antihydrogen experiments
NASA Astrophysics Data System (ADS)
Bianconi, A.; Charlton, M.; Lodi Rizzini, E.; Mascagna, V.; Venturelli, L.
2017-07-01
A simple rate-equation description of the heating and cooling of antiparticle clouds under conditions typical of those found in antihydrogen formation experiments is developed and analyzed. We include single-particle collisional, radiative, and cloud expansion effects and, from the modeling calculations, identify typical cooling phenomena and trends and relate these to the underlying physics. Some general rules of thumb of use to experimenters are derived.
Cloud computing and validation of expandable in silico livers.
Ropella, Glen E P; Hunt, C Anthony
2010-12-03
In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.
Uranus atmospheric dynamics and circulation
NASA Technical Reports Server (NTRS)
Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.
1991-01-01
The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.
1997-01-01
As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.
OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poellot, Michael
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic Mountain Experiment (OLYMPEX). The field campaign took place from November 12 through December 19, 2015, over the Olympic Mountains and coastal waters of Washington State as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) validation campaign. The CSI was added to the Citation instrument suite to support the NASA Aerosol-Cloud Ecosystem (ACE) satellite program and flights ofmore » the NASA Lockheed Earth Resources (ER-2) aircraft. ACE funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the DOE Atmospheric System Research (ASR) program.« less
2013-09-30
Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...how changes in sea ice and sea surface conditions in the SIZ affect changes in cloud properties and cover . • Determine the role additional atmospheric...REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the
1980-11-24
time before and after) or cumulus fractus of bad weath’er, or both ( pannus ), usually below altostratus or nimbostratus. 8 = Cumulus and stratocumulus...vibrous upper part by cumulus, stratocumulus, stratus or pannus . + . from Surface Marine Observations Tape Deck TDF-11 *Fog All clouds in the 0-50...Fractus of bad weather, cr V both ( pannus ), usually below Alto- stratus or N~imbostratus. The term "bad weather* denotes the conditions which coenerally
Measurement needs guided by synthetic radar scans in high-resolution model output
NASA Astrophysics Data System (ADS)
Varble, A.; Nesbitt, S. W.; Borque, P.
2017-12-01
Microphysical and dynamical process interactions within deep convective clouds are not well understood, partly because measurement strategies often focus on statistics of cloud state rather than cloud processes. While processes cannot be directly measured, they can be inferred with sufficiently frequent and detailed scanning radar measurements focused on the life cycleof individual cloud regions. This is a primary goal of the 2018-19 DOE ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) and NSF Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaigns in central Argentina, where orographic deep convective initiation is frequent with some high-impact systems growing into the tallest and largest in the world. An array of fixed and mobile scanning multi-wavelength dual-polarization radars will be coupled with surface observations, sounding systems, multi-wavelength vertical profilers, and aircraft in situ measurements to characterize convective cloud life cycles and their relationship with environmental conditions. While detailed cloud processes are an observational target, the radar scan patterns that are most ideal for observing them are unclear. They depend on the locations and scales of key microphysical and dynamical processes operating within the cloud. High-resolution simulations of clouds, while imperfect, can provide information on these locations and scales that guide radar measurement needs. Radar locations are set in the model domain based on planned experiment locations, and simulatedorographic deep convective initiation and upscale growth are sampled using a number of different scans involving RHIs or PPIs with predefined elevation and azimuthal angles that approximately conform with radar range and beam width specifications. Each full scan pattern is applied to output atsingle model time steps with time step intervals that depend on the length of time required to complete each scan in the real world. The ability of different scans to detect key processes within the convective cloud life cycle are examined in connection with previous and subsequent dynamical and microphysical transitions. This work will guide strategic scan patterns that will be used during CACTI and RELAMPAGO.
Interaction of a supernova shock with two interstellar clouds
NASA Astrophysics Data System (ADS)
Hansen, J. F.; McKee, C. F.
2005-10-01
The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon since it can result in stellar and planetary formation. Our experiments attempt to simulate this mass-loading as it occurs when a shock passes through interstellar clouds. We drive a strong shock using a 5 kJ laser into a foam-filled cylinder with embedded Al spheres (diameter D=120 μm) simulating interstellar clouds. The density ratio between Al and foam is ˜9. We have previously reported on the interaction between shock and a single cloud, and the ensuing Kelvin-Helmholtz and Widnall instabilities. We now report on experiments under way in which two clouds are placed side by side. Cloud separation (center to center) is either 1.2xD or 1.5xD. Initial results for 1.2xD show that cloud material merges and travels further downstream than in the single cloud case. For 1.5xD, material does not merge, but the clouds tilt toward each other. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.
Application of cellular automata approach for cloud simulation and rendering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Immanuel, W.; Paul Mary Deborrah, S.; Samuel Selvaraj, R.
Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation ofmore » an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds.« less
Cloud Infrastructure & Applications - CloudIA
NASA Astrophysics Data System (ADS)
Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank
The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.
Remote sensing of smoke, land, and clouds from the NASA ER-2 during SAFARI 2000
NASA Astrophysics Data System (ADS)
King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen
2003-07-01
The NASA ER-2 aircraft was deployed to southern Africa between 13 August and 25 September 2000 as part of the Southern African Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 × 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this high-altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces and Terra analyses of cloud optical and microphysical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom. As a result of this experiment, the MODIS cloud mask was shown to distinguish clouds, cloud shadows, and fires over land ecosystems of southern Africa with a high degree of accuracy. In addition, data acquired from the ER-2 show the vertical distribution and stratification of aerosol layers over the subcontinent and make the first observations of a "blue spike" spectral emission signature associated with air heated by fire advecting over a cooler land surface.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.
NASA Technical Reports Server (NTRS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.;
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. 1. How well do clouds and other relevant variables simulated by models agree with observations? 2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? 3. Which models have the most credible representations of processes relevant to the simulation of clouds? 4. How do clouds and their changes interact with other elements of the climate system?
Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals
NASA Astrophysics Data System (ADS)
Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui
2018-04-01
Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (<0.3 aerosol optical depth) and decrease with further aerosol increase. For in situ formed ice clouds, however, these cloud properties increase monotonically and more sharply with aerosol loadings. An increase in loading of smoke aerosols generally reduces cloud optical thickness of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution aerosols. These relationships between different cloud/aerosol types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.
Wehner, Rüdiger; Müller, Martin
2006-01-01
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This “signature” of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant’s compound eyes and is channeled into two rather separate systems of navigation. PMID:16888039
RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds
NASA Technical Reports Server (NTRS)
Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.;
2012-01-01
Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
NASA Astrophysics Data System (ADS)
Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.
2016-04-01
This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.
NASA Astrophysics Data System (ADS)
Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.
2014-12-01
Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.
Introducing Cloud Computing Topics in Curricula
ERIC Educational Resources Information Center
Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue
2012-01-01
The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…
Evaluating the Usage of Cloud-Based Collaboration Services through Teamwork
ERIC Educational Resources Information Center
Qin, Li; Hsu, Jeffrey; Stern, Mel
2016-01-01
With the proliferation of cloud computing for both organizational and educational use, cloud-based collaboration services are transforming how people work in teams. The authors investigated the determinants of the usage of cloud-based collaboration services including teamwork quality, computer self-efficacy, and prior experience, as well as its…
Inflatable Antenna Experiment (IAE)
1996-05-20
S77-E-5022 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-05-20
STS077-150-010 (20 May 1996) --- Soon after leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through its inflation process, backdropped over clouds. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
Inflatable Antenna Experiment (IAE)
1996-05-20
S77-E-5027 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-06-10
STS077-705-004 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) portion of the Spartan 207 payload begins to inflate, backdropped against clouds over the Pacific Ocean. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
Inflatable Antenna Experiment (IAE)
1996-05-20
S77-E-5033 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
NASA Technical Reports Server (NTRS)
2002-01-01
The Moderate-resolution Imaging Spectroradiometer's (MODIS') cloud detection capability is so sensitive that it can detect clouds that would be indistinguishable to the human eye. This pair of images highlights MODIS' ability to detect what scientists call 'sub-visible cirrus.' The image on top shows the scene using data collected in the visible part of the electromagnetic spectrum-the part our eyes can see. Clouds are apparent in the center and lower right of the image, while the rest of the image appears to be relatively clear. However, data collected at 1.38um (lower image) show that a thick layer of previously undetected cirrus clouds obscures the entire scene. These kinds of cirrus are called 'sub-visible' because they can't be detected using only visible light. MODIS' 1.38um channel detects electromagnetic radiation in the infrared region of the spectrum. These images were made from data collected on April 4, 2000. Image courtesy Mark Gray, MODIS Atmosphere Team
Hankin, Robin K S
2003-10-31
This paper assesses the value of shallow layer modelling for instantaneous releases of heavy gas over a slope using the established computer model TWODEE [R.K.S. Hankin, Heavy gas dispersion over complex terrain, Ph.D. thesis, Cambridge University, 1997; J. Hazard. Mater. 66 (1999) 211; J. Hazard. Mater. 66 (1999) 227; J. Hazard. Mater. 66 (1999) 239] and the experimental results of Schatzmann et al. [M. Schatzmann, K. Marotzke, J. Donat, Research on continuous and instantaneous heavy gas clouds, Contribution of sub-project EV 4T-0021-D to the final report of the joint CEC project, Technical report, Meteorological Institute, University of Hamburg, February 1991]. This is the second of a two-part paper; part I considered continuous releases using the same model, using the same entrainment parameters. Schatzmann et al. carried out instantaneous releases of heavy gas over three slopes; each experiment was repeated five times under nominally identical conditions. The goodness-of-fit measures (GFMs) of Hanna et al. [Atmos. Environ. 27A (15) (1993) 2265] are generalized to account for the multiple releases carried out by Schatzmann et al. Using these statistical GFMs, predicted peak concentrations are generally correct to within a factor of two; and cloud arrival times are generally late.
Cloud Technology May Widen Genomic Bottleneck - TCGA
Computational biologist Dr. Ilya Shmulevich suggests that renting cloud computing power might widen the bottleneck for analyzing genomic data. Learn more about his experience with the Cloud in this TCGA in Action Case Study.
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
GATECloud.net: a platform for large-scale, open-source text processing on the cloud.
Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina
2013-01-28
Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.
Investigation of methods to produce a uniform cloud of fuel particles in a flame tube
NASA Technical Reports Server (NTRS)
Siegert, Clifford E.; Pla, Frederic G.; Rubinstein, Robert; Niezgoda, Thomas F.; Burns, Robert J.; Johnson, Jerome A.
1990-01-01
The combustion of a uniform, quiescent cloud of 30-micron fuel particles in a flame tube was proposed as a space-based, low-gravity experiment. The subject is the normal- and low-gravity testing of several methods to produce such a cloud, including telescoping propeller fans, air pumps, axial and quadrature acoustical speakers, and combinations of these devices. When operated in steady state, none of the methods produced an acceptably uniform cloud (+ or - 5 percent of the mean concentration), and voids in the cloud were clearly visible. In some cases, severe particle agglomeration was observed; however, these clusters could be broken apart by a short acoustic burst from an axially in-line speaker. Analyses and experiments reported elsewhere suggest that transient, acoustic mixing methods can enhance cloud uniformity while minimizing particle agglomeration.
How do changes in warm-phase microphysics affect deep convective clouds?
NASA Astrophysics Data System (ADS)
Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital
2017-08-01
Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems?
To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration
2014-06-01
The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.
Aerosol retrieval experiments in the ESA Aerosol_cci project
NASA Astrophysics Data System (ADS)
Holzer-Popp, T.; de Leeuw, G.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.
2013-03-01
Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013) algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components and their mixing ratios. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data qualitatively by visible analysis of monthly mean AOD maps and quantitatively by comparing global daily gridded satellite data against daily average AERONET sun photometer observations for the different versions of each algorithm. The analysis allowed an assessment of sensitivities of all algorithms which helped define the best algorithm version for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR.
ERIC Educational Resources Information Center
Bryson, Linda
2004-01-01
This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…
Daniel M. Johnson; William K. Smith
2008-01-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are...
1973-06-01
SL2-04-118 (June 1973) --- A color photograph of the San Francisco Bay, California area, taken from the Skylab space station in Earth orbit. (The picture should be held with the clouds and Pacific Ocean on the left.) Note the thickly populated and highly developed area around the bay. Among the cities visible are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. This photograph was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type SO-356 film was used. The S190-A experiment is part of the Skylab Earth Resources Experiments Package (EREP). Photo credit: NASA
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; ...
2017-01-01
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations
NASA Astrophysics Data System (ADS)
Adler, Bianca; Kalthoff, Norbert; Gantner, Leonhard
2017-01-01
We performed a high-resolution numerical simulation to study the development of extensive low-level clouds that frequently form over southern West Africa during the monsoon season. This study was made in preparation for a field campaign in 2016 within the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project and focuses on an area around the city of Savè in southern Benin. Nocturnal low-level clouds evolve a few hundred metres above the ground around the same level as a distinct low-level jet. Several processes are found to determine the spatio-temporal evolution of these clouds including (i) significant cooling of the nocturnal atmosphere caused by horizontal advection with the south-westerly monsoon flow during the first half of the night, (ii) vertical cold air advection due to gravity waves leading to clouds in the wave crests and (iii) enhanced convergence and upward motion upstream of existing clouds that trigger new clouds. The latter is caused by an upward shift of the low-level jet in cloudy areas leading to horizontal convergence in the lower part and to horizontal divergence in the upper part of the cloud layer. Although this single case study hardly allows for a generalisation of the processes found, the results added to the optimisation of the measurements strategy for the field campaign and the observations will be used to test the hypotheses for cloud formation resulting from this study.
An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data
NASA Astrophysics Data System (ADS)
Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.
2006-12-01
The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
The validation of AIRS retrievals
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Olsen, Edward T.; Chen, Luke L.; Hagan, Denise E.; Fishbein, Evan; McMillin, Larry; Zhou, Jiang; McMillan, Wallace W.
2003-01-01
The initial validation of Atmospheric Infrared Sounder (SIRS) experiment retrievals were completed in August 2003 as part of public release of version 3.0 data. The associated analyses are reported at http://daac.gsfc.nasa.gov/atmodyn/airs/, where data may be accessed. Here we describe some of those analyses, with an emphasis on cloud cleared radiances, atmospheric temperature profiles, sea surface temperature, total water vapor and atmospheric water vapor profiles. The results are applicable over ocean in the latitude band +/-40 degrees.
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.
2016-01-01
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H
2016-12-08
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.
Automatic pole-like object modeling via 3D part-based analysis of point cloud
NASA Astrophysics Data System (ADS)
He, Liu; Yang, Haoxiang; Huang, Yuchun
2016-10-01
Pole-like objects, including trees, lampposts and traffic signs, are indispensable part of urban infrastructure. With the advance of vehicle-based laser scanning (VLS), massive point cloud of roadside urban areas becomes applied in 3D digital city modeling. Based on the property that different pole-like objects have various canopy parts and similar trunk parts, this paper proposed the 3D part-based shape analysis to robustly extract, identify and model the pole-like objects. The proposed method includes: 3D clustering and recognition of trunks, voxel growing and part-based 3D modeling. After preprocessing, the trunk center is identified as the point that has local density peak and the largest minimum inter-cluster distance. Starting from the trunk centers, the remaining points are iteratively clustered to the same centers of their nearest point with higher density. To eliminate the noisy points, cluster border is refined by trimming boundary outliers. Then, candidate trunks are extracted based on the clustering results in three orthogonal planes by shape analysis. Voxel growing obtains the completed pole-like objects regardless of overlaying. Finally, entire trunk, branch and crown part are analyzed to obtain seven feature parameters. These parameters are utilized to model three parts respectively and get signal part-assembled 3D model. The proposed method is tested using the VLS-based point cloud of Wuhan University, China. The point cloud includes many kinds of trees, lampposts and other pole-like posters under different occlusions and overlaying. Experimental results show that the proposed method can extract the exact attributes and model the roadside pole-like objects efficiently.
AceCloud: Molecular Dynamics Simulations in the Cloud.
Harvey, M J; De Fabritiis, G
2015-05-26
We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric
2000-01-01
The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.
Simple Cloud Chambers Using Gel Ice Packs
ERIC Educational Resources Information Center
Kamata, Masahiro; Kubota, Miki
2012-01-01
Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…
Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds
NASA Astrophysics Data System (ADS)
Neel, Matthew Stephen
2018-03-01
Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining <10% of lightning strikes is "positive lightning," or the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.
NASA Astrophysics Data System (ADS)
Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.
2016-06-01
Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.
CRRES: The combined release and radiation effects satellite program directory
NASA Technical Reports Server (NTRS)
Layman, Laura D.; Miller, George P.
1992-01-01
As a result of natural processes, plasma clouds are often injected into the magnetosphere. These chemical releases can be used to study many aspects of such injections. When a dense plasma is injected into the inner magnetosphere, it is expected to take up the motion of the ambient plasma. However, it has been observed in previous releases at moderate altitudes that the cloud preserved its momentum for some time following the release and that parts of the cloud peeled off from the main cloud presumable due to the action of an instability. As one moves outward into the magnetosphere, the mirror force becomes less dominant and the initial conditions following a release are dominated by the formation of a diamagnetic cavity since the initial plasma pressure from the injected Ba ions is greater than the magnetic field energy density. A previous high-altitude release (31,300 km) showed this to be the case initially, but at later times there was evidence for acceleration of the Ba plasma to velocities corresponding to 60,000 K. This effect is not explained. This series of experiments is therefore designed to inject plasma clouds into the magnetosphere under widely varying conditions of magnetic field strength and ambient plasma density. In this way the coupling of injected clouds to the ambient plasma and magnetic field, the formation of striations due to instabilities, and possible heating and acceleration of the injected Ba plasma can be studied over a wide range of magnetosphere parameters. Adding to the scientific yield will be the availability of measurements for the DOD/SPACERAD instruments which can monitor plasma parameters, electric and magnetic fields, and waves before, during and after the releases.
Testing exposure of a jet engine to a dilute volcanic-ash cloud
NASA Astrophysics Data System (ADS)
Guffanti, M.; Mastin, L. G.; Schneider, D. J.; Holliday, C. R.; Murray, J. J.
2013-12-01
An experiment to test the effects of volcanic-ash ingestion by a jet engine is being planned for 2014 by a consortium of U.S. Government agencies and engine manufacturers, under the auspices of NASA's Vehicle Integrated Propulsion Research Program. The experiment, using a 757-type engine, will be an on-ground, on-wing test carried out at Edwards Air Force Base, California. The experiment will involve the use of advanced jet-engine sensor technology for detecting and diagnosing engine health. A primary test objective is to determine the effect on the engine of many hours of exposure to ash concentrations (1 and 10 mg/cu m) representative of ash clouds many 100's to >1000 km from a volcanic source, an aviation environment of great interest since the 2010 Eyjafjallajökull, Iceland, eruption. A natural volcanic ash will be used; candidate sources are being evaluated. Data from previous ash/aircraft encounters, as well as published airborne measurements of the Eyjafjallajökull ash cloud, suggest the ash used should be composed primarily of glassy particles of andesitic to rhyolitic composition (SiO2 of 57-77%), with some mineral crystals, and a few tens of microns in size. Collected ash will be commercially processed less than 63 microns in size with the expectation that the ash particles will be further pulverized to smaller sizes in the engine during the test. For a nominally planned 80 hour test at multiple ash-concentration levels, the test will require roughly 500 kg of processed (appropriately sized) ash to be introduced into the engine core. Although volcanic ash clouds commonly contain volcanic gases such as sulfur dioxide, testing will not include volcanic gas or aerosol interactions as these present complex processes beyond the scope of the planned experiment. The viscous behavior of ash particles in the engine is a key issue in the experiment. The small glassy ash particles are expected to soften in the engine's hot combustion chamber, then stick to cooler parts of the turbine. Composition (primarily silica content) and dissolved water content, both of which affect the softening temperature of silicate melts, will be taken into account when evaluating candidate ash sources, although the practicalities of collecting, shipping, and processing a substantial amount of ash are a major decision factor in source selection.
Wood, Robert; Ackerman, Thomas; Rasch, Philip J.; ...
2017-06-22
Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in quantifying the radiative forcing of climate, and hinders our ability to determine Earth's climate sensitivity to greenhouse gas increases. Representation of aerosol–cloud interactions in global models is particularly challenging because these interactions occur on typically unresolved scales. Observational studies show influences of aerosol on clouds, but correlations between aerosol and clouds are insufficient to constrain aerosol forcing because of the difficulty in separating aerosol and meteorological impacts. In this commentary, we argue that this current impasse may be overcome with the development of approaches to conduct control experimentsmore » whereby aerosol particle perturbations can be introduced into patches of marine low clouds in a systematic manner. Such cloud perturbation experiments constitute a fresh approach to climate science and would provide unprecedented data to untangle the effects of aerosol particles on cloud microphysics and the resulting reflection of solar radiation by clouds. Here, the control experiments would provide a critical test of high-resolution models that are used to develop an improved representation aerosol–cloud interactions needed to better constrain aerosol forcing in global climate models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Robert; Ackerman, Thomas; Rasch, Philip J.
Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in quantifying the radiative forcing of climate, and hinders our ability to determine Earth's climate sensitivity to greenhouse gas increases. Representation of aerosol–cloud interactions in global models is particularly challenging because these interactions occur on typically unresolved scales. Observational studies show influences of aerosol on clouds, but correlations between aerosol and clouds are insufficient to constrain aerosol forcing because of the difficulty in separating aerosol and meteorological impacts. In this commentary, we argue that this current impasse may be overcome with the development of approaches to conduct control experimentsmore » whereby aerosol particle perturbations can be introduced into patches of marine low clouds in a systematic manner. Such cloud perturbation experiments constitute a fresh approach to climate science and would provide unprecedented data to untangle the effects of aerosol particles on cloud microphysics and the resulting reflection of solar radiation by clouds. Here, the control experiments would provide a critical test of high-resolution models that are used to develop an improved representation aerosol–cloud interactions needed to better constrain aerosol forcing in global climate models.« less
Vertical-velocity skewness in the marine stratus-topped boundary layer
NASA Technical Reports Server (NTRS)
Moeng, Chin-Hoh; Rotunno, Richard; Paluch, Ilga R.
1990-01-01
Vertical-velocity skewness, S(sub w), in a turbulent flow is important in several regards. S(sub w) is indicative of the structure of the motion when it is positive, updrafts are narrower and stronger than surrounding downdrafts, and vice versa. Aircraft measurements often suggest cool, narrow downdrafts at some distance below the stratus cloud top, indicating a negative S(sub w) (Nicholls and Leighton, 1986). This seems natural as the turbulence within the stratus-topped boundary layer (CTBL) is driven mainly by the radiative cooling at the cloud top (although sometimes surface heating can also play a major role). One expects intuitively (e.g., Nicolls, 1984) that, in the situations where cloud-top cooling and surface heating coexist, the turbulence statistics in the upper part of the CTBL are influenced more by the cloud-top cooling, while those in the lower part, more by the surface heating. Thus one expects negative S(sub w) in the upper part, and positive in the lower part, in this case. In contradistinction, large-eddy simulations (LES) of the CTBL show just the opposite: the S(sub w) is positive in the upper part and negative in the lower part of the layer. To understand the nature of vertical-velocity skewness, the simplest type of buoyancy-driven turbulence (turbulent Rayleigh-Benard convection) is studied through direct numerical simulation.
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
In-Situ Data for Microphysical Retrievals: TC4, 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Gerald
This data set is derived from measurements collected in situ by the NASA DC8 during the Tropical Cloud Climate Composition Coupling Experiment (TC4) that was conducted during July and August, 2007 (Toon et al., 2010). During this experiment the DC8 was based in San Jose, Costa Rica and sampled clouds in the maritime region of the Eastern Pacific and adjoining continental areas. The primary objective of the DC8 during this deployment was to sample ice clouds associated with convective activity. While the vast majority of the data are from ice-phase clouds that have recent association with convection, other types ofmore » clouds such as boundary layer clouds and active convection were also sampled and are represented in this data set. The derived data set, as compiled in this delivery, includes approximately 15,000 5-second averaged measurements collected by the NASA DC8.« less
Techniques for the measurements of the line of sight velocity of high altitude Barium clouds
NASA Technical Reports Server (NTRS)
Mende, S. B.
1981-01-01
It is demonstrated that for maximizing the scientific output of future ion cloud release experiments a new type of instrument is required which will measure the line of sight velocity of the ion cloud by the Doppler Technique. A simple instrument was constructed using a 5 cm diameter solid Fabry-Perot etalon coupled to a low light level integrating television camera. It was demonstrated that the system has both the sensitivity and spectral resolution for the detection of ion clouds and the measurement of their line of sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check the sensitivity, (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than about 1 kilorayleigh and it had a wavelength resolution much better than .2A which corresponds to about 12 km/sec or an acceleration potential of 100 volts.
Opalescent and cloudy fruit juices: formation and particle stability.
Beveridge, Tom
2002-07-01
Cloudy fruit juices, particularly from tropical fruit, are becoming a fast-growing part of the fruit juice sector. The classification of cloud as coarse and fine clouds by centrifugation and composition of cloud from apple, pineapple, orange, guava, and lemon juice are described. Fine particulate is shown to be the true stable cloud and to contain considerable protein, carbohydrate, and lipid components. Often, tannin is present as well. The fine cloud probably arises from cell membranes and appears not to be simply cell debris. Factors relating to the stability of fruit juice cloud, including particle sizes, size distribution, and density, are described and discussed. Factors promoting stable cloud in juice are presented.
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
NASA Technical Reports Server (NTRS)
Vali, G.
1982-01-01
A low gravity experiment to assess the effect of the presence of supercooled cloud droplets on the diffusional growth rate of ice crystals is described. The theoretical work and the feasibility studies are summarized. The nucleation of ice crystals in supercooled clouds is also discussed.
Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments
NASA Technical Reports Server (NTRS)
Davis, M. H.
1977-01-01
The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.
NASA Astrophysics Data System (ADS)
Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.
2015-12-01
Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.
Design of laboratory experiments to study radiation-driven implosions
Keiter, P. A.; Trantham, M.; Malamud, G.; ...
2017-02-03
The interstellar medium is heterogeneous with dense clouds amid an ambient medium. Radiation from young OB stars asymmetrically irradiate the dense clouds. Bertoldi (1989) developed analytic formulae to describe possible outcomes of these clouds when irradiated by hot, young stars. One of the critical parameters that determines the cloud’s fate is the number of photon mean free paths in the cloud. For the extreme cases where the cloud size is either much greater than or much less than one mean free path, the radiation transport should be well understood. However, as one transitions between these limits, the radiation transport ismore » much more complex and is a challenge to solve with many of the current radiation transport models implemented in codes. In this paper, we present the design of laboratory experiments that use a thermal source of x-rays to asymmetrically irradiate a low-density plastic foam sphere. The experiment will vary the density and hence the number of mean free paths of the sphere to study the radiation transport in different regimes. Finally, we have developed dimensionless parameters to relate the laboratory experiment to the astrophysical system and we show that we can perform the experiment in the same transport regime.« less
Measurement of optical blurring in a turbulent cloud chamber
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.
2016-10-01
Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the proposal of a closure experiment for verification of theoretical aerosol effects using actual clouds in a controlled laboratory setting.
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
Factors Influencing the Adoption of Cloud Computing by Decision Making Managers
ERIC Educational Resources Information Center
Ross, Virginia Watson
2010-01-01
Cloud computing is a growing field, addressing the market need for access to computing resources to meet organizational computing requirements. The purpose of this research is to evaluate the factors that influence an organization in their decision whether to adopt cloud computing as a part of their strategic information technology planning.…
New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.
1999-01-01
A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
NASA Astrophysics Data System (ADS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Hélène; Douville, Hervé; Good, Peter; Kay, Jennifer E.; Klein, Stephen A.; Marchand, Roger; Medeiros, Brian; Pier Siebesma, A.; Skinner, Christopher B.; Stevens, Bjorn; Tselioudis, George; Tsushima, Yoko; Watanabe, Masahiro
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing?
and What are the origins and consequences of systematic model biases?
and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions.
How well do clouds and other relevant variables simulated by models agree with observations?
What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?
Which models have the most credible representations of processes relevant to the simulation of clouds?
How do clouds and their changes interact with other elements of the climate system?
Time-variability of Polar Winter Snow Clouds on Mars
NASA Astrophysics Data System (ADS)
Hayne, P. O.; Kass, D. M.; Kleinboehl, A.; Schofield, J. T.; McCleese, D. J.
2015-12-01
Carbon dioxide snow clouds are known to occur in the polar regions on Mars during the long polar night. Earlier studies have shown that a substantial fraction (up to ~20%) of the seasonal ice caps of Mars can be deposited as CO2 snowfall. The presence of optically thick clouds can also strongly influence the polar energy balance, by scattering thermal radiation emitted by the surface and lower atmosphere. Furthermore, snow deposition is likely to affect the surface morphology and subsequent evolution of the seasonal caps. Therefore, both the spatial distribution and time variability of polar snow clouds are important for understanding their influence on the Martian CO2cycle and climate. However, previous investigations have suffered from relatively coarse time resolution (typically days), coarse or incomplete spatial coverage, or both. Here we report results of a dedicated campaign by the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter, to observe polar CO2 clouds with an unprecedented time-resolution within the same spatial region. By scanning the MCS field of view, we acquired observations directly over the north pole for every ~2hr orbit over the course of several days. This was repeated during two separate periods in northern winter. The 2 hr sampling frequency enables the detailed study of cloud evolution. These observations were also compared to a cloud-free, control region just off the pole, which was sampled in the same way. Results from this experiment show that the north polar CO2 clouds are dynamic, and appear to follow a consistent pattern: Beginning with a relatively clear atmosphere, the cloud rapidly grows to ~25 - 30 km altitude in < 2 hr. Then, the altitude of the cloud tops diminishes slowly, reaching near the surface after ~6 - 10 hr. We interpret this slow decay as the precipitation of snow particles, which constrains their size to be ~10 - 100 μm. Also pervasive in this season are water ice clouds, which may provide condensation nuclei for the CO2. The interplay between these two atmospheric aerosol species on short timescales is a potentially fruitful area of future research, enabled by these unique observations. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Ackerman, Andrew; Menon, Surabi
2005-01-01
The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.
NASA Technical Reports Server (NTRS)
Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly;
2000-01-01
The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.
NASA Astrophysics Data System (ADS)
Karlsson, Karl-Göran; Håkansson, Nina
2018-02-01
The sensitivity in detecting thin clouds of the cloud screening method being used in the CM SAF cloud, albedo and surface radiation data set from AVHRR data (CLARA-A2) cloud climate data record (CDR) has been evaluated using cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite. The sensitivity, including its global variation, has been studied based on collocations of Advanced Very High Resolution Radiometer (AVHRR) and CALIOP measurements over a 10-year period (2006-2015). The cloud detection sensitivity has been defined as the minimum cloud optical thickness for which 50 % of clouds could be detected, with the global average sensitivity estimated to be 0.225. After using this value to reduce the CALIOP cloud mask (i.e. clouds with optical thickness below this threshold were interpreted as cloud-free cases), cloudiness results were found to be basically unbiased over most of the globe except over the polar regions where a considerable underestimation of cloudiness could be seen during the polar winter. The overall probability of detecting clouds in the polar winter could be as low as 50 % over the highest and coldest parts of Greenland and Antarctica, showing that a large fraction of optically thick clouds also remains undetected here. The study included an in-depth analysis of the probability of detecting a cloud as a function of the vertically integrated cloud optical thickness as well as of the cloud's geographical position. Best results were achieved over oceanic surfaces at mid- to high latitudes where at least 50 % of all clouds with an optical thickness down to a value of 0.075 were detected. Corresponding cloud detection sensitivities over land surfaces outside of the polar regions were generally larger than 0.2 with maximum values of approximately 0.5 over the Sahara and the Arabian Peninsula. For polar land surfaces the values were close to 1 or higher with maximum values of 4.5 for the parts with the highest altitudes over Greenland and Antarctica. It is suggested to quantify the detection performance of other CDRs in terms of a sensitivity threshold of cloud optical thickness, which can be estimated using active lidar observations. Validation results are proposed to be used in Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulation Package (COSP) simulators for cloud detection characterization of various cloud CDRs from passive imagery.
Atmospheric Science Data Center
2015-11-25
ISCCP is the International Satellite Cloud Climatology Project, established in 1982 as part of the World Climate Research Programme (WCRP), to collect and analyze satellite radiance measurements to determine the global distribution of clouds,...
STS-56 view of freeflying SPARTAN-201 backdropped against heavy cloud cover
1993-04-17
STS056-90-034 (8-17 April 1993) --- Backdropped against heavy cloud cover over the Mediterranean Sea, the SPARTAN-201 satellite was captured on 70mm by crewmembers aboard the Space Shuttle Discovery. SPARTAN is a free-flying payload designed to study the solar wind and part of the sun's corona. The project was conceived in the late 1970s to take advantage of the opportunity offered by the Space Shuttle to provide more observation time for the increasingly more sophisticated experiments than the five to ten minutes provided by sounding rocket flights. On the mission's third day, Astronaut Ellen Ochoa, Mission Specialist, used the remote manipulator system (RMS) to lift the satellite from its support structure on Discovery and release it in space. The reusable craft was later recaptured and returned to Earth with the crew. Note the tip of Discovery's vertical stabilizer at frame's edge.
A world-wide databridge supported by a commercial cloud provider
NASA Astrophysics Data System (ADS)
Tat Cheung, Kwong; Field, Laurence; Furano, Fabrizio
2017-10-01
Volunteer computing has the potential to provide significant additional computing capacity for the LHC experiments. One of the challenges with exploiting volunteer computing is to support a global community of volunteers that provides heterogeneous resources. However, high energy physics applications require more data input and output than the CPU intensive applications that are typically used by other volunteer computing projects. While the so-called databridge has already been successfully proposed as a method to span the untrusted and trusted domains of volunteer computing and Grid computing respective, globally transferring data between potentially poor-performing residential networks and CERN could be unreliable, leading to wasted resources usage. The expectation is that by placing a storage endpoint that is part of a wider, flexible geographical databridge deployment closer to the volunteers, the transfer success rate and the overall performance can be improved. This contribution investigates the provision of a globally distributed databridge implemented upon a commercial cloud provider.
Elastic Extension of a CMS Computing Centre Resources on External Clouds
NASA Astrophysics Data System (ADS)
Codispoti, G.; Di Maria, R.; Aiftimiei, C.; Bonacorsi, D.; Calligola, P.; Ciaschini, V.; Costantini, A.; Dal Pra, S.; DeGirolamo, D.; Grandi, C.; Michelotto, D.; Panella, M.; Peco, G.; Sapunenko, V.; Sgaravatto, M.; Taneja, S.; Zizzi, G.
2016-10-01
After the successful LHC data taking in Run-I and in view of the future runs, the LHC experiments are facing new challenges in the design and operation of the computing facilities. The computing infrastructure for Run-II is dimensioned to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, CMS - along the lines followed by other LHC experiments - is exploring the opportunity to access Cloud resources provided by external partners or commercial providers. Specific use cases have already been explored and successfully exploited during Long Shutdown 1 (LS1) and the first part of Run 2. In this work we present the proof of concept of the elastic extension of a CMS site, specifically the Bologna Tier-3, on an external OpenStack infrastructure. We focus on the “Cloud Bursting” of a CMS Grid site using a newly designed LSF configuration that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on the OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage. The amount of resources allocated thus can be elastically modeled to cope up with the needs of CMS experiment and local users. Moreover, a direct access/integration of OpenStack resources to the CMS workload management system is explored. In this paper we present this approach, we report on the performances of the on-demand allocated resources, and we discuss the lessons learned and the next steps.
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...
2016-04-11
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less
NASA Astrophysics Data System (ADS)
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.
2016-04-01
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.
Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei
2017-06-01
A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.
Controlled generation of large volumes of atmospheric clouds in a ground-based environmental chamber
NASA Technical Reports Server (NTRS)
Hettel, H. J.; Depena, R. G.; Pena, J. A.
1975-01-01
Atmospheric clouds were generated in a 23,000 cubic meter environmental chamber as the first step in a two part study on the effects of contaminants on cloud formation. The generation procedure was modeled on the terrestrial generation mechanism so that naturally occurring microphysics mechanisms were operative in the cloud generation process. Temperature, altitude, liquid water content, and convective updraft velocity could be selected independently over the range of terrestrially realizable clouds. To provide cloud stability, a cotton muslin cylinder 29.3 meters in diameter and 24.2 meters high was erected within the chamber and continuously wetted with water at precisely the same temperature as the cloud. The improved instrumentation which permitted fast, precise, and continual measurements of cloud temperature and liquid water content is described.
ESA's Ice Cloud Imager on Metop Second Generation
NASA Astrophysics Data System (ADS)
Klein, Ulf; Loiselet, Marc; Mason, Graeme; Gonzalez, Raquel; Brandt, Michael
2016-04-01
Since 2006, the European contribution to operational meteorological observations from polar orbit has been provided by the Meteorological Operational (MetOp) satellites, which is the space segment of the EUMETSAT Polar System (EPS). The first MetOp satellite was launched in 2006, 2nd 2012 and 3rd satellite is planned for launch in 2018. As part of the next generation EUMETSAT Polar System (EPS-SG), the MetOp Second Generation (MetOp-SG) satellites will provide continuity and enhancement of these observations in the 2021 - 2042 timeframe. The noel Ice Cloud Imager (ICI) is one of the instruments selected to be on-board the MetOp-SG satellite "B". The main objective of the ICI is to enable cloud ice retrieval, with emphasis on cirrus clouds. ICI will provide information on cloud ice mean altitude, cloud ice water path and cloud ice effective radius. In addition, it will provide water vapour profile measurement capability. ICI is a 13-channel microwave/sub-millimetre wave radiometer, covering the frequency range from 183 GHz up to 664 GHz. The instrument is composed of a rotating part and a fixed part. The rotating part includes the main antenna, the feed assembly and the receiver electronics. The fixed part contains the hot calibration target, the reflector for viewing the cold sky and the electronics for the instrument control and interface with the platform. Between the fixed and the rotating part is the scan mechanism. Scan mechanism is not only responsible of rotating the instrument and providing its angular position, but it will also have pass through the power and data lines. The Scan mechanism is controlled by the fully redundant Control and Drive Electronics ICI is calibrated using an internal hot target and a cold sky mirror, which are viewed once per rotation. The internal hot target is a traditional pyramidal target. The hot target is covered by an annular shield during rotation with only a small opening for the feed horns to guarantee a stable environment. Also, in order to achieve very good radiometric accuracy and stability, the ICI instrument is designed with sun-shields in order to minimize sun-intrusion at all possible sun angles. Details of the instrument design and the current development status will be presented.
Cloud computing and validation of expandable in silico livers
2010-01-01
Background In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. Results The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. Conclusions The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware. PMID:21129207
The VMC survey - XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars
NASA Astrophysics Data System (ADS)
Muraveva, T.; Subramanian, S.; Clementini, G.; Cioni, M.-R. L.; Palmer, M.; van Loon, J. Th.; Moretti, M. I.; de Grijs, R.; Molinaro, R.; Ripepi, V.; Marconi, M.; Emerson, J.; Ivanov, V. D.
2018-01-01
We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects, near-infrared time series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visual light curves from the OGLE IV (Optical Gravitational Lensing Experiment IV) survey are available. In this study, the multi-epoch Ks-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period-absolute magnitude-metallicity (PM_{K_s}Z) relation, which has some advantages in comparison with the visual absolute magnitude-metallicity (MV-[Fe/H]) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range 1-10 kpc, with an average depth of 4.3 ± 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality observed for red clump stars, in the distribution of RR Lyrae stars.
NASA Astrophysics Data System (ADS)
Eilers, J.
2013-09-01
The interface analysis from an observer of space objects makes a standard necessary. This standardized dataset serves as input for a cloud based service, which aimed for a near real-time Space Situational Awareness (SSA) system. The system contains all advantages of a cloud based solution, like redundancy, scalability and an easy way to distribute information. For the standard based on the interface analysis of the observer, the information can be separated in three parts. One part is the information about the observer e.g. a ground station. The next part is the information about the sensors that are used by the observer. And the last part is the data from the detected object. Backbone of the SSA System is the cloud based service which includes the consistency check for the observed objects, a database for the objects, the algorithms and analysis as well as the visualization of the results. This paper also provides an approximation of the needed computational power, data storage and a financial approach to deliver this service to a broad community. In this context cloud means, neither the user nor the observer has to think about the infrastructure of the calculation environment. The decision if the IT-infrastructure will be built by a conglomerate of different nations or rented on the marked should be based on an efficiency analysis. Also combinations are possible like starting on a rented cloud and then go to a private cloud owned by the government. One of the advantages of a cloud solution is the scalability. There are about 3000 satellites in space, 900 of them are active, and in total there are about ~17.000 detected space objects orbiting earth. But for the computation it is not a N(active) to N problem it is more N(active) to N(apo peri) quantity of N(all). Instead of 15.3 million possible collisions to calculate a computation of only approx. 2.3 million possible collisions must be done. In general, this Space Situational Awareness System can be used as a tool for satellite system owner for collision avoidance.
IAE - Inflatable Antenna Experiment
1996-05-20
STS077-150-022 (20 May 1996) --- After leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through the final stages its inflation process, backdropped over clouds and blue water. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
3CPO, Cloud Chemistry and Cloud Physics Organization: Data index, June 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Sharp, D.
This document is an index of the data that was collected as part of the Cloud Chemistry and Cloud Physics Organization (3CPO) cooperative convective storms program which took place in June 1988 in east central Illinois. The objective of 3CPO was to ''assemble at a common time and location, the necessary measurement facilities to provide a previously unattained description of convective storm characteristics in polluted environments. 6 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.
2015-12-01
Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data availability is an extraordinary capability and permits vertical profiles of aerosols to flow directly into any aerosol transport model.
Semantic Segmentation of Building Elements Using Point Cloud Hashing
NASA Astrophysics Data System (ADS)
Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.
2018-05-01
For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).
Interactions between deep convective clouds and aerosols as observed by satellites
NASA Astrophysics Data System (ADS)
Yuan, T.; Li, Z. I.; Remer, L.; Martins, V.
2008-12-01
Major uncertainties regarding interactions between deep convective clouds (DCC) exist due partly to observational difficulty and partly to the entanglement among remotely sensed properties of aerosols and clouds and entanglement between meteorology and possible aerosol signals. In this study we adopt a novel, physically sound relationship between cloud crystal effective radius(CER) and brightness temperature (BT) and utilize ample sampling opportunity provided by MODIS instrument. We reveal aerosol impacts on DCCs by analyzing an ensemble data. Through a conceptual model we demonstrate how aerosol may affect DCC properties. We outline a few scenarios where aerosol signals are best separated and pronounced. Based on our results, anthropogenic pollutions and smokes are shown to effectively decrease CER and to elevate glaciation level of DCCs. On the other hand, dust particles from local sources have the opposite effects, namely, increasing cloud ice particle size and enhancing glaciation by acting possibly as giant CCN or IN. Implications of these effects for aerosols are discussed along with feedbacks of these effects to dynamics.
MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels
NASA Technical Reports Server (NTRS)
Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome
2014-01-01
Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.
2017-12-08
Like a ship carving its way through the sea, the South Georgia and South Sandwich Islands parted the clouds. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image on February 2, 2017. The ripples in the clouds are known as gravity waves. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response #nasagoddard
Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times
NASA Astrophysics Data System (ADS)
Eckhoff, Rolf K.
2017-10-01
It has been known for more than half a century that the discharge times of capacitive electric sparks can influence the minimum ignition energies of dust clouds substantially. Experiments by various workers have shown that net electric-spark energies for igniting explosive dust clouds in air were reduced by a factor of the order of 100 when spark discharge times were increased from a few μs to 0.1-1 ms. Experiments have also shown that the disturbance of the dust cloud by the shock/blast wave emitted by "short" spark discharges is a likely reason for this. The disturbance increases with increasing spark energy. In this paper a hitherto unpublished comprehensive study of this problem is presented. The work was performed about 50 years ago, using sparks of comparatively high energies (strong sparks). Lycopodium was used as test dust. The experiments were conducted in a brass vessel of 1 L volume. A transient dust cloud was generated in the vessel by a blast of compressed air. Synchronization of appearance of dust cloud and spark discharge was obtained by breaking the spark gap down by the dust cloud itself. This may in fact also be one possible synchronization mechanism in accidental industrial dust explosions initiated by electrostatic sparks. The experimental results for various spark energies were expressed as the probability of ignition, based on 100 replicate experiments, as a function of the nominal dust concentration. All probabilities obtained were 0%
Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...
2009-07-23
Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less
NASA Technical Reports Server (NTRS)
Wang, J.; Biasca, R.; Liewer, P. C.
1996-01-01
Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.
NASA Technical Reports Server (NTRS)
Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben
2011-01-01
The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.
NASA Astrophysics Data System (ADS)
Ghate, V. P.; Albrecht, B. A.; Fairall, C. W.; Miller, M. A.; Brewer, A.
2010-12-01
Turbulence in the stratocumulus topped marine boundary layer (BL) is an important factor that is closely connected to both the cloud macro- and micro-physical characteristics, which can substantially affect their radiaitve properties. Data collected by ship borne instruments on the R/V Ronald H. Brown on November 27, 2008 as a part of the VAMOS Ocean-Cloud-Atmosphere-Land-Study Regional Experiment (VOCALS-Rex) are analyzed to study the turbulence structure of a stratocumulus topped marine BL. The first half of the analyzed 24 hour period was characterized by a coupled BL topped by a precipitating stratocumulus cloud; the second half had clear sky conditions with a decoupled BL. The motion stabilized vertically pointing W-band Doppler cloud radar reported the full Doppler spectrum at a temporal and spatial resolution of 3 Hz and 25 m respectively. The collocated motion stabilized Doppler lidar was operating at 2 micron wavelength and reported the Signal to Noise Ratio (SNR) and Doppler velocity at temporal and spatial resolution of 2 Hz and 30 m respectively. Data from the cloud Doppler radar and Doppler lidar were combined to yield the turbulence structure of entire BL in both cloudy and clear sky conditions. Retrievals were performed to remove the contribution of precipitating drizzle drops to the mean Doppler velocity measured by the radar. Hourly profiles of vertical velocity variance suggested high BL variance during coupled BL conditions and low variance during decoupled BL conditions. Some of the terms in second and third moment budget of vertical velocity are calculated and their diurnal evolution is explored.
Surfactants from the gas phase may promote cloud droplet formation.
Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye
2013-02-19
Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.
NASA Technical Reports Server (NTRS)
Luo, Yali; Xu, Kuan-Man; Morrison, Hugh; McFarquhar, Greg M.; Wang, Zhien; Zhang, Gong
2007-01-01
A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a factor of 3 due to interactions between the excessive LW radiative cooling and extra cloud water; heating caused by phase change of hydrometeors could affect the LWC and cloud top height by partially canceling out the LW radiative cooling. It is further shown that the resolved dynamical circulation appears to contribute more greatly to the evolution of the MPS cloud layers than the parameterized subgrid-scale circulation.
Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation
NASA Technical Reports Server (NTRS)
Wang, Shouping
1993-01-01
A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.
A Framework and Improvements of the Korea Cloud Services Certification System.
Jeon, Hangoo; Seo, Kwang-Kyu
2015-01-01
Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed.
A Framework and Improvements of the Korea Cloud Services Certification System
Jeon, Hangoo
2015-01-01
Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed. PMID:26125049
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Key, J. R.; Maslanik, J. A.
1988-01-01
The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.
Daniel M. Johnson; William K. Smith
2008-01-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in...
NASA Astrophysics Data System (ADS)
Kant, Sunny; Panda, Jagabandhu; Pani, Shantanu Kumar; Wang, Pao K.
2018-05-01
This study attempts to analyze possible aerosol-cloud-precipitation interaction over the eastern part of India including Bhubaneswar city and the whole Odisha region primarily using a long-term satellite-based dataset from 2000 to 2016 during pre-monsoon period. Relationship between aerosol optical depth (AOD), rainfall, and cloud properties is examined by taking convectively driven rain events. The two-sample student's t test is used to compute "p" value of datasets that are statically significant. Role of aerosols in governing cloud properties is analyzed through the variation of COD (cloud optical depth) and CER (cloud effective radius) in the AOD ranges 0.2-0.8. A relatively stronger and affirmative AOD-CER relationship is observed over Bhubaneswar city compared to Odisha region though the aerosols still play an appreciable role for the later too. The AOD-COD relationship is weak over both the regions. For Odisha, relationships between aerosol and cloud parameters are insignificant irrespective of rainfall regimes. Fostering of heavy rainfall over these regions takes place due to invigoration and microphysical effect during pre-monsoon months, depending upon meteorological conditions. Liquid water content and presence of a mixed-phase zone, both seem to be quite important in the convectively driven precipitation over Odisha region including Bhubaneswar city.
The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate
NASA Technical Reports Server (NTRS)
Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.
1994-01-01
A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated latent heating in the water cycle is the dominant source in the heat budget that generates a net upward motion in convective regions, upper stratiform regions (above the freezing level), and a downward motion in the lower stratiform regions. The budgets reveal a cycle of water and energy resulted from radiation-dynamic-convection interactions that maintain equilibrium of the atmosphere.
Physics Parameterization for Seasonal Prediction
2012-09-30
comparison Project, a joint effort between the Year of Tropical Convection (YOTC) Program and the Global Energy and Water Cycle Experiment (GEWEX) Cloud...unified” representation of the water cycle in the model. One such area is the correspondence between diagnosed cloud cover and prognostic cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney
2014-05-16
To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective cloudsmore » and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.« less
STS-69 Flight Day 3 Highlights
NASA Technical Reports Server (NTRS)
1995-01-01
On the third day of the STS-69 mission, the flight crew (Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Mike Gernhardt, and Jim Newman) test the Orbital Maneuvering System and prepare for the retrieval of the SPARTAN satellite with a checkout procedure of the space shuttle's robot arm. Physiological and chemical experiments on fluid dynamics are conducted as part of the Sea Lab project. Urine and blood samples from the crew are collected and studied under microgravity conditions, and a slime mold experiment is conducted to determine the properties of motion, growth, and chemistry in zero gravity conditions. Earth views include cloud cover, a hurricane, and a close-up of its eye.
Local effects of partly cloudy skies on solar and emitted radiations
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1981-01-01
Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.
NASA Astrophysics Data System (ADS)
Burrows, S. M.; Liu, X.; Elliott, S.; Easter, R. C.; Singh, B.; Rasch, P. J.
2015-12-01
Submicron marine aerosol particles are frequently observed to contain substantial fractions of organic material, hypothesized to enter the atmosphere as part of the primary sea spray aerosol formed through bubble bursting. This organic matter in sea spray aerosol may affect cloud condensation nuclei and ice nuclei concentrations in the atmosphere, particularly in remote marine regions. Members of our team have developed a new, mechanistic representation of the enrichment of sea spray aerosol with organic matter, the OCEANFILMS parameterization (Burrows et al., 2014). This new representation uses fields from an ocean biogeochemistry model to predict properties of the emitted aerosol. We have recently implemented the OCEANFILMS representation of sea spray aerosol composition into the Community Atmosphere Model (CAM), and performed sensitivity experiments and comparisons with alternate formulations. Early results from these sensitivity simulations will be shown, including impacts on aerosols, clouds, and radiation. References: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601-13629, doi:10.5194/acp-14-13601-2014, 2014.
NASA Astrophysics Data System (ADS)
Wang, Yongbo; Sheng, Yehua; Lu, Guonian; Tian, Peng; Zhang, Kai
2008-04-01
Surface reconstruction is an important task in the field of 3d-GIS, computer aided design and computer graphics (CAD & CG), virtual simulation and so on. Based on available incremental surface reconstruction methods, a feature-constrained surface reconstruction approach for point cloud is presented. Firstly features are extracted from point cloud under the rules of curvature extremes and minimum spanning tree. By projecting local sample points to the fitted tangent planes and using extracted features to guide and constrain the process of local triangulation and surface propagation, topological relationship among sample points can be achieved. For the constructed models, a process named consistent normal adjustment and regularization is adopted to adjust normal of each face so that the correct surface model is achieved. Experiments show that the presented approach inherits the convenient implementation and high efficiency of traditional incremental surface reconstruction method, meanwhile, it avoids improper propagation of normal across sharp edges, which means the applicability of incremental surface reconstruction is greatly improved. Above all, appropriate k-neighborhood can help to recognize un-sufficient sampled areas and boundary parts, the presented approach can be used to reconstruct both open and close surfaces without additional interference.
NASA Astrophysics Data System (ADS)
Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao
2018-01-01
For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.
GEWEX Cloud Systems Study (GCSS)
NASA Technical Reports Server (NTRS)
Moncrieff, Mitch
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.
Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambukkange,M.; Verlinde, J.; Elorante, E.
2006-07-10
Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivitymore » of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.« less
Visualizing unstructured patient data for assessing diagnostic and therapeutic history.
Deng, Yihan; Denecke, Kerstin
2014-01-01
Having access to relevant patient data is crucial for clinical decision making. The data is often documented in unstructured texts and collected in the electronic health record. In this paper, we evaluate an approach to visualize information extracted from clinical documents by means of tag cloud. Tag clouds will be generated using a bag of word approach and by exploiting part of speech tags. For a real word data set comprising radiological reports, pathological reports and surgical operation reports, tag clouds are generated and a questionnaire-based study is conducted as evaluation. Feedback from the physicians shows that the tag cloud visualization is an effective and rapid approach to represent relevant parts of unstructured patient data. To handle the different medical narratives, we have summarized several possible improvements according to the user feedback and evaluation results.
San Francisco and Bay Area, CA, USA
1973-06-22
SL2-03-118 (June 1973) --- An infrared photograph of the San Francisco Bay, California area, taken from the Skylab 1/2 space station in Earth orbit. THE PICTURE SHOULD BE HELD WITH THE CLOUDS AND PACIFIC OCEAN ON THE LEFT. This photograph was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type 2443 film was used. Note the thickly populated and highly developed area around the bay. Among the cities visible in this photograph are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. The S190-A experiment is part of the Skylab Earth Resources Experiment Package (EREP). Photo credit: NASA
NASA Astrophysics Data System (ADS)
Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide
2017-12-01
This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Cox, Stephen K.; Lecroy, Stuart R.
1990-01-01
Tables are presented which show data from five sites in the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE)/Surface Radiation Budget (SRB) Wisconsin experiment regional from October 12 through November 2, 1986. A discussion of intercomparison results is also included. The field experiment was conducted for the purposes of both intensive cirrus-cloud measurements and SRB algorithm validation activities.
Statistical properties of a cloud ensemble - A numerical study
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, Joanne; Soong, Su-Tzai
1987-01-01
The statistical properties of cloud ensembles under a specified large-scale environment, such as mass flux by cloud drafts and vertical velocity as well as the condensation and evaporation associated with these cloud drafts, are examined using a three-dimensional numerical cloud ensemble model described by Soong and Ogura (1980) and Tao and Soong (1986). The cloud drafts are classified as active and inactive, and separate contributions to cloud statistics in areas of different cloud activity are then evaluated. The model results compare well with results obtained from aircraft measurements of a well-organized ITCZ rainband that occurred on August 12, 1974, during the Global Atmospheric Research Program's Atlantic Tropical Experiment.
Integrated Cloud-Aerosol-Radiation Product using CERES, MODIS, CALIPSO and CloudSat Data
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave
2007-01-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip
2007-10-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
From aerosol-limited to invigoration of warm convective clouds.
Koren, Ilan; Dagan, Guy; Altaratz, Orit
2014-06-06
Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base and cold top. Here, we provide evidence from observations and numerical modeling of a dramatic aerosol effect on warm clouds. We propose that convective-cloud invigoration by aerosols can be viewed as an extension of the concept of aerosol-limited clouds, where cloud development is limited by the availability of cloud-condensation nuclei. A transition from pristine to slightly polluted atmosphere yields estimated negative forcing of ~15 watts per square meter (cooling), suggesting that a substantial part of this anthropogenic forcing over the oceans occurred at the beginning of the industrial era, when the marine atmosphere experienced such transformation. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Sun, Lin; Liu, Xinyan; Yang, Yikun; Chen, TingTing; Wang, Quan; Zhou, Xueying
2018-04-01
Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct accuracy exceeding 80%, approximately 5% of the areas were wrongly identified, and approximately 10% of the cloud shadow areas were missing. The accuracy of this method is obviously higher than the recognition accuracy of Fmask, which has correct accuracy lower than 60%, and the missing recognition is approximately 40%.
NASA Astrophysics Data System (ADS)
Gianotti, Rebecca L.
The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work demonstrates that: (1) moist convection strongly influences the near surface environment by mediating the incoming solar radiation and net radiation at the surface; (2) dissipation of convective cloud via rainfall plays an equally important role in the convectiveradiative feedback as the formation of that cloud; and (3) over parts of the Maritime Continent, rainfall is a product of diurnally-varying convective processes that operate at small spatial scales, on the order of 1 km. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
Synopsis of TC4 Missions and Meteorology
NASA Astrophysics Data System (ADS)
Starr, D.; Pfister, L.; Selkirk, H.; Nguyen, L.
2007-12-01
The TC4 (Tropical Composition, Clouds and Climate Coupling) Experiment conducted 26 aircraft sorties on 13 flight days from July 17 to August 8, 2007 (23 days). Quality science observations were also obtained during the transit flights to/from from San Jose, Costa Rica, where the mission was based. On 9 days, coordinated aircraft missions were flown with the NASA ER-2 and DC-8, and with the NASA WB-57 on 3 occasions (and transit flights). The ER-2 served as an A-Train simulator (MODIS, CloudSat, CALIPSO, AIRS/TES, partial AMSR-E) while the WB-57 provided in-situ measurements of upper tropospheric cloud particles, aerosols and trace gases. The DC-8 provided both in-situ and remote sensing measurements, where the latter were focused on Aura validation, and also including a down-looking scanning precipitation radar (TRMM PR simulator). This paper will provide a synopsis of the science observations that were obtained, as regards the clouds and cloud systems sampled, from a meteorological perspective. A diversity of clouds were sampled and the meteorology proved more interesting than expected, at least to this author. Upper tropospheric cirrus outflows were sampled from a number of convective cloud systems including ITCZ-type systems as well as systems close to and affected by land. The low level inflows to these systems were also sampled in some cases (DC-8) and missions were flown to sample stratocumulus clouds over the Pacific Ocean exploiting the unique instrumentation on the DC-8 to add to the knowledge of these clouds which are so important to the Earth radiation budget. Measurements were made in the tropical Tropopause Transition Layer (TTL) by the WB-57. Upper tropospheric clouds and TTL properties and processes were central TC4 objectives. Excellent data were also obtained on the fate of the Saharan Air Layer and its aerosols over the Caribbean and Central America, as well as samples of plumes from volcanoes in Ecuador and Columbia and biogenic emissions over Columbia and the Pacific Ocean. Satellite observations, including those from various A-Train sensors, were used in planning the missions which were, in many cases, coordinated, at least in part, with satellite overpasses, especially Aura and other A-Train sensors (DC-8) and Terra.
NASA Astrophysics Data System (ADS)
Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.
2016-12-01
Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart; Jing, Xiaoqin; Friedrich, Katja; Ikeda, Kyoko; Rasmussen, Roy
2017-01-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign, conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming, was designed to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. Part I of this study (Pokharel and Geerts, 2016) describes the project design, instrumentation, as well as the ambient atmospheric conditions and macrophysical and microphysical properties of the clouds sampled in ASCII. This paper (Part II) explores how the silver iodide (AgI) seeding affects snow growth in these orographic clouds in up to 27 intensive operation periods (IOPs), depending on the instrument used. In most cases, 2 h without seeding (NOSEED) were followed by 2 h of seeding (SEED). In situ data at flight level (2D-probes) indicate higher concentrations of small snow particles during SEED in convective clouds. The double difference of radar reflectivity Z (SEED - NOSEED in the target region, compared to the same trend in the control region) indicates an increase in Z for the composite of ASCII cases, over either mountain range, and for any of the three radar systems (WCR, MRR, and DOW), each with their own control and target regions, and for an array of snow gauges. But this double difference varies significantly from case to case, which is attributed to uncertainties related to sampling representativeness and to differences in natural trends between control and target regions. We conclude that a sample much larger than ASCII's sample is needed for clear observational evidence regarding the sensitivity of seeding efficacy to atmospheric and cloud conditions.
NASA Technical Reports Server (NTRS)
Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man
2005-01-01
This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.
Teaching Cybersecurity Using the Cloud
ERIC Educational Resources Information Center
Salah, Khaled; Hammoud, Mohammad; Zeadally, Sherali
2015-01-01
Cloud computing platforms can be highly attractive to conduct course assignments and empower students with valuable and indispensable hands-on experience. In particular, the cloud can offer teaching staff and students (whether local or remote) on-demand, elastic, dedicated, isolated, (virtually) unlimited, and easily configurable virtual machines.…
Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan;
2015-01-01
We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.
Campaign datasets for ARM Cloud Aerosol Precipitation Experiment (ACAPEX)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. Ruby; Mei, Fan; Comstock, Jennifer
This campaign consisted of the deployment of the DOE ARM Mobile Facility 2 (AMF2) and the ARM Aerial Facility (AAF) G-1 in a field campaign called ARM Cloud Aerosol Precipitation Experiment (ACAPEX), which took place in conjunction with CalWater 2- a NOAA field campaign. The joint CalWater 2/ACAPEX field campaign aimed to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. The observational strategy consisted of the use of land and offshore assets to monitor: 1. the evolution and structure ofmore » ARs from near their regions of development 2. the long-range transport of aerosols in the eastern North Pacific and potential interactions with ARs 3. how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent.« less
Making the most of cloud storage - a toolkit for exploitation by WLCG experiments
NASA Astrophysics Data System (ADS)
Alvarez Ayllon, Alejandro; Arsuaga Rios, Maria; Bitzes, Georgios; Furano, Fabrizio; Keeble, Oliver; Manzi, Andrea
2017-10-01
Understanding how cloud storage can be effectively used, either standalone or in support of its associated compute, is now an important consideration for WLCG. We report on a suite of extensions to familiar tools targeted at enabling the integration of cloud object stores into traditional grid infrastructures and workflows. Notable updates include support for a number of object store flavours in FTS3, Davix and gfal2, including mitigations for lack of vector reads; the extension of Dynafed to operate as a bridge between grid and cloud domains; protocol translation in FTS3; the implementation of extensions to DPM (also implemented by the dCache project) to allow 3rd party transfers over HTTP. The result is a toolkit which facilitates data movement and access between grid and cloud infrastructures, broadening the range of workflows suitable for cloud. We report on deployment scenarios and prototype experience, explaining how, for example, an Amazon S3 or Azure allocation can be exploited by grid workflows.
Observational and Modeling Studies of Clouds and the Hydrological Cycle
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.
1997-01-01
Our approach involved validating parameterizations directly against measurements from field programs, and using this validation to tune existing parameterizations and to guide the development of new ones. We have used a single-column model (SCM) to make the link between observations and parameterizations of clouds, including explicit cloud microphysics (e.g., prognostic cloud liquid water used to determine cloud radiative properties). Surface and satellite radiation measurements were used to provide an initial evaluation of the performance of the different parameterizations. The results of this evaluation will then used to develop improved cloud and cloud-radiation schemes, which were tested in GCM experiments.
Teaching through Trade Books: Cloud Watchers
ERIC Educational Resources Information Center
Morgan, Emily; Ansberry, Karen; Phillips-Birdsong, Colleen
2010-01-01
Weather is a topic in science that is applicable to our lives on an everyday basis. The weather often determines what we wear, where we go, and what we do. This month's column focuses on clouds and the part they play in determining our weather. In the K-3 lesson, students learn about different cloud types and sculpt each type out of shaving cream.…
Assessing Affordances of Selected Cloud Computing Tools for Language Teacher Education in Nigeria
ERIC Educational Resources Information Center
Ofemile, Abdulmalik Yusuf
2015-01-01
This paper reports part of a study that hoped to understand Teacher Educators' (TE) assessment of the affordances of selected cloud computing tools ranked among the top 100 for the year 2010. Research has shown that ICT and by extension cloud computing has positive impacts on daily life and this informed the Nigerian government's policy to…
The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.
Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika
2004-06-01
The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.
NASA Technical Reports Server (NTRS)
Platnick, Steven E.
2010-01-01
Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C-130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulfur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. SAFARI 2000 aircraft flights off the coast of Namibia were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. MODIS was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 (and Aqua spacecraft on May 4, 2002). Among the remote sensing algorithms developed and applied to this sensor are cloud optical and microphysical properties that include cloud thermodynamic phase, optical thickness, and effective particle radius of both liquid water and ice clouds. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, and fundamental atmospheric research. The archived MODIS Collection 5 cloud products processing stream will be used to analyze low water cloud scenes off the Namibian and Angolan coasts during SAFARI 2000 time period, as well as other years. Pixel-level Terra and Aqua MODIS retrievals (l. km spatial resolution at nadir) and gridded (1' uniform grid) statistics of cloud optical thickness and effective particle radius will be presented, including joint probability distributions between the two quantities. In addition, perspectives from the MODIS Airborne Simulator, which flew on the ER-2 during SAFARI 2000 providing high spatial resolution retrievals (50 m at nadir), will be presented as appropriate. The H-SAF Program requires an experimental operational European-centric Satellite Precipitation Algorithm System (E-SPAS) that produces medium spatial resolution and high temporal resolution surface rainfall and snowfall estimates over the Greater European Region including the Greater Mediterranean Basin. Currently, there are various types of experimental operational algorithm methods of differing spatiotemporal resolutions that generate global precipitation estimates. This address will first assess the current status of these methods and then recommend a methodology for the H-SAF Program that deviates somewhat from the current approach under development but one that takes advantage of existing techniques and existing software developed for the TRMM Project and available through the public domain.
Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds
NASA Astrophysics Data System (ADS)
Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.
2008-05-01
CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.
Chen, Ying; Zhang, Yang; Fan, Jiwen; ...
2015-08-18
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Zhang, Yang; Fan, Jiwen
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Zhang, Yang; Fan, Jiwen
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
Space Radar Image of Maui, Hawaii
1999-04-15
This spaceborne radar image shows the Valley Island of Maui, Hawaii. The cloud-penetrating capabilities of radar provide a rare view of many parts of the island, since the higher elevations are frequently shrouded in clouds.
Electrostatics of Granular Material (EGM): Space Station Experiment
NASA Technical Reports Server (NTRS)
Marshall, J.; Sauke, T.; Farrell, W.
2000-01-01
Aggregates were observed to form very suddenly in a lab-contained dust cloud, transforming (within seconds) an opaque monodispersed cloud into a clear volume containing rapidly-settling, long hair-like aggregates. The implications of such a "phase change" led to a series of experiments progressing from the lab, to KC-135, followed by micro-g flights on USML-1 and USML-2, and now EGM slated for Space Station. We attribute the sudden "collapse" of a cloud to the effect of dipoles. This has significant ramifications for all types of cloud systems, and additionally implicates dipoles in the processes of cohesion and adhesion of granular matter. Notably, there is the inference that like-charged grains need not necessarily repel if they are close enough together: attraction or repulsion depends on intergranular distance (the dipole being more powerful at short range), and the D/M ratio for each grain, where D is the dipole moment and M is the net charge. We discovered that these ideas about dipoles, the likely pervasiveness of them in granular material, the significance of the D/M ratio, and the idea of mixed charges on individual grains resulting from tribological processes --are not universally recognized in electrostatics, granular material studies, and aerosol science, despite some early seminal work in the literature, and despite commercial applications of dipoles in such modern uses as "Krazy Glue", housecleaning dust cloths, and photocopying. The overarching goal of EGM is to empirically prove that (triboelectrically) charged dielectric grains of material have dipole moments that provide an "always attractive" intergranular force as a result of both positive and negative charges residing on the surfaces of individual grains. Microgravity is required for this experiment because sand grains can be suspended as a cloud for protracted periods, the grains are free to rotate to express their electrostatic character, and Coulombic forces are unmasked. Suspended grains will be "interrogated" by applied electrical fields. In one module, grains will be immersed in an inhomogeneous electric field and allowed to be attracted towards or repelled from the central electrode of the module: part of the grain's speed will be a function of its net charge (monopole), part will be a function of the dipole. Observed grain position vs. time will provide a curve that can be deconvolved into the dipole and monopole forces responsible, since both have distinctive radial dependencies. In a second approach, the inhomogeneous field will be alternated at low frequency (e.g., every 5-10 seconds) so that the grains are alternately attracted and repelled from the center of the field. The resulting "zigzag" grain motion will gradually drift inwards, then suddenly change to a unidirectional inward path when a critical radial distance is encountered (a sort of "Coulombic event horizon") at which the dipole strength supersedes the monopole strength --thus proving the presence of a dipole, while also quantifying the D/M ratio. In a second module, an homogeneous electric field eliminates dipole effects (both Coulombic and induced) to provide calibration of the monopole and to more readily evaluate net charge statistical variance. In both modules, the e-fields will be exponentially step-ramped in voltage during the experiment, so that the field "nominalizes" grain speed while spreading the response time --effectively forcing each grain to "wait its turn" to be measured. In addition to rigorously quantifying M, D, and the D/M ratio for many hundreds of grains, the experiment will also observe gross electrometric and RF discharge phenomena associated with grain activity. The parameter space will encompass grain charging levels (via intentional triboelectrification), grain size, cloud density, and material type. Results will prove or disprove the dipole hypothesis. In either case, light will be shed on the role of electrostatic forces in governing granular systems. Knowledge so gained can be applied to natural clouds such as protostellar and protoplanetary dust and debris systems, planetary rings, planetary dust palls and aerosols created by volcanic, impact, aeolian, firestorm, or nuclear winter processes. The data are also directly applicable to adhesion, cohesion, transport, dispersion, and collection of granular materials in industrial, agricultural, pharmaceutical applications, and in fields as diverse as dust contamination of space suits on Mars and crop spraying on Earth.
The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)
NASA Technical Reports Server (NTRS)
Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.
2004-01-01
In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
Shupe, Matthew
2013-05-22
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
Security-aware Virtual Machine Allocation in the Cloud: A Game Theoretic Approach
2015-01-13
predecessor, however, this paper used empirical evidence and actual data from running experiments on the Amazon EC2 cloud . They began by running all 5...is through effective VM allocation management of the cloud provider to ensure delivery of maximum security for all cloud users. The negative... Cloud : A Game Theoretic Approach 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f
The Microphysics of Antarctic Clouds - Part one Observations.
NASA Astrophysics Data System (ADS)
Lachlan-Cope, Tom; Listowski, Constantino; O'Shea, Sebastian; Bower, Keith
2016-04-01
During the Antarctic summer of 2010 and 2011 in-situ measurements of clouds were made over the Antarctic Peninsula and in 2015 similar measurements were made over the eastern Weddell Sea using the British Antarctic Surveys instrumented Twin Otter aircraft. This paper contrasts the clouds found on either side of the Antarctic Peninsula with the clouds over the eastern Weddell Sea, paying particular attention to the total number of ice and water particles found in the clouds. The differences found between the clouds are considered in relation to the sources of cloud condensation nuclei and ice nuclei that are expected to be active in the different cases. In particular it was found that the number of ice nuclei was very low over the Weddell Sea when compared to other regions.
Thin Cloud Detection Method by Linear Combination Model of Cloud Image
NASA Astrophysics Data System (ADS)
Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.
2018-04-01
The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.
Measurement of the line-of-sight velocity of high-altitude barium clouds A technique
NASA Technical Reports Server (NTRS)
Mende, S. B.; Harris, S. E.
1982-01-01
It is demonstrated that for maximizing the scientific output of future ionospheric and magnetospheric ion cloud release experiments a new type of instrument is required which will measure the line-of-sight velocity of the ion cloud by the Doppler technique. A simple instrument was constructed using a 5-cm diam solid Fabry-Perot etalon coupled to a low-light-level integrating TV camera. It was demonstrated that the system has both the sensitivity and spectral resolution for detection of ion clouds and measurement of their line-of-sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check sensitivity, and (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than approximately 1 kR, and it had a wavelength resolution much better than 0.2 A, which corresponds to approximately 12 km/sec or in the case of barium ion an acceleration potential of 100 V. The instrument is rugged and, therefore, simple to use in field experiments or on flight instruments. The sensitivity limit of the instrument can be increased by increasing the size of the etalon.
Lidar cirrus cloud retrieval - methodology and applications
NASA Astrophysics Data System (ADS)
Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume
2016-04-01
In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to understand the history of the cirrus clouds - time of residence in different altitudes, ageing process and possible phase changes. Finally the radiative transfer code FASDOM fed by ancillary meteorological and surface data is used to simulate brightness temperatures as measured by the infrared radiometer locate at the ground level in the OPAR laboratory.
Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval
NASA Astrophysics Data System (ADS)
Chen, Yi-Chen; Lin, Chao-Hung
2016-06-01
With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority over related methods.
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas
2012-01-01
Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.
Sukič, Primož; Štumberger, Gorazd
2017-05-13
Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly.
Sukič, Primož; Štumberger, Gorazd
2017-01-01
Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078
Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
NASA Technical Reports Server (NTRS)
Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene
1993-01-01
Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.
Norris, Peter M.; da Silva, Arlindo M.
2018-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state. PMID:29618848
NASA Technical Reports Server (NTRS)
Norris, Peter M.; da Silva, Arlindo M.
2016-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
Norris, Peter M; da Silva, Arlindo M
2016-07-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
The effect of clouds on the earth's radiation budget
NASA Technical Reports Server (NTRS)
Ziskin, Daniel; Strobel, Darrell F.
1991-01-01
The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.
GEWEX - The Global Energy and Water Cycle Experiment
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1992-01-01
GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.
The GLAS Polar Orbiting Lidar Experiment: First Year Results and Available Data
NASA Technical Reports Server (NTRS)
Spinhirne, James D.; Welton, E. Judd; Palm, Stephen P.; Hart, William D.; Hlavka, Dennis; Mahesh, Ashwin; Lancaster, Redgie S.
2004-01-01
The first polar orbiting satellite lidar instrument, the Geoscience Laser Altimeter System (GLAS), was launched in 2003 and is approaching six months of data operations. As part of the NASA Earth Observing System (EOS) project, the GLAS instrument is intended as a laser sensor fulfilling complementary requirements for several earth science disciplines including atmospheric and surface applications on the Ice, Cloud and Land Elevation Satellite. In this paper we present examples of atmospheric measurement results and explain access to data for the international science community.
MFD - Documentation of small fine arm in stowed position
1997-08-12
S85-E-5044 (12 August 1997) --- View of the payload bay of the Earth-orbiting Space Shuttle Discovery looking toward the shuttle's vertical stabilizer with clouds in the background. Easily recognized is the Manipulator Flight Demonstration (MFD), which is sponsored by Japan's National Space Development Agency (NASDA). MFD will evaluate the use of the Small Fine Arm (SFA) that is planned to be part of the future Japanese Experiment Module's Remote Manipulator System (RMS) on the International Space Station (ISS). The photograph was taken with the Electronic Still Camera (ESC).
Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony
1992-01-01
Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.
Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space
NASA Technical Reports Server (NTRS)
Davidson, R. E.
1972-01-01
A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu
Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less
Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu
2016-05-12
Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less
Odd cloud in the Ross Sea, Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
On January 28, 2002, MODIS captured this image of an interesting cloud formation in the boundary waters between Antarctica's Ross Sea and the Southern Ocean. A dragon? A snake? A fish? No, but it is an interesting example of the atmospheric physics of convection. The 'eye' of this dragon-looking cloud is likely a small spot of convection, the process by which hot moist air rises up into the atmosphere, often producing big, fluffy clouds as moisture in the air condenses as rises into the colder parts of the atmosphere. A false color analysis that shows different kinds of clouds in different colors reveals that the eye is composed of ice crystals while the 'body' is a liquid water cloud. This suggests that the eye is higher up in the atmosphere than the body. The most likely explanation for the eye feature is that the warm, rising air mass had enough buoyancy to punch through the liquid water cloud. As a convective parcel of air rises into the atmosphere, it pushes the colder air that is higher up out of its way. That cold air spills down over the sides of the convective air mass, and in this case has cleared away part of the liquid cloud layer below in the process. This spilling over of cold air from higher up in the atmosphere is the reason why thunderstorms are often accompanied by a cool breeze. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Dong, Xiquan; Wood, Robert
With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds,more » whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need for comprehensive in situ characterizations of boundary-layer structure, and associated vertical distributions and horizontal variabilities of low clouds and aerosol over the Azores. ARM Aerial Facility (AAF) Gulfstream-1 (G-1) aircraft will be deployed at the ENA site during two intensive operational periods (IOPs) of early summer (June to July) of 2017 and winter (January to February) of 2018, respectively. Deployments during both seasons allow for examination of key aerosol and cloud processes under a variety of representative meteorological and cloud conditions. The science themes for the deployments include: 1) Budget of MBL CCN and its seasonal variation; 2) Effects of aerosol on cloud and precipitation; 3) Cloud microphysical and macrophysical structures, and entrainment mixing; 4) Advancing retrievals of turbulence, cloud, and drizzle; and 5) Model evaluation and processes studies. A key advantage of the deployments is the strong synergy between the measurements onboard the G-1 and the routine measurements at the ENA site, including state-of-the-art profiling and scanning radars. The 3D cloud structures provided by the scanning radars will put the detailed in situ measurements into mesoscale and cloud lifecycle contexts. On the other hand, high quality in situ measurements will enable validation and improvements of ground-based retrieval algorithms at the ENA site, leading to high-quality and statistically robust data sets from the routine measurements. The deployments, combined with the routine measurements at the ENA site, will have a long lasting impact on the research and modeling of low clouds and aerosols in the remote marine environment.« less
Observations of Cirrus Clouds over the Pacific Region by the NASA Multiwavelength Lidar System
NASA Technical Reports Server (NTRS)
Ismail, Syed; Browell, Edward V.; Fenn, Marta A.; Nowicki, Greg D.
1992-01-01
As part of the Pacific Exploratory Mission-West Campaign that took place during 16 Sep. - 21 Oct. 1991, lidar measurements were made from the ARC DC-8 aircraft at an altitude of approximately 9 km. This mission provided a unique opportunity to make cirrus cloud observations around the Pacific region covering the latitude range from 5 to 55 deg N and the longitude range from -114 to 120 deg E. Cirrus clouds were observed on most of these flights providing a unique data base. The latitudinal coverage of cirrus observations was further extended to -5 deg S from observations on 30 Jan. 1992 as part of the Airborne Arctic Stratospheric Expedition 2. During this latter mission, aerosol depolarizations at 622 and 1064 nm were also measured. The optical characteristics and statistics related to these cirrus cloud observations are summarized.
NASA Technical Reports Server (NTRS)
Perkins, Porter J.; Kline, Dwight B.
1951-01-01
Flight icing-rate data obtained in a dense and. abnormally deep supercooled stratiform cloud system indicated the existence of liquid-water contents generally exceeding values in amount and extent previously reported over the midwestern sections of the United States. Additional information obtained during descent through a part of the cloud system indicated liquid-water contents that significantly exceeded theoretical values, especially near the middle of the cloud layer.. The growth of cloud droplets to sizes that resulted in sedimentation from the upper portions of the cloud is considered to be a possible cause of the high water contents near the center of the cloud layer. Flight measurements of the vertical temperature distribution in the cloud layer indicated a rate of change of temperature with altitude exceeding that of the moist adiabatic lapse rate. This excessive rate of change is considered to have contributed to the severity of the condition.
Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.
2014-12-01
Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various datasets available, the methods employed to utilize them in the cloud property retrieval validation process, and the results and how they aid future development of the retrieval algorithms. Future needs are also discussed.
Meteorological support to the West German-United States Barium Ion Cloud Project.
NASA Technical Reports Server (NTRS)
Westfall, R. R.; Chamberlain, L. W.
1972-01-01
The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.
Weather Fundamentals: Clouds. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…
Using Clouds for MapReduce Measurement Assignments
ERIC Educational Resources Information Center
Rabkin, Ariel; Reiss, Charles; Katz, Randy; Patterson, David
2013-01-01
We describe our experiences teaching MapReduce in a large undergraduate lecture course using public cloud services and the standard Hadoop API. Using the standard API, students directly experienced the quality of industrial big-data tools. Using the cloud, every student could carry out scalability benchmarking assignments on realistic hardware,…
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis.
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard's Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments.
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard’s Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments. PMID:26606388
1999-03-09
In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Dr. Haig Keshishian checks fruit fly larvae in a petri dish. The larvae are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. Dr. Keshishian, from Yale University, is the principle investigator for the experiment. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B
The fourth International Conference on Information Science and Cloud Computing
NASA Astrophysics Data System (ADS)
This book comprises the papers accepted by the fourth International Conference on Information Science and Cloud Computing (ISCC), which was held from 18-19 December, 2015 in Guangzhou, China. It has 70 papers divided into four parts. The first part focuses on Information Theory with 20 papers; the second part emphasizes Machine Learning also containing 21 papers; in the third part, there are 21 papers as well in the area of Control Science; and the last part with 8 papers is dedicated to Cloud Science. Each part can be used as an excellent reference by engineers, researchers and students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by the ISCC conference. Special thanks go to Professor Deyu Qi, General Chair of ISCC 2015, for his leadership in supervising the organization of the entire conference; Professor Tinghuai Ma, Program Chair, and members of program committee for evaluating all the submissions and ensuring the selection of only the highest quality papers; and the authors for sharing their ideas, results and insights. We sincerely hope that you enjoy reading papers included in this book.
Study of cloud properties using airborne and satellite measurements
NASA Astrophysics Data System (ADS)
Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae
2014-08-01
The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.
Evaluating Cloud Initialization in a Convection-permit NWP Model
NASA Astrophysics Data System (ADS)
Li, Jia; Chen, Baode
2015-04-01
In general, to avoid "double counting precipitation" problem, in convection permit NWP models, it was a common practice to turn off convective parameterization. However, if there were not any cloud information in the initial conditions, the occurrence of precipitation could be delayed due to spin-up of cloud field or microphysical variables. In this study, we utilized the complex cloud analysis package from the Advanced Regional Prediction System (ARPS) to adjust the initial states of the model on water substance, such as cloud water, cloud ice, rain water, et al., that is, to initialize the microphysical variables (i.e., hydrometers), mainly based on radar reflectivity observations. Using the Advanced Research WRF (ARW) model, numerical experiments with/without cloud initialization and convective parameterization were carried out at grey-zone resolutions (i.e. 1, 3, and 9 km). The results from the experiments without convective parameterization indicate that model ignition with radar reflectivity can significantly reduce spin-up time and accurately simulate precipitation at the initial time. In addition, it helps to improve location and intensity of predicted precipitation. With grey-zone resolutions (i.e. 1, 3, and 9 km), using the cumulus convective parameterization scheme (without radar data) cannot produce realistic precipitation at the early time. The issues related to microphysical parametrization associated with cloud initialization were also discussed.
Giant molecular clouds as regions of particle acceleration
NASA Technical Reports Server (NTRS)
Dogiel, V. A.; Gurevich, A. V.; Istomin, Y. N.; Zybin, K. A.
1985-01-01
One of the most interesting results of investigations carried out on the satellites SAS-II and COS-B is the discovery of unidentified discrete gamma sources. Possibly a considerable part of them may well be giant molecular clouds. Gamma emission from clouds is caused by the processes with participation of cosmic rays. The estimation of the cosmic ray density in clouds has shown that for the energy E approx. = I GeV their density can 10 to 1000 times exceed the one in intercloud space. We have made an attempt to determine the mechanism which could lead to the increase in the cosmic ray density in clouds.
Changes in cloud properties over East Asia deduced from the CLARA-A2 satellite data record
NASA Astrophysics Data System (ADS)
Benas, Nikos; Fokke Meirink, Jan; Hollmann, Rainer; Karlsson, Karl-Göran; Stengel, Martin
2017-04-01
Studies on cloud properties and processes, and their role in the Earth's changing climate, have advanced during the past decades. A significant part of this advance was enabled by satellite measurements, which offer global and continuous monitoring. Lately, a new satellite-based cloud data record was released: the CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data - second edition (CLARA-A2) includes high resolution cloud macro- and micro-physical properties derived from the AVHRR instruments on board NOAA and MetOp polar orbiters. Based on this data record, an analysis of cloud property changes over East Asia during the 12-year period 2004-2015 was performed. Significant changes were found in both optical and geometric cloud properties, including increases in cloud liquid water path and top height. The Cloud Droplet Number Concentration (CDNC) was specifically studied in order to gain further insight into possible connections between aerosol and cloud processes. To this end, aerosol and cloud observations from MODIS, covering the same area and period, were included in the analysis.
Goulds Belt, Interstellar Clouds, and the Eocene Oligocene Helium-3 Enhancement
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2015-01-01
Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent interplanetary dust particle (IDPs) and small meteoroids with embedded helium to the Earth, perhaps explaining part the helium-3 flux increase seen in the sedimentary record near the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, IDPs in the inner Solar System may have been dragged to Earth, while dust and small meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits; however, this hypotheses does not explain the Popigai and Chesapeake Bay impacts.
NASA Astrophysics Data System (ADS)
Schnaiter, Martin; Järvinen, Emma; Abdelmonem, Ahmed; Leisner, Thomas
2018-01-01
The novel aircraft optical cloud probe PHIPS-HALO has been developed to establish clarity regarding the fundamental link between the microphysical properties of single atmospheric ice particles and their appropriated angular light scattering function. After final improvements were implemented in the polar nephelometer part and the acquisition software of PHIPS-HALO, the instrument was comprehensively characterized in the laboratory and was deployed in two aircraft missions targeting cirrus and Arctic mixed-phase clouds. This work demonstrates the proper function of the instrument under aircraft conditions and highlights the uniqueness, quality, and limitations of the data that can be expected from PHIPS-HALO in cloud-related aircraft missions.
Clouds and the Earth's Radiant Energy System (CERES)
NASA Technical Reports Server (NTRS)
Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.
1992-01-01
The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.
A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction
NASA Astrophysics Data System (ADS)
Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur
2009-07-01
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).
An experiment to fly on mission STS-93 is prepared at Life Sciences Building, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Dr. Haig Keshishian checks fruit fly larvae in a petri dish. The larvae are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. Dr. Keshishian, from Yale University, is the principle investigator for the experiment. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high- temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B.
Notes on a storage manager for the Clouds kernel
NASA Technical Reports Server (NTRS)
Pitts, David V.; Spafford, Eugene H.
1986-01-01
The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Minnis, Patrick; Xi, Baike
2005-01-01
A record of single-layer and overcast low cloud (stratus) properties has been generated using approximately 4000 hours of data collected from January 1997 to December 2002 at the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid-phase and liquid-dominant, mixed-phase, low cloud macrophysical, microphysical, and radiative properties including cloud-base and -top heights and temperatures, and cloud physical thickness derived from a ground-based radar and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) and content (LWC), and cloud-droplet effective radius (r(sub e)) and number concentration (N) derived from the macrophysical properties and radiometer data; and cloud optical depth (tau), effective solar transmission (gamma), and cloud/top-of-atmosphere albedos (R(sub cldy)/R(sub TOA)) derived from Eppley precision spectral pyranometer measurements. The cloud properties were analyzed in terms of their seasonal, monthly, and hourly variations. In general, more stratus clouds occur during winter and spring than in summer. Cloud-layer altitudes and physical thicknesses were higher and greater in summer than in winter with averaged physical thicknesses of 0.85 km and 0.73 km for day and night, respectively. The seasonal variations of LWP, LWC, N. tau, R(sub cldy), and R(sub TOA) basically follow the same pattern with maxima and minima during winter and summer, respectively. There is no significant variation in mean r(sub e), however, despite a summertime peak in aerosol loading, Although a considerable degree of variability exists, the 6-yr average values of LWP, LWC, r(sub e), N, tau, gamma, R(sub cldy) and R(sub TOA) are 150 gm(exp -2) (138), 0.245 gm(exp -3) (0.268), 8.7 micrometers (8.5), 213 cm(exp -3) (238), 26.8 (24.8), 0.331, 0.672, 0.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has been developed from this study. The low stratus cloud amount monotonically increases from midnight to early morning (0930 LT), and remains large until around local noon, then declines until 1930 LT when it levels off for the remainder of the night. In the morning, the stratus cloud layer is low, warm, and thick with less LWC, while in the afternoon it is high, cold, and thin with more LWC. Future parts of this series will consider other cloud types and cloud radiative forcing at the ARM SCF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel; Chemke, Rei; DeMott, Paul J.
The formation of highly supercooled rain was documented by aircraft observations in clouds at a wide range of conditions near the coastal region of the western United States. Several case studies are described in detail using combined cloud and aerosol measurements to document both the highly super-cooled condition and the relatively pristine aerosol conditions under which it forms. The case studies include: (1) Marine convective clouds over the coastal waters of northern California, as measured by cloud physics probes flown on a Gulfstream-1 aircraft during the CALWATER campaign in February and early March 2011. The clouds had extensive drizzle inmore » their tops, which extended downward to the 0°C isotherm as supercooled rain. Ice multiplication was observed only in mature parts of the clouds where cloud water was already depleted. (2) Orographically triggered convective clouds in marine air mass over the foothills of the Sierra Nevada to the east of Sacramento, as measured in CALWATER. Supercooled rain was observed down to -21°C. No indications for ice multiplication were evident. (3) Orographic layer clouds over Yosemite National Park, also measured in CALWATER. The clouds had extensive drizzle at -21°C, which intensified with little freezing lower in the cloud, and (4) Supercooled drizzle drops in layer clouds near Juneau, Alaska, as measured by the Wyoming King Air as part of a FAA project to study aircraft icing in this region. Low concentrations of CCN was a common observation in all these clouds, allowing for the formation of clouds with small concentration of large drops that coalesced into supercooled drizzle and raindrops. Another common observation was the absence of ice nuclei and/or ice crystals in measurable concentrations was associated with the persistent supercooled drizzle and rain. Average ice crystal concentrations were 0.007 l-1 at the top of convective clouds at -12°C and 0.03 l-1 in the case of layer clouds at -21°C. In combination these two conditions provide ideal conditions for the formation of highly supercooled drizzle and rain. These results help explain the anomalously high incidences of aircraft icing at cold temperatures in U.S. west coast clouds (Bernstein et al., 2004) and highlight the need to include aerosol effects when simulating aircraft icing with cloud models. These case studies can also serve as benchmarks for explicit cloud microphysics models attempting to simulate the formation of precipitation in these types of pristine conditions.« less
Optically thin ice clouds in Arctic : Formation processes
NASA Astrophysics Data System (ADS)
Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.
2010-12-01
Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be done from these observations, and a first classification has been performed. Results are then compared to satellite data analysis. The new retrieval scheme of Delanoë and Hogan, which combines CloudSat radar and CALIPSO lidar measurements, is used to recover profiles of the properties of ice clouds such as the visible extinction coefficient, the ice water content and the effective radius of ice crystals. Comparisons with in situ airborne measurements allow to validate this retrieval method, and thus the clouds and aerosols properties, for selected cases whereflights are coordinated with the satellite overpasses. A comparison of combined CloudSat/CALIPSO microphysical properties retrievals with airborne ice clouds measurements will be presented. The Lagrangian Particle Dispersion Model FLEXPART is use to study the origin of observed air masses, to be linked with pollution sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecchini, Micael A.; Machado, Luiz A. T.; Comstock, Jennifer M.
The remote atmosphere over the Amazon can be similar to oceanic regions in terms of aerosol conditions and cloud type formations. This is especially true during the wet season. The main aerosol-related disturbances over the Amazon have both natural sources, such as dust transport from Africa, and anthropogenic sources, such as biomass burning or urban pollution. The present work considers the impacts of the latter on the microphysical properties of warm-phase clouds by analysing observations of the interactions between the Manaus pollution plume and its surroundings, as part of the GoAmazon2014/5 Experiment. The analysed period corresponds to the wet seasonmore » (specifically from February to March 2014 and corresponding to the first Intensive Operating Period (IOP1) of GoAmazon2014/5). The droplet size distributions reported are in the range 1 µm ≤ D≤50 µm in order to capture the processes leading up to the precipitation formation. The wet season largely presents a clean background atmosphere characterized by frequent rain showers. As such, the contrast between background clouds and those affected by the Manaus pollution can be observed and detailed. The focus is on the characteristics of the initial microphysical properties in cumulus clouds predominantly at their early stages. The pollution-affected clouds are found to have smaller effective diameters and higher droplet number concentrations. The differences range from 10 to 40% for the effective diameter and are as high as 1000% for droplet concentration for the same vertical levels. The growth rates of droplets with altitude are slower for pollution-affected clouds (2.90 compared to 5.59 µm km ₋1), as explained by the absence of bigger droplets at the onset of cloud development. Clouds under background conditions have higher concentrations of larger droplets (>20 µm) near the cloud base, which would contribute significantly to the growth rates through the collision–coalescence process. The overall shape of the droplet size distribution (DSD) does not appear to be predominantly determined by updraught strength, especially beyond the 20 µm range. The aerosol conditions play a major role in that case. However, the updraughts modulate the DSD concentrations and are responsible for the vertical transport of water in the cloud. The larger droplets found in background clouds are associated with weak water vapour competition and a bimodal distribution of droplet sizes in the lower levels of the cloud, which enables an earlier initiation of the collision–coalescence process. This study shows that the pollution produced by Manaus significantly affects warm-phase microphysical properties of the surrounding clouds by changing the initial DSD formation. The corresponding effects on ice-phase processes and precipitation formation will be the focus of future endeavours.« less
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
NASA Astrophysics Data System (ADS)
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
NASA Technical Reports Server (NTRS)
Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.
2000-01-01
Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Heck, Patrick W.; Liou, Kuo-Nan; Takano, Yoshihide
1992-01-01
The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II Intensive Field Observations (IFO) were taken over southeastern Kansas between November 13 and December 7,1991, to determine cirrus cloud properties. The observations include in situ microphysical data; surface, aircraft, and satellite remote sensing; and measurements of divergence over meso- and smaller-scale areas using wind profilers. Satellite remote sensing of cloud characteristics is an essential aspect for understanding and predicting the role of clouds in climate variations. The objectives of the satellite cloud analysis during FIRE are to validate cloud property retrievals, develop advanced methods for extracting cloud information from satellite-measured radiances, and provide multiscale cloud data for cloud process studies and for verification of cloud generation models. This paper presents the initial results of cloud property analyses during FIRE-II using Geostationary Operational Environmental Satellite (GOES) data and NOAA Advanced Very High Resolution Radiometer (AVHRR) radiances.
Trust Model to Enhance Security and Interoperability of Cloud Environment
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Ping, Lingdi
Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.
Hurricane Irma's Cloud Structure as Seen by NASA's AIRS
2017-09-08
The large-scale structure of clouds in and around Hurricane Irma is seen in this animation and still image created with data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The clouds are typical of tropical areas both nearby and away from tropical cyclones. Observations were taken at 1 p.m. EDT (5 p.m. UTC) on Tuesday, Sept. 5, 2017, as Irma approached the Caribbean islands and was just becoming a powerful Category 5 storm. Each cylinder represents a volume of cloud detected by AIRS. The oval cylinder ends represent a region viewed by AIRS, with the oval sizes adjusted to reflect the proportion of clouds filling the area viewed. The largest ovals are about 30 miles (45 kilometers) across. The height of the cylinders indicates the cloud thickness, with thickest clouds reaching down to the surface. The vertical scale is exaggerated 15 times. Colors represent temperatures at the tops of the clouds. The perspective views the storm diagonally from above with an initial view toward the north-northwest, with the perspective rotating clockwise for a full circle. The area depicted is about 1,000 miles by 800 miles across (1,600 by 1,300 kilometers). At the start of the loop, North America is seen at the top of the image, and coastal Venezuela at the lower right. In the initial perspective, cirrus clouds (thin and blue), associated with flow outward from the top of the hurricane, overlie warmer (pink and red) shallow clouds. About five seconds into the loop, the deep clouds in the middle of Irma are easily seen. The most dangerous parts of Irma are within the region of high and cold (blue), thick clouds surrounding the central eye. The clouds are cold because they are carried to high, cold altitudes by vigorous thunderstorms within the hurricane. The eye itself is nearly cloud free, but the few clouds within it are low and warm. As the perspective shift toward the south-southeast around seven seconds into the loop, another storm system well north of Irma can be seen. It contains high, thick clouds, with more cirrus carried outward over shallow clouds. At about nine seconds, more outflow from Irma is seen, with high, thin clouds over shallow clouds once again apparent. Shortly afterward when the view is toward the southwest, yet more deep clouds and their outflowing cirrus clouds are apparent. This image depicts many of the clouds typical of the tropics even when cyclones are not present: high, cold thunderstorms pushing cirrus clouds over nearby regions containing many warm, shallow clouds. The animation also shows the structure typical of tropical cyclones around the world: very strong thunderstorms lifting clouds into cold parts of the atmosphere, with strong outflow at upper levels carrying cirrus clouds away from the storm center, and the storm organized symmetrically around a central eye. https://photojournal.jpl.nasa.gov/catalog/PIA21950
Determination of cloud parameters from infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H.-Y. M.
1984-01-01
The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.
CALIPSO: Global Aerosol and Cloud Observations from Lidar and Passive Instruments
NASA Technical Reports Server (NTRS)
Poole, L. R.; Winker, D. M.; Pelon, J. R.; McCormick, M. P.
2002-01-01
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Spaceborne Observations) is an approved satellite mission being developed through collaboration between NASA and the French space agency CNES. The mission is scheduled for launch in 2004 and will operate for 3 years as part of a five-satellite formation called the Aqua constellation. This constellation will provide a unique data set on aerosol and cloud optical and physical properties and aerosol-cloud interactions that will substantially increase our understanding of the climate system and the potential for climate change.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.
2009-03-01
A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.
2016-10-18
Pluto's present, hazy atmosphere is almost entirely free of clouds, though scientists from NASA's New Horizons mission have identified some cloud candidates after examining images taken by the New Horizons Long Range Reconnaissance Imager and Multispectral Visible Imaging Camera, during the spacecraft's July 2015 flight through the Pluto system. All are low-lying, isolated small features -- no broad cloud decks or fields -- and while none of the features can be confirmed with stereo imaging, scientists say they are suggestive of possible, rare condensation clouds. http://photojournal.jpl.nasa.gov/catalog/PIA21127
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble
NASA Astrophysics Data System (ADS)
Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong
2016-05-01
As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.
NASA Astrophysics Data System (ADS)
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton
2016-09-01
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.
Cavitation inception by the backscattering of pressure waves from a bubble interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp
2015-10-28
The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less
Testing as a Service with HammerCloud
NASA Astrophysics Data System (ADS)
Medrano Llamas, Ramón; Barrand, Quentin; Elmsheuser, Johannes; Legger, Federica; Sciacca, Gianfranco; Sciabà, Andrea; van der Ster, Daniel
2014-06-01
HammerCloud was designed and born under the needs of the grid community to test the resources and automate operations from a user perspective. The recent developments in the IT space propose a shift to the software defined data centres, in which every layer of the infrastructure can be offered as a service. Testing and monitoring is an integral part of the development, validation and operations of big systems, like the grid. This area is not escaping the paradigm shift and we are starting to perceive as natural the Testing as a Service (TaaS) offerings, which allow testing any infrastructure service, such as the Infrastructure as a Service (IaaS) platforms being deployed in many grid sites, both from the functional and stressing perspectives. This work will review the recent developments in HammerCloud and its evolution to a TaaS conception, in particular its deployment on the Agile Infrastructure platform at CERN and the testing of many IaaS providers across Europe in the context of experiment requirements. The first section will review the architectural changes that a service running in the cloud needs, such an orchestration service or new storage requirements in order to provide functional and stress testing. The second section will review the first tests of infrastructure providers on the perspective of the challenges discovered from the architectural point of view. Finally, the third section will evaluate future requirements of scalability and features to increase testing productivity.
Impact of a Pioneer/Rindler-type acceleration on the Oort Cloud
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2012-01-01
According to a recent modified model of gravity at large distances, a radial constant and uniform extra-acceleration ? of Rindler type acts upon a test particle p in the static field of a central mass M if certain conditions are satisfied. Among other things, it was proposed as a potentially viable explanation of a part of the Pioneer anomaly. We study the impact that an anomalous Rindler-type term as large as ? m s-2 may have on the the orbital dynamics of a typical object of the Oort Cloud whose self-energy is quite smaller than its putative Rindler energy. By taking a typical comet moving along a highly eccentric and inclined orbit throughout the expected entire extension of the Oort Cloud (? pc), it turns out that the addition of an outward Rindler-like acceleration, that is, for ?, does not allow bound orbits. Instead, if ?, the resulting numerically integrated trajectory is limited in space, but it radically differs from the standard Keplerian ellipse. In particular, the heliocentric distance of the comet gets markedly reduced and experiences high-frequency oscillations, its speed is increased, and the overall pattern of the trajectory is quite isotropic. As a consequence, the standard picture of the Oort Cloud is radically altered since its modified orbits are much less sensitive to the disturbing actions of the Galactic tide and nearby passing stars whose effects, in the standard scenario, are responsible for the phenomenology on which our confidence in the existence of the cloud itself is based. The present analysis may be supplemented in future by further statistical Monte Carlo type investigations by randomly varying the initial conditions of the comets.
PROGRA2 experiment: new results for dust clouds and regoliths
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.
With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.
Direct Observations of Excess Solar Absorption by Clouds
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Valero, Francisco P. J.
1995-01-01
Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.
Cumulus cloud model estimates of trace gas transports
NASA Technical Reports Server (NTRS)
Garstang, Michael; Scala, John; Simpson, Joanne; Tao, Wei-Kuo; Thompson, A.; Pickering, K. E.; Harris, R.
1989-01-01
Draft structures in convective clouds are examined with reference to the results of the NASA Amazon Boundary Layer Experiments (ABLE IIa and IIb) and calculations based on a multidimensional time dependent dynamic and microphysical numerical cloud model. It is shown that some aspects of the draft structures can be calculated from measurements of the cloud environment. Estimated residence times in the lower regions of the cloud based on surface observations (divergence and vertical velocities) are within the same order of magnitude (about 20 min) as model trajectory estimates.
NASA Astrophysics Data System (ADS)
Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, C.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.
2016-12-01
The CAUSES (Clouds Above the United States and Errors at the Surface) is a joint GASS/RGCM/ASR model intercomparison project with an observational focus (data from the U.S. DOE ARM SGP site and other observations). The goal of this project is to evaluate the role of clouds, radiation and precipitation processes in contributing to the surface air temperature bias in the region of the central U.S., which is seen in several weather and climate models. In this project, we use a short-term hindcast approach and examine the error growth due to cloud-associated processes while the large-scale state remains close to observations. The study period is from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign that provides very frequent radiosondes (8 per day) and many extensive cloud and precipitation radar observations. Our preliminary analysis indicates that the warm surface air temperature bias in the mean diurnal cycle of the whole study period is very robust across all the participating models over the ARM SGP site. During the spring season (April-May), the daytime warm bias in most models is mostly due to excessive net surface shortwave flux resulting from insufficient deep convective cloud fraction or too optically thin clouds. The nighttime warm bias is likely due to the excessive downwelling longwave flux warming resulting from the persisting deep clouds. During the summer season (June-August), bias contribution from precipitation bias becomes important. The insufficient seasonal accumulated precipitation from the propagating convective systems originated from the Rockies contributes to lower soil moisture. Such condition drives the land surface to a dry state whereby radiative input can only be balanced by sensible heat loss through an increased surface air temperature. More information about the CAUSES project can be found through the following project webpage (http://portal.nersc.gov/project/capt/CAUSES/). (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-688818)
Satellite view of the extreme haze clouds over China
NASA Astrophysics Data System (ADS)
Minghui, T.; Chen, L.; Wang, Z.
2013-12-01
Minghui Tao*, Liangfu Chen, Zifeng Wang State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China *Email: tmh1985@163.com ABSTRACT: In the past decades, great increases in anthropogenic emissions have caused dramatic changes in air quality and regional climate in China, which are further complicated by the natural processes such as dust events and atmospheric dynamics such as variations in intensity of the Asian monsoon. The common urban photochemistry smog, haze, and fog-haze pollution lead to poor air quality in major cities in eastern and middle parts of China. On the other hand, the heavy aerosol loading exerts marked influences on radiation, clouds, and precipitation over China. Satellites usually observed widespread haze clouds over eastern China. In most of previous studies, the dense haze clouds were directly connected with accumulation of anthropogenic emissions. However, satellite observations show that formation processes of haze clouds and local pollution near surface were different. Understanding the connections and interactions between haze clouds and local anthropogenic emissions is essential in chemistry and climate modeling of the aerosols over China. In January 2013, durative haze clouds covered most parts of eastern China, leading to extreme pollution events in many cities. With integrated A-train satellite observations and ground measurements, we investigated variations, optical properties, vertical structures as well as formation process of the extreme haze clouds over eastern China. Satellite-surface results were compared to analyze relations between the haze clouds and surface pollution. Different from traditional views, our results reveal that variation and formation of the haze clouds were driven by large-scale natural processes rather than local anthropogenic emissions. Figure 1. Aqua MODIS true color images of the haze clouds over eastern China on Jan 10, 2013.
Changes in Clouds Under a Combined CO2 Increase and Solar Decrease
NASA Astrophysics Data System (ADS)
Russotto, R. D.; Ackerman, T. P.
2017-12-01
The Geoengineering Model Intercomparison Project (GeoMIP) provides an excellent opportunity to study the response of clouds and the large-scale circulation to opposing solar and greenhouse gas forcings. This study analyzes changes in cloud fraction in 10 fully coupled atmosphere-ocean global climate models in GeoMIP Experiment G1, in which CO2 concentrations are quadrupled and the solar constant is reduced in order to keep global mean temperature at preindustrial levels. There is general agreement among the models that the area coverage of low clouds (below the 680 hPa pressure level) decreases in this experiment compared to preindustrial conditions over most ocean and vegetated land areas. This reduction in low cloud fraction is related to decreases in boundary layer inversion strength over the ocean, and to plant physiological responses to increased CO2. Mid-level clouds (680-440 hPa) and high clouds (< 440 hPa) are reduced over the Atlantic and Pacific Oceans to the north and south of the ITCZ, while high clouds also increase over the center of the ITCZ. These changes are related to a weakening of the seasonal migration of the ITCZ in G1, which happens because the summer hemisphere is preferentially cooled by the solar reduction. To explore the link between clouds and the ITCZ migration, we examine changes in the seasonal cycle of cloud cover and in the instantaneous ITCZ width throughout the year. High cloud fraction increases in the global mean in most models, likely due to upper tropospheric cooling. An analysis of radiative effects using the Approximate Partial Radiation Perturbation method shows that, in the shortwave, cloud changes in G1 have a warming effect in most areas, mainly due to the reduction in low cloud fraction. This effect, along with the warming effect from the increase in high clouds, results in a larger solar reduction being necessary to compensate for the CO2 increase.
Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2
NASA Astrophysics Data System (ADS)
Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.
2017-12-01
The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:14:57.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:12:50.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:04:38.
Cloud Computing Technologies in Writing Class: Factors Influencing Students' Learning Experience
ERIC Educational Resources Information Center
Wang, Jenny
2017-01-01
The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS) system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study…
Evaluation of AIRS cloud properties using MPACE data
NASA Astrophysics Data System (ADS)
Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry
2005-12-01
Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.
Turbulent Mixing at the Edge of a Cloud
NASA Astrophysics Data System (ADS)
Shaw, Raymond; Beals, Matthew; Fugal, Jacob; Kumar, Bipin; Lu, Jiang; Schumacher, Joerg; Stith, Jeffrey
2013-11-01
Numerical and field experiments have been brought to bear on the question of how atmospheric clouds respond when they experience turbulent mixing with their environment. Simply put, we ask when a cloud is diluted, do all droplets evaporate uniformly (homogeneous mixing) or does a subset of droplets evaporate completely, leaving the remaining droplets unaffected (inhomogeneous mixing)? First, the entrainment of clear air and its subsequent mixing with a filament of cloudy air is studied in DNS that combine the Eulerian description of the turbulent velocity, temperature and vapor fields with a Lagrangian cloud droplet ensemble. The simulations provide guidance on the proper definition of the thermodynamic response time for the Damkoehler number, and demonstrate the transition from inhomogeneous to homogeneous mixing as mixing progresses within the inertial subrange. Second, an airborne digital holographic instrument (Holodec) shows that cloud edges are inhomogeneous at the centimeter scales. In local cloud volumes the droplet size distribution fluctuates strongly in number density but with a nearly unchanging mean droplet diameter, until the fluctuations finally cascade to the centimeter scale, when the droplet diameter begins to respond.
NASA Astrophysics Data System (ADS)
Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.
2010-08-01
A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.
NASA Astrophysics Data System (ADS)
Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.
2010-03-01
A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.
ERIC Educational Resources Information Center
Alshihri, Bandar A.
2017-01-01
Cloud computing is a recent computing paradigm that has been integrated into the educational system. It provides numerous opportunities for delivering a variety of computing services in a way that has not been experienced before. The Google Company is among the top business companies that afford their cloud services by launching a number of…
Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources
NASA Astrophysics Data System (ADS)
Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.
2011-12-01
Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.
Global Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Riedi, Jerome C.; Baum, Bryan A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.
Further developments in cloud statistics for computer simulations
NASA Technical Reports Server (NTRS)
Chang, D. T.; Willand, J. H.
1972-01-01
This study is a part of NASA's continued program to provide global statistics of cloud parameters for computer simulation. The primary emphasis was on the development of the data bank of the global statistical distributions of cloud types and cloud layers and their applications in the simulation of the vertical distributions of in-cloud parameters such as liquid water content. These statistics were compiled from actual surface observations as recorded in Standard WBAN forms. Data for a total of 19 stations were obtained and reduced. These stations were selected to be representative of the 19 primary cloud climatological regions defined in previous studies of cloud statistics. Using the data compiled in this study, a limited study was conducted of the hemogeneity of cloud regions, the latitudinal dependence of cloud-type distributions, the dependence of these statistics on sample size, and other factors in the statistics which are of significance to the problem of simulation. The application of the statistics in cloud simulation was investigated. In particular, the inclusion of the new statistics in an expanded multi-step Monte Carlo simulation scheme is suggested and briefly outlined.
Toward a Big Data Science: A challenge of "Science Cloud"
NASA Astrophysics Data System (ADS)
Murata, Ken T.; Watanabe, Hidenobu
2013-04-01
During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science cloud, we named as OneSpaceNet (OSN), is the first open cloud system for scientists who are going to carry out their informatics for their own science. The science cloud is not for simple uses. Many functions are expected to the science cloud; such as data standardization, data collection and crawling, large and distributed data storage system, security and reliability, database and meta-database, data stewardship, long-term data preservation, data rescue and preservation, data mining, parallel processing, data publication and provision, semantic web, 3D and 4D visualization, out-reach and in-reach, and capacity buildings. Figure (not shown here) is a schematic picture of the NICT science cloud. Both types of data from observation and simulation are stored in the storage system in the science cloud. It should be noted that there are two types of data in observation. One is from archive site out of the cloud: this is a data to be downloaded through the Internet to the cloud. The other one is data from the equipment directly connected to the science cloud. They are often called as sensor clouds. In the present talk, we first introduce the NICT science cloud. We next demonstrate the efficiency of the science cloud, showing several scientific results which we achieved with this cloud system. Through the discussions and demonstrations, the potential performance of sciences cloud will be revealed for any research fields.