The potential negative impacts of global climate change on tropical montane cloud forests
NASA Astrophysics Data System (ADS)
Foster, Pru
2001-10-01
Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient cycles of the cloud forest and are especially sensitive to atmospheric climate change, especially humidity, as the epiphytes can occupy incredibly small eco-niches from the canopy to crooks to trunks. Even slight shifts in climate can cause wilting or death to the epiphyte community. Similarly, recent cloud forest animal redistributions, notably frog and lizard disappearances, may be driven by climate changes. Death of animals or epiphytes may have cascading effects on the cloud forest web of life. Aside from changes in temperature, precipitation, and cloudiness, other climate changes may include increasing dry seasons, droughts, hurricanes and intense rain storms, all of which might increase damage to the cloud forest. Because cloud forest species occupy such small areas and tight ecological niches, they are not likely to colonize damaged regions. Fire, drought and plant invasions (especially non-native plants) are likely to increase the effects of any climate change damage in the cloud forest. As has frequently been suggested in the literature, all of the above factors combine to make the cloud forest a likely site for observing climate change effects in the near future.
Observational evidence for cloud cover enhancement over western European forests.
Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-11
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.
Observational evidence for cloud cover enhancement over western European forests
Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-01
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840
NASA Astrophysics Data System (ADS)
Lawton, R.; Nair, U. S.
2011-12-01
Cloud forests stand at the core of the complex of montane ecosystems that provide the backbone to the multinational Mesoamerican Biological Corridor, which seeks to protect a biodiversity conservation "hotspot" of global significance in an area of rapidly changing land use. Although cloud forests are generally defined by frequent and prolonged immersion in cloud, workers differ in their feelings about "frequent" and "prolonged", and quantitative assessments are rare. Here we focus on the dry season, in which the cloud and mist from orographic cloud plays a critical role in forest water relations, and discuss remote sensing of orographic clouds, and regional and atmospheric modeling at several scales to quantitatively examine the distribution of the atmospheric conditions that characterize cloud forests. Remote sensing using data from GOES reveals diurnal and longer scale patterns in the distribution of dry season orographic clouds in Central America at both regional and local scales. Data from MODIS, used to calculate the base height of orographic cloud banks, reveals not only the geographic distributon of cloud forest sites, but also striking regional variation in the frequency of montane immersion in orographic cloud. At a more local scale, wind is known to have striking effects on forest structure and species distribution in tropical montane ecosystems, both as a general mechanical stress and as the major agent of ecological disturbance. High resolution regional atmospheric modeling using CSU RAMS in the Monteverde cloud forests of Costa Rica provides quantitative information on the spatial distribution of canopy level winds, insight into the spatial structure and local dynamics of cloud forest communities. This information will be useful in not only in local conservation planning and the design of the Mesoamerican Biological Corridor, but also in assessments of the sensitivity of cloud forests to global and regional climate changes.
Mapping the Distribution of Cloud Forests Using MODIS Imagery
NASA Astrophysics Data System (ADS)
Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.
2007-05-01
Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable accuracy for its intended purposes. Even periods as short as one month are sufficient for depicting the location of most cloud forest environments. However, we are proceeding to distinguish different characteristics of cloud forests, depending on the overall frequency of cloudiness, the seasonality of cloudiness, and the interannual variability of cloudiness. These results should be useful to those seeking to describe relationships between the physical characteristics of the cloud forests and their biological environment.
Berry, Z Carter; Johnson, Daniel M; Reinhardt, Keith
2015-09-01
Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and roots of species across a temperate, mountain fog ecotone. Because cloud forests are often dark, cool and very moist, we expected cloud forest species to have less drought-tolerant characteristics (i.e., lower Pe and P50-the pressures required to induce a 12 and 50% loss in hydraulic conductivity, respectively) relative to non-cloud forest species in adjacent (lower elevation) forests. Additionally, due to the ability of cloud forest species to absorb cloud-fog water, we predicted greater improvements in hydraulic functioning during fog in cloud forest species relative to non-cloud forest species. Across the cloud forest ecotone, most species measured were very resistant to losses in conductivity with branch P50 values from -4.5 to -6.0 MPa, hydraulic safety margins (Ψmin - P50) >1.5 MPa and low calculated hydraulic conductivity losses. Roots had greater vulnerabilities, with P50 values ranging from -1.4 to -2.5 MPa, leading to greater predicted losses in conductivity (∼20%). Calculated values suggested strong losses of midday leaf hydraulic conductance in three of the four species, supporting the hydraulic segmentation hypothesis. In both cloud forest and hardwood species, Ψs were greater on foggy days than sunny days, demonstrating the importance of fog periods to plant water balance across fog regimes. Thus, frequent fog did not result in systemic changes in hydraulic functioning or vulnerability to embolism across our temperate cloud forest ecotone. Finally, roots functioned with lower hydraulic conductivity than branches, suggesting that they may serve as more sensitive indicators of hydraulic functioning in these mesic, foggy ecosystems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The herpetofauna of the cloud forests of Honduras
2003-01-01
The cloud forest amphibians and reptiles constitute the most important herpetofaunal segment in Honduras, due to the prevalence of endemic and Nuclear Middle American-restricted species. This segment, however, is subject to severe environmental threats due to the actions of humans. Of the 334 species of amphibians and reptiles currently known from Honduras, 122 are known to be distributed in cloud forest habitats. Cloud forest habitats are found throughout the mountainous interior of Honduras. They are subject to a Highland Wet climate, which features annual precipitation of >1500 mm and a mean annual temperature of <18°C. Cloud forest vegetation falls into two Holdridge formations, the Lower Montane Wet Forest and Lower Montane Moist Forest. The Lower Montane Wet Forest formation generally occurs at elevations in excess of 1500 m, although it may occur as low as 1300+ m at some localities. The Lower Montane Moist Forest formation generally occurs at 1700+ m elevation. Of the 122 cloud forest species, 18 are salamanders, 38 are anurans, 27 are lizards, and 39 are snakes. Ninety-eight of these 122 species are distributed in the Lower Montane Wet Forest formation and 45 in the Lower Montane Moist Forest formation. Twenty species are distributed in both formations. The cloud forest species are distributed among restricted, widespread, and peripheral distributional categories. The restricted species range as a group in elevation from 1340 to 2700 m, the species that are widespread in at least one of the two cloud forest formations range as a group from sea level to 2744 m, and the peripheral species range as a group from sea level to 1980 m. The 122 cloud forest species exemplify ten broad distributional patterns ranging from species whose northern and southern range termini are in the United States (or Canada) and South America, respectively, to those species that are endemic to Honduras. The largest segment of the herpetofauna falls into the endemic category, with the next largest segment being restricted in distribution to Nuclear Middle America, but not endemic to Honduras. Cloud forest species are distributed among eight ecophysiographic areas, with the largest number being found in the Northwestern Highlands, followed by the North-Central Highlands and the Southwestern Highlands. The greatest significance of the Honduran herpetofauna lies in its 125 species that are either Honduran endemics or otherwise Nuclear Middle American-restricted species, of which 83 are distributed in the country's cloud forests. This segment of the herpetofauna is seriously endangered as a consequence of exponentially increasing habitat destruction resulting from deforestation, even given the existence of several biotic reserves established in cloud forest. Other, less clearly evident environmental factors also appear to be implicated. As a consequence, slightly over half of these 83 species (50.6%) have populations that are in decline or that have disappeared from Honduran cloud forests. These species possess biological, conservational, and economic significance, all of which appear in danger of being lost. PMID:15029253
Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl
2017-01-01
The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...
The potential of using Landsat time-series to extract tropical dry forest phenology
NASA Astrophysics Data System (ADS)
Zhu, X.; Helmer, E.
2016-12-01
Vegetation phenology is the timing of seasonal developmental stages in plant life cycles. Due to the persistent cloud cover in tropical regions, current studies often use satellite data with high frequency, such as AVHRR and MODIS, to detect vegetation phenology. However, the spatial resolution of these data is from 250 m to 1 km, which does not have enough spatial details and it is difficult to relate to field observations. To produce maps of phenology at a finer spatial resolution, this study explores the feasibility of using Landsat images to detect tropical forest phenology through reconstructing a high-quality, seasonal time-series of images, and tested it in Mona Island, Puerto Rico. First, an automatic method was applied to detect cloud and cloud shadow, and a spatial interpolator was use to retrieve pixels covered by clouds, shadows, and SLC-off gaps. Second, enhanced vegetation index time-series derived from the reconstructed Landsat images were used to detect 11 phenology variables. Detected phenology is consistent with field investigations, and its spatial pattern is consistent with the rainfall distribution on this island. In addition, we may expect that phenology should correlate with forest biophysical attributes, so 47 plots with field measurement of biophysical attributes were used to indirectly validate the phenology product. Results show that phenology variables can explain a lot of variations in biophysical attributes. This study suggests that Landsat time-series has great potential to detect phenology in tropical areas.
NASA Astrophysics Data System (ADS)
Clewley, D.; Lucas, R.; Bunting, P.; Moghaddam, M.
2012-12-01
Within Queensland, Australia extensive clearing of vegetation for agriculture has occurred within the Brigalow Belt Bioregion (BBB), reducing forests dominated by Acacia harpophylla (brigalow) to 10 % of their former extent. Where cleared land is left abandoned or unmanaged regeneration is rapid, Regenerating vegetation represents a more efficient and cost effective method for carbon sequestration than direct planting and offers a number of benefits over plantation forest, particularly in terms of provision of habitat for native fauna. To effectively protect regenerating vegetation, maps of the distribution of forests at different stages of regeneration are required. Whilst mapping approaches have traditionally focused on optical data, the high canopy cover of brigalow regrowth in all but the very early stages limits discrimination of forests at different stages of growth. The combination of optical data, namely Landsat derived Foliage Projective Cover (FPC) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (SAR) backscatter data have previously been investigated for mapping regrowth. This study therefore aimed to investigate the potential of the alpha-Entropy (α/H) decomposition (S Cloude and E Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," 1997, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, pp. 68-78) applied to polarimetric ALOS PALSAR backscatter for mapping regrowth stage combined with FPC data to account for canopy variations. The study focused on the Tara Downs subregion, located in the Western Darling Downs, within the south of the BBB. PALSAR data were acquired over the study site in fully-polarimetric mode (incidence angle mid swath ~ 26 degrees). From these data α/H layers were generated and stacked with FPC data. Considering only those areas known to contain brigalow prior to clearing and with an FPC > 9 %, k-means clustering was applied, with the number of clusters set to three. The position of each cluster, within α/H space was then used to determine the appropriate regrowth stage, based on the zones defined by Cloude and Pottier (1997). The classification was compared to an existing regrowth stage classification of the area derived from time-series interpretation of aerial photography and high resolution satellite data. The overall accuracy of the classification was 47 %, with confusion attributed to the differing methods of classification in that the separation of regrowth stage based on age did not account for variation in structure, associated with differences in soil, topography and clearing history. Conversely, the proposed classification method is based on scattering properties, which vary as a function of forest structure. The approach has demonstrated the potential of α/H layers derived from PALSAR data and FPC for discriminating and mapping different stages of regrowth. A particular advantage of the technique is that regrowth stages are assigned based on scattering characteristics, placing less reliance on field data which is not always available. Further work is being undertaken to evaluate alternative supervised and rule-based approaches to classification, such that a more consistent mapping methodology can be developed.
NASA Astrophysics Data System (ADS)
Galletti, Christopher S.
The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman to Yemen, the cloud forest is an important center of endemism and provides valuable ecosystem services to those living in the region. There have been various claims made about the health of the cloud forest and its surrounding region, the most prominent of which are: 1) variability of the Indian Summer Monsoon threatens long-term vegetation health, and 2) human encroachment is causing deforestation and land degradation. This dissertation uses three independent studies to test these claims and bring new insight about the biodiversity of the cloud forest. Evidence is presented that shows that the vegetation dynamics of the cloud forest are resilient to most of the variability in the monsoon. Much of the biodiversity in the cloud forest is dominated by a few species with high abundance and a moderate number of species at low abundance. The characteristic tree species include Anogeissus dhofarica and Commiphora spp. These species tend to dominate the forested regions of the study area. Grasslands are dominated by species associated with overgrazing (Calotropis procera and Solanum incanum). Analysis from a land cover study conducted between 1988 and 2013 shows that deforestation has occurred to approximately 8% of the study area and decreased vegetation fractions are found throughout the region. Areas around the city of Salalah, located close to the cloud forest, show widespread degradation in the 21st century based on an NDVI time series analysis. It is concluded that humans are the primary driver of environmental change. Much of this change is tied to national policies and development priorities implemented after the Dhofar War in the 1970's.
NASA Astrophysics Data System (ADS)
Torres, E.; Valle Diaz, C. J.; Zurcher, F.; Lee, T.; Collett, J. L.; Fitzgerald, E.; Cuadra, L.; Prather, K. A.; Mayol-Bracero, O. L.
2011-12-01
The underlying physico-chemical processes of dust-aerosol interactions are poorly understood; even less understood is how aging impacts cloud properties and climate as the particles travel from Africa to the Caribbean region. Caribbean landmasses have tropical montane cloud forests (TMCFs) that are tightly coupled to the atmospheric hydrologic cycle. Small-scale shifts in temperature and precipitation could have serious ecological consequences. Therefore, this makes TMCFs an interesting ecosystem to see the effects African Dust (AD) might have on cloud formation and precipitation. As part of the Puerto Rico African Dust and Clouds Study (PRADACS) cloud and rain water samples for subsequent chemical analysis were collected at Pico del Este (PE) station in Luquillo, PR (1051 masl) during summer 2011. At PE, two cloud collectors (i.e., single stage (Aluminum version) and 2-stage (Teflon version) Caltech Active Strand Cloudwater Collector (CASCC)), and a rainwater collector were operated. Measurements such as the liquid water content (LWC), pH, conductivity., and composition of single particles using an aerosol time of flight mass spectrometer (ATOFMS) were performed. Preliminary results showed that days with the influence of African dust (AD), had LWC values that ranged from 300 to 500 mg/m3, pH values up to 5.7,, and conductivity up to 180 μS/cm. The ATOFMS showed titanium and iron ions, suggesting the presence of AD as well as, occasionally, sulfate and nitrate ions suggesting the influence of anthropogenic pollution. Results on the chemical composition and the physical properties of cloud, rainwater, and aerosol for the inorganic as well as the organic fraction and how these properties change for the different air masses observed will also be presented.
Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R
2017-07-01
Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.
Forest on the edge: Seasonal cloud forest in Oman creates its own ecological niche
NASA Astrophysics Data System (ADS)
Hildebrandt, Anke; Eltahir, Elfatih A. B.
2006-06-01
Cloud forests usually grow in the moist tropics where water is not a limiting factor to plant growth. Here, for the first time, we describe the hydrology of a water limited seasonal cloud forest in the Dhofar mountains of Oman. This ecosystem is under significant stress from camels feeding on tree canopies. The Dhofar forests are the remnants of a moist vegetation belt, which once spread across the Arabian Peninsula. According to our investigation the process of cloud immersion during the summer season creates within this desert a niche for moist woodland vegetation. Woodland vegetation survives in this ecosystem, sustained through enhanced capture of cloud water by their canopies (horizontal precipitation). Degraded land lacks this additional water source, which inhibits re-establishment of trees. Our modeling results suggest that cattle feeding may lead to irreversible destruction of one of the most diverse ecosystems in Arabia.
Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest.
Werner Eugster; Reto Burkard; Friso Holwerda; Frederick N. Scatena; L.A.(Sampurno) Bruijnzeel
2006-01-01
The Luquillo Mountains of northeastern Puerto Rico harbours important fractions of tropical montane cloud forests. Although it is well known that the frequent occurrence of dense fog is a common climatic characteristic of cloud forests around the world, it is poorly understood how fog processes shape and influence these ecosystems. Our study focuses on the physical...
Tan, Robin; Perkowski, Marek
2017-01-01
Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems. PMID:28230745
Tan, Robin; Perkowski, Marek
2017-02-20
Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems.
Johnson, Daniel M; Smith, William K
2008-03-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are likely in the event of continued climate warming. To assess the impact of this trend on the regeneration of high altitude spruce-fir forests and the migration of plant communities, in particular the encroachment of spruce-fir forests and Rhododendron catawbiense Michx. islands into adjacent grass bald communities, we investigated effects of cloud immersion on photosynthetic parameters of seedlings of Abies fraseri and R. catawbiense in a grass bald site and A. fraseri in a forest understory. Although photosynthetic photon flux was 4.2 to 19.4-fold greater during clear conditions, cloud immersion had no effect on photosynthesis in A. fraseri at either site, whereas it reduced photosynthesis of R. catawbiense by about 40%. However, cloud immersion increased mean leaf fluorescence by 7.1 to 12.8% in both species at both sites. Cloud immersion increased mean relative humidity from 65 to 96%, reduced transpiration by 95% and reduced mean leaf-to-air temperature difference from 6.6 to 0.5 degrees C.
Daniel M. Johnson; William K. Smith
2008-01-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are...
NASA Astrophysics Data System (ADS)
Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.
2017-06-01
The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ˜ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ˜ 200-600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.
Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.
2017-01-01
The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
Wilson, Sarah Jane; Rhemtulla, Jeanine M
2016-01-01
Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.
Boreal forests, aerosols and the impacts on clouds and climate.
Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S
2008-12-28
Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.
Keith Reinhardt; William K. Smith
2010-01-01
The red spruce-Fraser fir ecosystem (Picea rubens Sarg.-Abies fraseri [Pursh] Poir.) of the southern Appalachian mountains is a temperate zone cloud forest immersed in clouds for 30 to 40 percent of a typical summer day, and experiencing immersion on about 65 percent of all days annually. We compared the microclimate,...
Daniel M. Johnson; William K. Smith
2008-01-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in...
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-01-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment. PMID:28291234
NASA Astrophysics Data System (ADS)
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-03-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
Montane and cloud forest specialists among neotropical Xylaria species
D. Jean Lodge; Thomas L& #230; ss& #248; e; M. Catherine Aime; Terry W. Henkel; M. Catherine Aime; Terry W. Henkel
2008-01-01
We compared recored of neotropical Xylaria species among Belize, Ecuador, the Guianas, Mexico, Puerto Rico and Venezuela to determine if there were neotropical taxa consistently found only in cloud forest or high montane forests that might be endangered by climate change.
Loope, Lloyd L.; Giambelluca, Thomas W.
1998-01-01
Island tropical montane cloud forests may be among the most sensitive of the world's ecosystems to global climate change. Measurements in and above a montane cloud forest on East Maui, Hawaii, document steep microclimatic gradients. Relatively small climate-driven shifts in patterns of atmospheric circulation are likely to trigger major local changes in rainfall, cloud cover, and humidity. Increased interannual variability in precipitation and hurricane incidence would provide additional stresses on island biota that are highly vulnerable to disturbance-related invasion of non-native species. Because of the exceptional sensitivity of these microclimates and forests to change, they may provide valuable ‘listening posts’ for detecting the onset of human-induced global climate change.
Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests
NASA Astrophysics Data System (ADS)
Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.
2007-05-01
Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.
Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests
NASA Technical Reports Server (NTRS)
Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.
2010-01-01
Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Gingerich, S. B.; Giambelluca, T. W.; Nullet, M. A.; Loope, L. L.
2002-05-01
The role of fog drip in cloud forest ecosystems is being investigated at two sites, one each on the windward and leeward sides of East Maui, Hawaii. The study involves using the different isotopic signatures of fog (cloud water) and rain to trace fog through the forest water cycle, as well as comparing relative amounts of fog, rain, and throughfall. At each site, volume of rain, fog plus rain, and throughfall is recorded hourly. Stable isotope samples of rain, fog, soil water, stream water, and tree sap are collected monthly, and each site has a visibility sensor and weather station. The windward site, at 1950 m altitude, is enveloped by orographic clouds under trade wind conditions almost every day. This site is near the upper boundary of extensive forested mountain slopes that are a major watershed for the island. Volume data suggest that fog drip (compared to rain as measured by a standard gage) contributes substantially to the forest water budget on the windward side. Tree sap deuterium composition was consistently similar to fog composition for samples analyzed thus far, while soil water was isotopically lighter, possibly reflecting a mixture of fog with rain or shallow groundwater. The leeward site, at 1220 m, is often in a cloud bank under trade wind conditions. During the summer the major source of precipitation is cloud water; rainfall generally occurs during winter storms. Scattered cloud forest remnants persist at this site despite degradation of extensive native forest by ungulate browsing, plant invasion, and fire. Here, fog drip was a smaller proportion of the total precipitation than at the windward site, but exceeded rainfall for some precipitation events. Unlike the windward site, tree sap and soil water had similar isotopic composition. The information gained from this study underscores the importance of trees and shrubs in extracting cloud water that contributes to soil moisture, groundwater recharge, and stream flow in watersheds.
NASA Astrophysics Data System (ADS)
Torres, E.; Valle Diaz, C. J.; Lee, T.; Collett, J. L.; Fitzgerald, E.; Cuadra-Rodriguez, L. A.; Prather, K. A.; Sánchez, M.; McDowell, W. H.; Mayol-Bracero, O. L.
2013-05-01
The underlying physico-chemical processes of dust particles interactions are poorly understood; even less understood is how aging impacts cloud properties and climate as the particles travel from Africa to the Caribbean region. Caribbean landmasses have tropical montane cloud forests (TMCFs) that are tightly coupled to the atmospheric hydrologic cycle. TMCFs are ecosystems to study the effects African Dust (AD) on cloud formation and precipitation as these are very sensitive ecosystems that respond to small changes in climate. As part of the Puerto Rico African Dust and Clouds Study (PRADACS), chemical analyses were performed on cloud and rain water samples collected at Pico del Este (PE) station in Luquillo, PR (1051 masl) during campaigns held from 2010 to 2012. At PE, two cloud collectors (i.e., single stage (Aluminum version), a 2-stage (Teflon version) Caltech Active Strand Cloudwater Collector (CASCC)), a rainwater collector, and anAerosol Time-Of-Flight Mass Spectrometer (ATOFMS) were operated. Chemical analyses performed on collected samples include pH, conductivity, ion chromatography (IC), and inductive coupled plasma (ICP). Results from these campaigns showed that on days that had air masses with the influence of AD, cloud water samples had higher conductivity and pH values on average (up to 5.7 and 180μS/cm, respectively) than those with air masses without AD influence. An increase in the concentrations of water-soluble ions like non-sea salt calcium and magnesium, and metals like magnesium, calcium and aluminum was observed and the appearance of iron was seen on ICP analyses. The ATOFMS, showed an increase on the amount of particles during AD influence with composition of aluminum, silicates, potassium, iron and titanium aerosols. The increase on the aforementioned species was constant in the three years of sampling, which give us confidence in the identification of the chemical species that are present during the influence of AD.
Lydia P. Olander; F.N Scatena; Whendee L. Silver
1998-01-01
The impacts of road construction and the spread of exotic vegetation, which are common threats to upper elevation tropical forests, were evaluated in the subtropical cloud forests of Puerto Rico. The vegetation, soil and microclimate of 6-month-old road®lls, 35-year-old road®lls and mature forest with and without grass understories were compared. Recent road®lls had...
Norris, Daniel H; Kraichak, Ekaphan; Risk, Allen C; Lucas, Diane; Allard, Dorothy J; Rosengren, Frida; Clark, Theresa A; Fenton, Nicole; Tessler, Michael; Phephu, Nonkululo; Lennette, Evelyne T
2017-01-01
A survey of the understory bryophytes in the Nectandra Cloud Forest Preserve yielded 1083 specimens distributed among 55 families, represented by 74 genera of mosses, 75 genera of liverworts and 3 of hornworts. We studied and analyzed the bryophytic distribution on six types of substrates: 1) corticolous, 2) epiphyllous, 3) saxicolous, 4) terricolous, 5) aquatic and 6) lignicolous. The richness and composition of bryophyte genera are compared to those of other previous bryophyte surveys from 4 other sites with different oceanic exposures, climatic and geographic conditions in Costa Rica. This is a report of the first extensive general survey of bryophytes at the Nectandra Reserve, a premontane cloud forest located on the Atlantic slope of Costa Rica, an area much less studied compared to the Monteverde cloud forest on the Pacific slope.
NASA Astrophysics Data System (ADS)
Kivalov, Sergey N.; Fitzjarrald, David R.
2018-02-01
Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: 42.53{°}N, 72.17{°}W) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: 2.86{°}S, 54.96{°}W). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers' qualitative reports of `scattered' and `broken' clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal "radiative forcing" linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.
Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i
Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.
2011-01-01
The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites
A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography
Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.
2017-01-01
Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea fog.
Ramírez-Barahona, Santiago; Eguiarte, Luis E
2013-01-01
The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi-disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models. PMID:23531632
Wei Wu; Charlesb Hall; Lianjun Zhang
2006-01-01
We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as âthe percentage of the area covered by clouds in each pixel on the mapâ in this paper) at any hour and any place is a function of three topographic variables...
Microclimate and Hydrology of Native Cloud Forest in Hawaii Volcanoes National Park
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Asner, G. P.; Martin, R. E.; Delay, J. K.; Mudd, R. G.; Nullet, M. A.; Takahashi, M.
2006-12-01
The water balance of cloud forests on Kilauea Volcano are of interest for improving understanding of regional hydrologic and ecological processes. Exceptionally high rates of forest evapotranspiration (ET) have been found in recent studies on other tropical oceanic islands, raising questions about current estimates of water balance and groundwater recharge for forested areas in Hawai'i. Previous studies in the same area have shown fog to be the dominant pathway for atmospheric nitrogen deposition derived from atmospheric sources associated with the nearby Pu'u O'o eruption. A 25-m tower equipped with eddy covariance and other micrometeorological instrumentation was constructed within 17-m-tall native Metrosideros polymorpha cloud forest in Hawai'i Volcanoes National Park. Measurements of stand-level ET, tree transpiration, throughfall, stemflow, and soil moisture are underway to quantify the canopy water balance and to estimate the direct deposition of cloud water to the system. Based on these measurements, mean monthly stand level ET is estimated to range from 1.69 (March) to 3.43 (July) mm per day. These rates are slightly lower than expected for this site, and much lower than rates recently found at forest sites on other tropical islands. The ratio of throughfall to gross rainfall was 1.096, 1.065, and 1.034 for 2004, 2005, and 2006, respectively. These values imply cloud water interception of approximately 600 to 1000 mm per year. Measurements of stemflow and sapflow have recently begun and will be useful in refining the canopy water balance and improving estimates of cloud water interception.
Bandala, Victor Manuel; Ryoo, Rhim; Montoya, Leticia; Ka, Kang-Hyeon
2012-01-01
Crinipellis brunneoaurantiaca, C. pallidibrunnea and C. rubella are described as new species and their taxonomic position is discussed. The two former were collected in subdeciduous tropical forest and the latter in the montane cloud forest, all from the east coast of Mexico (central Veracruz). Crinipellis podocarpi, C. pseudostipitaria var. mesites, C. setipes, recorded in montane cloud forest, and C. tucumanensis, collected in subdeciduous tropical forest, also are discussed. Detailed macro- and microscopic descriptions, illustrations of distinctive microscopic characters and plates are presented for each species.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Geissert, D.; Gomez-Tagle, A.; Holwerda, F.; Manson, R.; Perez-Maqueo, O.; Munoz-Villers, L.; Scullion, J.
2013-05-01
Payment for hydrologic service (PHS) programs are increasingly being used as a means to incentivize watershed protection by compensating upstream 'water producers' with payments made by downstream 'water consumers'. However, the effectiveness of PHS programs in achieving their target goals is often poorly understood. Here, we draw from insights obtained from socioeconomic and ecohydrological research in Veracruz, Mexico to explore interactions between PHS policies, landowner decisions, and hydrologic services. GIS analysis of land-cover changes during 2003-2009 combined with interviews of PHS participants indicated that despite lower deforestation rates on properties receiving PES payments, other factors were likely to have a greater influence on land use decisions than PHS payments per se, including opportunity costs and personal conservation ethic. The interviews also highlighted a general lack of trust and cooperation between the citizen participants and government administrators, which was reflected in the relatively low level of knowledge of the PHS programs' regulations and goals, the role of forests in protecting water resources, and a low level of co-financing by the private sector. An important premise of PHS programs is that protecting existing forest cover (and planting trees) will enhance water supply, especially in upland cloud forests that are due to their perceived role as water producers. Measurements of climate, steamflow, canopy fog interception, plant transpiration, soil water dynamics, and hydrologic flow paths were collected over a 3-year period to assess stand water balance and streamflow response under four different land covers: mature cloud forest, pasture, regenerating cloud forest, pine reforestation. Results suggested relatively minor additional inputs of fog to increasing streamflow in cloud forest watersheds, while conversion of forest to pasture did not markedly decrease dry season flows, but did increase annual flows due to lower pasture evapotranspiration. Nevertheless, the pasture showed higher surface runoff for the most intense storms, indicating a diminished infiltration capacity. Young pine plantations and regenerating cloud forest had higher evapotranspiration and therefore higher water yield relative to mature cloud forest. Our analysis suggests a disconnect between PHS policies and the hydrological services provided through forest conservation and tree planting. The implications of this apparent disconnect are discussed within the context of designing effective policies for enhancing hydrologic services, and the importance of site-based research and monitoring to improve understanding of coupled social-ecohydrological systems.
Physical attributes of some clouds amid a forest ecosystem's trees
DeFelice, Thomas P.
2002-01-01
Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.
Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.
2008-01-01
Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.
Introducing two Random Forest based methods for cloud detection in remote sensing images
NASA Astrophysics Data System (ADS)
Ghasemian, Nafiseh; Akhoondzadeh, Mehdi
2018-07-01
Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.
Solute deposition from cloud water to the canopy of a puerto rican montane forest
NASA Astrophysics Data System (ADS)
Asbury, Clyde E.; McDowell, William H.; Trinidad-Pizarro, Roberto; Berrios, Samuel
Deposition of cloud water and dissolved solutes onto vegetation was studied by sampling clouds, throughfall and stemflow during 12 cloud-only events at Pico Del Este, a tropical cloud forest in the Luquillo Mountains of Puerto Rico. Liquid water content of the sampled clouds was low (0.016 g m -3), but deposition of water (1.3 mm d -1)was comparable to other sites, apparently due to efficient capture of clouds by epiphyte-laden vegetation. Elemental deposition by cloud water was similar to that in other, more polluted sites, but was only 8-30% of total deposition (cloud-only plus rain) due to the high rainfall at the site (approximately 5 m). Na and CI from marine aerosols dominated cloud chemistry, with concentrations of 400 μeqδ -1. Sulfate and nitrate concentrations were 180 and 60 μedδ -1, respectively. After passage through the canopy, concentrations of base cations in deposited cloud water increased, and concentrations of nitrogen decreased.
Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina
2016-01-01
Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors.
2016-01-01
Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Conclusions Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors. PMID:27896030
Scholl, M.A.; Giambelluca, T.W.; Gingerich, S.B.; Nullet, M.A.; Loope, L.L.
2007-01-01
Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume‐weighted average cloud water and rain samples was 1.4‰ δ18O and 12‰ δ2H for the windward site and 2.8‰ δ18O and 25‰ δ2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end‐member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.
Johnson, Daniel M; Smith, William K
2006-11-01
High-altitude forests of the southern Appalachian Mountains (USA) are frequently immersed in clouds, as are many mountain forests. They may be particularly sensitive to predicted increases in cloud base altitude with global warming. However, few studies have addressed the impacts of immersion on incident sunlight and photosynthesis. Understory sunlight (photosynthetically active radiation, PAR) was measured during clear, low cloud, and cloud-immersed conditions at Mount Mitchell and Roan Mountain, NC (USA) along with accompanying photosynthesis in four representative understory species. Understory PAR was substantially less variable on immersed vs. clear days. Photosynthesis became light-saturated between ∼100 and 400 μmol · m(-2) · s(-1) PAR for all species measured, corresponding closely to the sunlight environment measured during immersion. Estimated daily carbon gain was 26% greater on clear days at a more open canopy site but was 22% greater on immersed/cloudy days at a more closed canopy site. F(v)/F(m) (maximum photosystem II efficiency) in Abies fraseri seedlings exposed to 2.5 min full sunlight was significantly reduced (10%), indicating potential reductions in photosynthesis on clear days. In addition, photosynthesis in microsites with canopy cover was nearly 3-fold greater under immersed (2.6 mmol · m(-2) · h(-1)) vs. clear conditions (0.9 mmol · m(-2) · h(-1)). Thus, cloud immersion provided more constant PAR regimes that enhanced photosynthesis, especially in shaded microsites. Future studies are needed to predict the survival of these refugial forests under potential changes in cloud regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohnen, V.A.; Aneja, V.; Bailey, B.
The report summarizes the results of the four year field measurement and data analysis program of MCCP. The MCCP is sponsored by the U.S. Environmental Protection Agency as part of the joint U.S. Forest Service-EPA Spruce-Fir Research Cooperative. The objectives of the project have been met and the result is an assessment of principal atmospheric constituents as they impact the high elevation forests of the Eastern U.S. Deposition of SO4(-2), NO3(-), H(+), and NH(4+) in cloud water represents a significant input to forest canopies with elevations greater than 1000m. Cloud water deposition can exceed wet (rain) deposition and may bemore » the dominant process for input of sulfate and nitrate compounds during the growing season in high elevation forests frequently exposed to clouds. Cloud water pH concentrations may be as much as 0.6pH units lower than pH in rain. SO(4+) and NO3(-) concentrations are also higher in cloud water than in precipitation. Ozone data reveals that significant differences exist between ozone concentrations at high elevation and low elevation sites. The primary effect of the difference is to produce higher mean ozone concentrations and longer episodes at the higher elevation sites.« less
NASA Astrophysics Data System (ADS)
Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun
2017-08-01
Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.
Parker, Daniel M; Zavortink, Thomas J; Billo, Timothy J; Valdez, Ursula; Edwards, John S
2012-03-01
Mosquitoes and other macro arthropods were collected in September 2008 from bucket bromeliads in the vicinity of the Wayqecha Cloud Forest Research Center in southeastern Peru, an area for which there are no published data. Range extensions of culicid species are reported.
Population dynamics of the epiphytic bromeliad Tillandsia butzii in cloud forest
NASA Astrophysics Data System (ADS)
Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana
2016-02-01
Epiphytes are a major component of tropical montane cloud forests. Over-exploitation and forest loss and degradation affect remnant populations. In this study, we analysed the population dynamics of the epiphytic bromeliad Tillandsia butzii over a 2-y period in a tropical montane cloud forest fragment in southern Mexico. Matrix analysis revealed that the T. butzii population is likely to be stable at the study site. On average the λ value did not differ significantly from unity: λ (95% confidence interval) = 0.978 (0.936-1.001). λ was highly influenced by stasis, to a lesser extent by growth and only slightly by fecundity. Overall, adult plant stasis and phalanx growth habit played a fundamental role in population maintenance. T. butzii tolerance to xeric conditions may contribute to population stability in the studied region.
NASA Astrophysics Data System (ADS)
van Pinxteren, Dominik; Wadinga Fomba, Khanneh; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut
2016-03-01
Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a three-stage and a five-stage collector were applied and samples were analysed for inorganic ions (SO42-,NO3-, NH4+, Cl-, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 µmol L-1 for ammonium, nitrate, and sulfate respectively, between 4 and 27 µmol L-1 for minor ions, 5.4 µmol L-1 for H2O2 (aq), 1.9 µmol L-1 for S(IV), and 3.9 mgC L-1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC × 1.8) contributed 20-40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60-66 % for solute concentrations and 52-80 % for cloud water loadings (CWLs). The similar variability of solute concentrations and CWLs together with the results of back-trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC), were the main factor controlling bulk solute concentrations for the cloud studied. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CVI) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC respectively when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U" shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the three-stage collector and somewhat more pronounced from the five-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the five-stage collector was capable of resolving some features of solute size dependencies not seen in the three-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.
NASA Technical Reports Server (NTRS)
Ni, Wenjian; Ranson, Kenneth Jon; Zhang, Zhiyu; Sun, Guoqing
2014-01-01
LiDAR waveform data from airborne LiDAR scanners (ALS) e.g. the Land Vegetation and Ice Sensor (LVIS) havebeen successfully used for estimation of forest height and biomass at local scales and have become the preferredremote sensing dataset. However, regional and global applications are limited by the cost of the airborne LiDARdata acquisition and there are no available spaceborne LiDAR systems. Some researchers have demonstrated thepotential for mapping forest height using aerial or spaceborne stereo imagery with very high spatial resolutions.For stereo imageswith global coverage but coarse resolution newanalysis methods need to be used. Unlike mostresearch based on digital surface models, this study concentrated on analyzing the features of point cloud datagenerated from stereo imagery. The synthesizing of point cloud data from multi-view stereo imagery increasedthe point density of the data. The point cloud data over forested areas were analyzed and compared to small footprintLiDAR data and large-footprint LiDAR waveform data. The results showed that the synthesized point clouddata from ALOSPRISM triplets produce vertical distributions similar to LiDAR data and detected the verticalstructure of sparse and non-closed forests at 30mresolution. For dense forest canopies, the canopy could be capturedbut the ground surface could not be seen, so surface elevations from other sourceswould be needed to calculatethe height of the canopy. A canopy height map with 30 m pixels was produced by subtracting nationalelevation dataset (NED) fromthe averaged elevation of synthesized point clouds,which exhibited spatial featuresof roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlationwith RH50 of LVIS data with a slope of 1.04 and R2 of 0.74 indicating that the canopy height derived fromPRISM triplets can be used to estimate forest biomass at 30 m resolution.
NASA Technical Reports Server (NTRS)
Lawton, Robert M.; Lawton, Robert O.
2010-01-01
Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri (<5 cm dbh, 5-10 cm dbh, 10-20 cm dbh, and> 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.
Ledo, Alicia
2015-01-01
Detailed information about interspecific spatial associations among tropical tree species is scarce, and hence the ecological importance of those associations may have been underestimated. However, they can play a role in community assembly and species diversity maintenance. This study investigated the spatial dependence between pairs of species. First, the spatial associations (spatial attraction and spatial repulsion) that arose between species were examined. Second, different sizes of trees were considered in order to evaluate whether the spatial relationships between species are constant or vary during the lifetime of individuals. Third, the consistency of those spatial associations with the species-habitat associations found in previous studies was assessed. Two different tropical ecosystems were investigated: a montane cloud forest and a lowland moist forest. The results showed that spatial associations among species exist, and these vary among life stages and species. The rarity of negative spatial interactions suggested that exclusive competition was not common in the studied forests. On the other hand, positive interactions were common, and the results of this study strongly suggested that habitat associations were not the only cause of spatial attraction among species. If this is true, habitat associations and density dependence are not the only mechanisms that explain species distribution and diversity; other ecological interactions, such as facilitation among species, may also play a role. These spatial associations could be important in the assembly of tropical tree communities and forest succession, and should be taken into account in future studies. PMID:26581110
Enhancing Multimedia Imbalanced Concept Detection Using VIMP in Random Forests.
Sadiq, Saad; Yan, Yilin; Shyu, Mei-Ling; Chen, Shu-Ching; Ishwaran, Hemant
2016-07-01
Recent developments in social media and cloud storage lead to an exponential growth in the amount of multimedia data, which increases the complexity of managing, storing, indexing, and retrieving information from such big data. Many current content-based concept detection approaches lag from successfully bridging the semantic gap. To solve this problem, a multi-stage random forest framework is proposed to generate predictor variables based on multivariate regressions using variable importance (VIMP). By fine tuning the forests and significantly reducing the predictor variables, the concept detection scores are evaluated when the concept of interest is rare and imbalanced, i.e., having little collaboration with other high level concepts. Using classical multivariate statistics, estimating the value of one coordinate using other coordinates standardizes the covariates and it depends upon the variance of the correlations instead of the mean. Thus, conditional dependence on the data being normally distributed is eliminated. Experimental results demonstrate that the proposed framework outperforms those approaches in the comparison in terms of the Mean Average Precision (MAP) values.
A Practical and Automated Approach to Large Area Forest Disturbance Mapping with Remote Sensing
Ozdogan, Mutlu
2014-01-01
In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions. PMID:24717283
A practical and automated approach to large area forest disturbance mapping with remote sensing.
Ozdogan, Mutlu
2014-01-01
In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions.
Berry, Z Carter; Smith, William K
2013-11-01
Climate warming predicts changes to the frequency and height of cloud-immersion events in mountain communities. Threatened southern Appalachian spruce-fir forests have been suggested to persist because of frequent periods of cloud immersion. These relic forests exist on only seven mountaintop areas, grow only above ca. 1,500 m elevation (maximum 2,037 m), and harbor the endemic Abies fraseri. To predict future distribution, we examined the ecophysiological effects of cloud immersion on saplings of A. fraseri and Picea rubens at their upper and lower elevational limits. Leaf photosynthesis, conductance, transpiration, xylem water potentials, and general abiotic variables were measured simultaneously on individuals at the top (1,960 m) and bottom (1,510 m) of their elevation limits on numerous clear and cloud-immersed days throughout the growing season. The high elevation sites had 1.5 as many cloud-immersed days (75 % of days) as the low elevation sites (56 % of days). Cloud immersion resulted in higher photosynthesis, leaf conductance, and xylem water potentials, particularly during afternoon measurements. Leaf conductance remained higher throughout the day with corresponding increases in photosynthesis and transpiration, despite low photon flux density levels, leading to an increase in water potentials from morning to afternoon. The endemic A. fraseri had a greater response in carbon gain and water balance in response to cloud immersion. Climate models predict warmer temperatures with a decrease in the frequency of cloud immersion for this region, leading to an environment on these peaks similar to elevations where spruce-fir communities currently do not exist. Because spruce-fir communities may rely on cloud immersion for improved carbon gain and water conservation, an upslope shift is likely if cloud ceilings rise. Their ultimate survival will likely depend on the magnitude of changes in cloud regimes.
Scholl, M.; Eugster, W.; Burkard, R.
2011-01-01
Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with the identification of some of the more pressing research questions in this field and offers various suggestions for future research. ?? 2010 This article is a US Government work and is in the public domain in the USA.
Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?
Jocque, M; Vanhove, M P M; Creedy, T J; Burdekin, O; Nuñez-Miño, J M; Casteels, J
2013-01-01
Jewel scarabs, beetles in the genus Chrysina Kirby (Coleoptera: Rutelinae: Scarabaeidae), receive their name from the bright, often gold, green elytra that reflect light like a precious stone. Jewel scarabs are commonly observed at light traps in Mesoamerican cloud forests, and their association with mountain forests makes them potentially interesting candidates for cloud forest conservation monitoring. The absence of survey protocols and identification tools, and the little ecological information available are barriers. In the present study, collection of Chrysina species assembled during biodiversity surveys by Operation Wallacea in Cusuco National Park (CNP), Honduras, were studied. The aim of this overview is to provide an easy to use identification tool for in the field, hopefully stimulating data collection on these beetles. Based on the data associated with the collection localities, elevation distribution of the species in the park was analyzed. The limited data points available were complemented with potential distribution areas generated with distribution models based on climate and elevation data. This study is aimed at initializing the development of a survey protocol for Chrysina species that can be used in cloud forest conservation monitoring throughout Central America. A list of Chrysina species recorded from Honduras so far is provided. The six identified and one unidentified species recorded from CNP are easy to identify in the field based on color and straightforward morphological characteristics. Literature research revealed ten species currently recorded from Honduras. This low species richness in comparison with surrounding Central American countries indicates the poor knowledge of this genus in Honduras. Chrysina species richness in CNP increases with elevation, thereby making the genus one of a few groups of organisms where this correlation is observed, and rendering it a suitable invertebrate representative for cloud forest habitats in Central America.
Life in the clouds: are tropical montane cloud forests responding to changes in climate?
Hu, Jia; Riveros-Iregui, Diego A
2016-04-01
The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.
NASA Astrophysics Data System (ADS)
van Pinxteren, D.; Fomba, K. W.; Mertes, S.; Müller, K.; Spindler, G.; Schneider, J.; Lee, T.; Collett, J.; Herrmann, H.
2015-09-01
Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a 3-stage and a 5-stage collector were applied and samples were analysed for inorganic ions (SO42-, NO3-, NH4+, Cl-, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 μmol L-1 for ammonium, nitrate, and sulfate, respectively, between 4 and 27 μmol L-1 for minor ions, 5.4 μmol L-1 for H2O2 (aq), 1.9 μmol L-1 for S(IV), and 3.9 mgC L-1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC · 1.8) contributed 20-40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60-66 % for solute concentrations and 52-80 % for cloud water loadings (CWLs). Contrary to some earlier suggestions, the similar variability of solute concentrations and CWLs together with the results of back trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC) was the main factor controlling bulk solute concentrations at Mt. Schmücke. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CV) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC, respectively, when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U"-shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the 3-stage collector and somewhat more pronounced from the 5-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the 5-stage collector was capable of resolving some features of solute size dependencies not seen in the 3-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.
Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery
NASA Astrophysics Data System (ADS)
Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.
2007-04-01
This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, Eric J.; Laskin, Alexander; Laskin, Julia
2015-07-21
Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less
NASA Astrophysics Data System (ADS)
Helmer, E.; Ruzycki, T. S.; Wunderle, J. M.; Kwit, C.; Ewert, D. N.; Voggesser, S. M.; Brandeis, T. J.
2011-12-01
We mapped tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m) and foliage height profiles with a time series of gap-filled Landsat and Advanced Land Imager (ALI) imagery for the island of Eleuthera, The Bahamas. We also mapped disturbance type and age with decision tree classification of the image time series. Having mapped these variables in the context of studies of wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii), we then illustrated relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series were both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitated. Also unique to this study was that seven of the eight image time steps were cloud-gap-filled images: mosaics of the clear parts of several cloudy scenes, in which cloud gaps in a reference scene for each time step are filled with image data from alternate scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization of the image data that filled cloud gaps. We also illustrated how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age.
NASA Astrophysics Data System (ADS)
Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.
2013-12-01
Mountain cloud forest (MCF) ecosystems are characterized by a high frequency of cloud fog, with vegetation enshrouded in fog. The altitudinal boundaries of cloud-fog zones co-occur with conspicuous, sharp vegetation ecotones between MCF- and non-MCF-vegetation. This suggests linkages between cloud-fog and vegetation physiology and ecosystem functioning. However, very few studies have provided a mechanistic explanation for the sharp changes in vegetation communities, or how (if) cloud-fog and vegetation are linked. We investigated ecophysiological linkages between clouds and trees in Southern Appalachian spruce-fir MCF. These refugial forests occur in only six mountain-top, sky-island populations, and are immersed in clouds on up to 80% of all growing season days. Our fundamental research questions was: How are cloud-fog and cloud-forest trees linked? We measured microclimate and physiology of canopy tree species across a range of sky conditions (cloud immersed, partly cloudy, sunny). Measurements included: 1) sunlight intensity and spectral quality; 2) carbon gain and photosynthetic capacity at leaf (gas exchange) and ecosystem (eddy covariance) scales; and 3) relative limitations to carbon gain (biochemical, stomatal, hydraulic). RESULTS: 1) Midday sunlight intensity ranged from very dark (<30 μmol m-2 s-1, under cloud-immersed conditions) to very bright (>2500 μmol m-2 s-1), and was highly variable on minute-to-minute timescales whenever clouds were present in the sky. Clouds and cloud-fog increased the proportion of blue-light wavelengths 5-15% compared to sunny conditions, and altered blue:red and red:far red ratios, both of which have been shown to strongly affect stomatal functioning. 2) Cloud-fog resulted in ~50% decreased carbon gain at leaf and ecosystem scales, due to sunlight levels below photosynthetic light-saturation-points. However, greenhouse studies and light-response-curve analyses demonstrated that MCF tree species have low light-compensation points (can photosynthesize even at low light levels), and maximum photosynthesis occurs during high-light, diffuse-light conditions such as occurs during diffuse 'sunflecks' inside the cloud fog. Additionally, the capacity to respond to brief, intermittent sunflecks ('photosynthetic induction', e.g., time to maximum photosynthesis) was high in our MCF species. 3) Data quantifying limitations to photosynthesis were contradictory, underscoring complex relationships among photosynthesis, light, carbon and water relations. While stomatal response to atmospheric moisture demand was sensitive (e.g., 80% drop in stomatal conductance in a <1 kPa drop in vapor-pressure-deficit in conifer species), stem xylem hydraulic conductivity suggested strong drought tolerance capabilities. CONCLUSIONS: Clouds and cloud-fog exert strong influence on canopy-tree and ecosystem carbon relations. MCF are dynamic light environments. In these highly variable but ultimately light-limited ecosystems, vegetation must be able to both fix carbon when cloudy and dark but also be able to capitalize on saturating sunlight when possible.
NASA Astrophysics Data System (ADS)
Van Beusekom, A.; Gonzalez, G.; Scholl, M. A.
2016-12-01
The degree to which cloud immersion sustains tropical montane cloud forests (TMCFs) during rainless periods and the amount these clouds are affected by urban areas is not well understood, as cloud base is rarely quantified near mountains. We found that a healthy small-mountain TMCF in Puerto Rico had lowest cloud base during the mid-summer dry season. In addition, we observed that cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons, based on 2.5 years of direct and 16 years of indirect observations. The low clouds during dry season appear to be explained by proximity to the oceanic cloud system where lower clouds are seasonally invariant in altitude and cover; along with orographic lifting and trade-wind control over cloud formation. These results suggest that climate change impacts on small-mountain TMCFs may not be limited to the dry season; changes in regional-scale patterns that cause drought periods during the wet seasons will likely have higher cloud base, and thus may threaten cloud water support to sensitive mountain ecosystems. Strong El Niño's can cause drought in Puerto Rico; we will report results from the summer of 2015 that examined El Niño effects on cloud base altitudes. Looking at regionally collected airport cloud data, we see indicators that diurnal urban effects may already be raising the low cloud bases.
Reinhardt, Keith; Smith, William K
2008-01-01
The southern Appalachian spruce-fir (Picea rubens Sarg. and Abies fraseri (Pursh) Poir.) forest is found only on high altitude mountain tops that receive copious precipitation ( > 2000 mm year(-1)) and experience frequent cloud immersion. These high-elevation, temperate rain forests are immersed in clouds on approximately 65% of the total growth season days and for 30-40% of a typical summer day, and cloud deposition accounts for up to 50% of their annual water budget. We investigated environmental influences on understory leaf gas exchange and water relations at two sites: Mt. Mitchell, NC (MM; 35 degrees 45'53'' N, 82 degrees 15'53'' W, 2028 m elevation) and Whitetop Mtn., VA (WT; 36 degrees 38'19'' N, 81 degrees 36'19'' W, 1685 m elevation). We hypothesized that the cool, moist and cloudy conditions at these sites exert a strong influence on leaf gas exchange. Maximum photosynthesis (A(max)) varied between 1.6 and 4.0 micromol CO(2) m(-2) s(-1) for both spruce and fir and saturated at irradiances between approximately 200 and 400 micromol m(-2) s(-1) at both sites. Leaf conductance (g) ranged between 0.05 and 0.25 mol m(-2) s(-1) at MM and between 0.15 and 0.40 mol m(-2) s(-1) at WT and was strongly associated with leaf-to-air vapor pressure difference (LAVD). At both sites, g decreased exponentially as LAVD increased, with an 80-90% reduction in g between 0 and 0.5 kPa. Predawn leaf water potentials remained between -0.25 and -0.5 MPa for the entire summer, whereas late afternoon values declined to between -1.25 and -1.75 MPa by late summer. Thus, leaf gas exchange appeared tightly coupled to the response of g to LAVD, which maintained high water status, even at the relatively low LAVD of these cloud forests. Moreover, the cloudy, humid environment of these refugial forests appears to exert a strong influence on tree leaf gas exchange and water relations. Because global climate change is predicted to increase regional cloud ceiling levels, more research on cloud impacts on carbon gain and water relations is needed to predict future impacts on these relict forests.
Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data.
Schulz, Hans Martin; Li, Ching-Feng; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2017-01-01
Up until now montane cloud forest (MCF) in Taiwan has only been mapped for selected areas of vegetation plots. This paper presents the first comprehensive map of MCF distribution for the entire island. For its creation, a Random Forest model was trained with vegetation plots from the National Vegetation Database of Taiwan that were classified as "MCF" or "non-MCF". This model predicted the distribution of MCF from a raster data set of parameters derived from a digital elevation model (DEM), Landsat channels and texture measures derived from them as well as ground fog frequency data derived from the Moderate Resolution Imaging Spectroradiometer. While the DEM parameters and Landsat data predicted much of the cloud forest's location, local deviations in the altitudinal distribution of MCF linked to the monsoonal influence as well as the Massenerhebung effect (causing MCF in atypically low altitudes) were only captured once fog frequency data was included. Therefore, our study suggests that ground fog data are most useful for accurately mapping MCF.
Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning
NASA Astrophysics Data System (ADS)
Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.
2017-12-01
Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.
USDA-ARS?s Scientific Manuscript database
All flies (Diptera) collected for one year from a four-hectare (150 X 266 meter) patch of cloud forest at 1600 meters above sea level at Zurquí de Moravia, San José Province, Costa Rica (hereafter referred to as Zurquí), revealed an astounding 4,348 species. These amount to more than half the number...
Ornelas, Juan Francisco; Rodríguez-Gómez, Flor
2015-01-01
Phylogeographical work on cloud forest-adapted species provides inconsistent evidence on cloud forest dynamics during glacial cycles. A study of Rhipsalis baccifera (Cactaceae), a bird-dispersed epiphytic mistletoe cactus, was conducted to investigate genetic variation at sequence data from nuclear [internal transcribed spacer (ITS), 677 bp] and chloroplast (rpl32-trnL, 1092bp) DNA for 154 individuals across the species range in Mesoamerica to determine if such patterns are consistent with the expansion/contraction model of cloud forest during glacial cycles. We conducted population and spatial genetic analyses as well as gene flow and divergence time estimates between 24 populations comprising the distribution of R. baccifera in Mexico and Guatemala to gain insight of the evolutionary history of these populations, and a complementary species distribution modeling approach to frame information derived from the genetic analyses into an explicit paleoecological context. The results revealed a phylogeographical break at the Isthmus of Tehuantepec, and high levels of genetic diversity among populations and cloud forest areas. Despite the genetic differentiation of some R. baccifera populations, the widespread ITS ribotypes suggest effective nuclear gene flow via pollen and population differentiation shown by the rpl32-trnL suggests more restricted seed flow. Predictions of species distribution models under past last glacial maximum (LGM) climatic conditions and a significant signal of demographic expansion suggest that R. baccifera populations experienced a range expansion tracking the conditions of the cloud forest distribution and shifted to the lowlands with population connectivity during the LGM. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i.
Gotsch, Sybil G; Crausbay, Shelley D; Giambelluca, Thomas W; Weintraub, Alexis E; Longman, Ryan J; Asbjornsen, Heidi; Hotchkiss, Sara C; Dawson, Todd E
2014-07-01
The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Metrosideros polymorpha Gaudich. var. polymorpha in three habitats bracketing the cloud forest's upper limit in Hawai'i to understand the role of water relations in determining ecotone position. The subalpine shrubland site, located 100 m above the cloud forest boundary, had the highest vapor pressure deficit, the least amount of rainfall and the highest levels of nighttime transpiration (EN) of all three sites. In the shrubland site, on average, 29% of daily whole-tree transpiration occurred at night, while on the driest day of the study 50% of total daily transpiration occurred at night. While EN occurred in the cloud forest habitat, the proportion of total daily transpiration that occurred at night was much lower (4%). The average leaf water potential (Ψleaf) was above the water potential at the turgor loss point (ΨTLP) on both sides of the ecotone due to strong stomatal regulation. While stomatal closure maintained a high Ψleaf, the minimum leaf water potential (Ψleafmin) was close to ΨTLP, indicating that drier conditions may cause drought stress in these habitats and may be an important driver of current landscape patterns in stand density. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Daytime turbulent exchange between the Amazon forest and the atmosphere
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio O.; Deabreusa, Leonardo D.
1989-01-01
Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.
Daytime turbulent exchange between the Amazon forest and the atmosphere
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio
1990-01-01
Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.
Forest structure analysis combining laser scanning with digital airborne photogrammetry
NASA Astrophysics Data System (ADS)
Lissak, Candide; Onda, Yuichi; Kato, Hiroaki
2017-04-01
The interest of Light Detection and Ranging (LiDAR) for vegetation structure analysis has been demonstrated in several research context. Indeed, airborne or ground Lidar surveys can provide detailed three-dimensional data of the forest structure from understorey forest to the canopy. To characterize at different timescale the vegetation components in dense cedar forests we can combine several sources point clouds from Lidar survey and photogrammetry data. For our study, Terrestrial Laser Scanning (TLS-Leica ScanStation C10 processed with Cyclone software) have been lead in three forest areas (≈ 200m2 each zone) mainly composed of japanese cedar (Japonica cryptomeria), in the region of Fukushima (Japan). The study areas are characterized by various vegetation densities. For the 3 areas, Terrestrial laser scanning has been performed from several location points and several heights. Various floors shootings (ground, 4m, 6m and 18m high) were able with the use of a several meters high tower implanted to study the canopy evolution following the Fukushima Daiishi nuclear power plant accident. The combination of all scanners provides a very dense 3D point cloud of ground and canopy structure (average 300 000 000 points). For the Tochigi forest area, a first test of a low-cost Unmanned Aerial Vehicle (UAV) photogrammetry has been lead and calibrated by ground GPS measurements to determine the coordinates of points. TLS combined to UAV photogrammetry make it possible to obtain information on vertical and horizontal structure of the Tochigi forest. This combination of technologies will allow the forest structure mapping, morphometry analysis and the assessment of biomass volume evolution from multi-temporal point clouds. In our research, we used a low-cost UAV 3 Advanced (200 m2 cover, 1300 pictures...). Data processing were performed using PotoScan Pro software to obtain a very dense point clouds to combine to TLS data set. This low-cost UAV photogrammetry data has been successfully used to derive information on the canopy cover. The purpose of this poster is to present the usability of combined remote sensing methods for forest structure analysis and 3D model reconstitution for a trend analysis of the forest changes.
Novel Methods for Measuring LiDAR
NASA Astrophysics Data System (ADS)
Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.
2017-12-01
The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and tested against one another using 28 different sites and over 42 different LiDAR acquisitions. The optimal model will then be used to generate regional wall-to-wall forest inventories at a 10 m resolution.
Schleeweis, Karen; Goward, Samuel N.; Huang, Chengquan; Dwyer, John L.; Dungan, Jennifer L.; Lindsey, Mary A.; Michaelis, Andrew; Rishmawi, Khaldoun; Masek, Jeffery G.
2016-01-01
Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products.
Surveys of Puerto Rican screech-owl populations in large-tract and fragmented forest habitats
Pardieck, K.L.; Meyers, J.M.; Pagan, M.
1996-01-01
We conducted road surveys of Puerto Rican Screech-Owls (Otus nudipes) by playing conspecific vocalizations in secondary wet forest and fragmented secondary moist forest in rural areas of eastern Puerto Rico. Six paired surveys were conducted bi-weekly beginning in April. We recorded number of owl responses, cloud cover, wind speed, moon phase, and number of passing cars during 5-min stops at 60 locations. Owls responded in similar numbers (P > 0.05) in both habitat types. Also, we detected no association with cloud cover, wind speed, moon phase, or passing cars.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William; Gasser, Gerald
2013-01-01
This presentation discusses the development of anew method for computing NDVI temporal composites from near real time eMODIS data This research is being conducted to improve forest change products used in the ForWarn system for monitoring regional forest disturbances in the United States. ForWarn provides nation-wide NDVI-based forest disturbance detection products that are refreshed every 8 days. Current eMODIS and historical MOD13 24 day NDVI data are used to compute the disturbance detection products. The eMODIS 24 day NDVI data re-aggregated from 7 day NDVI products. The 24 day eMODIS NDVIs are generally cloud free, but do not necessarily use the freshest quality data. To shorten the disturbance detection time, a method has been developed that performs adaptive length/maximum value compositing of eMODIS NDVI, along with cloud and shadow "noise" mitigation. Tests indicate that this method can reduce detection rates by 8-16 days for known recent disturbance events, depending on the cloud frequencies and disturbance type. The noise mitigation in these tests, though imperfect, helped to improve quality of the resulting NDVI and forest change products.
NASA Astrophysics Data System (ADS)
Khare, S.; Latifi, H.; Ghosh, K.
2016-06-01
To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous forests could be explained.
NASA Astrophysics Data System (ADS)
Broich, Mark
Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.
Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas
NASA Astrophysics Data System (ADS)
Ni, H.; Lin, X. G.; Zhang, J. X.
2017-09-01
A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.
Occult chemical deposition to a Maritime forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vong, R.J.; Kowalski, A.S.
1996-12-31
Studies of chemical fluxes from the atmosphere to vegetated surfaces have suggested that, along with conventional wet and dry processes, an additional chemical input occurs when wind-blown cloud droplets are directly intercepted by vegetation. This cloud water deposition process has been sometimes termed {open_quote}occult deposition{close_quote} because the water fluxes cannot ordinarily be observed using rain gauges. Such occult deposition of cloud water has rarely been measured directly, in part because of the complexity of the governing turbulent transfer process. However, reviews by the National Acidic Precipitation Assessment Program (NAPAP SoS/T-2,6) have suggested that the chemical flux to be forest declinemore » in the eastern USA. This paper presents direct field measurements occult chemical fluxes to a silver fir forest located in complex terrain on the Olympic Peninsula near the coast of Washington State, USA.« less
A Local Index of Cloud Immersion in Tropical Forests Using Time-Lapse Photography
NASA Astrophysics Data System (ADS)
Bassiouni, M.; Scholl, M. A.
2015-12-01
Data on the frequency, duration and elevation of cloud immersion is essential to improve estimates of cloud water deposition in water budgets in cloud forests. Here, we present a methodology to detect local cloud immersion in remote tropical forests using time-lapse photography. A simple approach is developed to detect cloudy conditions in photographs within the canopy where image depth during clear conditions may be less than 10 meters and moving leaves and branches and changes in lighting are unpredictable. A primary innovation of this study is that cloudiness is determined from images without using a reference clear image and without minimal threshold value determination or human judgment for calibration. Five sites ranging from 600 to 1000 meters elevation along a ridge in the Luquillo Critical Zone Observatory, Puerto Rico were each equipped with a trail camera programmed to take an image every 30 minutes since March 2014. Images were classified using four selected cloud-sensitive image characteristics (SCICs) computed for small image regions: contrast, the coefficient of variation and the entropy of the luminance of each image pixel, and image colorfulness. K-means clustering provided reasonable results to discriminate cloudy from clear conditions. Preliminary results indicate that 79-94% (daytime) and 85-93% (nighttime) of validation images were classified accurately at one open and two closed canopy sites. The euclidian distances between SCICs vectors of images during cloudy conditions and the SCICs vector of the centroid of the cluster of clear images show potential to quantify cloud density in addition to immersion. The classification method will be applied to determine spatial and temporal patterns of cloud immersion in the study area. The presented approach offers promising applications to increase observations of low-lying clouds at remote mountain sites where standard instruments to measure visibility and cloud base may not be practical.
NASA Astrophysics Data System (ADS)
Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar
2017-04-01
Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the speed of the temperature increase. Most importantly, the decline of photosynthesis was accompanied by a rapid and complete depletion of leaf starch reserves followed by the prompt death of the plants. We therefore conclude, that temperature increases to 29 - 33°C lead to carbon starvation in epiphytic orchids of tropical cloud forests that is driven by the break-down of photosynthesis. The physiological reason for the observed dysfunction of photosynthesis at only moderately warm temperatures are currently not well understood. Within an ongoing phytotron study, we thus are aiming to confirm and deepen the findings in the genus Dracula in Masdevallia, another orchid genera native and endemic to tropical cloud forests.
Potential impact of harvesting on the population dynamics of two epiphytic bromeliads
NASA Astrophysics Data System (ADS)
Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa
2014-08-01
Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.
Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.
2005-12-01
The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.
NASA Astrophysics Data System (ADS)
Defelice, Thomas Peter
The decline of forests has long been attributed to various natural (e.g. drought), man-made (e.g. logging), and perhaps, combinations of these (eg. fires caused by loggers) causes. A new type of forest decline (attributed to the deposition of air pollutants and other natural causes) has become apparent at high elevation sites in western Europe and North America; especially for above cloudbase forests like those in the Mt. Mitchell State Park. Investigations of air pollutant deposition are plentiful and laboratory studies have shown extreme deposition of these pollutants to be potentially harmful to forests. However, no field study has concentrated on these events. The primary objective of this study is to characterize (i.e., meterologically, microphysically, chemically) extreme episodes of air pollutant deposition. This study defines extreme aqueous events as having a pH < 3.1. pH's of this order are known to reduce laboratory tree growth depending on their age and species. On the average, one out of three aqueous events, sampled in the park during the 1986-1988 growing seasons (mid-May through mid-September), was extreme. Their occurrence over time may lead to the death of infant and 'old' trees, and to the reduced vigor of trees in their prime, as a result of triggering the decline mechanisms of these trees. These events usually last ~ 4.0 h, form during extended periods of high atmospheric pressure, have a liquid water content of ~ 0.10 gm^{-3}, and near typical cloud droplet sizes (~ 8.0 μm). Extreme aqueous events deposit most of their acid at their end. The deposition from the infrequent occurrences of very high ozone ( >=q100 ppb) and sulfur dioxide (>=q 5 ppb) concentrations in conjunction with these cloud events may be even more detrimental to the canopy, then that by extreme aqueous events alone. The physical characteristics of these combined events appear to include those of mature, precipitating clouds. Their occurrence may provide a clue as to how very low pH clouds might be deacidified. That is, base gases (eg. ammonia) locally introduced into such clouds at the proper time may render them harmless upon impact with the forest canopy, and beneficial to regional water supply users.
2017-12-08
A vigorous summer fire season continued through July, 2013 as many large wildfires continued to burn in the forests of northern Canada. The high fire activity not only laid waste to thousands of hectares of boreal forest, but sent thick smoke billowing high into the atmosphere, where it was carried far across the Atlantic Ocean. On July 30, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of a river of smoke spreading south across the Hudson Bay. The blue background is formed by the waters of Hudson Bay. In the southeast the green, forest-covered land of Quebec province peeks from under a large cloud bank. Another large bank of white cloud covers the water in the southwest, and a smaller cloud bank covers the territory of Nunavut in the northwest. A bit of Baffin Island can be seen near the top center of the image. Looking closely at the image, it appears that the gray smoke mixes with whiter cloud in the south, suggesting they may be at the same level in the atmosphere. In the northeast corner of the image, a ribbon of smoke appears to blow over a bank of popcorn clouds as well as over a few lower-lying clouds, causing some of the clouds to appear gray beneath the smoky veil. Where cloud meets smoke in the northeast, however, the line of the cloud bank remains sharp, while the smoke appears to continue traveling under the edge. Although these interpretations are somewhat subjective in this true-color image, the false-color image of the same scene (not shown here) lends strength to the interpretation. Data from other NASA instruments, designed to measure cloud height and characteristics, agree that clouds vary in height, and that smoke mingles with cloud in the south. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Bandala, Victor M; Montoya, Leticia; Horak, Egon
2006-01-01
Two species of Crepidotus are recorded from cloud forest in the central region of Veracruz State (eastern Mexico): Crepidotus rubrovinosus sp. nov. and Crepidotus septicoides. The latter species was known previously only from the type locality in Brazil and from one record in tropical rain forest in southern Veracruz (as C. longicystis s. str. Singer). Descriptions, illustrations and discussions for both taxa are provided. A type study of C. fusisporus var. longicystis from USA is included, and it is concluded that the collection supporting this variety belongs to C. luteolus.
Origin and Evolution of Comet Clouds
NASA Astrophysics Data System (ADS)
Higuchi, Arika
2007-01-01
The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.
Moisture status during a strong El Niño explains a tropical montane cloud forest's upper limit.
Crausbay, Shelley D; Frazier, Abby G; Giambelluca, Thomas W; Longman, Ryan J; Hotchkiss, Sara C
2014-05-01
Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest's upper limit and composition in Hawai'i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest's upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture's overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.
Estimation of canopy water interception of a near-tropical montane cloud forest in Taiwan
NASA Astrophysics Data System (ADS)
Apurva, B.; Huang, C. Y.; Zhang, J.
2017-12-01
Tropical and subtropical montane cloud forests are some of the rarest and least studied ecosystems. Due to the frequent immersion of fog water with high humidity, these zones are major water sources for lowland environments and habitats for many fauna and flora. Their dependence on cloud water leaves them highly susceptible to the effects of climate change. Studies have been conducted to quantify the characteristics of the low altitude clouds such as spatial dynamics, cloud top and base heights, occurrence frequency or immersion duration. In this study, we carried out a field measurement to estimate canopy water interception (CWI), which is directly utilized by the ecosystems. The study site was a 61 ha near-tropical hinoki cypress montane cloud forest plantation in northern Taiwan at 1705 m asl. Leaves of CHOB were clipped, air-dried and attached to trees at three different canopy depths from the top to the base of canopies along a high tower. The samples were weighed before and after the occurrence of a fog event. In addition, a cylinder shaped fog gauge was installed at the ground level next to the tower to assess amount of fog water penetrating the canopy layer. After afternoon fog events with the duration of 60 minutes, we found that there was an apparent trend of decline of CWI from top (mean ± standard deviation = 0.023 g ± 0.0015 g), middle (0.021 g ± 0.0015 g) to the bottom (0.013 g ± 0.0015 g) of the canopies. Since the study site is a coniferous evergreen forest plantation with a relatively homogenous surface through seasons, with the background knowledge of the average leaf area index of 4.4, we estimated that this 61 ha site harvested 28.2 Mg of CWI for a daily fog event. We also found that no clear evidence of CWI was observed below the canopies by referring to bi-weekly records from the cylinder shaded fog gauge. Therefore, we can assume that the majority fog water was intercepted by the hinoki cypress canopy layer. This study demonstrates that a substantial amount of fog water can be harvested by the montane cloud forest, and this horizontal precipitation is not negligible and should be taken into account for ecological research.
T.A. Kennaway; E.H. Helmer; M.A. Lefsky; T.A. Brandeis; K.R. Sherill
2008-01-01
Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researchers for accurate forest inventory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...
Todd Kennaway; Eileen Helmer; Michael Lefsky; Thomas Brandeis; Kirk Sherrill
2009-01-01
Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researachers for accurate forest inverntory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...
Asner, Gregory P; Joseph, Shijo
2015-01-01
Conservation and monitoring of tropical forests requires accurate information on their extent and change dynamics. Cloud cover, sensor errors and technical barriers associated with satellite remote sensing data continue to prevent many national and sub-national REDD+ initiatives from developing their reference deforestation and forest degradation emission levels. Here we present a framework for large-scale historical forest cover change analysis using free multispectral satellite imagery in an extremely cloudy tropical forest region. The CLASlite approach provided highly automated mapping of tropical forest cover, deforestation and degradation from Landsat satellite imagery. Critically, the fractional cover of forest photosynthetic vegetation, non-photosynthetic vegetation, and bare substrates calculated by CLASlite provided scene-invariant quantities for forest cover, allowing for systematic mosaicking of incomplete satellite data coverage. A synthesized satellite-based data set of forest cover was thereby created, reducing image incompleteness caused by clouds, shadows or sensor errors. This approach can readily be implemented by single operators with highly constrained budgets. We test this framework on tropical forests of the Colombian Pacific Coast (Chocó) – one of the cloudiest regions on Earth, with successful comparison to the Colombian government’s deforestation map and a global deforestation map. PMID:25678933
Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.
Williams, Daniel R; Tang, Yinshan
2013-05-07
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Guzmán Q, J. Antonio; Cordero, Roberto A.
2016-01-01
Background and Aims Plant design refers to the construction of the plant body or its constituent parts in terms of form and function. Although neighbourhood structure is recognized as a factor that limits plant survival and species coexistence, its relative importance in plant design is not well understood. We conducted field research to analyse how the surrounding environment of neighbourhood structure and related effects on light availability are associated with changes in plant design in two understorey plants (Palicourea padifolia and Psychotria elata) within two successional stages of a cloud forest in Costa Rica. Methods Features of plant neighbourhood physical structure and light availability, estimated using hemispherical photographs, were used as variables that reflect the surrounding environment. Measures of plant biomechanics, allometry, branching and plant slenderness were used as functional plant attributes that reflect plant design. We propose a framework using a partial least squares path model and used it to test this association. Key Results The multidimensional response of plant design of these species suggests that decreases in the height-based factor of safety and increases in mechanical load and developmental stability are influenced by increases in maximum height of neighbours and a distance-dependence interference index more than neighbourhood plant density or neighbour aggregation. Changes in plant branching and slenderness are associated positively with light availability and negatively with canopy cover. Conclusions Although it has been proposed that plant design varies according to plant density and light availability, we found that neighbour size and distance-dependence interference are associated with changes in biomechanics, allometry and branching, and they must be considered as key factors that contribute to the adaptation and coexistence of these plants in this highly diverse forest community. PMID:27245635
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.
Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine
2012-01-01
Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...
Fitting rainfall interception models to forest ecosystems of Mexico
NASA Astrophysics Data System (ADS)
Návar, José
2017-05-01
Models that accurately predict forest interception are essential both for water balance studies and for assessing watershed responses to changes in land use and the long-term climate variability. This paper compares the performance of four rainfall interception models-the sparse Gash (1995), Rutter et al. (1975), Liu (1997) and two new models (NvMxa and NvMxb)-using data from four spatially extensive, structurally diverse forest ecosystems in Mexico. Ninety-eight case studies measuring interception in tropical dry (25), arid/semi-arid (29), temperate (26), and tropical montane cloud forests (18) were compiled and analyzed. Coefficients derived from raw data or published statistical relationships were used as model input to evaluate multi-storm forest interception at the case study scale. On average empirical data showed that, tropical montane cloud, temperate, arid/semi-arid and tropical dry forests intercepted 14%, 18%, 22% and 26% of total precipitation, respectively. The models performed well in predicting interception, with mean deviations between measured and modeled interception as a function of total precipitation (ME) generally <5.8% and Nash-Sutcliffe efficiency E estimators >0.66. Model fitting precision was dependent on the forest ecosystem. Arid/semi-arid forests exhibited the smallest, while tropical montane cloud forest displayed the largest ME deviations. Improved agreement between measured and modeled data requires modification of in-storm evaporation rate in the Liu; the canopy storage in the sparse Gash model; and the throughfall coefficient in the Rutter and the NvMx models. This research concludes on recommending the wide application of rainfall interception models with some caution as they provide mixed results. The extensive forest interception data source, the fitting and testing of four models, the introduction of a new model, and the availability of coefficient values for all four forest ecosystems are an important source of information and a benchmark for future investigations in this area of hydrology.
NASA Astrophysics Data System (ADS)
Wu, Q.; Song, J.; Wang, J.; Chen, S.; Yu, B.; Liao, L.
2016-12-01
Monitoring the dynamics of leaf area index (LAI) throughout the life-cycle of forests (from seeding to maturity) is vital for simulating forest growth and quantifying carbon sequestration. However, all current global LAI produts show extremely low accuracy in forests and the coarse spatial resolution(nearly 1-km) mismatch with the spatial scale of forest inventory plots (nearly 26m*26m). To date, several studies have explored the possibility of satellite data to classify forest succession or predict stand age. And a few studies have explored the potential of using long term Landsat data to monitor the growing trend of forests, but no studies have quantified the inter-annual and intra-annual LAI dynamics along with forest succession. Vegetation indexes are not perfect variables in quantifying forest foliage dynamics. Hallet (1995) suggested remote sensing of biophysical characteristics should shift away from direct inference from vegetation indices toward more physically based algorithms. This work intends to be a pioneer example for improving the accuracy of forests LAI and providing temporal-spatial matching LAI datasets for monitoring forest processes. We integrates the Geometric-Optical and Radiative Transfer (GORT) model with the Physiological Principles Predicting Growth (3-PG) model to improve the estimation of the forest canopy LAI dynamics. Reflectance time-series data from 1987 to 2015 were collected and preprocessed for forests in southern China, using all available Landsat data (with <80% cloud). Effective LAI and true LAI were field measured to validate our results using various instruments, including digital hemispheric photographs (DHP), LAI-2000 Plant Canopy Analyzer (LI-COR), and Tracing radiation and Architecture of Canopies (TRAC). Results show that the relationship between spectral metrics of satellite images and forest LAI is clear in early stages before maturity. 3-PG provide accurate inter-annual trend of forest LAI, while satellite images provide clear intra-annual LAI dynamics. We concluded that the GORT-3PG model improved the LAI estimation significantly of forest stands. Improving forest LAI estimates will help inform forest management policy and such methods may be applied in other similar forests.
Art Borkent; Brian V. Brown; Peter H. Adler; Dalton de Souza Amorim; Kevin Barber; Daniel Bickel; Stephanie Boucher; Scott E. Brooks; John Burger; Zelia L. Burington; Renato S. Capellari; Daniel N. R. Costa; Jeffrey M. Cumming; Greg Curler; Carl W. Dick; John H. Epler; Eric Fisher; Stephen D. Gaimari; Jon Gelhaus; David A. Grimaldi; John Hash; Martin Hauser; Heikki Hippa; Sergio Ibanez-Bernal; Mathias Jaschhof; Elena P. Kameneva; Peter H. Kerr; Valery Korneyev; Cheslavo A. Korytkowski; Giar-Ann Kung; Gunnar Mikalsen Kvifte; Owen Lonsdale; Stephen A. Marshall; Wayne N. Mathis; Verner Michelsen; Stefan Naglis; Allen L. Norrbom; Steven Paiero; Thomas Pape; Alessandre Pereira-Colavite; Marc Pollet; Sabrina Rochefort; Alessandra Rung; Justin B. Runyon; Jade Savage; Vera C. Silva; Bradley J. Sinclair; Jeffrey H. Skevington; John O. Stireman; John Swann; F. Christian Thompson; Pekka Vilkamaa; Terry Wheeler; Terry Whitworth; Maria Wong; D. Monty Wood; Norman Woodley; Tiffany Yau; Thomas J. Zavortink; Manuel A. Zumbado
2018-01-01
Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurquà de Moravia, San José Province, Costa Rica (hereafter referred to as ZurquÃ), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America....
Mapping forest tree species over large areas with partially cloudy Landsat imagery
NASA Astrophysics Data System (ADS)
Turlej, K.; Radeloff, V.
2017-12-01
Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.
Eduardo Moralejo; Enrique Descals
2008-01-01
The tree species that dominate the cloud-zone forests of Macaronesia, the coastal redwoods of California, the Valdivian forests of Chile, the Atlantic forests of Brazil and the podocarp forests of New Zealand are all examples of paleoendemic species that once had a much wider distribution. They appear to owe their survival to the particular environmental conditions...
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.
2014-01-01
The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.
Life and Death in a Star-Forming Cloud
2012-11-14
W44 is located around 10,000 light-years away, within a forest of dense star-forming clouds in the constellation of Aquila, the Eagle. This image combines data from ESA Herschel and XXM-Newton space observatories.
Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala.
Eisermann, Knut; Schulz, Ulrich
2005-01-01
The Northern Central American Highlands have been recognized as endemic bird area, but little is known about bird communities in Guatemalan cloud forests. From 1997 to 2001 a total of 142 bird species were recorded between 2000 and 2400 masl in cloud forest and agricultural clearings on Montaña Caquipec (Alta Verapaz, Guatemala). The bird community is described based on line transect counts within the forest. Pooling census data from undisturbed and disturbed forest, the Gray-breasted Wood-Wren (Henicorhina leucophrys) was found to be the most abundant species, followed in descending order by the Common Bush-Tanager (Chlorospingus ophthalmicus), the Paltry Tyrannulet (Zimmerius vilissimus), the Yellowish Flycatcher (Empidonax flavescens), the Ruddy-capped Nightingale-Thrush (Catharus frantzi), and the Amethyst-throated Hummingbird (Lampornis amethystinus). Bird communities in undisturbed and disturbed forest were found to be similar (Serensen similarity index 0.85), indicating low human impact. Of all recorded species, approximately 27% were Nearctic-Neotropical migratory birds. The most abundant one was the Wilson's Warbler (Wilsonia pusilla). The Montaña Caquipec is an important area for bird conservation, which is indicated by the presence of four species listed in the IUCN Red List (Highland Guan Penelopina nigra, Resplendent Quetzal Pharomachrus mocinno, Pink-headed Warbler Ergaticus versicolor, Golden-cheeked Warbler Dendroica chrysoparia), and 42 Mesoamerican endemics, of which 14 species are endemic to the Central American Highlands. The results presented here will be useful as baseline data for a long-term monitoring.
Small mammals from the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala
Matson, Jason O.; Ordóñez-Garza, Nicté; Woodman, Neal; Bulmer, Walter; Eckerlin, Ralph P.; Hanson, J. Delton
2014-01-01
We surveyed the small mammals of remnant mixed hardwood-coniferous cloud forest at elevations ranging from 2,100–2,300 m in the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala. Removal-trapping using a combination of live traps, snap traps, and pitfall traps for 6 days in January 2007 resulted in 175 captures of 15 species of marsupials, shrews, and rodents. This diversity of small mammals is the highest that we have recorded from a single locality of the 10 visited during eight field seasons in the highlands of Guatemala. Based on captures, the most abundant species in the community of small mammals is Peromyscus grandis (n = 50), followed by Handleyomys rhabdops (n = 27), Heteromys desmarestianus(n = 18), Reithrodontomys mexicanus (n = 17), Handleyomys saturatior (n = 16), Sorex veraepacis (n = 15), and Scotinomys teguina (n = 13). The remaining eight species were represented by one to five individuals.
Fusion of optical and SAR remote sensing images for tropical forests monitoring
NASA Astrophysics Data System (ADS)
Wang, C.; Yu, M.; Gao, Q.; Wang, X.
2016-12-01
Although tropical deforestation prevails in South America and Southeast Asia, reforestation appeared in some tropical regions due to economic changes. After the economic shift from agriculture to industry, the tropical island of Puerto Rico has experienced rapid reforestation as well as urban expansion since the late 1940s. Continued urban growth without the guide of sustainable planning might prevent further forest regrowth. Accurate and timely mapping of LULC is of great importance for evaluating the consequences of reforestation and urban expansion on the coupled human and nature systems. However, owning to persistent cloud cover in tropics, it remains a challenge to produce reliable LULC maps in fine spatial resolution. Here, we retrieved cloud-free Landsat surface reflectance composite data by removing clouds and shades from the USGS Landsat Surface Reflectance (SR) product for each scene using the CFmask and Fmask algorithms in Google Earth Engine. We then produced high accuracy land cover classification maps using SR optical data for the year of 2000 and fused optical and ALOS SAR data for 2010 and 2015, with an overall accuracy of 92.0%, 92.5%, and 91.6%, respectively. The classification result indicated that a successive forest gain of 6.52% and 1.03% occurred between the first (2000-2010) and second (2010-2015) study periods, respectively. We also conducted a comparative spatial analysis of patterns of deforestation and reforestation based on a series of forest cover zones (50 × 50 pixels, 150 ha). The annual rates of deforestation and reforestation against forest cover presented the similar trends during two periods: decreasing with the forest cover increasing. However, the annual net forest change rate was different in the zones with forest cover less than 30%, presenting significant gain (2.2-8.4% yr-1) for the first period and significant loss (2.3-6.4% yr-1) for the second period. It indicated that both deforestation and reforestation mostly occurred near the forest edges and low density secondary forests.
NASA Astrophysics Data System (ADS)
Urbanek, Benedikt; Groß, Silke; Wirth, Martin
2017-04-01
Cirrus clouds impose high uncertainties on weather and climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud optical, microphysical, and radiative properties change as the cirrus evolves. To gain better understanding of cirrus clouds, their optical and microphysical properties and their changes with cirrus cloud evolution the ML-CIRRUS campaign was conducted in March and April 2014. Measurements with a combined in-situ and remote sensing payload were performed with the German research aircraft HALO based in Oberpfaffenhofen. 16 research flights with altogether 88 flight hours were performed over the North-Atlantic, western and central Europe to probe different cirrus cloud regimes and cirrus clouds at different stages of evolution. One of the key remotes sensing instruments during ML-CIRRUS was the airborne differential absorption and high spectral lidar system WALES. It measures the 2-dimensional distribution of water vapor inside and outside of cirrus clouds as well as the optical properties of the clouds. Bases on these airborne lidar measurements a novel classification scheme to derive the stage of cirrus cloud evolution was developed. It identifies regions of ice nucleation, particle growth by deposition of water vapor, and ice sublimation. This method is used to investigate differences in the distribution and value of optical properties as well as in the distribution of water vapor and relative humidity depending on the stage of evolution of the cloud. We will present the lidar based classification scheme and its application on a wave driven cirrus cloud case, and we will show first results of the dependence of optical cloud properties and relative humidity distributions on the determined stage of evolution.
The Characteristic Dimension of Lyman-Alpha Forest Clouds Toward Q0957+561
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Michalitsianos, A. G.; Hill, R. J.; Nguyen, Q. T.; Fisher, Richard (Technical Monitor)
2000-01-01
Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph to investigate the characteristic dimension of Lyman-alpha forest clouds in the direction of the quasar. If one makes the usual assumption that the absorbing structures are spherical clouds with a single radius, that radius can be found analytically from the ratio of Lyman-alpha lines in only one line of sight to the number in both. A simple power series approximation to this solution, accurate everywhere to better than 1%, will be presented. Absorption lines in Q0957+561 having equivalent width greater than 0.3 A in the observer's frame not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approximately 1.5 times higher signal to noise than our spectra. Ly-alpha forest lines appear at 41 distinct wavelengths in the spectra of the two images. One absorption line in the spectrum of image A has no counterpart in the spectrum of image B, and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-alpha forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a radius R = 160 (+120, -70) h (sup -1) (sub 50) kpc (H (sub 0) 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2). The 95% confidence interval on R extends from (50 950) h (sup -1) (sub 50) kpc.
Abella-Medrano, Carlos Antonio; Ibáñez-Bernal, Sergio; MacGregor-Fors, Ian; Santiago-Alarcon, Diego
2015-09-24
Land-use change has led to a dramatic decrease in total forest cover, contributing to biodiversity loss and changes of ecosystems' functions. Insect communities of medical importance can be favored by anthropogenic alterations, increasing the risk of novel zoonotic diseases. The response of mosquito (Diptera: Culicidae) abundance and richness to five land-use types (shade coffee plantation, cattle field, urban forest, peri-urban forest, well-preserved montane cloud forest) and three seasons ("dry", "rainy" and "cold") embedded in a neotropical montane cloud forest landscape was evaluated. Standardized collections were performed using 8 CDC miniature black-light traps, baited with CO2 throughout the year. Generalized additive mixed models were used to describe the seasonal and spatial trends of both species richness and abundance. Rank abundance curves and ANCOVAs were used to detect changes in the spatial and temporal structure of the mosquito assemblage. Two cluster analyses were conducted, using 1-βsim and the Morisita-Horn index to evaluate species composition shifts based on incidences and abundances. A total of 2536 adult mosquitoes were collected, belonging to 9 genera and 10 species; the dominant species in the study were: Aedes quadrivittatus, Wyeomyia adelpha, Wy. arthrostigma, and Culex restuans. Highest richness was recorded in the dry season, whereas higher abundance was detected during the rainy season. The urban forest had the highest species richness (n = 7) when compared to all other sites. Species composition cluster analyses show that there is a high degree of similarity in species numbers across sites and seasons throughout the year. However, when considering the abundance of such species, the well-preserved montane cloud forest showed significantly higher abundance. Moreover, the urban forest is only 30 % similar to other sites in terms of species abundances, indicating a possible isolating role of the urban environment. Mosquito assemblage was differentially influenced by land-use change and seasonality, but at the same time the assemblage is rather homogeneous across the studied landscape, suggesting a high degree of spatial connectivity. Information generated in this study is potentially useful in the development of urban planning and surveillance programs focused mainly on mosquito species of medical and veterinary importance.
Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John
2015-01-01
Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.
Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John
2015-01-01
Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681
Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas
NASA Astrophysics Data System (ADS)
Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.
2016-06-01
Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically, for the real plot data, 24 corresponding stems were coregistered with an average 2D position deviation of 66 cm.
77 FR 53839 - Shasta-Trinity National Forest; California; East McCloud Plantations Thinning Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... actions include road maintenance and reconstruction of National Forest System, new road construction and addition of new roads and selected existing unauthorized routes to the Forest Transportation System to.... The project's legal description is: Portions of Township (T.) 39 North (N.), Range (R.) 1-3 East (E...
Forest/non-forest stratification in Georgia with Landsat Thematic Mapper data
William H. Cooke
2000-01-01
Geographically accurate Forest Inventory and Analysis (FIA) data may be useful for training, classification, and accuracy assessment of Landsat Thematic Mapper (TM) data. Minimum expectation for maps derived from Landsat data is accurate discrimination of several land cover classes. Landsat TM costs have decreased dramatically, but acquiring cloud-free scenes at...
Controlling strawberry guava’s invasion
M.T. Johnson
2008-01-01
Green mountains wrapped in clouds are a reassuring sight on islands across the Pacific. These forested highlands catch the water that humans depend on, and can preserve a rich diversity of life. Sadly, although green, many island forests are far from healthy. Among the greatest threats to native forests in Hawaii is the invasive tree, strawberry guava.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-05-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-01-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-05-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
Reproductive biology of the red-ruffed fruitcrow pyroderus scutatus granadensis
Muir, J.A.; Licata, D.; Martin, T.E.
2008-01-01
We provide a detailed report on the reproductive biology of the Red-ruffed Fruitcrow (Pyroderus scutatus granadensis). Eight nests were found between 2003 and 2007 in tropical montane cloud forest in Yacambu National Park, Lara, Venezuela. All nests were near streams in steep drainages. Nests consisted of twigs arranged in a cupped platform. Clutch size was a single egg and the average incubation period (n = 3) was 22.3 days. Nest attentiveness during incubation averaged [?? SE] 76.3 ?? 1.86% and increased only slightly across stages (early, middle, late). On-bout and off-bout durations were relatively similar across incubation stages. A nestling period of 35 days was recorded for one nest and feather pin-break was estimated to occur at day 19. Brooding attentiveness during the early nestling period averaged 62.5 ??6.41%, and the adult ceased brooding at about feather pin-break. Food delivery rates increased with nestling age. Food provisioning consisted mostly of insects (66.7%) and lizards (25%) with fruit comprising only 8.3% of the nestling diet at early stages. Provisioning changed to mostly fruit (82.4%) and some insects (17.6%) in late stages of the nestling period.
Assessment of observed fog/low-cloud trends in central Taiwan
NASA Astrophysics Data System (ADS)
Lai, Yen-Jen; Lin, Po-Hsiung
2017-04-01
Xitou region, as the epitome of mid-elevation cloud forest ecosystems in Taiwan, it possesses a rich diversity of flora and fauna. It is also a popular forest recreation area. Due to rapid development of the local tourist industry, where tourist numbers increased from 0.3 million/year in 2000 to 2 million/year in 2015, the microclimate has changed continually. Global warming and landscape changes would be also the most likely factors. This study reports findings of monitoring systems including 4 visibility observed sites at different altitude, a self-developed atmospheric profile observation system carried by unmanned aerial vehicle (UAV) and a high temporal cloud base height observation system by a ceilometer. Besides this, the cloud top height of MODIS cloud product is evaluated as well. The results indicated the foggy day ratio in 2015 was 24% lower than that in 2005 around the district of the nursery. The foggy day ratio raised along with the increase of altitude and the sharpest increasing range happened in the summer time. The UAV-observed results showed the top heights of the nighttime atmospheric boundary layer (ABL) usually happened under 1300m a.s.l. (250m above ground) and the top heights of daytime ABL rose to 1500m - 2100m a.s.l. Unfortunately, it was difficult to observe the inversion layer/ABL in summer due to the fly height limitation of UAV. The ceilometer-observed results indicated the highest foggy ratio happened around 17:00 (local standard time). The daytime cloudy based height ratio was higher than nighttime and the cloud based height was usually located during 1150m - 1750m a.s.l. which was under the top heights of ABL. In addition, the higher cloud-based-heights-happened ratios were found at 1200m - 1250m a.s.l. and 1350m - 1400m a.s.l.. These results indicated the cloud based height uplifted from ground to at least 150m above ground-level causing the foggy ratio decrease. The MODIS cloud product showed the top height of low cloud uplifted or even became clear sky along with the increase of Xitou tourist numbers. Both ceilometer and MODIS data suggested the low cloud was uplifting. In order to clarify the seasonal characters of cloud thickness, the validation of MODIS cloud top height by atmospheric profiles are on-going. Furthermore, an adapted land-atmospheric model (WRF model is now under testing) will be implemented in order to discover the major factors causing the decrease of foggy ratio and assess the impacts on cloud forest.
Feedbacks between Air-Quality, Meteorology, and the Forest Environment
NASA Astrophysics Data System (ADS)
Makar, Paul; Akingunola, Ayodeji; Stroud, Craig; Zhang, Junhua; Gong, Wanmin; Moran, Michael; Zheng, Qiong; Brook, Jeffrey; Sills, David
2017-04-01
The outcome of air quality forecasts depend in part on how the local environment surrounding the emissions regions influences chemical reaction rates and transport from those regions to the larger spatial scales. Forested areas alter atmospheric chemistry through reducing photolysis rates and vertical diffusivities within the forest canopy. The emitted pollutants, and their reaction products, are in turn capable of altering meteorology, through the well-known direct and indirect effects of particulate matter on radiative transfer. The combination of these factors was examined using version 2 of the Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH) on-line air pollution model. The model configuration used for this study included 12 aerosol size bins, eight aerosol species, homogeneous core Mie scattering, the Milbrandt-Yao two-moment cloud microphysics scheme with cloud condensation nuclei generated from model aerosols using the scheme of Abdul-Razzak and Ghan, and a new parameterization for forest canopy shading and turbulence. The model was nested to 2.5km resolution for a domain encompassing the lower Great Lakes, for simulations of a period in August of 2015 during the Pan American Games, held in Toronto, Canada. Four scenarios were carried out: (1) a "Base Case" scenario (the original model, in which coupling between chemistry and weather is not permitted; instead, the meteorological model's internal climatologies for aerosol optical and cloud condensation properties are used for direct and indirect effect calculations); (2) a "Feedback" scenario (the aerosol properties were derived from the internally simulated chemistry, and coupled to the meteorological model's radiative transfer and cloud formation modules); (3) a "Forest" scenario (canopy shading and turbulence were added to the Base Case); (4) a "Combined" scenario (including both direct and indirect effect coupling between meteorology and chemistry, as well as the forest canopy parameterization). The simulations suggest that the feedbacks between simulated aerosols and meteorology may strengthen the existing lake breeze circulation, modifying the resulting meteorological and air-quality forecasts, while the forest canopy's influence may extend throughout the planetary boundary layer, and may also influence the weather. The simulations will be compared to available observations, in order to determine their relative impact on model performance.
Urban forest topographical mapping using UAV LIDAR
NASA Astrophysics Data System (ADS)
Putut Ash Shidiq, Iqbal; Wibowo, Adi; Kusratmoko, Eko; Indratmoko, Satria; Ardhianto, Ronni; Prasetyo Nugroho, Budi
2017-12-01
Topographical data is highly needed by many parties, such as government institution, mining companies and agricultural sectors. It is not just about the precision, the acquisition time and data processing are also carefully considered. In relation with forest management, a high accuracy topographic map is necessary for planning, close monitoring and evaluating forest changes. One of the solution to quickly and precisely mapped topography is using remote sensing system. In this study, we test high-resolution data using Light Detection and Ranging (LiDAR) collected from unmanned aerial vehicles (UAV) to map topography and differentiate vegetation classes based on height in urban forest area of University of Indonesia (UI). The semi-automatic and manual classifications were applied to divide point clouds into two main classes, namely ground and vegetation. There were 15,806,380 point clouds obtained during the post-process, in which 2.39% of it were detected as ground.
1996-01-20
STS072-722-004 (11-20 Jan. 1996) --- Mount Kilimanjaro in Tanzania is featured in this 70mm frame exposed from the Earth-orbiting Space Shuttle Endeavour. Orient with the clouds trailing to the left; then the view is southwest from Kenya past Kilimanjaro to Mount Meru, in Tanzania. Mount Kilimanjaro is about three degrees south of the Equator, but at nearly 6,000 meters has a permanent snowfield. The mountain displays a classic zonation of vegetation types from seasonally dry savannah on the plains at 1,000 meters, to the cloud forest near the top. The mountain is being managed experimentally as an international biosphere reserve. A buffer zone of "traditional" agriculture and pastoral land use is designated around the closed-canopy forest reserve. Specialists familiar with this area say management is partially successful so far, but cleared areas of the forest can be seen on this photograph as light green "nibbles" or "cookie cuts" extending into the dark forest region.
Hamraz, Hamid; Contreras, Marco A; Zhang, Jun
2017-07-28
Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.
Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.
Mayle, Francis E; Power, Mitchell J
2008-05-27
This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.
NASA Astrophysics Data System (ADS)
Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.
2017-08-01
The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest AGB retrieval showed R2 value of 0.5, RMSE of 62.73 (t ha-1) and a percent accuracy of 51%. TSI based PolInSAR inversion modeling showed the most accurate result for forest height estimation. The correlation between the field measured forest height and the estimated tree height using TSI technique is 62% with an average accuracy of 91.56% and RMSE of 2.28 m. The study suggested that PolInSAR coherence based modeling approach has significant potential for retrieval of forest biophysical parameters.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S. F.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.
2013-05-01
Land use conversion and climate change threaten the hydrological services from tropical montane cloud forests (TMCFs), but knowledge about cloud forest ecohydrology and the effects of global change drivers is limited. Here, we present a synthesis of research that traced the hydrologic sources, fluxes and flowpaths under different land cover types degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to elucidate to these ecohydrological processes. Results revealed that CWI was ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions; the water 'gained' from fog suppression was ~80-100 mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating water deficit; but not sufficient to offset the 17% water loss from nighttime E. Trees primarily utilized water from 30-50 cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from 'new' rainwater and plant water. Soils had high infiltration rates and water storage capacity, which contributed to the relatively low rainfall-runoff response, mainly generated from deep subsurface flowpaths. Conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600 mm and 300 mm, respectively, while planting pine on degraded pastures reduced water yield by 365 mm. Our results suggest that the ecophysiological effects of fog via suppressed E and FU have a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage and buffering capacity are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.
Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation
NASA Astrophysics Data System (ADS)
Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.
2006-12-01
Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the experiments.
The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, C.J.; Riley, W.J.; Biraud, S.C.
2009-05-01
This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day.more » This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.« less
Changes in Forest Soil Properties in Different Successional Stages in Lower Tropical China
Li, Yuelin; Yang, Fangfang; Ou, Yangxu; Zhang, Deqiang; Liu, Juxiu; Chu, Guowei; Zhang, Yaru; Otieno, Dennis; Zhou, Guoyi
2013-01-01
Background Natural forest succession often affects soil physical and chemical properties. Selected physical and chemical soil properties were studied in an old-growth forest across a forest successional series in Dinghushan Nature Reserve, Southern China. Methodology/Principal Findings The aim was to assess the effects of forest succession change on soil properties. Soil samples (0–20 cm depth) were collected from three forest types at different succession stages, namely pine (Pinus massoniana) forest (PMF), mixed pine and broadleaf forest (PBMF) and monsoon evergreen broadleaf forest (MEBF), representing early, middle and advanced successional stages respectively. The soil samples were analyzed for soil water storage (SWS), soil organic matter (SOM), soil microbial biomass carbon (SMBC), pH, NH4 +-N, available potassium (K), available phosphorus (P) and microelements (available copper (Cu), available zinc (Zn), available iron (Fe) and available boron (B)) between 1999 and 2009. The results showed that SWS, SOM, SMBC, Cu, Zn, Fe and B concentrations were higher in the advanced successional stage (MEBF stage). Conversely, P and pH were lower in the MEBF but higher in the PMF (early successional stage). pH, NH4 +-N, P and K declined while SOM, Zn, Cu, Fe and B increased with increasing forest age. Soil pH was lower than 4.5 in the three forest types, indicating that the surface soil was acidic, a stable trend in Dinghushan. Conclusion/Significance These findings demonstrated significant impacts of natural succession in an old-growth forest on the surface soil nutrient properties and organic matter. Changes in soil properties along the forest succession gradient may be a useful index for evaluating the successional stages of the subtropical forests. We caution that our inferences are drawn from a pseudo-replicated chronosequence, as true replicates were difficult to find. Further studies are needed to draw rigorous conclusions regarding on nutrient dynamics in different successional stages of forest. PMID:24244738
Estimates of forest canopy height and aboveground biomass using ICESat.
Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom Espirito-Santo; Maria O. Hunter; Raimundo de Oliveira Jr.
2005-01-01
Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...
Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua
2012-11-01
A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.
Landscape monitoring of post-industrial areas using LiDAR and GIS technology
NASA Astrophysics Data System (ADS)
Wężyk, Piotr; Szostak, Marta; Krzaklewski, Wojciech; Pająk, Marek; Pierzchalski, Marcin; Szwed, Piotr; Hawryło, Paweł; Ratajczak, Michał
2015-06-01
The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc.) which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc.) and type of soil that is deposited. Airborne laser scanning (ALS) technology deliver point clouds (XYZ) and derivatives as raster height models (DTM, DSM, nDSM=CHM) which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc). The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc.) or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.
Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data
Li, Ching-Feng; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2017-01-01
Up until now montane cloud forest (MCF) in Taiwan has only been mapped for selected areas of vegetation plots. This paper presents the first comprehensive map of MCF distribution for the entire island. For its creation, a Random Forest model was trained with vegetation plots from the National Vegetation Database of Taiwan that were classified as “MCF” or “non-MCF”. This model predicted the distribution of MCF from a raster data set of parameters derived from a digital elevation model (DEM), Landsat channels and texture measures derived from them as well as ground fog frequency data derived from the Moderate Resolution Imaging Spectroradiometer. While the DEM parameters and Landsat data predicted much of the cloud forest’s location, local deviations in the altitudinal distribution of MCF linked to the monsoonal influence as well as the Massenerhebung effect (causing MCF in atypically low altitudes) were only captured once fog frequency data was included. Therefore, our study suggests that ground fog data are most useful for accurately mapping MCF. PMID:28245279
Carabidae diversity along an altitudinal gradient in a Peruvian cloud forest (Coleoptera).
Maveety, Sarah A; Browne, Robert A; Erwin, Terry L
2011-01-01
Carabid beetles were sampled at five sites, ranging from 1500 m to 3400 m, along a 15 km transect in the cloud forest of Manu National Park, Perú. Seasonal collections during a one year period yielded 77 morphospecies, of which 60% are projected to be undescribed species. There was a significant negative correlation between species richness and altitude, with the number of carabid species declining at the rate of one species for each 100 m increase in altitude. The majority of species (70.1 %) were restricted to only one altitudinal site and no species was found at more than three of the five altitudinal sites. Only one genus, Pelmatellus (Tribe Harpalini), was found at all five sites. Active (hand) collections yielded approximately twice as many species per individuals collected than passive (pitfall trap) collections. This study is the first systematic sampling ofcarabid beetles of a high altitude gradient in the cloud forests of southeastern Perú and supports the need to conserve the zone of extremely high biodiversity present on the eastern slopes of the Peruvian Andes.
Carabidae diversity along an altitudinal gradient in a Peruvian cloud forest (Coleoptera)
Maveety, Sarah A.; Browne, Robert A.; Erwin, Terry L.
2011-01-01
Abstract Carabid beetles were sampled at five sites, ranging from 1500 m to 3400 m, along a 15 km transect in the cloud forest of Manu National Park, Perú. Seasonal collections during a one year period yielded 77 morphospecies, of which 60% are projected to be undescribed species. There was a significant negative correlation between species richness and altitude, with the number of carabid species declining at the rate of one species for each 100 m increase in altitude. The majority of species (70.1 %) were restricted to only one altitudinal site and no species was found at more than three of the five altitudinal sites. Only one genus, Pelmatellus (Tribe Harpalini), was found at all five sites. Active (hand) collections yielded approximately twice as many species per individuals collected than passive (pitfall trap) collections. This study is the first systematic sampling ofcarabid beetles of a high altitude gradient in the cloud forests of southeastern Perú and supports the need to conserve the zone of extremely high biodiversity present on the eastern slopes of the Peruvian Andes. PMID:22371680
Reinhardt, Keith; Smith, William K
2008-11-01
The red spruce-Fraser fir ecosystem [Picea rubens Sarg.-Abies fraseri (Pursh) Poir.] of the southern Appalachian mountains, USA, is a temperate zone cloud forest immersed in clouds for 30-40% of a typical summer day, and experiencing immersion on about 65% of all days annually. We compared the microclimate, photosynthetic gas exchange, and water relations of Fraser fir trees in open areas during cloud-immersed, low-cloud, or sunny periods. In contrast to sunny periods, cloud immersion reduced instantaneous sunlight irradiance by 10-50%, and midday atmospheric vapor pressure deficit (VPD) was 85% lower. Needle surfaces were wet for up to 16 h per day during cloud-immersed days compared to <1 h for clear days. Shoot-level light-saturated photosynthesis (A (sat)) on both cloud-immersed (16.0 micromol m(-2) s(-1)) and low-cloud (17.9 micromol m(-2) s(-1)) days was greater than A (sat) on sunny days (14.4 micromol m(-2) s(-1)). Daily mean A was lowest on cloud-immersed days due to reduced sunlight levels, while leaf conductance (g) was significantly higher, with a mean value of 0.30 mol m(-2) s(-1). These g values were greater than commonly reported for conifer tree species with needle-like leaves, and declined exponentially with increasing leaf-to-air VPD. Daily mean transpiration (E) on immersed days was 43 and 20% lower compared to sunny and low-cloud days, respectively. As a result, daily mean water use efficiency (A/E) was lowest on cloud-immersed days due to light limitation of A, and high humidity resulted in greater uncoupling of A from g. Thus, substantial differences in photosynthetic CO2 uptake, and corresponding water relations, were strongly associated with cloud conditions that occur over substantial periods of the summer growth season.
Forest Cover Mapping in Iskandar Malaysia Using Satellite Data
NASA Astrophysics Data System (ADS)
Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.
2016-09-01
Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.
Cape, J N
1993-01-01
The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is stimulated by acidic precipitation, amounts leached are small compared with root uptake, unless soils have been impoverished. This aspect of the potential effects of acidic precipitation is best considered in terms of the long-term critical-load of pollutants to the soil. Given the practical difficulties in monitoring cloud water composition, a method for defining critical levels is proposed, which uses climatological average data to identify the duration and frequency of hill cloud, and combines this information with measured or modelled concentrations of particulate sulphate in the atmosphere, to derive cloud water concentrations as a function of cloud liquid water content. For forests within 100 m of the cloud base the critical levels of particulate sulphate, corresponding to solution concentrations in the range 150-500 micromol litre(-1), are in the range 1-3.3 microg S m(-3). These concentrations are observed over much of central Europe, suggesting that many montane forests are at risk of direct effects of fossil-fuel-derived pollutants in cloud.
Drivers of methane uptake by montane forest soils in the Peruvian Andes
NASA Astrophysics Data System (ADS)
Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit
2016-04-01
The exchange of methane between the soils of humid tropical forests and the atmosphere is relatively poorly documented. This is particularly true of montane settings where variations between uptake and emission of atmospheric methane have been observed. Whilst most of these ecosystems appear to function as net sinks for atmospheric methane, some act as considerable sources. In regions like the Andes, humid montane forests are extensive and a better understanding of the magnitude and controls on soil-atmosphere methane exchange is required. We report methane fluxes from upper montane cloud forest (2811 - 2962 m asl), lower montane cloud forest (1532 - 1786 m asl), and premontane forest (1070 - 1088 m asl) soils in south-eastern Peru. Between 1000 and 3000 m asl, mean annual air temperature and total annual precipitation decrease from 24 ° C and 5000 mm to 12 ° C and 1700 mm. The study region experiences a pronounced wet season between October and April. Monthly measurements of soil-atmosphere gas exchange, soil moisture, soil temperature, soil oxygen concentration, available ammonium and available nitrate were made from February 2011 in the upper and lower montane cloud forests and July 2011 in the premontane forest to June 2013. These soils acted as sinks for atmospheric methane with mean net fluxes for wet and dry season, respectively, of -2.1 (0.2) and -1.5 (0.1) mg CH4 m-2 d-1 in the upper montane forest; -1.5 (0.2) and -1.4 (0.1) mg CH4 m-2 d-1in the lower montane forest; and -0.3 (0.2) and -0.2 (0.2) mg CH4 m-2 d-1 in the premontane forest. Spatial variations among forest types were related to available nitrate and water-filled pore space suggesting that nitrate inhibition of oxidation or constraints on the diffusional supply of methane to methanotrophic communities may be important controls on methane cycling in these soils. Seasonality in methane exchange, with weaker uptake related to increased water-filled pore space and soil temperature during the wet season, was only apparent in the upper montane forest. Differences in patterns of soil-atmosphere methane exchange and environmental conditions here and in previous studies of similar ecosystems allow us to speculate that the interaction between soil structure and rainfall regimes may help explain observed variability.
NASA Astrophysics Data System (ADS)
Santos, E. G.; Jorge, A.; Shimabukuro, Y. E.; Gasparini, K.
2017-12-01
The State of Mato Grosso - MT has the second largest area with degraded forest among the states of the Brazilian Legal Amazon. Land use and land cover change processes that occur in this region cause the loss of forest biomass, releasing greenhouse gases that contribute to the increase of temperature on earth. These degraded forest areas lose biomass according to the intensity and magnitude of the degradation type. The estimate of forest biomass, commonly performed by forest inventory through sample plots, shows high variance in degraded forest areas. Due to this variance and complexity of tropical forests, the aim of this work was to estimate forest biomass using LiDAR point clouds in three distinct forest areas: one degraded by fire, another by selective logging and one area of intact forest. The approach applied in these areas was the Individual Tree Detection (ITD). To isolate the trees, we generated Canopy Height Models (CHM) images, which are obtained by subtracting the Digital Elevation Model (MDE) and the Digital Terrain Model (MDT), created by the cloud of LiDAR points. The trees in the CHM images are isolated by an algorithm provided by the Quantitative Ecology research group at the School of Forestry at Northern Arizona University (SILVA, 2015). With these points, metrics were calculated for some areas, which were used in the model of biomass estimation. The methodology used in this work was expected to reduce the error in biomass estimate in the study area. The cloud points of the most representative trees were analyzed, and thus field data was correlated with the individual trees found by the proposed algorithm. In a pilot study, the proposed methodology was applied generating the individual tree metrics: total height and area of the crown. When correlating 339 isolated trees, an unsatisfactory R² was obtained, as heights found by the algorithm were lower than those obtained in the field, with an average difference of 2.43 m. This shows that the algorithm used to isolate trees in temperate areas did not obtained satisfactory results in the tropical forest of Mato Grosso State. Due to this, in future works two algorithms, one developed by Dalponte et al. (2015) and another by Li et al. (2012) will be used.
2002-06-18
The Hayman forest fire, started on June 8, is continuing to burn in the Pike National Forest, 57 km (35 miles) south-southwest of Denver. According to the U.S. Forest Service, the fire has consumed more than 90,000 acres and has become Colorado's worst fire ever. In this ASTER image, acquired Sunday, June 16, 2002 at 10:30 am MST, the dark blue area is burned vegetation and the green areas are healthy vegetation. Red areas are active fires, and the blue cloud at the top center is smoke. Meteorological clouds are white. The image covers an area of 32.2 x 35.2 km (20.0 x 21.8 miles), and displays ASTER bands 8-3-2 in red, green and blue. http://photojournal.jpl.nasa.gov/catalog/PIA03499
NASA Astrophysics Data System (ADS)
Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.
2017-07-01
Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.
Mapping Mexico's Forest Lands with Advanced Very High Resolution Radiometer
David J. Evans; Zhiliang Zhu; Susan Eggen-McIntosh; Pedro García Mayoral; Jose Luis Ornelas de Anda
1992-01-01
Data from the Advanced Very High Resolution Radiometer (AVHRR) were used in a program sponsored by the U.S. Department of Agriculture, Forest Service, and the United Nations Food and Agriculture Organization to help scientists from Mexico generate forest-cover maps of that country. Two near-cloud-free composite images were generated for December and March 1990 from...
Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi
2013-01-01
In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general. PMID:23457602
Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi
2013-01-01
In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general.
Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.
Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J
2013-02-01
Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Valle-Diaz, C. J.; Torres-Delgado, E.; Lee, T.; Collett, J. L.; Cuadra-Rodriguez, L. A.; Prather, K. A.; Spiegel, J.; Eugster, W.
2012-12-01
We studied the impact of long-range transported African Dust (LRTAD) on cloud composition and properties at the Caribbean tropical montane cloud forest (TMCF) of Pico del Este (PE), as part of the Puerto Rico African Dust and Clouds Study (PRADACS). Here we present results from measurements performed in July 2011. Bulk chemical analysis of cloud water and rainwater showed pH and conductivity higher in the presence of dust. pH and conductivity were also higher for larger cloud droplets (size cut of 17 μm at 50% efficiency) suggesting a higher content of dust in this fraction. The concentration of the water-soluble ions in rainwater was found to be lower than for cloud water. This in turn translates to higher pH and lower conductivity. African dust influence at PE was confirmed by the presence of nss-Ca, Fe, Mg, Na, and Al in cloud/rain water, and inferred by HYSPLIT trajectories and the satellite images from the Saharan Air Layer (SAL). Interstitial single-particle size and chemistry measured using aerosol time-of-flight mass spectrometry revealed mostly sea-salt particles (Na, Cl, Ca) and dust particles (Fe, Ti, Mg, nss-Ca). Anthropogenic influence detected as the presence of EC, a tracer for combustion processes, was found to be fairly small according to ATOFMS measurements. An increase of total organic carbon, total nitrogen, and dissolved organic carbon was observed during LRTAD events. Cloud droplet distributions revealed that LRTAD can lead to more numerous, but smaller cloud droplets (around 8 μm in average) at PE. However, total liquid water content appeared to be unaffected by this shift of droplet sizes. Overall, differences in the studied physicochemical properties of aerosols and clouds during dust and non-dust events were observed. Our results show that during LRTAD events, aerosol-cloud-precipitation interactions are altered at PE. Detailed results will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Mokros, Martin; Vybostok, Jozef; Merganic, Jan; Tomastik, Julian; Cernava, Juraj
2017-04-01
In recent years unmanned aircraft systems (UAS) are objects of research in many areas. This trend can be seen also in forest research where researchers are focusing on height, diameter and tree crown measurements, monitoring of forest fire, forest gaps and health condition. Our research is focusing on the use of UAS for detecting areas disturbed by wind and deriving the volume of fallen trees for management purposes. This information is crucial after the wind damage happened. We used DJI Phantom 2 Vision+ and acquired the imagery of one forest stand (5.7 ha). The UAS is a quadcopter "all in one" solution. It has a built-in camera with gimbal and a remote controller. The camera is controlled through the application (android/ios). The built-in camera has an image resolution of 4384×3288 (14 megapixels). We have placed five crosses within the plot to be able to georeference the point cloud from UAS. Their positions were measured by Topcon Hiper GGD survey-grade GNSS receiver. We measured the border of damaged area by four different GNSS devices - GeoExplorer 6000, Trimble Nomad, Garmin GPSMAP 60 CSx and by smartphone Sony Xperia X. To process images from UAS we used Agisoft Photoscan Professional, while ArcGIS 10.2 was used to calculate and compare the areas . From the UAS point cloud we calculated DTM and DSM and deducted them. The areas where the difference was close to zero (-0.2 to 0.2) were signed as potentially wind damage areas. Then we filtered the areas that were not signed correctly (for example routes). The calculated area from UAS was 2.66 ha, GeoExplorer 6000 was 2.20 ha, Nomad was 2.06 ha, Garmin was 2.21 ha and from Xperia was the area 2.24 ha. The differences between UAS and GPS devices vary from 0.42 ha to 0.6 ha. The differences were mostly caused by inability to detect small spots of fallen trees on UAS data. These small spots are difficult to measure by GPS devices because the signal is very poor under tree crowns and also it is difficult to find such small spots within the area. Based on the derived area and per hectare volume of the most common tree specie from forest plan (Fagus sylvatica 83%) we calculated the volume of damaged trees and compared the result with data from forest district. The forest district harvested all damaged trees and measured their volume. The volume derived from UAS and forest plan data was 918 m3 and volume measured by forest district was 775 m3. The difference was 143 m3 (18%). The next step of our research is to verify the use of fixed wing UAS for larger areas.
NASA Astrophysics Data System (ADS)
Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin
2015-04-01
The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation of branches proved to be sufficient for the simulation approach, the modelling of huge amounts of needles is much more efficient in voxel-turbid representation.
NASA Astrophysics Data System (ADS)
Bird, D. N.; Kunda, M.; Mayer, A.; Schlamadinger, B.; Canella, L.; Johnston, M.
2008-04-01
Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation) is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal. In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada. In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure. We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as biofuels replace the grasses, the change in carbon stocks may not compensate for the darkening of the surface.
Cloud and fog interactions with coastal forests in the California Channel Islands
NASA Astrophysics Data System (ADS)
Still, C. J.; Baguskas, S. A.; Williams, P.; Fischer, D. T.; Carbone, M. S.; Rastogi, B.
2015-12-01
Coastal forests in California are frequently covered by clouds or immersed in fog in the rain-free summer. Scientists have long surmised that fog might provide critical water inputs to these forests. However, until recently, there has been little ecophysiological research to support how or why plants should prefer foggy regions; similarly, there is very little work quantifying water delivered to ecosystems by fog drip except for a few notable sites along the California coast. However, without spatial datasets of summer cloudcover and fog inundation, combined with detailed process studies, questions regarding the roles of cloud shading and fog drip in dictating plant distributions and ecosystem physiology cannot be addressed effectively. The overall objective of this project is to better understand how cloudcover and fog influence forest metabolism, growth, and distribution. Across a range of sites in California's Channel Islands National Park we measured a wide variety of ecosystem processes and properties. We then related these to cloudcover and fog immersion maps created using satellite datasets and airport and radiosonde observations. We compiled a spatially continuous dataset of summertime cloudcover frequency of the Southern California bight using satellite imagery from the NOAA geostationary GOES-11 Imager. We also created map of summertime cloudcover frequency of this area using MODIS imagery. To assess the ability of our mapping approach to predict spatial and temporal fog inundation patterns, we compared our monthly average daytime fog maps for GOES pixels corresponding to stations where fog inputs were measured with fog collectors in a Bishop pine forest. We also compared our cloudcover maps to measurements of irradiance measurements. Our results demonstrate that cloudcover and fog strongly modulate radiation, water, and carbon budgets, as well as forest distributions, in this semi-arid environment. Measurements of summertime fog drip, pine sapflow and growth, and soil respiration are strongly related to variations in cloudcover and fog drip. Importantly, spatial variations in cloud cover and fog immersion drive large changes in modeled water budgets and correspond closely to patterns of tree growth and mortality.
Aneides ferreus (clouded salamander): arboreal activity
William W. Price; Clinton P. Landon; Eric D. Forsman
2010-01-01
Aneides ferreus (clouded salamander) inhabits the forests of western Oregon and extreme northwestern California. Although thought to be primarily terrestrial, A. ferreus has occasionally been found as high as 60 m up in trees and two recent reports suggest that it may be more arboreal than previously believed. However, it is...
Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil.
Zwiener, Victor P; Bihn, Jochen H; Marques, Márcia C M
2012-06-01
Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region). Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession.
NASA Astrophysics Data System (ADS)
Spiegel, Johanna K.; Buchmann, Nina; Mayol-Bracero, Olga L.; Cuadra-Rodriguez, Luis A.; Valle Díaz, Carlos J.; Prather, Kimberly A.; Mertes, Stephan; Eugster, Werner
2014-09-01
We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak ( D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration (), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.
Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse
2008-01-01
Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...
A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia
Xiangming Xiao; Chandrashekhar M. Biradar; Christina Czarnecki; Tunrayo Alabi; Michael Keller
2009-01-01
The areal extent and spatial distribution of evergreen forests in the tropical zones are important for the study of climate, carbon cycle and biodiversity. However, frequent cloud cover in the tropical regions makes mapping evergreen forests a challenging task. In this study we developed a simple and novel mapping algorithm that is based on the temporal profile...
NASA Technical Reports Server (NTRS)
Dolan, Joseph; Fisher, Richard R. (Technical Monitor)
2001-01-01
Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and 9 were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and 0 VI emission lines reported by Dolan et al. (1995) in IUE spectra. The fluxes in these lines vary on a time scale of weeks in the observer's rest frame, independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W > 0.3 A in the observer's frame not previously identified by Michalitsianos et al. (1997) as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with -1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W > 0.3 A appear at 41 distinct wavelengths in the spectra of the two images. one absorption line in the spectrum of image A has no counterpart in the spectrum of image B and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance R = 160 (+120, -70)/ h(sub 50) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension, R, is the radius. (We adopt H(sub 0) = 50 h(sub 50) km/s/ kpc, q(sub 0) = 1/2, and lambda = 0 throughout the paper.) The 95% confidence interval on R extends from (50 - 950)/h(sub 50) kpc We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly converging power series in 1/r, where r the ratio of the radius of the cloud to the separation of the two lines of sight at the redshift of the cloud. This power series can be rewritten to give r in terms of the fraction of Ly-forest wavelengths that appear in the spectrum of only one image. A simple linear approximation to the solution that everywhere agrees with the power series solution to better than 0.8% for r > 2 is derived in the Appendix.
García-Martínez, Miguel Á; Valenzuela-González, Jorge E; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela
2017-01-01
Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments.
Valenzuela-González, Jorge E.; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela
2017-01-01
Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments. PMID:28234948
NASA Astrophysics Data System (ADS)
Ku, N. W.; Popescu, S. C.
2015-12-01
In the past few years, three global forest canopy height maps have been released. Lefsky (2010) first utilized the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate a global forest canopy height map in 2010. Simard et al. (2011) integrated GLAS data and other ancillary variables, such as MODIS, Shuttle Radar Topography Mission (STRM), and climatic data, to generate another global forest canopy height map in 2011. Los et al. (2012) also used GLAS data to create a vegetation height map in 2012.Several studies attempted to compare these global height maps to other sources of data., Bolton et al. (2013) concluded that Simard's forest canopy height map has strong agreement with airborne lidar derived heights. Los map is a coarse spatial resolution vegetation height map with a 0.5 decimal degrees horizontal resolution, around 50 km in the US, which is not feasible for the purpose of our research. Thus, Simard's global forest canopy height map is the primary map for this research study. The main objectives of this research were to validate and calibrate Simard's map with airborne lidar data and other ancillary variables in the southern United States. The airborne lidar data was collected between 2010 and 2012 from: (1) NASA LiDAR, Hyperspectral & Thermal Image (G-LiHT) program; (2) National Ecological Observatory Network's (NEON) prototype data sharing program; (3) NSF Open Topography Facility; and (4) the Department of Ecosystem Science and Management at Texas A&M University. The airborne lidar study areas also cover a wide variety of vegetation types across the southern US. The airborne lidar data is post-processed to generate lidar-derived metrics and assigned to four different classes of point cloud data. The four classes of point cloud data are the data with ground points, above 1 m, above 3 m, and above 5 m. The root mean square error (RMSE) and coefficient of determination (R2) are used for examining the discrepancies of the canopy heights between the airborne lidar-derived metrics and global forest canopy height map, and the regression and random forest approaches are used to calibrate the global forest canopy height map. In summary, the research shows a calibrated forest canopy height map of the southern US.
Building a Global Network of Hydro-climatology Sites in Cloud-affected Tropical Montane Forests
NASA Astrophysics Data System (ADS)
Moore, G. W.; Asbjornsen, H.; Bruijnzeel, S., Sr.; Berry, Z. C.; Giambelluca, T. W.; Martin, P.; Mulligan, M.
2015-12-01
Tropical montane forests are characteristically wet environments with low evapotranspiration and sometimes significant contributions from fog interception. They are often located at headwater catchments critical for water supplies, but ecohydroclimate data in these regions are sparse. Such evidence may be crucial for assessing climate alterations in these sensitive ecosystems. As part of a global effort led by the Tropical Montane Cloud Forest Research Coordination Network (Cloudnet - http://cloudnet.agsci.colostate.edu), we aim to extend the network of tropical montane forest sites and establish robust protocols for measuring key ecohydroclimatic parameters, including fog interception, windblown rain, throughfall, leaf wetness, and micrometeorological conditions. Specific recommendations for standardized protocols include (1) rain and fog collectors uniquely designed to separately quantify fog interception from direct rain inputs, even in windy conditions, (2) trough-style throughfall gages that collect 40 times the area of a typical tipping bucket gage with added features to reduce splash-out, (3) clusters of leaf wetness sensors to differentiate frequency and duration of wetness caused by rain and fog on windward and leeward exposures, and (4) basic micrometeorological sensors for solar radiation, temperature, humidity, and wind. At sites where resources allow for additional measurements, we developed protocols for quantifying soil moisture, soil saturation, and plant water uptake from both roots and leaves (i.e. foliar absorption), since these are also important drivers in these systems. Participating sites will be invited to contribute to a global meta-analysis that will provide new insights into the ecohydrology of cloud-affected tropical montane forests.
CO-OCCURRENCE OF OZONE AND ACIDIC CLOUD WATER IN HIGH-ELEVATION FORESTS
A chemical climatology for high-elevation forests was estimated from ozone and cloudwater acidity data collected in the eastern United States. esides frequent ozone-only and pH-only single-pollutant episodes, both simultaneous and sequential co-occurrence of ozone and acidic clou...
Determining successional stage of temperate coniferous forests with Landsat satellite data
NASA Technical Reports Server (NTRS)
Fiorella, Maria; Ripple, William J.
1993-01-01
Thematic Mapper (TM) digital imagery was used to map forest successional stages and to evaluate spectral differences between old-growth and mature forests in the central Cascade Range of Oregon. Relative sun incidence values were incorporated into the successional stage classification to compensate for topographic induced variation. Relative sun incidence improved the classification accuracy of young successional stages, but did not improve the classification accuracy of older, closed canopy forest classes or overall accuracy. TM bands 1, 2, and 4; the normalized difference vegetation index; and TM 4/3, 4/5, and 4/7 band ratio values for o|d-growth forests were found to be significantly lower than the values of mature forests. The Tasseled Cap features of brightness, greenness, and wetness also had significantly lower old-growth values as compared to mature forest values .
NASA Astrophysics Data System (ADS)
Fitzjarrald, D. R.; Kivalov, S. N.
2017-12-01
Cloud shadows lead to alternating light and dark periods at the surface. Understanding how clouds affect whole-canopy fluxes suffer from two knowledge gaps that limit scaling from leaf to canopy scales, an effort currently done by assertion alone. First, there is a lack a clear quantitative definition of the incident light time series that occur on specific types of cloudy days. Second, the characteristic time scales for leaves to respond to for stomatal opening and closing is 1-10 minutes, a period too short to allow accurate eddy fluxes. We help to close the first gap by linking the durations of alternating light and dark periods statistically to conventional meteorological sky types at a midlatitude mixed deciduous forest (Harvard Forest, MA, USA: 42.53N, 72.17W) and in a tropical rain forest (Tapajós National Forest, Brazil; 2.86S, 54.96W). The second gap is narrowed by measuring the dynamic response whole canopy exchanges in the flux footprint at intervals of only a few seconds using the classical ensemble average method, keying on step changes in light intensity. Combining light and shadow periods of different lengths we estimate ensemble fluxes sensible heat (H), net ecosystem exchange (NEE), and latent heat (LE) fluxes initiated by abrupt radiation changes at intervals of 30 s over 20 minutes. We present composite results of the transient behavior of whole-canopy fluxes at each forest, showing distinct features of each forest type. Observed time constants and transient flux parameterizations are then used to force a simple model to yield NEE, LE, WUE, and Bowen ratio extrema under periodic shadow-light conditions and given cloud amount. We offer the hypothesis that, at least on certain types of cloudy days, the well-known correlation between diffuse light and WUE does not represent a causal connection at the canopy scale.
Patiño, Jairo; Hylander, Kristoffer; González-Mancebo, Juana M
2010-09-01
Forested freshwater ecosystems worldwide are threatened by a number of anthropogenic disturbances, such as water pollution and canalization. Transient or permanent deforestation can also be a serious threat to organisms in forested watersheds, but its effects on different types of freshwater systems has been little studied. We investigated lotic bryophyte communities on rock and soil in subtropical cloud laurel forests on La Gomera Island in the Canary Islands, Spain, and asked whether the response to forest clear-cutting varied among the communities associated with dripping walls, streams, and waterfalls. We compared three successional forest stages: ancient forests (> 250 years), young forests (20-50 years after clear-cutting), and open stands (5-15 years after clear-cutting). In each of 56 study sites we sampled general vegetation and substrate data in a 0.01-ha plot and took composition data of bryophyte species in 3 + 3 subplots of 1 x 1 m. The general pattern of decline in species richness and change in species composition after forest clear-cutting was stronger for streamside assemblages compared to assemblages on dripping walls and in waterfalls. The change in species numbers on rocks was larger than that on soils, because a guild of species growing on soil (but not on rocks) were favored by disturbance and thus increased in the disturbed sites. Most of the sensitive species could be classified as typical laurel forest species. Mosses were generally more tolerant to forest clear-cutting than were liverworts. We suggest that streamsides are more sensitive to disturbance than waterfalls and dripping walls because of a larger variation in microclimate before than after clear-cutting and because they are more easily invaded by early-successional species (both bryophytes and highly competitive vascular plants). We propose that special care should be taken along small streams within disturbed watersheds if bryophyte assemblages and threatened species should be protected. The susceptibility to anthropogenic pressures is probably rather high in ecosystems that do not regularly experience large-scale stand-replacing disturbances, especially on oceanic islands because of isolation and a small total habitat area for focal organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, G.B.; Fernandez, I.J.; Goltz, S.M.
To provide information needed to assess the current and future status of spruce-fir forests in Maine, the Howland Integrated Forest Study (HIFS) was initiated in 1987 as part of the USDA Forest Service Forest Response Program, in conjunction with the establishment of a Mountain Cloud Chemistry Program (MCCP) monitoring site. Through this project, bulk and wet-only precipitation, dry deposition, throughfall and soil solution chemistry has been determined. This paper will focus on soil solution collected between May, 1988 and bulk precipitation collected from June through November, 1988.
Competition between pressure and gravity confinement in Lyman Alpha forest observations
NASA Technical Reports Server (NTRS)
Charlton, Jane C.; Salpeter, Edwin E.; Linder, Suzanne M.
1994-01-01
A break in the distribution function of Lyman Alpha clouds (at a typical redshift of 2.5) has been reported by Petit-jean et al. (1993). This feature is what would be expected from a transition between pressure confinement and gravity confinement (as predicted in Charlton, Salpeter & Hogan 1993). The column density at which the feature occurs has been used to determine the external confining pressure approximately 10 per cu cm K, which could be due to a hot, intergalactic medium. For models that provide a good fit to the data, the contribution of the gas in clouds to omega is small. The specific shape of the distribution function at the transition (predicted by models to have a nonmonotonic slope) can serve as a diagnostic of the distribution of dark matter around Lyman Alpha forest clouds, and the present data already eliminate certain models.
Lehr, Edgar; Moravec, Jiří; Cusi, Juan Carlos
2012-01-01
Abstract We describe two new species of Phrynopus from a cloud forest of the Cordillera Yanachaga, Yanachaga-Chemillén National Park in Peru and describe and document the first clutch and case of parental care for a species of Phrynopus. One of the new species of Phrynopus is described based on two females (SVL 19.1–21.0 mm) which were found in leaf litter and moss layer in a cloud forest at 2900 m elevation. This new species is most similar to Phrynopus bracki. The second new species of Phrynopus was found in the transitional formation between cloud forest and wet puna at 3000 m elevation. Its description is based on a single female (SVL 20.7 mm) that was observed guarding nine eggs under moss. This new species is most similar to Phrynopus nicoleae. The eggs had a diameter of 5.7–5.8 mm (n = 3) and froglets when hatched a SVL of 6.2–6.5 mm (n = 3). Sympatric anurans include Gastrotheca sp., Pristimantis aniptopalmatus, Pristimantis bromeliaceus, Pristimantis sp., and Rhinella yanachaga. PMID:23226963
Dong, Jinwei; Xiao, Xiangming; Sheldon, Sage; Biradar, Chandrashekhar; Zhang, Geli; Duong, Nguyen Dinh; Hazarika, Manzul; Wikantika, Ketut; Takeuhci, Wataru; Moore, Berrien
2014-01-01
Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×10(6) km(2) (GlobCover) to 2.69×10(6) km(2) (MCD12Q1) in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+) implementation, and biodiversity.
Dong, Jinwei; Xiao, Xiangming; Sheldon, Sage; Biradar, Chandrashekhar; Zhang, Geli; Dinh Duong, Nguyen; Hazarika, Manzul; Wikantika, Ketut; Takeuhci, Wataru; Moore, Berrien
2014-01-01
Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×106 km2 (GlobCover) to 2.69×106 km2 (MCD12Q1) in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+) implementation, and biodiversity. PMID:24465714
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.
Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A
2015-07-21
Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.
Weiguo Liu; Conghe Song; Todd A. Schroeder; Warren B. Cohen
2008-01-01
Forest succession is an important ecological process that has profound biophysical, biological and biogeochemical implications in terrestrial ecosystems. Therefore, information on forest successional stages over an extensive forested landscape is crucial for us to understand ecosystem processes, such as carbon assimilation and energy interception. This study explored...
Microsecond-scale electric field pulses in cloud lightning discharges
NASA Technical Reports Server (NTRS)
Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.
1994-01-01
From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.
Effects of Forest Gaps on Soil Properties in Castanopsis kawakamii Nature Forest.
He, Zhongsheng; Liu, Jinfu; Su, Songjin; Zheng, Shiqun; Xu, Daowei; Wu, Zeyan; Hong, Wei; Wang, James Li-Ming
2015-01-01
The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils' physical and chemical properties and increase the population species' richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest.
Equilibrium Slab Models of Lyman-Alpha Clouds
NASA Technical Reports Server (NTRS)
Charlton, Jane C.; Salpeter, Edwin E.; Hogan, Craig J.
1993-01-01
We model the L(sub y(alpha)) clouds as slabs of hydrogen with an ionizing extragalactic radiation field incident from both sides. In general, the equilibrium configuration of a slab at redshift z approx. less than 5 is determined by a balance of the gas pressure, gravity (including the effects of a dark matter halo), and the pressure exerted by the inter-galactic medium, P(sub ext). These models have been used to make predictions of the number of slabs as a function of the neutral hydrogen column density, N(sub H). A break in the curve is predicted at the transition between regimes where gravity and pressure are the dominant confining forces, with a less rapid decrease at larger N(sub H). The transition from optically thin to optically thick slabs leads to a gap in the distribution, whose location is governed largely by the spectrum of ionizing radiation. There are certain parallels between lines of sight through the outer HI disk of spiral galaxy with increasing radius, and the progression from damped, to Lyman limit, to forest clouds. We discuss briefly the possibility that at least some of the observed low z forest clouds may be a separate population, associated with galaxies, as suggested by the observations of Bahcall et al. This population could dominate the forest at present if the dark matter attached to galaxies should lead to gravity confinement for this disk population, while the isolated clouds remain pressure confined. The formalism developed in this paper will allow a more detailed study. We also discuss a more general parameter study of the equilibrium configuration of slabs, including mock gravity and L(sub y(alpha)) photon trapping.
Forest Biomass Mapping from Stereo Imagery and Radar Data
NASA Astrophysics Data System (ADS)
Sun, G.; Ni, W.; Zhang, Z.
2013-12-01
Both InSAR and lidar data provide critical information on forest vertical structure, which are critical for regional mapping of biomass. However, the regional application of these data is limited by the availability and acquisition costs. Some researchers have demonstrated potentials of stereo imagery in the estimation of forest height. Most of these researches were conducted on aerial images or spaceborne images with very high resolutions (~0.5m). Space-born stereo imagers with global coverage such as ALOS/PRISM have coarser spatial resolutions (2-3m) to achieve wider swath. The features of stereo images are directly affected by resolutions and the approaches use by most of researchers need to be adjusted for stereo imagery with lower resolutions. This study concentrated on analyzing the features of point clouds synthesized from multi-view stereo imagery over forested areas. The small footprint lidar and lidar waveform data were used as references. The triplets of ALOS/PRISM data form three pairs (forward/nadir, backward/nadir and forward/backward) of stereo images. Each pair of the stereo images can be used to generate points (pixels) with 3D coordinates. By carefully co-register these points from three pairs of stereo images, a point cloud data was generated. The height of each point above ground surface was then calculated using DEM from National Elevation Dataset, USGS as the ground surface elevation. The height data were gridded into pixel of different sizes and the histograms of the points within a pixel were analyzed. The average height of the points within a pixel was used as the height of the pixel to generate a canopy height map. The results showed that the synergy of point clouds from different views were necessary, which increased the point density so the point cloud could detect the vertical structure of sparse and unclosed forests. The top layer of multi-layered forest could be captured but the dense forest prevented the stereo imagery to see through. The canopy height map exhibited spatial patterns of roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlation with RH50 of LVIS data at 30m pixel size with a gain of 1.04, bias of 4.3m and R2 of 0.74 (Fig. 1). The canopy height map from PRISM and dual-pol PALSAR data were used together to map biomass in our study area near Howland, Maine, and the results were evaluated using biomass map generated from LVIS waveform data independently. The results showed that adding CHM from PRISM significantly improved biomass accuracy and raised the biomass saturation level of L-band SAR data in forest biomass mapping.
NASA Technical Reports Server (NTRS)
Forbes, R. E.; Smith, M. R.; Farrell, R. R.
1972-01-01
An experimental program was conducted during the static firing of the S-1C stage 13, 14, and 15 rocket engines and the S-2 stage 13, 14, and 15 rocket engines. The data compiled during the experimental program consisted of photographic recordings of the time-dependent growth and diffusion of the exhaust clouds, the collection of meteorological data in the ambient atmosphere, and the acquisition of data on the physical structure of the exhaust clouds which were obtained by flying instrumented aircraft through the clouds. A new technique was developed to verify the previous measurements of evaporation and entrainment of blast deflector cooling water into the cloud. The results of the experimental program indicate that at the lower altitudes the rocket exhaust cloud or plume closely resembles a free-jet type of flow. At the upper altitudes, where the cloud is approaching an equilibrium condition, structure is very similar to a natural cumulus cloud.
Berry, Z Carter; White, Joseph C; Smith, William K
2014-05-01
In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected. © The Author 2014. Published by Oxford University Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2016-03-01
The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.
The effect of ice nuclei on a deep convective cloud in South China
NASA Astrophysics Data System (ADS)
Deng, Xin; Xue, Huiwen; Meng, Zhiyong
2018-07-01
This study uses the Weather Research and Forecasting Model to simulate a deep convective cloud under a relatively polluted condition in South China. Ice nuclei (IN) aerosols near the surface are effectively transported upwards to above the 0 °C level by the strong updrafts in the convective cloud. Four cases with initial surface IN aerosol concentrations of 1, 10, 100, and 1000 L-1 are simulated. All simulations can well reproduce the major characteristics of the deep convective cloud in terms of the evolution, spatial distribution, and its track. IN aerosols have little effect on these macrophysical characteristics but can significantly affect ice formation. When IN concentration is increased, all heterogeneous nucleation modes are significantly enhanced, whereas the homogeneous freezing of cloud droplets is unchanged or weakened depending on the IN concentration and the development stages of the deep convective cloud. The homogeneous freezing of haze particles is generally not affected by increased IN but is slightly weakened in the extremely high IN case. As IN concentration is increased by 10 and 100 times, the enhanced heterogeneous nucleation is still not strong enough to compete with homogeneous freezing. Ice formation is hence still dominated by the homogenous freezing of cloud droplets and haze particles in the layer of 9-14 km, where most of the ice crystals are produced. The microphysical properties are generally unaffected in all the stages of cloud evolution. As IN concentration is increased by 1000 times and heterogeneous nucleation is further enhanced, the homogeneous freezing of cloud droplets and haze particles dominates only in the mature and dissipating stages, leading to unaffected ice number mixing ratio in the anvil region (approximately above 9 km) for these two stages. However, in the developing stage, when the supply of cloud droplets is limited, the homogeneous freezing of cloud droplets is weakened or even suppressed due to the very strong competition for liquid water with heterogeneous nucleation, leading to significantly lower ice number mixing ratio in the anvil regions. In addition, the microphysical properties in the convective core regions below the cloud anvil (approximately below 9 km) are also affected in the case of 1000 L-1. The enhanced heterogeneous nucleation produces more ice crystals below 9 km, leading to a stronger conversion from ice crystals to snow particles, and hence higher number and mass mixing ratios of snow. The IN effect on the spatial distributions and temporal evolutions of the surface precipitation and updraft velocity is generally insignificant.
Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends ...
Classification of forest land attributes using multi-source remotely sensed data
NASA Astrophysics Data System (ADS)
Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri
2016-02-01
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.
Quantifying Biomass from Point Clouds by Connecting Representations of Ecosystem Structure
NASA Astrophysics Data System (ADS)
Hendryx, S. M.; Barron-Gafford, G.
2017-12-01
Quantifying terrestrial ecosystem biomass is an essential part of monitoring carbon stocks and fluxes within the global carbon cycle and optimizing natural resource management. Point cloud data such as from lidar and structure from motion can be effective for quantifying biomass over large areas, but significant challenges remain in developing effective models that allow for such predictions. Inference models that estimate biomass from point clouds are established in many environments, yet, are often scale-dependent, needing to be fitted and applied at the same spatial scale and grid size at which they were developed. Furthermore, training such models typically requires large in situ datasets that are often prohibitively costly or time-consuming to obtain. We present here a scale- and sensor-invariant framework for efficiently estimating biomass from point clouds. Central to this framework, we present a new algorithm, assignPointsToExistingClusters, that has been developed for finding matches between in situ data and clusters in remotely-sensed point clouds. The algorithm can be used for assessing canopy segmentation accuracy and for training and validating machine learning models for predicting biophysical variables. We demonstrate the algorithm's efficacy by using it to train a random forest model of above ground biomass in a shrubland environment in Southern Arizona. We show that by learning a nonlinear function to estimate biomass from segmented canopy features we can reduce error, especially in the presence of inaccurate clusterings, when compared to a traditional, deterministic technique to estimate biomass from remotely measured canopies. Our random forest on cluster features model extends established methods of training random forest regressions to predict biomass of subplots but requires significantly less training data and is scale invariant. The random forest on cluster features model reduced mean absolute error, when evaluated on all test data in leave one out cross validation, by 40.6% from deterministic mesquite allometry and 35.9% from the inferred ecosystem-state allometric function. Our framework should allow for the inference of biomass more efficiently than common subplot methods and more accurately than individual tree segmentation methods in densely vegetated environments.
NASA Technical Reports Server (NTRS)
Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE
1988-01-01
The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.
Satellite-Observed Vertical Structures of Clouds over the Amazon Basin
NASA Astrophysics Data System (ADS)
Wu, M.; Lee, J. E.
2017-12-01
The long wet season of the Amazon basin currently plays a critical role in the terrestrial ecosystem, regulating carbon balance and supporting high biodiversity. It has been argued that the land surface processes are important in maintaining high precipitation; yet, how the land-atmosphere interactions modulate the atmospheric processes are not completely understood. As a first step toward solving this problem, here we examine the vertical structures of clouds and the thermodynamics of the atmosphere over the entire basin at the different time of the year. We combine the vertical distribution of cloud water content from CloudSat, and the atmospheric thermodynamic conditions from the ECMWF ERA-interim reanalysis to compare and contrast the atmospheric condition at different time of the year-the wet, dry, and dry-to-wet transition seasons-and in different regions-ever-wet evergreen broadleaf forests, wet evergreen broadleaf forests with a dry season, and dry wooded grasslands/woodlands-following water stress gradient. In the ever-wet and wet regions, a large amount of cloud ice water is present in the upper atmosphere (above 11km) and convective available potential energy (CAPE) is high during the transition season, supporting the claim that the convective activity is strongest during the transition season. In the dry region, there are more cloud water above 8km over woodlands than over wooded grasslands during the dry and transition seasons, indicating the influence of the land cover. We also classified our data following the large-scale circulation pattern, and the CloudSat data support more deep convective activities in the wet and dry regions when the wind blows from the east during the wet and transition seasons. As a next step, we will focus more on linking the cloud structure to the large-scale circulation and surface processes.
NASA Technical Reports Server (NTRS)
TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.
2010-01-01
High resolution aerosol, cloud, water vapor, and atmospheric profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are utilized to examine the impact of aerosols on clouds during the Amazonian biomass burning season in Rondnia, Brazil. It is found that increasing background column water vapor (CWV) throughout this transition season between the Amazon dry and wet seasons exerts a strong effect on cloud properties. As a result, aerosol-cloud correlations should be stratified by column water vapor to achieve a more accurate assessment of the effect of aerosols on clouds. Previous studies ignored the systematic changes to meteorological factors during the transition season, leading to possible misinterpretation of their results. Cloud fraction is shown generally to increase with aerosol optical depth (AOD) for both low and high values of column water vapor, whereas the relationship between cloud optical depth (COD) and AOD exhibits a different relationship. COD increases with AOD until AOD approx. 0.25 due to the first indirect (microphysical) effect. At higher values of AOD, COD is found to decrease with increasing AOD, which may be due to: (1) the inhibition of cloud development by absorbing aerosols (radiative effect) and/or (2) a retrieval artifact in which the measured reflectance in the visible is less than expected from a cloud top either from the darkening of clouds through the addition of carbonaceous biomass burning aerosols or subpixel dark surface contamination in the measured cloud reflectance. If (1) is a contributing mechanism, as we suspect, then a linear relationship between the indirect effect and increasing AOD, assumed in a majority of GCMs, is inaccurate since these models do not include treatment of aerosol absorption in and around clouds. The effect of aerosols on both column water vapor and clouds over varying land surface types is also analyzed. The study finds that the difference in column water vapor between forest and pasture is not correlated with aerosol loading, supporting the assumption that temporal variation of column water vapor is primarily a function of the larger-scale meteorology. However, a difference in the response of cloud fraction to increasing AOD is observed between forest and pasture. This suggests that dissimilarities between other meteorological factors, such as atmospheric stability, are likely to have an impact on aerosol-cloud correlations between different land-cover types.
1973-07-01
SL3-34-336 (July-September 1973) --- A vertical view of a portion of northern California near the Pacific coast as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the Skylab space station. A cloud deck covers the Pacific Ocean. Most of Cape Mendocino is clear of clouds and extends into the Pacific as the westernmost part of California. The sinuous pattern of the Bel River (in center) flows northward into the ocean and is characteristic of the rivers that drain the coastal ranges. This area is immediately southeast of Eureka. During Skylab 3 extensive forest fires occurred near Briceland and the smoke rising from the fires is clearly visible next to the cloud bank. Redwood and fir forests are sources of lumber in this region; and a variety of clear cut (timbering) patterns appear as light against the dark forest. The patterns appear to be related to the topography. Analysis of this photograph will aid Dr. P.G. Langley, Earth Satellite Corporation, in developing methods for forest inventory using space photography. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
Prototype of microbolometer thermal infrared camera for forest fire detection from space
NASA Astrophysics Data System (ADS)
Guerin, Francois; Dantes, Didier; Bouzou, Nathalie; Chorier, Philippe; Bouchardy, Anne-Marie; Rollin, Joël.
2017-11-01
The contribution of the thermal infrared (TIR) camera to the Earth observation FUEGO mission is to participate; to discriminate the clouds and smoke; to detect the false alarms of forest fires; to monitor the forest fires. Consequently, the camera needs a large dynamic range of detectable radiances. A small volume, low mass and power are required by the small FUEGO payload. These specifications can be attractive for other similar missions.
NASA Astrophysics Data System (ADS)
Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.
2017-10-01
Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.
NASA Astrophysics Data System (ADS)
Garcia-Santos, G.; Berdugo, M. B.
2010-07-01
Fog has been demonstrated as the only source of moisture during the dry climate of El Niño in the tropical Andean cloud forest of Boyacá region in Colombia, yet its importance for the forest is virtually unknown. We assessed fog water distribution during the wet season inside the forest and outside in a practically deforested area. Water intercepted by plant was measured at different vertical stratus. Soil moisture in the first centimetres was also measured. During the anomalous drier wet season there was lack of rainfall and the total recorded cloud water was lower compared with the same period during the previous year. Our results indicated that the upper part of the forest mass intercepts most of the fog water compared with lower stratus when the fog event starts. However upper most stratus became rapidly drier after the event, which is explained because water is released to the atmosphere due to high heat atmosphere-leaves interface fluctuations caused by wind and solar radiation, flows towards a different water potential and drips from the leaves. Low amount of fog dripped from tree foliage into the soil, indicating a large water storage capacity of the epiphyte and bryophyte vegetation. Despite the small amount of throughfall, understory vegetation and litter remained wet, which might be explained by the water flowing through the epiphyte vegetation or the high capacity of the understory to absorb moisture from the air. Soil water did not infiltrate in depth, which underlines the importance of fog as water and cool source for seedling growth and shallow rooted understory species, especially during drier conditions.
Amphibian diversity and threatened species in a severely transformed neotropical region in Mexico.
Meza-Parral, Yocoyani; Pineda, Eduardo
2015-01-01
Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of them at imminent risk of extinction.
Epiphyte response to drought and experimental warming in an Andean cloud forest
Rapp, Joshua M.; Silman, Miles R.
2014-01-01
The high diversity and abundance of vascular epiphytes in tropical montane cloud forest is associated with frequent cloud immersion, which is thought to protect plants from drought stress. Increasing temperature and rising cloud bases associated with climate change may increase epiphyte drought stress, leading to species and biomass loss. We tested the hypothesis that warmer and drier conditions associated with a lifting cloud base will lead to increased mortality and/or decreased recruitment of epiphyte ramets, altering species composition in epiphyte mats. By using a reciprocal transplant design, where epiphyte mats were transplanted across an altitudinal gradient of increasing cloud immersion, we differentiated between the effects of warmer and drier conditions from the more general prediction of niche theory that transplanting epiphytes in any direction away from their home elevation should result in reduced performance. Effects differed among species, but effects were generally stronger and more negative for epiphytes in mats transplanted down slope from the highest elevation, into warmer and drier conditions, than for epiphyte mats transplanted from other elevations. In contrast, epiphytes from lower elevations showed greater resistance to drought in all treatments. Epiphyte community composition changed with elevation, but over the timescale of the experiment there were no consistent changes in species composition. Our results suggest some epiphytes may show resistance to climate change depending on the environmental and evolutionary context. In particular, sites where high rainfall makes cloud immersion less important for epiphyte water-balance, or where occasional drought has previously selected for drought-resistant taxa, may be less adversely affected by predicted climate changes. PMID:25165534
Epiphyte response to drought and experimental warming in an Andean cloud forest.
Rapp, Joshua M; Silman, Miles R
2014-01-01
The high diversity and abundance of vascular epiphytes in tropical montane cloud forest is associated with frequent cloud immersion, which is thought to protect plants from drought stress. Increasing temperature and rising cloud bases associated with climate change may increase epiphyte drought stress, leading to species and biomass loss. We tested the hypothesis that warmer and drier conditions associated with a lifting cloud base will lead to increased mortality and/or decreased recruitment of epiphyte ramets, altering species composition in epiphyte mats. By using a reciprocal transplant design, where epiphyte mats were transplanted across an altitudinal gradient of increasing cloud immersion, we differentiated between the effects of warmer and drier conditions from the more general prediction of niche theory that transplanting epiphytes in any direction away from their home elevation should result in reduced performance. Effects differed among species, but effects were generally stronger and more negative for epiphytes in mats transplanted down slope from the highest elevation, into warmer and drier conditions, than for epiphyte mats transplanted from other elevations. In contrast, epiphytes from lower elevations showed greater resistance to drought in all treatments. Epiphyte community composition changed with elevation, but over the timescale of the experiment there were no consistent changes in species composition. Our results suggest some epiphytes may show resistance to climate change depending on the environmental and evolutionary context. In particular, sites where high rainfall makes cloud immersion less important for epiphyte water-balance, or where occasional drought has previously selected for drought-resistant taxa, may be less adversely affected by predicted climate changes.
NASA Astrophysics Data System (ADS)
Patterson, V. M.; Bormann, K.; Deems, J. S.; Painter, T. H.
2017-12-01
The NASA SnowEx campaign conducted in 2016 and 2017 provides a rich source of high-resolution Lidar data from JPL's Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) combined with extensive in-situ measurements in two key areas in Colorado: Grand Mesa and Senator Beck. While the uncertainty in the 50m snow depth retrievals from NASA's ASO been estimated at 1-2cm in non-vegetated exposed areas (Painter et al., 2016), the impact of forest cover and point-cloud density on ASO snow lidar depth retrievals is relatively unknown. Dense forest canopies are known to reduce lidar penetration and ground strikes thus affecting the elevation surface retrieved from in the forest. Using high-resolution lidar point cloud data from the ASO SnowEx campaigns (26pt/m2) we applied a series of data decimations (up to 90% point reduction) to the point cloud data to quantify the relationship between vegetation, ground point density, resulting snow-off and snow-on surface elevations and finally snow depth. We observed non-linear reductions in lidar ground point density in forested areas that were strongly correlated to structural forest cover metrics. Previously, the impacts of these data decimations on a small study area in Grand Mesa showed a sharp increase in under-canopy surface elevation errors of -0.18m when ground point densities were reduced to 1.5pt/m2. In this study, we expanded the evaluation to the more topographically challenging Senator Beck basin, have conducted analysis along a vegetation gradient and are considering snow the impacts of snow depth rather than snow-off surface elevation. Preliminary analysis suggest that snow depth retrievals inferred from airborne lidar elevation differentials may systematically underestimate snow depth in forests where canopy density exceeds 1.75 and where tree heights exceed 5m. These results provide a basis from which to identify areas that may suffer from vegetation-induced biases in surface elevation models and snow depths derived from airborne lidar data, and help quantify expected spatial distributions of errors in the snow depth that can be used to improve the accuracy of ASO basin-scale depth and water equivalent products.
Hernández-Montero, Jesús R.; Saldaña-Vázquez, Romeo A.; Galindo-González, Jorge; Sosa, Vinicio J.
2015-01-01
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 ' = 0.55) compared to TMCF fragments (mean H2 ' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service. PMID:25992550
Hernández-Montero, Jesús R; Saldaña-Vázquez, Romeo A; Galindo-González, Jorge; Sosa, Vinicio J
2015-01-01
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 ' = 0.55) compared to TMCF fragments (mean H2 ' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service.
Sundberg, Sebastian
2010-02-01
Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.
Sundberg, Sebastian
2010-01-01
Background and Aims Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Methods Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. Key Results The maximum discharge speed measured was 3·6 m s−1. Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R2 = 0·58–0·65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0·84–1·86 cm s−1, about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. Conclusions The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species. PMID:20123930
TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca
2012-12-10
Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less
Quantifying Structural and Compositional Changes in Forest Cover in NW Yunnan, China
NASA Astrophysics Data System (ADS)
Hakkenberg, C.
2012-12-01
NW Yunnan, China is a region renowned for high levels of biodiversity, endemism and genetically distinct refugial plant populations. It is also a focal area for China's national reforestation efforts like the Natural Forest Protection Program (NFPP), intended to control erosion in the Upper Yangtze watershed. As part of a larger project to investigate the role of reforestation programs in facilitating the emergence of increasingly species-rich forest communities on a previously degraded and depauperate land mosaic in montane SW China, this study uses a series of Landsat TM images to quantify the spatial pattern and rate of structural and compositional change in forests recovering from medium to large-scale disturbances in the area over the past 25 years. Beyond the fundamental need to assess the outcomes of one of the world's largest reforestation programs, this research offers approaches to confronting two critical methodological issues: (1) techniques for characterizing subtle changes in the nature of vegetation cover, and (2) reducing change detection uncertainty due to persistent cloud cover and shadow. To address difficulties in accurately assessing the structure and composition of vegetative regrowth, a biophysical model was parameterized with over 300 ground-truthed canopy cover assessment points to determine pattern and rate of long-term vegetation changes. To combat pervasive shadow and cloud cover, an interactive generalized additive model (GAM) model based on topographic and spatial predictors was used to overcome some of the constraints of satellite image analysis in Himalayan regions characterized by extreme topography and extensive cloud cover during the summer monsoon. The change detection is assessed for accuracy using ground-truthed observations in a variety of forest cover types and topographic positions. Results indicate effectiveness in reducing the areal extent of unclassified regions and increasing total change detection accuracy. In addition to quantifying forest cover change in this section of NW Yunnan, the analysis attempts to qualify that change - distinguishing among distinct disturbance histories and post-recovery successional pathways.
NASA Astrophysics Data System (ADS)
Mangla, Rohit; Kumar, Shashi; Nandy, Subrata
2016-05-01
SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.
NASA Astrophysics Data System (ADS)
Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.
2017-12-01
Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.
Lidar-based individual tree species classification using convolutional neural network
NASA Astrophysics Data System (ADS)
Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi
2017-06-01
Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.
Application of remote sensing in tropical forests
NASA Technical Reports Server (NTRS)
Joyce, Armond T.; Luvall, J. C.; Sever, T.
1990-01-01
Cloud cover in tropical humid forests can pose serious operational constraints on Landsat TM and SPOT HRV instrumentation, given their respective orbital frequencies of 16 and 26 days. SAR data intrinsically precludes such problems; the increase of data acquisition frequency to daily rates, as with the NOAA AVHRR instrument, also bears consideration. It is deemed essential that SAR data-related research be expedited, in order to ascertain inherent SAR information for tropical forests in a timely and cost-effective manner.
Two new species of the Phanaeus endymion species group (Coleoptera, Scarabaeidae, Scarabaeinae).
Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo
2017-01-01
Phanaeus bravoensis sp. n. is described from the coniferous-oak forests in the state of Guerrero, and P. huichol sp. n. from coniferous-oak forests and cloud forests in Jalisco and Nayarit. The new species are closely related to P. halffterorum and P. zoque respectively. Morphological trait combination, geographic distribution, and trophic habits show important differences among the studied species. A distribution map and an updated key to separate the species are included.
Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest
NASA Astrophysics Data System (ADS)
Zhu, Xi; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Niemann, K. Olaf; Liu, Jing; Shi, Yifang; Wang, Tiejun
2018-02-01
Separation of foliar and woody materials using remotely sensed data is crucial for the accurate estimation of leaf area index (LAI) and woody biomass across forest stands. In this paper, we present a new method to accurately separate foliar and woody materials using terrestrial LiDAR point clouds obtained from ten test sites in a mixed forest in Bavarian Forest National Park, Germany. Firstly, we applied and compared an adaptive radius near-neighbor search algorithm with a fixed radius near-neighbor search method in order to obtain both radiometric and geometric features derived from terrestrial LiDAR point clouds. Secondly, we used a random forest machine learning algorithm to classify foliar and woody materials and examined the impact of understory and slope on the classification accuracy. An average overall accuracy of 84.4% (Kappa = 0.75) was achieved across all experimental plots. The adaptive radius near-neighbor search method outperformed the fixed radius near-neighbor search method. The classification accuracy was significantly higher when the combination of both radiometric and geometric features was utilized. The analysis showed that increasing slope and understory coverage had a significant negative effect on the overall classification accuracy. Our results suggest that the utilization of the adaptive radius near-neighbor search method coupling both radiometric and geometric features has the potential to accurately discriminate foliar and woody materials from terrestrial LiDAR data in a mixed natural forest.
[Do volcanic eruptions and wide-spread fires affect our climate?].
Primault, B
1992-03-31
During the first half of 1991, the press, radio and TV have often reported about large fires (Kuwait, forest fires in Portugal) or volcanic eruptions (Mount Unzen, Pinatubo). Starting with the facts, the author investigates first the kind of particles constituting such smoke clouds and in particular their size. He places the main cloud in the atmosphere and asks; the cloud remains near the soil, whether it reaches the upper layers of the troposphere or it breaks out into the stratosphere? The transport of the cloud depends on particle-size and of the winds blowing in the reached layer. All these clouds have an impact on the weather. The author analyses finally the credible influence of such clouds on weather elements: radiation and temperature as well as the extent of these effects. He corroborates his analysis by visual observations or measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, S. T.; Artaxo, P.; Machado, L.
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over themore » city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less
J. Ortega; A. Turnipseed; A. B. Guenther; T. G. Karl; D. A. Day; D. Gochis; J. A. Huffman; A. J. Prenni; E. J. T. Levin; S. M. Kreidenweis; P. J. DeMott; Y. Tobo; E. G. Patton; A. Hodzic; Y. Y. Cui; P. C. Harley; R. S. Hornbrook; E. C. Apel; R. K. Monson; A. S. D. Eller; J. P. Greenberg; M. C. Barth; P. Campuzano-Jost; B. B. Palm; J. L. Jimenez; A. C. Aiken; M. K. Dubey; C. Geron; J. Offenberg; M. G. Ryan; P. J. Fornwalt; S. C. Pryor; F. N. Keutsch; J. P. DiGangi; A. W. H. Chan; A. H. Goldstein; G. M. Wolfe; S. Kim; L. Kaser; R. Schnitzhofer; A. Hansel; C. A. Cantrell; R. L. Mauldin; J. N. Smith
2014-01-01
The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was...
NASA Astrophysics Data System (ADS)
Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo
2018-05-01
We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙} yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Clark, K. E.; Van Beusekom, A.; Shanley, J. B.; Torres-Sanchez, A.; Murphy, S. F.; Gonzalez, G.
2017-12-01
Like many island and coastal areas, the Luquillo Mountains of Puerto Rico receive orographic precipitation (rain and cloud water), maintaining headwater streamflow and allowing diverse forest ecosystems to thrive. Although rainfall from regional-scale convective systems is greater in volume, multiple lines of evidence (stable isotope tracers; precipitation amount, frequency, and intensity; cloud immersion; regional cloud dynamics; weather analysis) show that trade-wind orographic precipitation contributes significantly to streamflow, soil water, and shallow groundwater. Ceilometer data and time-lapse photography of cloud-immersed conditions at the mountain indicated a seasonally invariant, sustained overnight regime of cloud water precipitation, in addition to the abundant rainfall in the mountains. Rising ocean temperatures and a warming tropical climate lead to questions about persistence of the trade-wind associated orographic precipitation and the resilience of similar mountain ecosystems to change. Projections for Caribbean climate change include amplification of trade winds; less frequent, more intense large convective systems; and a warming ocean. These may have opposing effects on mountain precipitation, increasing uncertainty about processes that mitigate drought. Field studies provide insights regarding these questions. Ceilometer and satellite observations showed cloud base is higher over the mountains than in the surrounding Caribbean region; with the trade-wind inversion cap, further rise in cloud base may produce shallower clouds and reduced precipitation. We analyzed the February-October 2015 drought, characterized by strong El Niño conditions, an absence of tropical storm systems, and reduced convection in easterly waves. Combined δ2H, δ18O and d-excess signatures of streamflow indicated precipitation was derived from shallow convective systems, trade-wind showers and cloud water. During severe drought on the island, streamflow-sustaining rainfall at the mountain station at 640 m persisted, albeit with 19% lower frequency and 52% fewer large (>10 mm) rain events than the 20-year average. Clearly, resilience of the mountain forest ecosystem and of streamflow to drought periods depends on orographic precipitation.
NASA Astrophysics Data System (ADS)
Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo
2018-05-01
We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).
a Method for the Registration of Hemispherical Photographs and Tls Intensity Images
NASA Astrophysics Data System (ADS)
Schmidt, A.; Schilling, A.; Maas, H.-G.
2012-07-01
Terrestrial laser scanners generate dense and accurate 3D point clouds with minimal effort, which represent the geometry of real objects, while image data contains texture information of object surfaces. Based on the complementary characteristics of both data sets, a combination is very appealing for many applications, including forest-related tasks. In the scope of our research project, independent data sets of a plain birch stand have been taken by a full-spherical laser scanner and a hemispherical digital camera. Previously, both kinds of data sets have been considered separately: Individual trees were successfully extracted from large 3D point clouds, and so-called forest inventory parameters could be determined. Additionally, a simplified tree topology representation was retrieved. From hemispherical images, leaf area index (LAI) values, as a very relevant parameter for describing a stand, have been computed. The objective of our approach is to merge a 3D point cloud with image data in a way that RGB values are assigned to each 3D point. So far, segmentation and classification of TLS point clouds in forestry applications was mainly based on geometrical aspects of the data set. However, a 3D point cloud with colour information provides valuable cues exceeding simple statistical evaluation of geometrical object features and thus may facilitate the analysis of the scan data significantly.
Forest tree pollen dispersal via the water cycle.
Williams, Claire G
2013-06-01
Pine pollen (Pinus spp.), along with other atmospheric particles, is dispersed by the water cycle, but this mode of dispersal requires cloud-pollen interactions that depend on taxon-specific biological properties. In the simplest form of this dispersal, pine pollen ascends vertically to altitudes of 2 to 6 km, where a fraction is captured by mixed-phase cloud formation. Captured pollen accretes into frozen droplets, which ultimately descend as rain, snow, or hail. Whether Pinus pollen can still germinate after its exposure to high-altitude freezing is pertinent to (1) how forests adapt to climate change and (2) potential gene flow between genetically modified plantation species and their conspecific relatives. • To address this question, pollen from four Old World and two New World Pinus species were subjected to immersion freezing, a common cloud formation mode, under laboratory conditions. • Some pollen grains immersed at -20°C for 15, 60, or 120 min in either a dehydrated or a water-saturated state were still capable of germination. After exposure, dehydrated pine pollen had higher germination (43.3%) than water-saturated pollen (7.6%). • Pine pollen exposed to freezing during cloud formation can still germinate, raising the question of whether rain-delivered live pollen might be linked to rain-facilitated pollination. Dispersal of live pine pollen via cloud formation and the water cycle itself deserves closer study.
NASA Astrophysics Data System (ADS)
Chen, Bangqian; Xiao, Xiangming; Li, Xiangping; Pan, Lianghao; Doughty, Russell; Ma, Jun; Dong, Jinwei; Qin, Yuanwei; Zhao, Bin; Wu, Zhixiang; Sun, Rui; Lan, Guoyu; Xie, Guishui; Clinton, Nicholas; Giri, Chandra
2017-09-01
Due to rapid losses of mangrove forests caused by anthropogenic disturbances and climate change, accurate and contemporary maps of mangrove forests are needed to understand how mangrove ecosystems are changing and establish plans for sustainable management. In this study, a new classification algorithm was developed using the biophysical characteristics of mangrove forests in China. More specifically, these forests were mapped by identifying: (1) greenness, canopy coverage, and tidal inundation from time series Landsat data, and (2) elevation, slope, and intersection-with-sea criterion. The annual mean Normalized Difference Vegetation Index (NDVI) was found to be a key variable in determining the classification thresholds of greenness, canopy coverage, and tidal inundation of mangrove forests, which are greatly affected by tide dynamics. In addition, the integration of Sentinel-1A VH band and modified Normalized Difference Water Index (mNDWI) shows great potential in identifying yearlong tidal and fresh water bodies, which is related to mangrove forests. This algorithm was developed using 6 typical Regions of Interest (ROIs) as algorithm training and was run on the Google Earth Engine (GEE) cloud computing platform to process 1941 Landsat images (25 Path/Row) and 586 Sentinel-1A images circa 2015. The resultant mangrove forest map of China at 30 m spatial resolution has an overall/users/producer's accuracy greater than 95% when validated with ground reference data. In 2015, China's mangrove forests had a total area of 20,303 ha, about 92% of which was in the Guangxi Zhuang Autonomous Region, Guangdong, and Hainan Provinces. This study has demonstrated the potential of using the GEE platform, time series Landsat and Sentine-1A SAR images to identify and map mangrove forests along the coastal zones. The resultant mangrove forest maps are likely to be useful for the sustainable management and ecological assessments of mangrove forests in China.
NASA Astrophysics Data System (ADS)
Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans
2017-05-01
Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.
NASA Astrophysics Data System (ADS)
Mudd, R. G.; Giambelluca, T. W.
2006-12-01
Epiphyte water retention was quantified at two montane cloud forest sites in Hawai'i Volcanoes National Park, one native and the other invaded by an alien tree species. Water storage elements measured included all epiphytic mosses, leafy liverworts, and filmy ferns. Tree surface area was estimated and a careful survey was taken to account for all epiphytes in the sample area of the forest. Samples were collected and analyzed in the lab for epiphyte water retention capacity (WRC). Based on the volume of the different kinds of epiphytes and their corresponding WRC, forest stand water retention capacity for each survey area was estimated. Evaporation from the epiphyte mass was quantified using artificial reference samples attached to trees that were weighed at intervals to determine changes in stored water on days without significant rain or fog. In addition, a soil moisture sensor was wrapped in an epiphyte sample and left in the forest for a 6-day period. Epiphyte biomass at the Native Site and Invaded Site were estimated to be 2.89 t ha-1 and 1.05 t ha-1, respectively. Average WRC at the Native Site and Invaded Site were estimated at 1.45 mm and 0.68 mm, respectively. The difference is likely due to the presence of the invasive Psidium cattleianum at the Invaded Site because its smooth stem surface is unable to support a significant epiphytic layer. The evaporation rate from the epiphyte mass near WSC for the forest stand at the Native Site was measured at 0.38 mm day-1, which represented 10.6 % of the total ET from the forest canopy at the Native Site during the period. The above research has been recently complemented by a thorough investigation of the WSC of all water storage elements (tree stems, tree leaves, shrubs, grasses, litter, fallen branches, and epiphytes) at six forested sites at different elevations within, above, and below the zone of frequent cloud-cover. The goal of this study was to create an inexpensive and efficient methodology for acquiring estimates of above-ground water retention in different types of forests by means of minimally-destructive sampling and surveying. The results of this work serve as baseline data providing a range of possible values of the water retention of specific forest elements and the entire above-ground total where no values have been previously recorded.
NASA Astrophysics Data System (ADS)
Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.
2016-06-01
The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.
Qiu, Yang; Gao, Lu-Shuang; Zhang, Xue; Guo, Jing; Ma, Zhi-Yuan
2014-07-01
Pinus koraiensis in broad-leaved Korean pine forests of Changbai Mountain at different successional stages (secondary poplar-birch forest, secondary coniferous and broad-leaved forest and the primitive Korean pine forest) were selected in this paper as the research objects. In this research, the annual growth of net primary productivity (NPP) (1921-2006) of P. koraiensis was obtained by combining the tree-ring chronology and relative growth formulae, the correlation between NPP of P. koraiensis and climatic factors was developed, and the annual growth of NPP of P. koraiensis at different successional stages in relation to climatic variation within different climate periods were analyzed. The results showed that, in the research period, the correlations between climatic factors and NPP of P. koraiensis at different successional stages were different. With increasing the temperature, the correlations between NPP of P. koraiensis in the secondary poplar-birch forest and the minimum temperatures of previous and current growing seasons changed from being significantly negative to being significantly positive. The positive correlation between NPP of P. koraiensis in the secondary coniferous and broad-leaved forest and the minimum temperature in current spring changed into significantly positive correlation between NPP of P. koraiensis and the temperatures in previous and current growing seasons. The climatic factors had a stronger hysteresis effect on NPP of P. koraiensis in the secondary coniferous and broad-leaved forest, but NPP of P. koraiensis in the primitive Korean pine forest had weaker correlation with temperature but stronger positive correlation with the precipitation of previous growing season. The increases of minimum and mean temperatures were obvious, but no significant variations of the maximum temperature and precipitation were observed at our site. The climatic variation facilitated the increase of the NPP of P. koraiensis in the secondary poplar-birch forest at the initial successional stage and in secondary coniferous and broad-leaved forest at the intermediate successional stage, and this effect was especially obvious for the secondary coniferous and broad-leaved forest, but very small for the primitive Korean pine forest which was at the climax phase.
Two new species of the Phanaeus endymion species group (Coleoptera, Scarabaeidae, Scarabaeinae)
Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo
2017-01-01
Abstract Phanaeus bravoensis sp. n. is described from the coniferous-oak forests in the state of Guerrero, and P. huichol sp. n. from coniferous-oak forests and cloud forests in Jalisco and Nayarit. The new species are closely related to P. halffterorum and P. zoque respectively. Morphological trait combination, geographic distribution, and trophic habits show important differences among the studied species. A distribution map and an updated key to separate the species are included. PMID:29118601
Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes
Talbot, J. J.; Pettinger, Lawrence R.
1981-01-01
Factors limiting the application of Landsat data—including relatively low spatial resolution, persistent cloud cover in tropical regions, inadequate coverage of certain areas due to data-acquisition restraints and lack of local Landsat data receiving stations for real-time data recording—must be considered in any proposed study. Future improvements in Landsat capabilities might extend present applications beyond distinction of forest vs. non-forest cover, determination of gross vegetation or forest type, and generalized land use mapping.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.
2012-01-01
This presentation reviews the development, integration, and testing of Near Real Time (NRT) MODIS forest % maximum NDVI change products resident to the USDA Forest Service (USFS) ForWarn System. ForWarn is an Early Warning System (EWS) tool for detection and tracking of regionally evident forest change, which includes the U.S. Forest Change Assessment Viewer (FCAV) (a publically available on-line geospatial data viewer for visualizing and assessing the context of this apparent forest change). NASA Stennis Space Center (SSC) is working collaboratively with the USFS, ORNL, and USGS to contribute MODIS forest change products to ForWarn. These change products compare current NDVI derived from expedited eMODIS data, to historical NDVI products derived from MODIS MOD13 data. A new suite of forest change products are computed every 8 days and posted to the ForWarn system; this includes three different forest change products computed using three different historical baselines: 1) previous year; 2) previous three years; and 3) all previous years in the MODIS record going back to 2000. The change product inputs are maximum value NDVI that are composited across a 24 day interval and refreshed every 8 days so that resulting images for the conterminous U.S. are predominantly cloud-free yet still retain temporally relevant fresh information on changes in forest canopy greenness. These forest change products are computed at the native nominal resolution of the input reflectance bands at 231.66 meters, which equates to approx 5.4 hectares or 13.3 acres per pixel. The Time Series Product Tool, a MATLAB-based software package developed at NASA SSC, is used to temporally process, fuse, reduce noise, interpolate data voids, and re-aggregate the historical NDVI into 24 day composites, and then custom MATLAB scripts are used to temporally process the eMODIS NDVIs so that they are in synch with the historical NDVI products. Prior to posting, an in-house snow mask classification product is computed for the current compositing period and integrated into the change images to account for snow related NDVI drops. The supplemental snow classification product was needed because other available QA cloud/snow mask typically underestimates snow cover. MODIS true and false color composites were also computed from eMODIS reflectance data and the true color RGBs are also posted on ForWarn?s FCAV; this data is used for assessing apparent occasional quality issues on the change products due to residual unmasked cloud cover. New forest change products are posted with typical latencies of 1-2 days after the last input eMODIS data collection date for a given 24 day compositing period.
Determining successional stage of temperate coniferous forests with Landsat satellite data
NASA Technical Reports Server (NTRS)
Fiorella, Maria; Ripple, William J.
1995-01-01
Thematic Mapper (TM) digital imagery was used to map forest successional stages and to evaluate spectral differences between old-growth and mature forests in the central Cascade Range of Oregon. Relative sun incidence values were incorporated into the successional stage classification to compensate for topographic induced variation. Relative sun incidence improved the classification accuracy of young successional stages, but did not improve the classification accuracy of older, closed canopy forest classes or overall accuracy. TM bands 1, 2, and 4; the normalized difference vegetation index (NDVI); and TM 4/3, 4/5, and 4/7 band ratio values for old-growth forests were found to be significantly lower than the values of mature forests (P less than or equal to 0.010). Wetness and the TM 4/5 and 4/7 band ratios all had low correlations to relative sun incidence (r(exp 2) less than or equal to 0.16). The TM 4/5 band ratio was named the 'structural index' (SI) because of its ability to distinguish between mature and old-growth forests and its simplicity.
Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao
2011-05-01
Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.
Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds
Elias Ayrey; Shawn Fraver; John A. Kershaw; Laura S. Kenefic; Daniel Hayes; Aaron R. Weiskittel; Brian E. Roth
2017-01-01
As light detection and ranging (LiDAR) technology advances, it has become common for datasets to be acquired at a point density high enough to capture structural information from individual trees. To process these data, an automatic method of isolating individual trees from a LiDAR point cloud is required. Traditional methods for segmenting trees attempt to isolate...
Rango, A.; Foster, J.; Josberger, E.G.; Erbe, E.F.; Pooley, C.; Wergin, W.P.
2003-01-01
Snow crystals, which form by vapor deposition, occasionally come in contact with supercooled cloud droplets during their formation and descent. When this occurs, the droplets adhere and freeze to the snow crystals in a process known as accretion. During the early stages of accretion, discrete snow crystals exhibiting frozen cloud droplets are referred to as rime. If this process continues, the snow crystal may become completely engulfed in frozen cloud droplets. The resulting particle is known as graupel. Light microscopic investigations have studied rime and graupel for nearly 100 years. However, the limiting resolution and depth of field associated with the light microscope have prevented detailed descriptions of the microscopic cloud droplets and the three-dimensional topography of the rime and graupel particles. This study uses low-temperature scanning electron microscopy to characterize the frozen precipitates that are commonly known as rime and graupel. Rime, consisting of frozen cloud droplets, is observed on all types of snow crystals including needles, columns, plates, and dendrites. The droplets, which vary in size from 10 to 100 μm, frequently accumulate along one face of a single snow crystal, but are found more randomly distributed on aggregations consisting of two or more snow crystals (snowflakes). The early stages of riming are characterized by the presence of frozen cloud droplets that appear as a layer of flattened hemispheres on the surface of the snow crystal. As this process continues, the cloud droplets appear more sinuous and elongate as they contact and freeze to the rimed crystals. The advanced stages of this process result in graupel, a particle 1 to 3 mm across, composed of hundreds of frozen cloud droplets interspersed with considerable air spaces; the original snow crystal is no longer discernible. This study increases our knowledge about the process and characteristics of riming and suggests that the initial appearance of the flattened hemispheres may result from impact of the leading face of the snow crystal with cloud droplets. The elongated and sinuous configurations of frozen cloud droplets that are encountered on the more advanced stages suggest that aerodynamic forces propel cloud droplets to the trailing face of the descending crystal where they make contact and freeze.
Ionization and expansion of barium clouds in the ionosphere
NASA Technical Reports Server (NTRS)
Ma, T.-Z.; Schunk, R. W.
1993-01-01
A recently envelope 3D model is used here to study the motion of the barium clouds released in the ionosphere, including the ionization stage. The ionization and the expansion of the barium clouds and the interaction between the clouds and the background ions are investigated using three simulations: a cloud without a directional velocity, a cloud with an initial velocity of 5 km/s across the B field, and a cloud with initial velocity components of 2 km/s both along and across the B field.
Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-11-01
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.
Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-11-26
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.
NASA Astrophysics Data System (ADS)
Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain
2017-10-01
Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these already endangered forest ecosystems and should be further monitored using both ground and satellite approaches.
Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina
2015-01-01
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests. PMID:25719204
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Mudd, R. G.; Huang, M.; Nullet, M.; Asner, G. P.; Martin, R.; Ostertag, R.; Miyazawa, Y.; Litton, C. M.
2016-12-01
Uncertainty about the local and regional effects of global climate warming on terrestrial ecosystems and their ability to produce ecosystem goods and services is a serious constraint for land-based natural resource managers. In Hawai`i and other Pacific Islands, this issue is complicated by the presence of numerous and widespread non-native invasive species, including invasive trees. As warming continues and other climate variables change in response to temperature increases, how will native- and non-native-dominated ecosystems respond? To address this question, eddy covariance flux towers were established and operated for approximately a decade over native forest and at a site invaded by a non-native tree. Flux data were analyzed to determine the sensitivity of carbon exchange rates to fluctuations in ambient CO2 concentration, temperature (T), humidity, photosynthetically active radiation (PAR), and soil moisture (SM). At both sites, gross primary production (GPP) is strongly controlled by PAR and to a lesser extent by T. Ecosystem respiration (Re) responds to T and SM at both sites, as expected. Net ecosystem carbon exchange (NEE) is predominantly controlled by PAR at both sites. Higher temperature is associated with higher rates of photosynthesis and greater Re, thereby canceling the net effect of temperature on carbon exchange. Hence, no significant effect of temperature on NEE was found at either site. These results suggest that the direct effects of future warming will be small in relation to the effects of any changes in cloud cover that affect incident solar radiation. Cloud cover in Hawai`i could be affected by projected increases in atmospheric stability (reduced cloud cover) and increases in humidity (increased cloud cover). Light response (GPP sensitivity to PAR) was found to be significantly greater at the non-native site, suggesting that a future decrease in cloud cover would favor the non-native ecosystem, while increased cloudiness would cause a greater reduction in carbon uptake in the non-native forest.
NASA Astrophysics Data System (ADS)
Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.
2017-12-01
Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and are, therefore, vulnerable to impacts of altered ecohydrological functioning due to climate and land cover changes.
Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.
Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest
Kenneth L. Clark; Nalini M. Nadkarni; Henry L. Gholz
2005-01-01
We developed and evaluated a model of the canopy of a tropical montane forest at Monteverde, Costa Rica, to estimate inorganic nitrogen (N) retention by epiphytes from atmospheric deposition. We first estimated net retention of inorganic N by samples of epiphytic bryophytes, epiphyte assemblages, vascular epiphyte foliage, and host tree foliage that we exposed to cloud...
Dirk Pflugmacher; Warren B. Cohen; Robert E. Kennedy; Michael. Lefsky
2008-01-01
Accurate estimates of forest aboveground biomass are needed to reduce uncertainties in global and regional terrestrial carbon fluxes. In this study we investigated the utility of the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite for large-scale biomass inventories. GLAS is the first spaceborne lidar sensor that will...
Comparisons between field- and LiDAR-based measures of stand structrual complexity
Van R. Kane; Robert J. McGaughey; Jonathan D. Bakker; Rolf F. Gersonde; James A. Lutz; Jerry F. Franklin
2010-01-01
Forest structure, as measured by the physical arrangement of trees and their crowns, is a fundamental attribute of forest ecosystems that changes as forests progress through successional stages. We examined whether LiDAR data could be used to directly assess the successional stage of forests by determining the degree to which the LiDAR data would show the same relative...
Matthew B. Russell; Christopher W. Woodall
2017-01-01
The increasing interest in forest biomass for energy or carbon cycle purposes has raised the need for forest resource managers to refine their understanding of downed woody debris (DWD) dynamics. We developed a DWD forecasting tool using field measurements (mean size and stage of stage of decay) for three common forest types across the eastern United States using field...
Lambs, L; Horwath, A; Otto, T; Julien, F; Antoine, P-O
2012-04-15
The Amazon River is a huge network of long tributaries, and little is known about the headwaters. Here we present a study of one wet tropical Amazon forest side, and one dry and cold Atiplano plateau, originating from the same cordillera. The aim is to see how this difference affects the water characteristics. Different kind of water (spring, lake, river, rainfall) were sampled to determine their stable isotopes ratios (oxygen 18/16 and hydrogen 2/1) by continuous flow isotope ratio mass spectrometry (IRMS). These ratios coupled with chemical analysis enabled us to determine the origin of the water, the evaporation process and the water recycling over the Amazon plain forest and montane cloud forest. Our study shows that the water flowing in the upper Madre de Dios basin comes mainly from the foothill humid forest, with a characteristic water recycling process signature, and not from higher glacier melt. On the contrary, the water flowing in the Altiplano Rivers is mainly from glacier melts, with a high evaporation process. This snow and glacier are fed mainly by Atlantic moisture which transits over the large Amazon forest. The Atlantic moisture and its recycling over this huge tropical forest display a progressive isotopic gradient, as a function of distance from the ocean. At the level of the montane cloud forest and on the altiplano, respectively, additional water recycling and evaporation occur, but they are insignificant in the total water discharge. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Li, Xing; Xiao, Jingfeng; He, Binbin
2018-04-01
Amazon forests play an important role in the global carbon cycle and Earth’s climate. The vulnerability of Amazon forests to drought remains highly controversial. Here we examine the impacts of the 2015 drought on the photosynthesis of Amazon forests to understand how solar radiation and precipitation jointly control forest photosynthesis during the severe drought. We use a variety of gridded vegetation and climate datasets, including solar-induced chlorophyll fluorescence (SIF), photosynthetic active radiation (PAR), the fraction of absorbed PAR (APAR), leaf area index (LAI), precipitation, soil moisture, cloud cover, and vapor pressure deficit (VPD) in our analysis. Satellite-derived SIF observations provide a direct diagnosis of plant photosynthesis from space. The decomposition of SIF to SIF yield (SIFyield) and APAR (the product of PAR and fPAR) reveals the relative effects of precipitation and solar radiation on photosynthesis. We found that the drought significantly reduced SIFyield, the emitted SIF per photon absorbed. The higher APAR resulting from lower cloud cover and higher LAI partly offset the negative effects of water stress on the photosynthesis of Amazon forests, leading to a smaller reduction in SIF than in SIFyield and precipitation. We further found that SIFyield anomalies were more sensitive to precipitation and VPD anomalies in the southern regions of the Amazon than in the central and northern regions. Our findings shed light on the relative and combined effects of precipitation and solar radiation on photosynthesis, and can improve our understanding of the responses of Amazon forests to drought.
Diemont, Stewart A W; Martin, Jay F
2009-01-01
Indigenous groups have designed and managed their ecosystems for generations, resulting in biodiversity protection while producing for their family's needs. Here we describe the agroecosystem of the Lacandon Maya, an indigenous group who live in Chiapas, Mexico. The Lacandon practice a form of swidden agriculture that conserves the surrounding rain forest ecosystem while cycling the majority of their land through five successional stages. These stages include an herbaceous stage, two shrub stages, and two forest stages. A portion of their land is kept in primary forest. This study presents the Lacandon traditional ecological knowledge (TEK) for agroforestry and quantitatively describes the plant community and the associated soil ecology of each successional stage. Also documented is the knowledge of the Lacandon regarding the immediate use of plant species and plant species useful for soil fertility enhancement. Woody plant diversity increases during the successional stages of the Lacandon system, and by the beginning of the first forest stage, the diversity is similar to that of the primary forest. In all stages, Lacandon use 60% of the available plant species for food, medicine, and raw materials. Approximately 45% of the woody plant species present in each fallow stage were thought by the Lacandon to enhance soil fertility. Total soil nitrogen and soil organic matter increased with successional stage and with time from intentional burn. Nutrient and soil nematode dynamics in shrub stages related to the presence of introduced and managed plants, indicating engineered soil enhancement by the Lacandon. The effects on biodiversity and soil ecology coupled with productivity for agricultural subsistence indicate that Lacandon TEK may offer tools for environmental conservation that would provide for a family's basic needs while maintaining a biodiverse rain forest ecosystem. Tools such as these may offer options for regional restoration and conservation efforts such as the Mesoamerican Biological Corridor in Mexico and Central America, where attainment of environmental goals must include methods to provide resources to local inhabitants.
Gaussian Radial Basis Function for Efficient Computation of Forest Indirect Illumination
NASA Astrophysics Data System (ADS)
Abbas, Fayçal; Babahenini, Mohamed Chaouki
2018-06-01
Global illumination of natural scenes in real time like forests is one of the most complex problems to solve, because the multiple inter-reflections between the light and material of the objects composing the scene. The major problem that arises is the problem of visibility computation. In fact, the computing of visibility is carried out for all the set of leaves visible from the center of a given leaf, given the enormous number of leaves present in a tree, this computation performed for each leaf of the tree which also reduces performance. We describe a new approach that approximates visibility queries, which precede in two steps. The first step is to generate point cloud representing the foliage. We assume that the point cloud is composed of two classes (visible, not-visible) non-linearly separable. The second step is to perform a point cloud classification by applying the Gaussian radial basis function, which measures the similarity in term of distance between each leaf and a landmark leaf. It allows approximating the visibility requests to extract the leaves that will be used to calculate the amount of indirect illumination exchanged between neighbor leaves. Our approach allows efficiently treat the light exchanges in the scene of a forest, it allows a fast computation and produces images of good visual quality, all this takes advantage of the immense power of computation of the GPU.
A scalable approach for tree segmentation within small-footprint airborne LiDAR data
NASA Astrophysics Data System (ADS)
Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun
2017-05-01
This paper presents a distributed approach that scales up to segment tree crowns within a LiDAR point cloud representing an arbitrarily large forested area. The approach uses a single-processor tree segmentation algorithm as a building block in order to process the data delivered in the shape of tiles in parallel. The distributed processing is performed in a master-slave manner, in which the master maintains the global map of the tiles and coordinates the slaves that segment tree crowns within and across the boundaries of the tiles. A minimal bias was introduced to the number of detected trees because of trees lying across the tile boundaries, which was quantified and adjusted for. Theoretical and experimental analyses of the runtime of the approach revealed a near linear speedup. The estimated number of trees categorized by crown class and the associated error margins as well as the height distribution of the detected trees aligned well with field estimations, verifying that the distributed approach works correctly. The approach enables providing information of individual tree locations and point cloud segments for a forest-level area in a timely manner, which can be used to create detailed remotely sensed forest inventories. Although the approach was presented for tree segmentation within LiDAR point clouds, the idea can also be generalized to scale up processing other big spatial datasets.
Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest.
Suárez, Juan Pablo; Weiss, Michael; Abele, Andrea; Garnica, Sigisfredo; Oberwinkler, Franz; Kottke, Ingrid
2006-11-01
The mycorrhizal state of epiphytic orchids has been controversially discussed, and the state and mycobionts of the pleurothallid orchids, occurring abundantly and with a high number of species on stems of trees in the Andean cloud forest, were unknown. Root samples of 77 adult individuals of the epiphytic orchids Stelis hallii, S. superbiens, S. concinna and Pleurothallis lilijae were collected in a tropical mountain rainforest of southern Ecuador. Ultrastructural evidence of symbiotic interaction was combined with molecular sequencing of fungi directly from the mycorrhizas and isolation of mycobionts. Ultrastructural analyses displayed vital orchid mycorrhizas formed by fungi with an imperforate parenthesome and cell wall slime bodies typical for the genus Tulasnella. Three different Tulasnella isolates were obtained in pure culture. Phylogenetic analysis of nuclear rDNA sequences from coding regions of the ribosomal large subunit (nucLSU) and the 5.8S subunit, including parts of the internal transcribed spacers, obtained directly from the roots and from the fungal isolates, yielded seven distinct Tulasnella clades. Tulasnella mycobionts in Stelis concinna were restricted to two Tulasnella sequence types while the other orchids were associated with up to six Tulasnella sequence types. All Tulasnella sequences are new to science and distinct from known sequences of mycobionts of terrestrial orchids. The results indicate that tulasnelloid fungi, adapted to the conditions on tree stems, might be important for orchid growth and maintenance in the Andean cloud forest.
Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen
2017-07-01
Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.
Martin, S. T.; Artaxo, P.; Machado, L.; ...
2017-05-15
The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, S. T.; Artaxo, P.; Machado, L.
The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less
Breeding bird assemblages associated with stages of forest succession in large river floodplains
Knutson, M.G.; McColl, L.E.; Suarez, S.A.
2005-01-01
Floodplain forests rival all other habitat types in bird density and diversity. However, major successional changes are predicted for floodplain forests along the Mississippi River in the coming decades; young forests may replace the existing mature silver maple (Acer saccharinum L.) forests in some areas. We wanted to assess how the breeding bird community might respond to these changes. We studied stands of young forests along the middle Mississippi River, comparing the breeding bird assemblages among three stages of forest succession: shrub/scrub, young cottonwood (Populus deltoides Marshall) and willow (Salix nigra Marshall) forests, and mature silver maple dominated forests. We recorded a total of 54 bird species; the most frequently observed species were the indigo bunting (Passerina cyanea), red-winged blackbird (Agelaius phoeniceus), and yellow-billed cuckoo (Coccyzus americanus). Bird species richness differed among the habitat types, with mature forests supporting the largest number of species and the most species of management concern. The shrub/scrub and mature forest bird assemblages were distinct and shared few species, but the young forests had no identifiable bird species assemblage, sharing species found in both of the other habitat types. The bird assemblages we observed in young forests may become more prevalent as aging floodplain forests are replaced with younger stages of forest succession. Under this scenario, we would expect a temporary local decrease in bird species richness and habitat for species of management concern.
Karen Ferguson
2007-01-01
The measurement of water quality and stream health in wilderness areas is made difficult by the need to use non-motorized modes of travel. In Wyoming, data on streams in the high-altitude Cloud Peak Wilderness are scarce. The monitoring of stream health of the Tongue, Powder and Big Horn Rivers at lower altitudes can be made more meaningful by the collection of...
NASA Technical Reports Server (NTRS)
Stacey, J. M.
1991-01-01
Monograph presents comprehensive overview of science and technology of spaceborne microwave-imaging systems. Microwave images used as versatile orbiting, remote-sensing systems to investigate atmospheres and surfaces of planets. Detect surface objects through canopies of clouds, measure distributions of raindrops in clouds that their views penetrate, find meandering rivers in rain forests and underground water in arid regions, and provide information on ocean currents, wakes, ice/water boundaries, aircraft, ships, buoys, and bridges.
A. Gioda; O.L. Mayol-Bracero; F. N. Scatena; K. C. Weathers; V. L. Mateus; W. H. McDowell
2013-01-01
Cloud- and rain-water samples collected between 1984 and 2007 in the Luquillo Experimental Forest, Puerto Rico, were analyzed in order to understand the main processes and sources that control their chemistry. Three sites were used: El Verde Field Station (380 m asl), Bisley (361 m asl), and East Peak (1051 m asl). Bulk rainwater samples were collected from all sites,...
NASA Astrophysics Data System (ADS)
do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.
2015-12-01
In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.
Molecular Cloud Evolution VI. Measuring cloud ages
NASA Astrophysics Data System (ADS)
Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel; Galván-Madrid, Roberto; Forbrich, Jan
2018-06-01
In previous contributions, we have presented an analytical model describing the evolution of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The cloud's evolution is characterized by an initial increase in its mass, density, and star formation rate (SFR) and efficiency (SFE) as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the cloud's evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25% of their mass had become molecular. We find ages from ˜1.5 to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds (M ˜ 103-104M⊙) end their lives with a mini-burst of star formation, reaching SFRs ˜300-500 M⊙ Myr-1. By this time, they have contracted to become compact (˜1 pc) massive star-forming clumps, in general embedded within larger GMCs.
C. Pascual; A. Garcia-Abril; L.G. Garcia-Montero; S. Martin-Fernandez; W.B. Cohen
2008-01-01
In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered into forest structure types based on the DCHM data...
Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-01-01
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569
Amphibian Diversity and Threatened Species in a Severely Transformed Neotropical Region in Mexico
Meza-Parral, Yocoyani; Pineda, Eduardo
2015-01-01
Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of them at imminent risk of extinction. PMID:25799369
NASA Astrophysics Data System (ADS)
Gotsch, S. G.; Darby, A.; Glunk, A.; Murray, J.; Draguljic, D.
2016-12-01
Tropical montane cloud forests (TMCFs) are projected to experience shifts in microclimate due to changes in precipitation patterns and cloud base heights. Understanding how the TMCF will be affected by such changes is critical since these forests harbor a great number of endemic species and the intact forest plays an important role in local and regional hydrology. The epiphyte community is one of the characteristic components of this unique ecosystem. Epiphytes contribute greatly to the biomass and diversity of the forest, and play an important role in the TMCF water cycle. The ecosystem role played by the epiphyte community may be lost if these species, which lack roots to the ground, cannot withstand projected changes in climate. We measured dry season sap flow in canopy epiphytes in three sites along an elevation gradient, in Monteverde Costa Rica during an extreme drought event. In addition, we measured predawn and midday leaf water potentials, and dry season pressure-volume curves on focal species. We found that during a month-long dry period, species in all sites reduced transpiration considerably, and for a two-week period, sap flow rates were close to zero. During this time, predawn and midday leaf water potentials remained high (> -1.0 MPa) due to the utilization of stored leaf water and strong stomatal regulation. At the end of the dry season, midday leaf water potentials were approximately 2x lower in the driest versus the wettest site (AVG: -0.94 vs. -0.47 MPa) although hydraulic safety margins were greater at the driest sites. Our results indicate that epiphyte communities vary in their water use strategies and that the epiphyte community in wetter sites is more likely to experience hydraulic failure if there are increases in the number of days without precipitation and/or increases in temperature.
NASA Astrophysics Data System (ADS)
Muir, J.; Phinn, S. R.; Armston, J.; Scarth, P.; Eyre, T.
2014-12-01
Coarse woody debris (CWD) provides important habitat for many species and plays a vital role in nutrient cycling within an ecosystem. In addition, CWD makes an important contribution to forest biomass and fuel loads. Airborne or space based remote sensing instruments typically do not detect CWD beneath the forest canopy. Terrestrial laser scanning (TLS) provides a ground based method for three-dimensional (3-D) reconstruction of surface features and CWD. This research produced a 3-D reconstruction of the ground surface and automatically classified coarse woody debris from registered TLS scans. The outputs will be used to inform the development of a site-based index for the assessment of forest condition, and quantitative assessments of biomass and fuel loads. A survey grade terrestrial laser scanner (Riegl VZ400) was used to scan 13 positions, in an open eucalypt woodland site at Karawatha Forest Park, near Brisbane, Australia. Scans were registered, and a digital surface model (DSM) produced using an intensity threshold and an iterative morphological filter. The DSMs produced from single scans were compared to the registered multi-scan point cloud using standard error metrics including: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), range, absolute error and signed error. In addition the DSM was compared to a Digital Elevation Model (DEM) produced from Airborne Laser Scanning (ALS). Coarse woody debris was subsequently classified from the DSM using laser pulse properties, including: width and amplitude, as well as point spatial relationships (e.g. nearest neighbour slope vectors). Validation of the coarse woody debris classification was completed using true-colour photographs co-registered to the TLS point cloud. The volume and length of the coarse woody debris was calculated from the classified point cloud. A representative network of TLS sites will allow for up-scaling to large area assessment using airborne or space based sensors to monitor forest condition, biomass and fuel loads.
Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209
Inventory of forest and rangeland and detection of forest stress
NASA Technical Reports Server (NTRS)
Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. Some ERTS-1 imagery has been received for each of the test sites: Black Hills, Atlanta, and Manitou. Only small portions of each site are covered and clouds have precluded capturing good imagery over the center of each site. Discoloration infestations of ponderosa pine are being located and sized on CIR transparencies. A computer program was completed from microdensitometer scans of CIR photos which maps areas of an image which are spectrally similar. Decided differences between forest types are present as well as differences between forest and other vegetative and nonvegetative land classes.
Impacts of Alien Tree Invasion on Evapotranspiration in Tropical Montane Cloud Forest in Hawai'i
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Asner, G. P.; Martin, R. E.; Nullet, M. M.; Huang, M.; Delay, J. K.; Mudd, R. G.; Takahashi, M.
2007-12-01
Hawaiian tropical montane cloud forests (TMCFs) are ecologically and hydrologically valuable zones. TMCFs in Hawai'i serve as refugia for the remaining intact native terrestrial plant and animal ecosystems, and are major sources of hydrologic input to surface water and groundwater systems. Invasion of alien tree species, with obvious effects on the ecological integrity of TMCFs, also threatens to impact the hydrological services these forests provide. Much speculation has been made about the hydrological effects of replacing native forest tree species with alien trees in Hawai'i, but until now no measurements have been made to test these assertions. We established two study sites, each equipped with eddy covariance and other micrometeorological instrumentation, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, in the cloud forest zone of Hawai'i Volcanoes National Park. We are conducting measurements of stand-level evapotranspiration, transpiration (using sapflow techniques), energy balance, throughfall, stemflow, and soil moisture at each site. Preliminary analysis of these measurements shows that the fraction of available energy used for evapotranspiration (ET Fraction) at the native site is much higher for wet canopy conditions. The ET Fraction at the native site has an annual cycle corresponding to the annual cycle in leaf area. Deviations from the annual cycle are more closely related to variations in canopy wetness than to variations in soil moisture. Overall, ET as a function of available energy is 27% higher at the invaded site than the native site. The difference in ET between the two sites is especially pronounced during dry canopy periods, during which the ET Fraction is 53% higher at the invaded site than the native site. Sapflow measurements using heat balance collars show that leaf-area-specific transpiration is much greater in invasive P. cattleianum trees than in remnant native M. polymorpha trees at the invaded site. These results indicate that the P. cattleianum invasion is altering the hydrological cycle of the TMCF where it is found, with potential significant negative consequences for island water supply.
NASA Astrophysics Data System (ADS)
Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi
2017-04-01
Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.
Characterization of the 2012-044C BRIZ-M Upper Stage Breakup
NASA Astrophysics Data System (ADS)
Matney, M. J.; Hamilton, J.; Horstman, M.; Papanyan, V.
2013-08-01
On 6 August 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the U.S. Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for the NASA Orbital Debris Program Office to use specialized radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper describes the observation campaign to measure the small particle distributions of this cloud and presents the results of the data analysis. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion about how this measurement process can be improved for future breakups.
Characterization of the 2012-044C Briz-M Upper Stage Breakup
NASA Technical Reports Server (NTRS)
Matney, M. J.; Hamilton, J.; Horstman, M.; Papanyan, V.
2013-01-01
On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to use specialized radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups.
Characterization of the 2012-044c Briz-M Upper Stage Breakup
NASA Technical Reports Server (NTRS)
Matney, M. J.; Hamilton, Joseph; Papanyan, Valen
2013-01-01
On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to request radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups.
E.H. Helmer; Thomas S. Ruzycki; Jr. Joseph M. Wunderle; Shannon Vogesser; Bonnie Ruefenacht; Charles Kwit; Thomas J. Brandeis; David N. Ewert
2010-01-01
Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here we map tropical dry forest height (RMSE=0.9 m, R2=0.84, range 0.6â7 m), and we map foliage height profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera, The Bahamas, substituting time for vertical canopy...
Zhang, Meng-tao; Zhang, Qing; Kang, Xin-gang; Yang, Ying-jun; Xu, Guang; Zhang, Li-xin
2015-06-01
Based on the analysis of three forest communities (polar-birch secondary forest, spruce-fir mixed forest, spruce-fir near pristine forest) in Changbai Mountains, a total of 22 factors of 5 indices, including the population regeneration, soil fertility (soil moisture and soli nutrient), woodland productivity and species diversity that reflected community characteristics were used to evaluate the stability of forest community succession at different stages by calculating subordinate function values of a model based on fuzzy mathematics. The results that the indices of population regeneration, soli nutrient, woodland productivity and species diversity were the highest in the spruce-fir mixed forest, and the indices of soil moisture were the highest in the spruce-fir near-pristine forest. The stability of three forest communities was in order of natural spruce-fir mixed forest > spruce-fir near pristine forest > polar-birch secondary forest.
Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential
NASA Astrophysics Data System (ADS)
İnan, M.; Bilici, E.; Akay, A. E.
2017-11-01
Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.
Modeling Studying the Role of Bacteria on ice Nucleation Processes
NASA Astrophysics Data System (ADS)
Sun, J.
2006-12-01
Certain air-borne bacteria have been recognized as active ice nuclei at the temperatures warm than - 10°C. Ice nucleating bacteria commonly found in plants and ocean surface. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds and hailstones, and their importance in cloud formation process and precipitation, as well as causing diseases in plants and animal kingdom, have been considered for over two decades, but their significance in atmospheric processes are yet to be understood. A 1.5-D non-hydrostatic cumulus cloud model with bin-resolved microphysics is developed and is to used to examine the relative importance of sulphate aerosol concentrations on the evolution of cumulus cloud droplet spectra and ice multiplication process, as well as ice initiation process by ice nucleating bacteria in the growing stage of cumulus clouds and the key role of this process on the ice multiplication in the subsequent dissipating stage of cumulus clouds. In this paper, we will present some sensitivity test results of the evolution of cumulus cloud spectra, ice concentrations at various concentrations of sulfate aerosols, and at different ideal sounding profiles. We will discuss the implication of our results in understanding of ice nucleation processes.
Classifying stages of cirrus life-cycle evolution
NASA Astrophysics Data System (ADS)
Urbanek, Benedikt; Groß, Silke; Schäfler, Andreas; Wirth, Martin
2018-04-01
Airborne lidar backscatter data is used to determine in- and out-of-cloud regions. Lidar measurements of water vapor together with model temperature fields are used to calculate relative humidity over ice (RHi). Based on temperature and RHi we identify different stages of cirrus evolution: homogeneous and heterogeneous freezing, depositional growth, ice sublimation and sedimentation. We will present our classification scheme and first applications on mid-latitude cirrus clouds.
Toledo-Aceves, Tarin; Meave, Jorge A; González-Espinosa, Mario; Ramírez-Marcial, Neptalí
2011-03-01
Tropical montane cloud forests (TMCF) are among the most threatened ecosystems globally in spite of their high strategic value for sustainable development due to the key role played by these forests in hydrological cycle maintenance and as reservoirs of endemic biodiversity. Resources for effective conservation and management programs are rarely sufficient, and criteria must be applied to prioritize TMCF for conservation action. This paper reports a priority analysis of the 13 main regions of TMCF distribution in Mexico, based on four criteria: (1) forest quality, (2) threats to forest permanence, (3) threats to forest integrity, and (4) opportunities for conservation. Due to the diverse socio-environmental conditions of the local communities living in Mexican TMCF regions, their associated social characteristics were also evaluated to provide a background for the planning of conservation actions. A set of indicators was defined for the measurement of each criterion. To assign priority values for subregions within each main region, an international team of 40 participants evaluated all the indicators using multicriteria decision-making analysis. This procedure enabled the identification of 15 subregions of critical priority, 17 of high priority, and 10 of medium priority; three more were not analysed due to lack of information. The evaluation revealed a number of subjects that had hitherto been undetected and that may prove useful for prioritization efforts in other regions where TMCF is similarly documented and faces equally severe threats. Based on this analysis, key recommendations are outlined to advance conservation objectives in those TMCF areas that are subjected to high pressure on forest resources. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wike, Lynn D; Martin, F Douglas; Paller, Michael H; Nelson, Eric A
2010-01-01
Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests.
Environmental conditions regulate the impact of plants on cloud formation
Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.
2017-01-01
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253
Environmental conditions regulate the impact of plants on cloud formation.
Zhao, D F; Buchholz, A; Tillmann, R; Kleist, E; Wu, C; Rubach, F; Kiendler-Scharr, A; Rudich, Y; Wildt, J; Mentel, Th F
2017-02-20
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.
Solichin Manuri; Hans-Erik Andersen; Robert J. McGaughey; Cris Brack
2017-01-01
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition canvary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed...
NASA Technical Reports Server (NTRS)
Fiorella, Maria
1995-01-01
Forest and wildlife habitat analyses were conducted at the H.J. Andrews Experimental Forest in the Central Cascade Mountains of Oregon using remotely sensed data and a geographic information system (GIS). Landsat Thematic Mapper (TM) data were used to determine forest successional stages, and to analyze the structure of both old and young conifer forests. Two successional stage maps were developed. One was developed from six TM spectral bands alone, and the second was developed from six TM spectral bands and a relative sun incidence band. Including the sun incidence band in the classification improved the mapping accuracy in the two youngest successional stages, but did not improve overall accuracy or accuracy of the two oldest successional stages. Mean spectral values for old-growth and mature stands were compared in seven TM bands and seven band transformations. Differences between mature and old-growth successional stages were greatest for the band ratio of TM 4/5 (P = 0.00005) and the multiband transformation of wetness (P = 0.00003). The age of young conifer stands had the highest correlation to TM 4/5 values (r = 0.9559) of any of the TM band or band transformations used. TM 4/5 ratio values of poorly regenerated conifer stands were significantly different from well regenerated conifer stands after age 15 (P = 0.0000). TM 4/5 was named a 'Successional Stage Index' (SSI) because of its ability to distinguish forest successional stages. The forest successional stage map was used as input into a vertebrate richness model using GIS. The three variables of (1) successional stage, (2) elevation, and (3) site moisture were used in the GIS to predict the spatial occurrence of small mammal, amphibian, and reptile species based on primary and secondary habitat requirements. These occurrence or habitat maps were overlayed to tally the predicted number of vertebrate at any given point in the study area. Overall, sixty-three and sixty-seven percent of the model predictions for vertebrate occurrence matched the vertebrates that were trapped in the field in eight forested stands. Of the three model variables, site moisture appeared to have the greatest influence on the pattern of high vertebrate richness in all vertebrate classes.
Sabu, Thomas K.; Shiju, Raj T.; Vinod, KV.; Nithya, S.
2011-01-01
Little is known about the ground-dwelling arthropod diversity in tropical montane cloud forests (TMCF). Due to unique habitat conditions in TMCFs with continuously wet substrates and a waterlogged forest floor along with the innate biases of the pitfall trap, Berlese funnel and Winkler extractor are certain to make it difficult to choose the most appropriate method to sample the ground-dwelling arthropods in TMCFs. Among the three methods, the Winkler extractor was the most efficient method for quantitative data and pitfall trapping for qualitative data for most groups. Inclusion of floatation method as a complementary method along with the Winkler extractor would enable a comprehensive quantitative survey of ground-dwelling arthropods. Pitfall trapping is essential for both quantitative and qualitative sampling of Diplopoda, Opiliones, Orthoptera, and Diptera. The Winkler extractor was the best quantitative method for Psocoptera, Araneae, Isopoda, and Formicidae; and the Berlese funnel was best for Collembola and Chilopoda. For larval forms of different insect orders and the Acari, all the three methods were equally effective. PMID:21529148
Malhi, Yadvinder; Girardin, Cécile A J; Goldsmith, Gregory R; Doughty, Christopher E; Salinas, Norma; Metcalfe, Daniel B; Huaraca Huasco, Walter; Silva-Espejo, Javier E; Del Aguilla-Pasquell, Jhon; Farfán Amézquita, Filio; Aragão, Luiz E O C; Guerrieri, Rossella; Ishida, Françoise Yoko; Bahar, Nur H A; Farfan-Rios, William; Phillips, Oliver L; Meir, Patrick; Silman, Miles
2017-05-01
Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
[Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].
Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng
2014-04-01
Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.
NASA Astrophysics Data System (ADS)
Wu, J.; Yao, W.; Zhang, J.; Li, Y.
2018-04-01
Labeling 3D point cloud data with traditional supervised learning methods requires considerable labelled samples, the collection of which is cost and time expensive. This work focuses on adopting domain adaption concept to transfer existing trained random forest classifiers (based on source domain) to new data scenes (target domain), which aims at reducing the dependence of accurate 3D semantic labeling in point clouds on training samples from the new data scene. Firstly, two random forest classifiers were firstly trained with existing samples previously collected for other data. They were different from each other by using two different decision tree construction algorithms: C4.5 with information gain ratio and CART with Gini index. Secondly, four random forest classifiers adapted to the target domain are derived through transferring each tree in the source random forest models with two types of operations: structure expansion and reduction-SER and structure transfer-STRUT. Finally, points in target domain are labelled by fusing the four newly derived random forest classifiers using weights of evidence based fusion model. To validate our method, experimental analysis was conducted using 3 datasets: one is used as the source domain data (Vaihingen data for 3D Semantic Labelling); another two are used as the target domain data from two cities in China (Jinmen city and Dunhuang city). Overall accuracies of 85.5 % and 83.3 % for 3D labelling were achieved for Jinmen city and Dunhuang city data respectively, with only 1/3 newly labelled samples compared to the cases without domain adaption.
Microphysics of Pyrocumulonimbus Clouds
NASA Technical Reports Server (NTRS)
Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann
2004-01-01
The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916
Fast image interpolation via random forests.
Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui
2015-10-01
This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.
1984-10-07
41G-39-044 (5-13 Oct 1984) --- "Flatirons", cumulonimbus clouds that have flattened out at a high altitude, the result of rapidly rising moist air. At a given altitude, depending on the temperature, wind, and humidity, the cloud mass can no longer rise and the wind aloft shears the cloud. Central Nigeria, an area in which tropical rain forest gives way to dryer savannah lands, lies beneath a layer a heavy haze and smoke. The crew consisted of astronauts Robert L. Crippen, commander; Jon A. McBride, pilot; mission specialist's Kathryn D. Sullivan, Sally K. Ride, and David D. Leestma; Canadian astronaut Marc Garneau, and Paul D. Scully-Power, payload specialist's.
NASA Astrophysics Data System (ADS)
Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.
2015-04-01
It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water was almost twice (81.1 μS/cm) as that in the absence of LRTAD (47.7 μS/cm), (2) the average conductivity in rainwater was slightly higher (15.0 μS/cm vs 12.8 μS/cm), and (3) the average pH was slightly higher for both cloud and rainwater samples (average of 6.41 for cloud water and 6.37 for rainwater). Detailed results on the chemical composition (water-soluble ions, trace metals, total organic carbon and total nitrogen) of cloud and rainwater, cloud microphysics, and on how these properties are affected in the presence of dust events will be presented at the meeting.
Challenges and Security in Cloud Computing
NASA Astrophysics Data System (ADS)
Chang, Hyokyung; Choi, Euiin
People who live in this world want to solve any problems as they happen then. An IT technology called Ubiquitous computing should help the situations easier and we call a technology which makes it even better and powerful cloud computing. Cloud computing, however, is at the stage of the beginning to implement and use and it faces a lot of challenges in technical matters and security issues. This paper looks at the cloud computing security.
NASA Astrophysics Data System (ADS)
Heus, Thijs; Jonker, Harm J. J.; van den Akker, Harry E. A.; Griffith, Eric J.; Koutek, Michal; Post, Frits H.
2009-03-01
In this study, a new method is developed to investigate the entire life cycle of shallow cumuli in large eddy simulations. Although trained observers have no problem in distinguishing the different life stages of a cloud, this process proves difficult to automate, because cloud-splitting and cloud-merging events complicate the distinction between a single system divided in several cloudy parts and two independent systems that collided. Because the human perception is well equipped to capture and to make sense of these time-dependent three-dimensional features, a combination of automated constraints and human inspection in a three-dimensional virtual reality environment is used to select clouds that are exemplary in their behavior throughout their entire life span. Three specific cases (ARM, BOMEX, and BOMEX without large-scale forcings) are analyzed in this way, and the considerable number of selected clouds warrants reliable statistics of cloud properties conditioned on the phase in their life cycle. The most dominant feature in this statistical life cycle analysis is the pulsating growth that is present throughout the entire lifetime of the cloud, independent of the case and of the large-scale forcings. The pulses are a self-sustained phenomenon, driven by a balance between buoyancy and horizontal convergence of dry air. The convective inhibition just above the cloud base plays a crucial role as a barrier for the cloud to overcome in its infancy stage, and as a buffer region later on, ensuring a steady supply of buoyancy into the cloud.
Nasal mites from birds of a Guatemalan cloud forest (Acarina: rhinonyssidae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spicer, G.S.
1984-01-01
A survey of the nasal mites from Guatemalan cloud forest birds is reported. Seventy-eight birds, representing 10 families and 18 species, were examined. Prevalence of infection was 24%. Two new species are described: Sternostoma darlingi from Mitrephanes phaeocercus (Tyrannidae) and S. pencei from Empidonax flavescens (Tyrannidae). New host records are reported for S. priangae from Chlorospingus opthalmicus (Thraupidae), S. hutsoni from Catharus dryas (Turdidae), Ptilonyssus sairae from Chlorospingus opthalmicus (Thraupidae), and Myioborus miniatus (Parulidae), P. euroturdi from Catharus dryas (Turdidae), P. tyrannus from Empidonax flavescens and Mitrephanes phaeocercus (both Tyannidae), and Tinaminyssus ixoreus from Catharus dryas (Turdidae). The subspecies Ptilonyssusmore » euroturdi mimicola Fain and Hyland is synonymized with the nominate subspecies. Data are presented to suggest that the Rhinonyssidae may be a polyphyletic assemblage. 35 references, 12 figures, 1 table.« less
Modelling Single Tree Structure with Terrestrial Laser Scanner
NASA Astrophysics Data System (ADS)
Yurtseven, H.; Akgül, M.; Gülci, S.
2017-11-01
Recent technological developments, which has reliable accuracy and quality for all engineering works, such as remote sensing tools have wide range use in forestry applications. Last decade, sustainable use and management opportunities of forest resources are favorite topics. Thus, precision of obtained data plays an important role in evaluation of current status of forests' value. The use of aerial and terrestrial laser technology has more reliable and effective models to advance the appropriate natural resource management. This study investigates the use of terrestrial laser scanner (TLS) technology in forestry, and also the methodological data processing stages for tree volume extraction is explained. Z+F Imager 5010C TLS system was used for measure single tree information such as tree height, diameter of breast height, branch volume and canopy closure. In this context more detailed and accurate data can be obtained than conventional inventory sampling in forestry by using TLS systems. However the accuracy of obtained data is up to the experiences of TLS operator in the field. Number of scan stations and its positions are other important factors to reduce noise effect and accurate 3D modelling. The results indicated that the use of point cloud data to extract tree information for forestry applications are promising methodology for precision forestry.
A Pilot Sampling Design for Estimating Outdoor Recreation Site Visits on the National Forests
Stanley J. Zarnoch; S.M. Kocis; H. Ken Cordell; D.B.K. English
2002-01-01
A pilot sampling design is described for estimating site visits to National Forest System lands. The three-stage sampling design consisted of national forest ranger districts, site days within ranger districts, and last-exiting recreation visitors within site days. Stratification was used at both the primary and secondary stages. Ranger districts were stratified based...
Assessment of forest quality in southwestern Poland with the use of remotely sensed data
Zbigniew Bochenek; Andrzej Ciolkosz; Maria Iracka
1998-01-01
A three-stage approach was applied to assess the quality of forests in southwestern Poland, which are heavily affected with air pollution and insect infestations. In the first stage a ground evaluation of spruce stands was done within the selected test areas. Three main characteristics of forest quality were determined as a result of these works: defoliation,...
Chemical abundances in cold, dark interstellar clouds
NASA Technical Reports Server (NTRS)
Irvine, William M.; Kaifu, Norio; Ohishi, Masatoshi
1991-01-01
Current tabulations are presented of the entire range of known interstellar molecules, giving attention to that subset which has been identified in the cold, dark interstellar clouds out of which the sun has been suggested to have formed. The molecular abundances of two such clouds, Taurus Molecular Cloud 1 and Lynd's 134N, exhibit prepossessing chemical differences despite considerable physical similarities. This discrepancy may be accounted for by the two clouds' differing evolutionary stages. Two novel classes of interstellar molecules are noted: sulfur-terminated carbon chains and silicon-terminated ones.
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular, full-color image of the Earth is a composite of the first full day of data gathered by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. MODIS collected the data for each wavelength of red, green, and blue light as Terra passed over the daylit side of the Earth on April 19, 2000. Terra is orbiting close enough to the Earth so that it cannot quite see the entire surface in a day, resulting in the narrow gaps around the equator. Although the sensor's visible channels were combined to form this true-color picture, MODIS collects data in a total of 36 wavelengths, ranging from visible to thermal infrared energy. Scientists use these data to measure regional and global-scale changes in marine and land-based plant life, sea and land surface temperatures, cloud properties, aerosols, fires, and land surface properties. Notice how cloudy the Earth is, and the large differences in brightness between clouds, deserts, oceans, and forests. The Antarctic, surrounded by clockwise swirls of cloud, is shrouded in darkness because the sun is north of the equator at this time of year. The tropical forests of Africa, Southeast Asia, and South America are shrouded by clouds. The bright Sahara and Arabian deserts stand out clearly. Green vegetation is apparent in the southeast United States, the Yucatan Peninsula, and Madagascar. Image by Mark Gray, MODIS Atmosphere Team, NASA GSFC
Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest
NASA Astrophysics Data System (ADS)
Nyirambangutse, Brigitte; Zibera, Etienne; Uwizeye, Félicien K.; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran
2017-03-01
As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8 %, elevation > 1000 m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35 % larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76 Mg C ha-1 in LS and ES plots), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204 Mg C ha-1 in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ˜ 9.4 Mg C ha-1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of tree species dominating at different successional stages in an attempt to quantify the C stock and sink strength of tropical montane forests and how they may differ among continents.
MISR Level 3 Cloud Motion Vector Versioning
Atmospheric Science Data Center
2016-11-04
... Versioning Cloud Motion Vector Product (CMV) - Monthly, Quarterly, Yearly products Processing Status ... MI3MCMVN, MI3QCMVN, MI3YCMVN MISR_AM1_CMV Stage 1 Validated: All parameters MISR maturity ...
Häger, Achim
2010-12-01
On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that beta-diversity in the study area is largely driven by species with narrow spatial ranges, due to the interactions between topography, climate and soil formation processes, especially around the wind-exposed and cloud covered ridge area. The findings emphasize the extraordinary conservation value of tropical montane cloud forests in environmentally heterogeneous areas at mid-elevations.
A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations
Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong
2018-01-01
Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics. PMID:29744257
A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations.
Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong
2016-10-16
Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.
A Lagrangian Analysis of Cold Cloud Clusters and Their Life Cycles With Satellite Observations
NASA Technical Reports Server (NTRS)
Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong
2016-01-01
Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Nino. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.
Landsat 7 - First Cloud-free Image of Yellowstone National Park
NASA Technical Reports Server (NTRS)
2002-01-01
This image of Yellowstone Lake, in the center of Yellowstone National Park, was taken by Landsat 7 on July 13, 1999. Bands 5 (1.65um),4 (.825um), and 2 (.565um) were used for red, green, and blue, respectively. Water appears blue/black, snow light blue, mature forest red/green, young forest pink, and grass and fields appear light green. Southwest of the lake is young forest that is growing in the wake of the widespread fires of 1988. For more information, see: Landsat 7 Fact Sheet Landsat 7 in Mission Control Image by Rich Irish, NASA GSFC
Mapping Successional Stages in a Wet Tropical Forest Using Landsat ETM+ and Forest Inventory Data
NASA Technical Reports Server (NTRS)
Goncalves, Fabio G.; Yatskov, Mikhail; dos Santos, Joao Roberto; Treuhaft, Robert N.; Law, Beverly E.
2010-01-01
In this study, we test whether an existing classification technique based on the integration of Landsat ETM+ and forest inventory data enables detailed characterization of successional stages in a wet tropical forest site. The specific objectives were: (1) to map forest age classes across the La Selva Biological Station in Costa Rica; and (2) to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation height entropy (a surrogate for forest age) and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (12.9%). Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and advanced successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels.
Successional changes of Collembola and soil microbiota during forest rotation.
Chauvat, Matthieu; Zaitsev, Andrei S; Wolters, Volkmar
2003-10-01
Dynamic approaches to forest ecosystems are surprisingly rare. Here we report about successional changes in collembolan community structure and microbial performances during forest rotation. The study was carried out in a chronosequence of four spruce forest stands (5-, 25-, 45-, and 95 years old; Tharandter forest, Germany). CO2 release significantly increased after clear-cutting and the amount of C stored in the organic layer subsequently declined. The early phase of forest rotation was characterized by a very active decomposer microflora, stimulation of both fungi and bacteria as well as by a high abundance of surface-oriented Collembola. In addition, collembolan species turnover was accelerated. While the biomass of fungi further increased at intermediate stages of forest rotation, the metabolic activity of the microflora was low, the functional diversity of bacteria declined and the collembolan community became impoverished. Euedaphic species dominated during this stage of forest development. These changes can be explained by both reduction in microhabitat diversity and depletion of food sources associated with an accumulation of recalcitrant soil organic matter. Results of the General Regression Model procedure indicate a shift from specific associations between collembolan functional groups and microbiota at the early stage of forest rotation to a more diffuse pattern at intermediate stages. Though the hypothesis that Collembola are relatively responsive to changes in environmental conditions is confirmed, consistently high community similarity suggests a remarkable persistence of some components of microarthropod assemblages. Our study provides evidence for substantial ecosystem-level implications of changes in the soil food web during forest rotation. Moreover, correlations between bacterial parameters and Collembola point to the overarching impact of differences in the composition of the microbial community on microarthropods.
UV 380 nm reflectivity of the Earth's surface, clouds and aerosols
NASA Astrophysics Data System (ADS)
Herman, J. R.; Celarier, E.; Larko, D.
2001-03-01
The 380 nm radiance measurements of the Total Ozone Mapping Spectrometer (TOMS) have been converted into a global data set of daily (1979-1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice) and then corrected to RPC for the presence of partly clouded scenes. Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicate the presence of clouds, haze, or aerosols in the satellite field of view. A statistical analysis of 14 years of daily reflectivity data shows that most snow-/ice-free scenes observed by TOMS have a reflectivity less than 10% for the majority of days during a year. The 380 nm reflectivity data show that the true surface reflectivity is 2-3% lower than the most frequently occurring reflectivity value for each TOMS scene as seen from space. Most likely the cause is a combination of frequently occurring boundary layer water and/or aerosol haze. For most regions the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R>15%) more than half of each year. In the low to middle latitudes the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show both the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.
NASA Astrophysics Data System (ADS)
Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina
2015-04-01
An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.
COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications
NASA Astrophysics Data System (ADS)
Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi
2012-05-01
The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.
NASA Astrophysics Data System (ADS)
Arias, P.; Fu, R.; Li, W.
2007-12-01
Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease of convective and total cloudiness over the Southern Amazon basin, due to an increase of LFC and atmospheric thermodynamic stability. Such an increase of surface SW radiation probably has contributed to the increasing in growth rate for the forests in the Amazon forests. Currently, the same analysis is being applied using radiosonde data from the Comprehensive Aerological Reference Data Set (CARDS) over the Amazon and Congo basins and the Southeast Asia. Our objective is to identify changes in cloudiness over tropical land and identify its underlying causes, especially the link to changes in surface temperature and humidity.
Ornelas, Juan Francisco; Gándara, Etelvina; Vásquez-Aguilar, Antonio Acini; Ramírez-Barahona, Santiago; Ortiz-Rodriguez, Andrés Ernesto; González, Clementina; Mejía Saules, María Teresa; Ruiz-Sanchez, Eduardo
2016-04-12
Ecological adaptation to host taxa is thought to result in mistletoe speciation via race formation. However, historical and ecological factors could also contribute to explain genetic structuring particularly when mistletoe host races are distributed allopatrically. Using sequence data from nuclear (ITS) and chloroplast (trnL-F) DNA, we investigate the genetic differentiation of 31 Psittacanthus schiedeanus (Loranthaceae) populations across the Mesoamerican species range. We conducted phylogenetic, population and spatial genetic analyses on 274 individuals of P. schiedeanus to gain insight of the evolutionary history of these populations. Species distribution modeling, isolation with migration and Bayesian inference methods were used to infer the evolutionary transition of mistletoe invasion, in which evolutionary scenarios were compared through posterior probabilities. Our analyses revealed shallow levels of population structure with three genetic groups present across the sample area. Nine haplotypes were identified after sequencing the trnL-F intergenic spacer. These haplotypes showed phylogeographic structure, with three groups with restricted gene flow corresponding to the distribution of individuals/populations separated by habitat (cloud forest localities from San Luis Potosí to northwestern Oaxaca and Chiapas, localities with xeric vegetation in central Oaxaca, and localities with tropical deciduous forests in Chiapas), with post-glacial population expansions and potentially corresponding to post-glacial invasion types. Similarly, 44 ITS ribotypes suggest phylogeographic structure, despite the fact that most frequent ribotypes are widespread indicating effective nuclear gene flow via pollen. Gene flow estimates, a significant genetic signal of demographic expansion, and range shifts under past climatic conditions predicted by species distribution modeling suggest post-glacial invasion of P. schiedeanus mistletoes to cloud forests. However, Approximate Bayesian Computation (ABC) analyses strongly supported a scenario of simultaneous divergence among the three groups isolated recently. Our results provide support for the predominant role of isolation and environmental factors in driving genetic differentiation of Mesoamerican parrot-flower mistletoes. The ABC results are consistent with a scenario of post-glacial mistletoe invasion, independent of host identity, and that habitat types recently isolated P. schiedeanus populations, accumulating slight phenotypic differences among genetic groups due to recent migration across habitats. Under this scenario, climatic fluctuations throughout the Pleistocene would have altered the distribution of suitable habitat for mistletoes throughout Mesoamerica leading to variation in population continuity and isolation. Our findings add to an understanding of the role of recent isolation and colonization in shaping cloud forest communities in the region.
Spatio-temporal Change Patterns of Tropical Forests from 2000 to 2014 Using MOD09A1 Dataset
NASA Astrophysics Data System (ADS)
Qin, Y.; Xiao, X.; Dong, J.
2016-12-01
Large-scale deforestation and forest degradation in the tropical region have resulted in extensive carbon emissions and biodiversity loss. However, restricted by the availability of good-quality observations, large uncertainty exists in mapping the spatial distribution of forests and their spatio-temporal changes. In this study, we proposed a pixel- and phenology-based algorithm to identify and map annual tropical forests from 2000 to 2014, using the 8-day, 500-m MOD09A1 (v005) product, under the support of Google cloud computing (Google Earth Engine). A temporal filter was applied to reduce the random noises and to identify the spatio-temporal changes of forests. We then built up a confusion matrix and assessed the accuracy of the annual forest maps based on the ground reference interpreted from high spatial resolution images in Google Earth. The resultant forest maps showed the consistent forest/non-forest, forest loss, and forest gain in the pan-tropical zone during 2000 - 2014. The proposed algorithm showed the potential for tropical forest mapping and the resultant forest maps are important for the estimation of carbon emission and biodiversity loss.
NASA Astrophysics Data System (ADS)
González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila
2018-04-01
Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation and anthropogenic pressures all over the country, making TDFs a top priority for conservation in Colombia.
Costa Rica, Central America as seen from STS-60
1994-02-09
STS060-85-000AD (3-11 Feb 1994) --- This photograph shows the Central American nations of Nicaragua, Costa Rica and parts of Panama. Lake Nicaragua defines the southern limits of the country of Nicaragua. The cloud-free portion of the photo shows Costa Rica, it's gulf and Peninsula of Nicoya. Agricultural land use is clearly seen around Nicoya and a few islands of tropical forests are seen at the edges. The capital city of San Jose, Costa Rica, is partly cloud-covered in this image.
2007-03-01
examples of plumes with a natural cause. Figure 3.2 The left true colour panel depicts part of the Iberian peninsula . The huge forest fires in Portugal...these research activities has been dedicated to the provision of a number of atmospherical products for air quality and climate studies within the EU...as cloud condensation nuclei for the formation of clouds, which is an important topic in climate studies. The products in the former paragraphs, such
Differential Responses of Neotropical Mountain Forests to Climate Change during the Last Millenium
NASA Astrophysics Data System (ADS)
Figueroa-Rangel, B. L.; Olvera Vargas, M.
2013-05-01
The long-term perspective in the conservation of mountain ecosystems using palaeoecological and paleoclimatological techniques are providing with crucial information for the understanding of the temporal range and variability of ecological pattern and processes. This perception is contributing with means to anticipate future conditions of these ecosystems, especially their response to climate change. Neotropical mountain forests, created by a particular geological and climatic history in the Americas, represent one of the most distinctive ecosystems in the tropics which are constantly subject to disturbances included climate change. Mexico due to its geographical location between the convergence of temperate and tropical elements, its diverse physiography and climatic heterogeneity, contains neotropical ecosystems with high biodiversity and endemicity whose structure and taxonomical composition have changed along centurial to millennial scales. Different neotropical forests expand along the mountain chains of Mexico with particular responses along spatial and temporal scales. Therefore in order to capture these scales at fine resolution, sedimentary sequences from forest hollows were retrieved from three forest at different altitudes within 10 km; Pine forest (PF), Transitional forest (TF) and Cloud forest (CF). Ordination techniques were used to relate changes in vegetation with the environment every ~60 years. The three forests experience the effect of the dry stage ~AD 800-1200 related to the Medieval Warm Period reported for several regions of the world. CF contracted, PF expanded while the TF evolved from CF to a community dominated by dry-resistant epiphytes. Dry periods in PF and TF overlapped with the increase in fire occurrences while a dissimilar pattern took place in CF. Maize, Asteraceae and Poaceae were higher during dry intervals while epiphytes decreased. A humid period ~1200-1450 AD was associated with an expansion and a high taxa turnover in CF. During periods of aridity, temporal heterogeneity in the abundance of individual taxa was crucial in the determination of forest resilience following climate change, where some taxa disappeared for hundreds years and then reappeared when humidity returns. Given the global climate change prediction for neotropical forests where drier environments are expected, the long-term resilience of these ecosystems may be greatly reduced. Fire was determined as an essential natural component of the PF. Consequently conservation and management strategies should always regard fire as an important tool for its present and future perpetuation. CF is a vulnerable community, distinctive in temporal taxa composition, therefore site-specificity protection schemes are crucial for its future preservation.TF was a CF in the past developing into a Pinus-Carpinus-Quercus forest today. Given the present-day predictions of global warming, the goal in this forest is to avoid its conversion into an open-land establishing strict protection schemes.
NASA Astrophysics Data System (ADS)
Jordan, T. R.; Madden, M.; Sharma, J. B.; Panda, S. S.
2012-07-01
In an innovative collaboration between government, university and private industry, researchers at the University of Georgia and Gainesville State College are collaborating with Photo Science, Inc. to acquire, process and quality control check lidar and or-thoimages of forest areas in the Southern Appalachian Mountains of the United States. Funded by the U.S. Geological Survey, this project meets the objectives of the ARRA initiative by creating jobs, preserving jobs and training students for high skill positions in geospatial technology. Leaf-off lidar data were acquired at 1-m resolution of the Tennessee portion of the Great Smoky Mountain National Park (GRSM) and adjacent Foothills Parkway. This 1400-sq. km. area is of high priority for national/global interests due to biodiversity, rare and endangered species and protection of some of the last remaining virgin forest in the U.S. High spatial resolution (30 cm) leaf-off 4-band multispectral orthoimages also were acquired for both the Chattahoochee National Forest in north Georgia and the entire GRSM. The data are intended to augment the National Elevation Dataset and orthoimage database of The National Map with information that can be used by many researchers in applications of LiDAR point clouds, high resolution DEMs and or-thoimage mosaics. Graduate and undergraduate students were involved at every stage of the workflow in order to provide then with high level technical educational and professional experience in preparation for entering the geospatial workforce. This paper will present geospatial workflow strategies, multi-team coordination, distance-learning training and industry-academia partnership.
Lightning activity during the 1999 Superior derecho
NASA Astrophysics Data System (ADS)
Price, Colin G.; Murphy, Brian P.
2002-12-01
On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.
Lightning Activity During the 1999 Superior Derecho
NASA Astrophysics Data System (ADS)
Price, C. G.; Murphy, B. P.
2002-12-01
On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.
Fiers, Frank; Jocque, Merlijn
2013-01-01
Five different species of Copepoda were extracted from a leaf litter sample collected on the top (at 2000 m a.s.l.) of a cloud forested mountain in El Cusuco National Park, Honduras. Three of them, one Cyclopidae and two Canthocamptidae are new to science, and are described herein. Olmeccyclops hondo sp. nov. is the second representative thus far known of this New World genus. Moraria catracha sp. nov. and Moraria cusuca sp. nov. are the first formally described members of the genus occurring in Central America. The concept of a "Moraria-group" is considered to be an artificial grouping and is limited here to the genera Moraria and Morariopsis only. The distributional range of this group is essentially Holarctic, with the mountainous regions in Honduras, and probably in west Nicaragua, as the southernmost limits in the New World.
Tropical cloud forest climate variability and the demise of the Monteverde golden toad
Anchukaitis, Kevin J.; Evans, Michael N.
2010-01-01
Widespread amphibian extinctions in the mountains of the American tropics have been blamed on the interaction of anthropogenic climate change and a lethal pathogen. However, limited meteorological records make it difficult to conclude whether current climate conditions at these sites are actually exceptional in the context of natural variability. We use stable oxygen isotope measurements from trees without annual rings to reconstruct a century of hydroclimatology in the Monteverde Cloud Forest of Costa Rica. High-resolution measurements reveal coherent isotope cycles that provide annual chronological control and paleoclimate information. Climate variability is dominated by interannual variance in dry season moisture associated with El Niño Southern Oscillation events. There is no evidence of a trend associated with global warming. Rather, the extinction of the Monteverde golden toad (Bufo periglenes) appears to have coincided with an exceptionally dry interval caused by the 1986–1987 El Niño event. PMID:20194772
Animation of Sequoia Forest Fire
NASA Technical Reports Server (NTRS)
2002-01-01
Continued hot, dry weather in the American west contributed to the spread of numerous fires over the weekend of July 29-30, 2000. This is the most active fire season in the United States since 1988, when large portions of Yellowstone National Park burned. One of the largest fires currently burning has consumed more than 63,000 acres in Sequoia National Forest. This NOAA Geostationary Operational Environmental Satellite (GOES) image shows the fire on the afternoon of July 30, 2000. Note the clouds above the smoke plume. These often form during large fires because updrafts lift warm air near the ground high into the atmosphere, cooling the air and causing the water vapor it contains to condense into droplets. The soot particles in the smoke also act as condensation nuclei for the droplets. View the animation of GOES data to see the smoke forming clouds. Image and Animation by Robert Simmon and Marit-Jentoft Nilsen, NASA GSFC, based on data from NOAA.
[Two new species of Phrynopus (Anura: Leptodactylidae) from the Bolivian cloud forests].
Aguayo Vedia, C R; Harvey, M B
2001-03-01
We describe two new species of Phrynopus from cloud forests in Cochabamba, Bolivia. The new species are assigned to the P. peruanus group and are characterized by the presence of basal webbing, distinctive coloration, and by having the first finger shorter than the second. The first of these new species was collected near Montepunko in Parque Nacional Carrasco and is known from eight males and six females. Among its distinctive characteristics are round cream-colored glands on its flanks. A second species is known from one male and one female collected near "Zona de Aguirre" near the northwest border of the park. V and X-shaped blotches and a dorsum that is smooth except for dorsolateral and scapular folds characterize this species. Musculature has rarely been described for species of Phrynopus. The species from Montepunko has unusual gular and thigh musculature that is quite unlike other species of the genus.
Earth observations taken during the STS-71 mission
1995-06-29
STS071-701-098 (27 June-7 July 1995) --- This wide-angle, west-looking view shows all of California, from the Los Angeles basin (left, at the coast), to the Oregon border (far right). A large cloud mass occupies the Pacific Ocean all the way to the horizon. The effect of interaction between the land and sea can be seen by the cloud patterns at the coast. San Francisco lies in the bay where clouds penetrate inland farthest (right of center). The central valley of California stands out very well as a cigar-shaped feature across the center of view - green in the middle, surrounded by a brown line, with dark green (forests) surrounding that.
Shallow cloud statistics over Tropical Western Pacific: CAM5 versus ARM Comparison
NASA Astrophysics Data System (ADS)
Chandra, A.; Zhang, C.; Klein, S. A.; Ma, H. Y.; Kollias, P.; Xie, S.
2014-12-01
The role of shallow convection in the tropical convective cloud life cycle has received increasing interest because of its sensitivity to simulate large-scale tropical disturbances such as MJO. Though previous studies have proposed several hypotheses to explain the role of shallow clouds in the convective life cycle, our understanding on the role of shallow clouds is still premature. There are more questions needs to be addressed related to the role of different cloud population, conditions favorable for shallow to deep convection transitions, and their characteristics at different stages of the convective cloud life. The present study aims to improve the understanding of the shallow clouds by documenting the role of different shallow cloud population for the Year of Tropical Convection period using Atmospheric Radiation Measurement observations at the Tropical Western Pacific Manus site. The performance of the CAM5 model to simulate shallow clouds are tested using observed cloud statistics.
Forests and Phenology: Designing the Early Warning System to Understand Forest Change
NASA Astrophysics Data System (ADS)
Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.
2010-12-01
Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology transfer methodologies. Achieving Context and Meaning: To provide deeper meaning and knowledge about the Early Warning System to users, this stage of the Early Warning System provides more information about specific examples of disturbances seen in the phenological data, as well the spatial and temporal context to these disturbances. The main components of this stage are specific case studies of forest disturbances. Accessing Data: This component of the Early Warning System includes products for research scientists, the aerial detection survey sketch mapper community, and others who will access and analyze the Early Warning System and phenological data. Products and data will be available through online GIS mashups and WMS and KML downloads. Utilizing Services: The final stage of the Early Warning System supports the analysis of phenological data and serves the results to those end users, including forest managers, the forest industry, and the public, who need to locate past, present, and potential forest disturbances. The main components of this stage include data-driven web tools, automated analysis processes, and end user training programs.
How might Australian rainforest cloud interception respond to climate change?
NASA Astrophysics Data System (ADS)
Wallace, Jim; McJannet, Dave
2013-02-01
SummaryThe lower and upper montane rainforests in northern Queensland receive significant amounts of cloud interception that affect both in situ canopy wetness and downstream runoff. Cloud interception contributes 5-30% of the annual water input to the canopy and this increases to 40-70% of the monthly water input during the dry season. This occult water is therefore an important input to the canopy, sustaining the epiphytes, mosses and other species that depend on wet canopy conditions. The potential effect of climate change on cloud interception was examined using the relationship between cloud interception and cloud frequency derived from measurements made at four different rainforest locations. Any given change in cloud frequency produces a greater change in cloud interception and this 'amplification' increases from 1.1 to 1.7 as cloud frequency increases from 5% to 70%. This means that any changes in cloud frequency will have the greatest relative effects at the higher altitude sites where cloud interception is greatest. As cloud frequency is also a major factor affecting canopy wetness, any given change in cloud frequency will therefore have a greater impact on canopy wetness at the higher altitude sites. These changes in wetness duration will augment those due to changes in rainfall and may have important implications for the fauna and flora that depend on wet canopy conditions. We also found that the Australian rainforests may be more efficient (by ˜50% on average) in intercepting cloud water than American coniferous forests, which may be due to differences in canopy structure and exposure at the different sites.
E.H. Helmer; T.A. Kennaway; D.H. Pedreros; M.L. Clark; H. Marcano-Vega; L.L. Tieszen; S.R. Schill; C.M.S. Carrington
2008-01-01
Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius...
NASA Astrophysics Data System (ADS)
Sassen, K.; Canonica, L.; James, C.; Khvorostyanov, V.
2005-12-01
Water-dominated altocumulus clouds are distributed world-wide in the middle troposphere, and so are generally supercooled clouds with variable amounts of ice production via the heterogeneous droplet freezing process, which depends on temperature and the availability of ice nuclei. Although they tend to be relatively optically thin (i.e., for water clouds) and may often act similarly to cirrus clouds, altocumulus are globally widespread and probably play a significant role in maintaining the radiation balance of the Earth/atmosphere system. We will review recent cloud microphysical/ radiative model findings describing their impact on radiation transfer, and how increasing ice content (leading to cloud glaciation) affects their radiative impact. These simulations are based on the results of a polarization lidar climatology of the macrophysical properties of midlatitude altocumulus clouds, which variably produced ice virga. A new more advanced polarization lidar algorithm for characterizing mixed-phase cloud properties is currently being developed. Relative ice content is shown to have a large effect on atmospheric heating rates. We will also present lidar data examples, from Florida to Alaska, that indicate how desert dust and forest fire smoke aerosols can affect supercooled cloud phase. Since such aerosols may be becoming increasingly prevalent due to various human activities or climate change itself, it is important to assess the potential effects of increasing ice nuclei to climate change.
NASA Astrophysics Data System (ADS)
Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.
2018-05-01
Experimental investigations on the characteristic time of suppression of the thermal decomposition reaction of typical forest combustible materials (aspen twigs, birch leaves, spruce needles, pine chips, and a mixture of these materials) and the volume of water required for this purpose have been performed for model fire hotbeds of different areas: SFCM = 0.0003-0.007 m2 and SFCM = 0.045-0.245 m2. In the experiments, aerosol water flows with droplets of size 0.01-0.25 mm were used for the spraying of model fire hotbeds, and the density of spraying was 0.02 L/(m2·s). It was established that the characteristics of suppression of a fire by an aerosol water flow are mainly determined by the sizes of the droplets in this flow. Prognostic estimates of changes in the dispersivity of a droplet cloud, formed from large (as large as 0.5 L) "drops" (water agglomerates) thrown down from a height, have been made. It is shown that these changes can influence the conditions and characteristics of suppression of a forest fire. Dependences, allowing one to forecast the characteristics of suppression of the thermal decomposition of forest combustible materials with the use of large water agglomerates thrown down from an aircraft and aerosol clouds formed from these agglomerates in the process of their movement to the earth, are presented.
NASA Astrophysics Data System (ADS)
Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.
2018-03-01
Experimental investigations on the characteristic time of suppression of the thermal decomposition reaction of typical forest combustible materials (aspen twigs, birch leaves, spruce needles, pine chips, and a mixture of these materials) and the volume of water required for this purpose have been performed for model fire hotbeds of different areas: SFCM = 0.0003-0.007 m2 and SFCM = 0.045-0.245 m2. In the experiments, aerosol water flows with droplets of size 0.01-0.25 mm were used for the spraying of model fire hotbeds, and the density of spraying was 0.02 L/(m2·s). It was established that the characteristics of suppression of a fire by an aerosol water flow are mainly determined by the sizes of the droplets in this flow. Prognostic estimates of changes in the dispersivity of a droplet cloud, formed from large (as large as 0.5 L) "drops" (water agglomerates) thrown down from a height, have been made. It is shown that these changes can influence the conditions and characteristics of suppression of a forest fire. Dependences, allowing one to forecast the characteristics of suppression of the thermal decomposition of forest combustible materials with the use of large water agglomerates thrown down from an aircraft and aerosol clouds formed from these agglomerates in the process of their movement to the earth, are presented.
Halffter, Gonzalo; Pineda, Eduardo; Arellano, Lucrecia; Escobar, Federico
2007-12-01
We analyzed changes over time in species composition and functional guild structure (temporal beta diversity) for natural assemblages and those modified by humans in a fragmented, tropical mountain landscape. The assemblages belong to cloud forests (the original vegetation type), secondary forests, traditional shaded coffee plantations, commercial shaded coffee plantations, and a cattle pasture. Copronecrophagous beetles, subfamily Scarabaeinae (Insecta: Coleoptera: Scarabaeidae), were used as the indicator group. This group has been used in previous studies and other tropical forests and has been found to be a good indicator of the effects of anthropogenic change. For each assemblage, we compared samples that were collected several years apart. Changes were found in species composition, order of abundance, and in the proportion that a given species is present in the different functional groups. The changes that occurred between samplings affected the less abundant species in the cloud forest and in the pasture. In the other vegetation types, both abundant and less abundant species were affected. Their order of abundance and proportion in the different guilds also changed. This study shows that, although landscape richness remains relatively constant, richness at the local level (alpha diversity) changes notably even over short lapses of time. This could be a characteristic of landscapes with intermediate degrees of disturbance (such as those that have been partially modified for human use), where assemblage composition is very fluid.
Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion
NASA Technical Reports Server (NTRS)
Wilson, L.; Self, S.
1980-01-01
Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan
We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less
Roshan, Zahra Sepehri; Anushiravani, Sina; Karimi, Soroor; Moradi, Hossein Varasteh; Salmanmahini, Abdol Rasoul
2017-02-01
Every stage of succession may provide certain species with habitat requirements which are impossible in other stages of succession. This study attempts to evaluate the different stages of succession in terms of composition and structure of bird populations in Hyrcanian forests. Bird-habitat relationships were investigated by comparing vegetation characteristics in three successional stages including late, initial stage, and urban areas. Bird richness, diversity, and abundance were measured within a 25-m radius of each of the 120 sampling points in various stages of succession and urban areas from May to April (2014) in the Ziarat catchment. This study indicated that every stage of succession may support certain species. Based on bird-habitat associations along the various stages of succession, two groups were distinguished. Conventional comparative analysis separated two groups of understory birds: interior specialists and edge specialists. The interior-specialist group was positively correlated with the number of dead trees, tall trees with high values of dbh and height and canopy cover. In contrast, edge specialists groups mainly included terrestrial insectivores and were positively correlated with open area and shrub cover, and percentage of shrub cover between 1 and 2 m in height. In summary, bird communities in Hyrcanian forests are highly dynamic in different vegetation covers suggesting that it is critical to increase diverse and abundant bird populations by conserving forests composed of mosaics of differently disturbed stands and mature forest patches.
NASA Astrophysics Data System (ADS)
Trefilova, O. V.; Efimov, D. Yu.
2015-08-01
The results of the integrated analysis of changes in the state of vegetation and soils (Cutanic Albeluvisol) at the different stages of natural forest regeneration (4-, 11- and 24-year-old felled areas) and in a mature fir forest of the short grass-green moss forest types in the northern part of the western slope of the Yenisei Ridge are presented. A dynamic trend of fir forests restoration to the formation of the structure characteristics of the initial forest types is shown to be performed through the stages of forest meadows and secondary short grass (forbs) and birch stands. The changes in vegetation are accompanied by the fast transformation of the soil properties towards the improvement of soil fertilization However, these changes are temporary.
Stohlgren, T.J.; Bachand, R.R.; Onami, Y.; Binkley, Dan
1998-01-01
Do relationships between species and environmental gradients strengthen or weaken with tree life-stage (i.e., small seedlings, large seedlings, saplings, and mature trees)? Strengthened relationships may lead to distinct forest type boundaries, or weakening connections could lead to gradual ecotones and heterogeneous forest landscapes. We quantified the changes in forest dominance (basal area of tree species by life-stage) and environmental factors (elevation, slope, aspect, intercepted photosynthetically active radiation (PAR), summer soil moisture, and soil depth and texture) across 14 forest ecotones (n = 584, 10 m x 10 m plots) in Rocky Mountain National Park, Colorado, U.S.A. Local, ecotone-specific species-environment relationships, based on multiple regression techniques, generally strengthened from the small seedling stage (multiple R2 ranged from 0.00 to 0.26) to the tree stage (multiple R2 ranged from 0.20 to 0.61). At the landscape scale, combined canonical correspondence analysis (CCA) among species and for all tree life-stages suggested that the seedlings of most species became established in lower-elevation, drier sites than where mature trees of the same species dominated. However, conflicting evidence showed that species-environment relationships may weaken with tree life-stage. Seedlings were only found in a subset of plots (habitats) occupied by mature trees of the same species. At the landscape scale, CCA results showed that species-environment relationships weakened somewhat from the small seedling stage (86.4% of the variance explained by the first two axes) to the tree stage (76.6% of variance explained). The basal area of tree species co-occurring with Pinus contorta Doug. ex. Loud declined more gradually than P. contorta basal area declined across ecotones, resulting in less-distinct forest type boundaries. We conclude that broad, gradual ecotones and heterogeneous forest landscapes are created and maintained by: (1) sporadic establishment of seedlings in sub-optimal habitats; (2) survivorship of saplings and mature trees in a wider range of environmental conditions than seedlings presently endure; and (3) the longevity of trees and persistence of tree species in a broad range of soils, climates, and disturbance regimes.
Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong
2015-01-01
Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121
Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang
2010-05-01
From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P < 0.05). The percentage of soil POC, ROC, and LFOC to soil TOC was much greater under the forests at early successional stage than at climax stage, suggesting that the forest at early successional stage might not be an ideal place for soil organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.
Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds
NASA Astrophysics Data System (ADS)
Zeng, L.; Kang, Z.
2017-09-01
This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.
NASA Astrophysics Data System (ADS)
King, Michael D.; Tsay, Si-Chee; Ackerman, Steven A.; Larsen, North F.
1998-12-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of smoke, clouds, and terrestrial surfaces at 50 discrete wavelengths between 0.55 and 14.2 μm. These observations were obtained from the NASA ER-2 aircraft as part of the Smoke, Clouds, and Radiation-Brazil (SCAR-B) campaign, conducted over a 1500×1500 km region of cerrado and rain forest throughout Brazil between August 16 and September 11, 1995. Multispectral images of the reflection function and brightness temperature in 10 distinct bands of the MODIS airborne simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, fire, and heavy aerosol. In addition to multispectral imagery, monostatic lidar data were obtained along the nadir ground track of the aircraft and used to assess the accuracy of the cloud mask results. This analysis shows that the cloud and aerosol mask being developed for operational use on the moderate-resolution imaging spectroradiometer (MODIS), and tested using MAS data in Brazil, is quite capable of separating cloud, aerosol, shadow, and fires during daytime conditions over land.
Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, A. Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.
2016-01-01
The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.
Forests of hope: Costa Rica. Restoring hope in the clouds.
Bowen, L
1996-01-01
The rapid population growth in Central America has created pressure on the largest tract of cloud forest spanning the Talamanca Mountains in Costa Rica and Panama. Of immediate concern is restoring hope in the forest and improving the standard of living among local people. Such is the goal of the Amistad Conservation and Development (AMISCONDE) project in the communities of Cerro Punta, Panama, and San Rafael in Costa Rica. Through agriculture, forestry, animal husbandry, environmental education, and community development, AMISCONDE aims to restore the degraded lands in the reserve's buffer zone and improve the income of the people. All the local people, the farmers, women and children have benefited from the project. Some of the activities carried out to meet its objectives include helping the farmers improve the productivity and marketability of their products by teaching them new technologies and giving agricultural credits to farmers, women, and youth groups. In addition, AMISCONDE conducts training courses to address the economic, social and educational needs of women and communities. It is assured that the community and the group will be prepared to continue on their own after the official AMISCONDE office is gone.
Montoya, L; Haug, I; Bandala, V M
2010-01-01
Ectomycorrhizal (EM) fleshy fungi are being monitored in a population of Fagus grandifolia var. mexicana persisting in a montane cloud forest refuge on a volcano in a subtropical region of central Veracruz (eastern Mexico). The population of Fagus studied represents one of the 10 recognized forest fragments still housing this tree genus in Mexico. This is the first attempt to document EM fungi associated with this tree species in Mexico. We present evidence of the ectomycorrhizal symbiosis for Lactarius badiopallescens and L. cinereus with this endemic tree. Species identification of Lactarius on Fagus grandifolia var. mexicana was based on the comparison of DNAsequences (ITS rDNA) of spatiotemporally co-occurring basidiomes and EM root tips. The host of the EM tips was identified by comparison of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL). The occurrence of Lactarius badiopallescens and L. cinereus populations in the area of study represent the southernmost record known to date of these two species in North America and are new for the Neotropical Lactarius mycota. Descriptions coupled with illustrations of macro- and micromorphological features of basidiomes as well as photographs of ectomycorrhizas are presented.
NASA Astrophysics Data System (ADS)
Amiri, N.; Polewski, P.; Yao, W.; Krzystek, P.; Skidmore, A. K.
2017-09-01
Airborne Laser Scanning (ALS) is a widespread method for forest mapping and management purposes. While common ALS techniques provide valuable information about the forest canopy and intermediate layers, the point density near the ground may be poor due to dense overstory conditions. The current study highlights a new method for detecting stems of single trees in 3D point clouds obtained from high density ALS with a density of 300 points/m2. Compared to standard ALS data, due to lower flight height (150-200 m) this elevated point density leads to more laser reflections from tree stems. In this work, we propose a three-tiered method which works on the point, segment and object levels. First, for each point we calculate the likelihood that it belongs to a tree stem, derived from the radiometric and geometric features of its neighboring points. In the next step, we construct short stem segments based on high-probability stem points, and classify the segments by considering the distribution of points around them as well as their spatial orientation, which encodes the prior knowledge that trees are mainly vertically aligned due to gravity. Finally, we apply hierarchical clustering on the positively classified segments to obtain point sets corresponding to single stems, and perform ℓ1-based orthogonal distance regression to robustly fit lines through each stem point set. The ℓ1-based method is less sensitive to outliers compared to the least square approaches. From the fitted lines, the planimetric tree positions can then be derived. Experiments were performed on two plots from the Hochficht forest in Oberösterreich region located in Austria.We marked a total of 196 reference stems in the point clouds of both plots by visual interpretation. The evaluation of the automatically detected stems showed a classification precision of 0.86 and 0.85, respectively for Plot 1 and 2, with recall values of 0.7 and 0.67.
Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest
NASA Technical Reports Server (NTRS)
Bi, Hongguang; Davidsen, Arthur F.
1997-01-01
We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities approximately 10, 1, and 0.1 times the universal mean baryon density. Perhaps surprisingly, fluctuations whose amplitudes are less than or equal to the mean density still appear as "clouds" because in our model more than 70% of the volume of the IGM at z = 3 is filled with gas at densities below the mean value.
Wang, Yunsheng; Weinacker, Holger; Koch, Barbara
2008-01-01
A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916
NASA Astrophysics Data System (ADS)
Abate, D.; Avgousti, A.; Faka, M.; Hermon, S.; Bakirtzis, N.; Christofi, P.
2017-10-01
This study compares performance of aerial image based point clouds (IPCs) and light detection and ranging (LiDAR) based point clouds in detection of thinnings and clear cuts in forests. IPCs are an appealing method to update forest resource data, because of their accuracy in forest height estimation and cost-efficiency of aerial image acquisition. We predicted forest changes over a period of three years by creating difference layers that displayed the difference in height or volume between the initial and subsequent time points. Both IPCs and LiDAR data were used in this process. The IPCs were constructed with the Semi-Global Matching (SGM) algorithm. Difference layers were constructed by calculating differences in fitted height or volume models or in canopy height models (CHMs) from both time points. The LiDAR-derived digital terrain model (DTM) was used to scale heights to above ground level. The study area was classified in logistic regression into the categories ClearCut, Thinning or NoChange with the values from the difference layers. We compared the predicted changes with the true changes verified in the field, and obtained at best a classification accuracy for clear cuts 93.1 % with IPCs and 91.7 % with LiDAR data. However, a classification accuracy for thinnings was only 8.0 % with IPCs. With LiDAR data 41.4 % of thinnings were detected. In conclusion, the LiDAR data proved to be more accurate method to predict the minor changes in forests than IPCs, but both methods are useful in detection of major changes.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Khan, A.; Carnaval, A. C.
2016-12-01
Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity
Three Global Land Cover and Use Stage considering Environmental Condition and Economic Development
NASA Astrophysics Data System (ADS)
Lee, W. K.; Song, C.; Moon, J.; Ryu, D.
2016-12-01
The Mid-Latitude zone can be broadly defined as part of the hemisphere between around 30° - 60° latitude. This zone is a home to over more than 50% of the world population and encompasses about 36 countries throughout the principal regions which host most of the global problems related to development and poverty. Mid-Latitude region and its ecotone demands in-depth analysis, however, latitudinal approach has not been widely recognized, considering that many of natural resources and environment indicators, as well as social and economic indicators are based on administrative basis or by country and regional boundaries. This study sets the land cover change and use stage based on environmental condition and economic development. Because various land cover and use among the regions, form vegetated parts of East Asia and Mediterranean to deserted parts of Central Asia, the forest area was varied between countries. In addition, some nations such as North Korea, Afghanistan, Pakistan showed decreasing trends in forest area whereas some nations showed increasing trends in forest area. The economic capacity for environmental activities and policies for restoration were different among countries. By adopting the standard from IMF or World Bank, developing and developed counties were classified. Based on the classification, this study suggested the land cover and use stages as degradation, restoration, and sustainability. As the degradation stage, the nations which had decreasing forest area with less environmental restoration capacity based on economic size were selected. As the restoration stage, the nation which had increasing forest area or restoration capacity were selected. In the case of the sustainability, the nation which had enough restoration capacity with increasing forest area or small ratio in forest area decreasing were selected. In reviewing some of the past and current major environmental challenges that regions of Mid-Latitudes are facing, grouping by land cover and use stage provides environmental rationale of research, which enables better understanding on the function and interaction of ecosystem from various perspectives with preparing global climate change and sustainable management of natural resources. Keywords: Global land stage, Degradation, Restoration, Sustainability, Mid-Latitude
Toward unbiased determination of the redshift evolution of Lyman-alpha forest clouds
NASA Technical Reports Server (NTRS)
Lu, Limin; Zuo, Lin
1994-01-01
The possibility of using D(sub A), the mean depression of a quasar spectrum due to Ly-alpha forest absorption, to study the number density evolution of the Ly-alpha forest clouds is examined in some detail. Current D(sub A) measurements are made against a continuum that is a power-law extrapolation from the continuum longward of Ly-alpha emission. Compared to the line-counting approach, the D(sub A)-method has the advantage that the D(sub A) measurements are not affected by line-blending effects. However, we find using low-redshift quasar spectra obtained with the Hubble Space Telescope (HST), where the true continuum in the Ly-alpha forest can be estimated fairly reliably because of the much lower density of the Ly-alpha forest lines, that the extrapolated continuum often deviates systematically from the true continuum in the forest region. Such systematic continuum errors introduce large errors in the D(sub A) measurements. The current D(sub A) measurements may also be significantly biased by the possible presence of the Gunn-Peterson absorption. We propose a modification to the existing D(sub A)-method, namely, to measure D(sub A) against a locally established continuum in the Ly-alpha forest. Under conditions that the quasar spectrum has good resolution and S/N to allow for a reliable estimate of the local continuum in the Ly-alpha forest, the modified D(sub A) measurements should be largely free of the systematic uncertainties suffered by the existing D(sub A) measurements. We also introduce a formalism based on the work of Zuo (1993) to simplify the application of the D(sub A)-method(s) to real data. We discuss the merits and limitations of the modified D(sub A)-method, and conclude that it is a useful alternative. Our findings that the extrapolated continuum from longward of Ly-alpha emission often deviates systematically from the true continuum in the Ly-alpha forest present a major problem in the study of the Gunn-Peterson absorption.
NASA Astrophysics Data System (ADS)
Ohama, Akio; Kohno, Mikito; Fujita, Shinji; Tsutsumi, Daichi; Hattori, Yusuke; Torii, Kazufumi; Nishimura, Atsushi; Sano, Hidetoshi; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo
2018-05-01
Young H II regions are an important site for the study of O star formation based on distributions of ionized and molecular gas. We reveal that two molecular clouds at ˜48 km s-1 and ˜53 km s-1 are associated with the H II regions G018.149-00.283 in RCW 166 by using the JCMT CO High-Resolution Survey (COHRS) of the 12CO(J = 3-2) emission. G018.149-00.283 comprises a bright ring at 8 μm and an extended H II region inside the ring. The ˜48 km s-1 cloud delineates the ring, and the ˜53 km s-1 cloud is located within the ring, indicating a complementary distribution between the two molecular components. We propose a hypothesis that high-mass stars within G018.149-00.283 were formed by triggering during cloud-cloud collision at a projected velocity separation of ˜5 km s-1. We argue that G018.149-00.283 is in an early evolutionary stage, ˜0.1 Myr after the collision according to the scheme detailed by Habe and Ohta (1992, PASJ, 44, 203), which will be followed by a bubble formation stage like RCW 120. We also suggest that nearby H II regions N21 and N22 are candidates for bubbles possibly formed by cloud-cloud collision. Inoue and Fukui (2013, ApJ, 774, L31) showed that the interface gas becomes highly turbulent and realizes a high-mass accretion rate of 10-3-10-4 M⊙ yr-1 by magnetohydrodynamical numerical simulations, which offers an explanation of the O-star formation. The fairly high frequency of cloud-cloud collision in RCW 166 is probably due to the high cloud density in this part of the Scutum arm.
Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests
NASA Astrophysics Data System (ADS)
Girardin, C. A. J.; Aragão, L. E. O. C.; Malhi, Y.; Huaraca Huasco, W.; Metcalfe, D. B.; Durand, L.; Mamani, M.; Silva-Espejo, J. E.; Whittaker, R. J.
2013-01-01
The key role of tropical forest belowground carbon stocks and fluxes is well recognised as one of the main components of the terrestrial ecosystem carbon cycle. This study presents the first detailed investigation of spatial and temporal patterns of fine root stocks and fluxes in tropical forests along an elevational gradient, ranging from the Peruvian Andes (3020 m) to lowland Amazonia (194 m), with mean annual temperatures of 11.8°C to 26.4 °C and annual rainfall values of 1900 to 1560 mm yr-1, respectively. Specifically, we analyse abiotic parameters controlling fine root dynamics, fine root growth characteristics, and seasonality of net primary productivity along the elevation gradient. Root and soil carbon stocks were measured by means of soil cores, and fine root productivity was recorded using rhizotron chambers and ingrowth cores. We find that mean annual fine root below ground net primary productivity in the montane forests (0-30 cm depth) ranged between 4.27±0.56 Mg C ha-1 yr-1 (1855 m) and 1.72±0.87 Mg C ha-1 yr-1 (3020 m). These values include a correction for finest roots (<0.6 mm diameter), which we suspect are under sampled, resulting in an underestimation of fine roots by up to 31% in current ingrowth core counting methods. We investigate the spatial and seasonal variation of fine root dynamics using soil depth profiles and an analysis of seasonal amplitude along the elevation gradient. We report a stronger seasonality of NPPFineRoot within the cloud immersion zone, most likely synchronised to seasonality of solar radiation. Finally, we provide the first insights into root growth characteristics along a tropical elevation transect: fine root area and fine root length increase significantly in the montane cloud forest. These insights into belowground carbon dynamics of tropical lowland and montane forests have significant implications for our understanding of the global tropical forest carbon cycle.
NASA Astrophysics Data System (ADS)
Li, Jiangnan; Wu, Kailu; Li, Fangzhou; Chen, Youlong; Huang, Yanbin; Feng, YeRong
2017-06-01
In this study, we used the Weather Research and Forecasting (WRF) and WRF-3DVAR models to perform a series of simulations of two autumn rainstorms on Hainan Island. The results of neighborhood fractions and Hanssen skill scoring (FSS, HSS) methods show that the control experiments reproduced well two heavy rainfall episodes. Effects of latent heat in various cloud microphysical processes are different at distinct intensities or stages of precipitation. In the absence of any heating effect of deposition, precipitation weakened. The greater was the precipitation, the more significant was the weakening effect. Ascending movement at upper troposphere could be weakened or descending movement at lower troposphere enhanced. With decreases in the strength of precipitation, cloud ice, snow, graupel, and rainwater, increases in latent heat lessened. With weak precipitation, at upper troposphere the rainwater content increased and snow and ice content decreased, whereas at middle troposphere, the ice, snow, and graupel contents increased. Latent heating increased at middle and lower troposphere and decreased at upper troposphere. The absence of any heating effect of freezing had little effect on precipitation. By removing the evaporative cooling of cloud water, the interactions between vertical movement and cloud microphysical processes resulted in a weakening of strong precipitation and an intensification of weak precipitation. However, in the preliminary stages of these two precipitation events, snow, graupel, cloud ice, and rainwater all increased, and precipitation was enhanced in both. In the later stages, strong precipitation systems weakened and weak precipitation systems strengthened. Latent heating first increased and then dropped in strong precipitation systems, whereas they continuously increased in weak precipitation systems.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D. R.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.
2012-12-01
Land use conversion and climate change threaten the hydrological services from tropical montane cloud forest (TMCFs) regions, but knowledge about the ecohydrological mechanisms controlling catchment response is limited. This project traced the hydrologic sources, fluxes and flowpaths across the atmosphere-plant-soil-stream continuum under different land cover types (degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to identify the key ecohydrological processes of each land cover and quantify the hydrological effects of TMCF conversion. Results revealed that CWI was only ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions, whereas the water 'gained' from the fog suppression effect was ~80-100mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating plant water deficit; nevertheless, it was not sufficient to compensate for the 17% water loss from nighttime E. Trees primarily utilized water from 30-50cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from both 'new' rainwater and water accessed by plants. These findings suggest that plants mainly access a more tightly bound soil water pool that does not actively mix with the more mobile water recharging deep soil and groundwater pools. Soils had high porosity, saturated conductivity, infiltration rates, and water storage capacity, which contributed to the relatively low rainfall-runoff responses, mainly generated from deep subsurface flowpaths. Results showed that conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600mm and 300mm, respectively, while planting pine on degraded pastures reduced water yield by 365mm. Differences in water yield mainly reflect differences in rainfall interception loss. Runoff behavior was similar among land cover types, except for very high intensity storms when pasture showed higher surface runoff. Our results suggest that the ecophysiological effects of fog via suppressed E and FU has a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage capacity and buffering potential are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.
Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps
NASA Astrophysics Data System (ADS)
Braun, Andreas; Hagensieker, Ron; Hochschild, Volker
2016-08-01
Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei
Aerosol-cloud interaction remains the largest uncertainty in climate projections. Ultrafine aerosol particles (UAP; size <50nm) are considered too small to serve as cloud condensation nuclei conventionally. However, this study provides observational evidence to accompany insights from numerical simulations to support that deep convective clouds (DCCs) over Amazon have strong capability of nucleating UAP from an urban source and forming greater numbers of droplets, because fast drop coalescence in these DCCs reduces drop surface area available for condensation, leading to high vapor supersaturation. The additional droplets subsequently decrease supersaturation and release more condensational latent heating, a dominant contributor to convection intensification,more » whereas enhanced latent heat from ice-related processes plays a secondary role. Therefore, the addition of anthropogenic UAP may play a much greater role in modulating clouds than previously believed over the Amazon region and possibly in other relatively pristine regions such as maritime and forest locations.« less
NASA Astrophysics Data System (ADS)
Simarski, Lynn Teo
Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.
NASA Astrophysics Data System (ADS)
Chen, Gang; Metz, Margaret R.; Rizzo, David M.; Dillon, Whalen W.; Meentemeyer, Ross K.
2015-04-01
Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major threats to forest health. This study examines the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels), and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions. Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery, high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation efficiency in the process of segmentation and object-based variable extraction, leading to complicated variable selection for succeeding modeling. Hence, we also assessed two widely used band reduction algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation of image objects and the subsequent performance of burn severity models using either PCA or MNF derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and MNF components were evaluated, which accounted for 10% and 20% of the total number of the original 50 spectral bands, respectively. Results show that if no band reduction was applied the models developed for the three stages of disease progression had relatively similar performance, where both spectral responses and texture contributed to burn assessments. However, the application of PCA and MNF introduced much greater variation among models across the three stages. For the early-stage disease progression, neither band reduction algorithms improved or retained the accuracy of burn severity modeling (except for the use of 10 MNF components). Compared to the no-band-reduction scenario, band reduction led to a greater level of overestimation of low-degree burns and underestimation of medium-degree burns, suggesting that the spectral variation removed by PCA and MNF was vital for distinguishing between the spectral reflectance from disease-induced dried crowns (still retaining high structural complexity) and fire ash. For the middle-stage, both algorithms improved the model R2 values by 2-37%, while the late-stage models had comparable or better performance to those using the original 50 spectral bands. This could be explained by the loss of tree crowns enabling better signal penetration, thus leading to reduced spectral variation from canopies. Hence, spectral bands containing a high degree of random noise were correctly removed by the band reduction algorithms. Compared to the middle-stage, the late-stage forest stands were covered by large piles of fallen trees and branches, resulting in higher variability of MASTER imagery. The ability of band reduction to improve the model performance for these late-stage forest stands was reduced, because the valuable spectral variation representing the actual late-stage forest status was partially removed by both algorithms as noise. Our results indicate that PCA and MNF are promising for balancing computation efficiency and the performance of burn severity models in forest stands subject to the middle and late stages of sudden oak death disease progression. Compared to PCA, MNF dramatically reduced image spectral variation, generating larger image objects with less complexity of object shapes. Whereas, PCA-based models delivered superior performance in most evaluated cases suggesting that some key spectral variability contributing to the accuracy of burn severity models in diseased forests may have been removed together with true spectral noise through MNF transformations.
NASA Astrophysics Data System (ADS)
Ellsworth-Bowers, Timothy P.
The Milky Way Galaxy serves as a vast laboratory for studying the dynamics and evolution of the dense interstellar medium and the processes of and surrounding massive star formation. From our vantage point within the Galactic plane, however, it has been extremely difficult to construct a coherent picture of Galactic structure; we cannot see the forest for the trees. The principal difficulties in studying the structure of the Galactic disk have been obscuration by the ubiquitous dust and molecular gas and confusion between objects along a line of sight. Recent technological advances have led to large-scale blind surveys of the Galactic plane at (sub-)millimeter wavelengths, where Galactic dust is generally optically thin, and have opened a new avenue for studying the forest. The Bolocam Galactic Plane Survey (BGPS) observed over 190 deg 2 of the Galactic plane in dust continuum emission near lambda = 1.1 mm, producing a catalog of over 8,000 dense molecular cloud structures across a wide swath of the Galactic disk. Deriving the spatial distribution and physical properties of these objects requires knowledge of distance, a component lacking in the data themselves. This thesis presents a generalized Bayesian probabilistic distance estimation method for dense molecular cloud structures, and demonstrates it with the BGPS data set. Distance probability density functions (DPDFs) are computed from kinematic distance likelihoods (which may be double- peaked for objects in the inner Galaxy) and an expandable suite of prior information to produce a comprehensive tally of our knowledge (and ignorance) of the distances to dense molecular cloud structures. As part of the DPDF formalism, this thesis derives several prior DPDFs for resolving the kinematic distance ambiguity in the inner Galaxy. From the collection of posterior DPDFs, a set of objects with well-constrained distance estimates is produced for deriving Galactic structure and the physical properties of dense molecular cloud structures. This distance catalog of 1,802 objects across the Galactic plane represents the first large-scale analysis of clump-scale objects in a variety of Galactic environments. The Galactocentric positions of these objects begin to trace out the spiral structure of the Milky Way, and suggest that dense molecular gas settles nearer the Galactic midplane than tracers of less-dense gas such as CO. Physical properties computed from the DPDFs reveal that BGPS objects trace a continuum of scales within giant molecular clouds, and extend the scaling relationships known as Larson's Laws to lower-mass substructures. The results presented here represent the first step on the road to seeing the molecular content of the Milky Way as a forest rather than individual nearby trees.
Theoretical study of mixing in liquid clouds – Part 1: Classical concepts
Korolev, Alexei; Khain, Alex; Pinsky, Mark; ...
2016-07-28
The present study considers final stages of in-cloud mixing in the framework of classical concept of homogeneous and extreme inhomogeneous mixing. Simple analytical relationships between basic microphysical parameters were obtained for homogeneous and extreme inhomogeneous mixing based on the adiabatic consideration. It was demonstrated that during homogeneous mixing the functional relationships between the moments of the droplets size distribution hold only during the primary stage of mixing. Subsequent random mixing between already mixed parcels and undiluted cloud parcels breaks these relationships. However, during extreme inhomogeneous mixing the functional relationships between the microphysical parameters hold both for primary and subsequent mixing.more » The obtained relationships can be used to identify the type of mixing from in situ observations. The effectiveness of the developed method was demonstrated using in situ data collected in convective clouds. It was found that for the specific set of in situ measurements the interaction between cloudy and entrained environments was dominated by extreme inhomogeneous mixing.« less
Robust Group Sparse Beamforming for Multicast Green Cloud-RAN With Imperfect CSI
NASA Astrophysics Data System (ADS)
Shi, Yuanming; Zhang, Jun; Letaief, Khaled B.
2015-09-01
In this paper, we investigate the network power minimization problem for the multicast cloud radio access network (Cloud-RAN) with imperfect channel state information (CSI). The key observation is that network power minimization can be achieved by adaptively selecting active remote radio heads (RRHs) via controlling the group-sparsity structure of the beamforming vector. However, this yields a non-convex combinatorial optimization problem, for which we propose a three-stage robust group sparse beamforming algorithm. In the first stage, a quadratic variational formulation of the weighted mixed l1/l2-norm is proposed to induce the group-sparsity structure in the aggregated beamforming vector, which indicates those RRHs that can be switched off. A perturbed alternating optimization algorithm is then proposed to solve the resultant non-convex group-sparsity inducing optimization problem by exploiting its convex substructures. In the second stage, we propose a PhaseLift technique based algorithm to solve the feasibility problem with a given active RRH set, which helps determine the active RRHs. Finally, the semidefinite relaxation (SDR) technique is adopted to determine the robust multicast beamformers. Simulation results will demonstrate the convergence of the perturbed alternating optimization algorithm, as well as, the effectiveness of the proposed algorithm to minimize the network power consumption for multicast Cloud-RAN.
Yuan, Jie; Zheng, Xiaofeng; Cheng, Fei; Zhu, Xian; Hou, Lin; Li, Jingxia; Zhang, Shuoxin
2017-10-24
Historically, intense forest hazards have resulted in an increase in the quantity of fallen wood in the Qinling Mountains. Fallen wood has a decisive influence on the nutrient cycling, carbon budget and ecosystem biodiversity of forests, and fungi are essential for the decomposition of fallen wood. Moreover, decaying dead wood alters fungal communities. The development of high-throughput sequencing methods has facilitated the ongoing investigation of relevant molecular forest ecosystems with a focus on fungal communities. In this study, fallen wood and its associated fungal communities were compared at different stages of decomposition to evaluate relative species abundance and species diversity. The physical and chemical factors that alter fungal communities were also compared by performing correspondence analysis according to host tree species across all stages of decomposition. Tree species were the major source of differences in fungal community diversity at all decomposition stages, and fungal communities achieved the highest levels of diversity at the intermediate and late decomposition stages. Interactions between various physical and chemical factors and fungal communities shared the same regulatory mechanisms, and there was no tree species-specific influence. Improving our knowledge of wood-inhabiting fungal communities is crucial for forest ecosystem conservation.
Biomass and carbon pools of disturbed riparian forests
Laura A.B. Giese; W.M. Aust; Randall K. Kolka; Carl C. Trettin
2003-01-01
Quantification of carbon pools as affected by forest ageldevelopment can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different sera1 stages in the South Carolina Upper Coastal Plain. Three of the riparian...
Biomass and carbon pools of disturbed riparian forests
Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin
2003-01-01
Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...
Teixeira, Daniel C; Lacerda, Luiz D; Silva-Filho, Emmanoel V
2017-02-01
Mercury (Hg) concentrations in tropical forest soils and litter are up to 10 times higher than those from temperate and boreal forests. The majority of Hg that has been stored in tropical soils, as the forest is left intact, could be trapped in deeper layers of soil and only small quantities are exported to water bodies. The quantitative approach to the Hg cycle in tropical forests is uncommon; the South America Atlantic Forest indeed is a hotspot for species conservation and also seems to be for the Hg's cycle. This study reports on a biannual dynamics of Hg through different species assemblage of different successional stages in this biome, based on 24 litter traps used to collect litterfall from 3 different successional stages under a rainforest located at Brazilian Southeast. The mean Hg litterfall flux obtained was 6.1 ± 0.15 μg ha -1 yr -1 , while the mean Hg concentration in litter was 57 ± 16 ng g -1 and the accumulation of Hg via litterfall flux was 34.6 ± 1.2 μg m -2 yr -1 . These inventories are close to those found for tropical areas in the Amazon, but they were lower than those assessed for Atlantic Forest biome studies. These low concentrations are related to the remoteness of the area from pollution sources and probably to the climatic limitation, due to the altitude effects over the forest's eco-physiology. The mercury fluxes found in each different successional stage, correlated with time variations of global radiation, suggesting a mandatory role of the forest primary production over Hg deposition to the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Formation of massive clouds and dwarf galaxies during tidal encounters
NASA Technical Reports Server (NTRS)
Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.
1993-01-01
Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.
Homomorphic encryption experiments on IBM's cloud quantum computing platform
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
Fireball Over Tennessee and North Carolina
2016-05-05
We observed a fireball the morning of May 4 around 12:50am EDT, traveling southwest at about 77,000 mph over the Nantahala National Forest on the Tennessee/North Carolina state line. At its brightest point, it rivaled the full moon. According to Dr. Bill Cooke in NASA's Meteoroid Environment Office at NASA's Marshall Space Flight Center in Huntsville, Ala. , "The fireball was bright enough to be seen through clouds, which is an attention getter. In Chickamauga, Ga., one would have thought it was a flash of lightning lighting up the clouds beneath."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Joel
2016-05-01
The Thornton Laboratory participated in the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign in Finland by deploying our mass spectrometer. We then participated in environmental simulation chamber studies at Pacific Northwest National Laboratory (PNNL). Thereafter, we analyzed the results as demonstrated in the several presentations and publications. The field campaign and initial environmental chamber studies are described below.
NASA Technical Reports Server (NTRS)
Dillard, J. P.; Orwig, C. F. (Principal Investigator)
1980-01-01
The author has identified the following significant results. Satellite-derived snow cover data improves forecasts of stream flow but not at a statistically significant amount and should not be used exclusively because of persistent cloud cover. Based upon reconstruction runs, satellite data can be used to augment snow-flight data in the Upper Snake, Boise, Dworshak, and Hungry Horse basins. Satellite data does not compare well with aerial snow-flight data in the Libby basin.
Soil microbiological composition and its evolution along with forest succession in West Siberia
NASA Astrophysics Data System (ADS)
Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil
2015-04-01
Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid age, and from mid age to mature forest. On the contrary, azotobacter disappears in mature forest while nitrifiers decline by several times from young to mid age forest. Large variation in microbiological activity was observed between sites reaching different succession stage, however further studies are needed to discriminate between effects of the site productivity and forest age.
African Savanna-Forest Boundary Dynamics: A 20-Year Study
Cuni-Sanchez, Aida; White, Lee J. T.; Calders, Kim; Jeffery, Kathryn J.; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L.; Lewis, Simon L.
2016-01-01
Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types. PMID:27336632
African Savanna-Forest Boundary Dynamics: A 20-Year Study.
Cuni-Sanchez, Aida; White, Lee J T; Calders, Kim; Jeffery, Kathryn J; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L; Lewis, Simon L
2016-01-01
Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types.
Herms, Daniel A
2017-01-01
Abstract Emerald ash borer (EAB; Agrilus planipennis Fairmaire) is an invasive wood-borer causing rapid, widespread ash tree mortality, formation of canopy gaps, and accumulation of coarse woody debris (CWD) in forest ecosystems. The objective of this study was to quantify the effects of canopy gaps and ash CWD on forest floor invertebrate communities during late stages of EAB-induced ash mortality, when the effects of gaps are predicted to be smallest and effects of CWD are predicted to be greatest, according to the model proposed by Perry and Herms 2016a. A 2-year study was conducted in forest stands that had experienced nearly 100% ash mortality in southeastern Michigan, USA, near where EAB first established in North America. In contrast to patterns documented during early stages of the EAB invasion, effects of gaps were minimal during late stages of ash mortality, but invertebrate communities were affected by accumulation and decomposition of CWD. Invertebrate activity-abundance, evenness, and diversity were highest near minimally decayed logs (decay class 1), but diverse taxon-specific responses to CWD affected community composition. Soil moisture class emerged as an important factor structuring invertebrate communities, often mediating the strength and direction of their responses to CWD and stages of decomposition. The results of this study were consistent with the predictions that the effects of CWD on invertebrate communities would be greater than those of canopy gaps during late stages of EAB-induced ash mortality. This research contributes to understanding of the cascading and long-term ecological impacts of invasive species on native forest ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobo-Díaz, Jose F.; Fernández-González, Antonio J.; Villadas, Pablo J.
Altitude significantly affects vegetation growth and distribution, including the developmental stages of a forest. We used shotgun Illumina sequencing to analyze microbial community composition and functional potential in melojo-oak ( Quercus pyrenaica Willd.) rhizospheric soil for three different development stages along an altitudinal gradient: (a) a low altitude, non-optimal site for forest maintenance; (b) an intermediate altitude, optimal site for a forest; and (c) a high altitude, expansion site with isolated trees but without a real forest canopy. We observed that, at each altitude, the same microbial taxa appear both in the taxonomic analysis of the whole metagenome and inmore » the functional analysis of the methane, sulfur and nitrogen metabolisms. Although there were no major differences at the functional level, there were significant differences in the abundance of each taxon at the phylogenetic level between the rhizospheres of the forest (low and intermediate altitudes) and the expansion site. Proteobacteria and Actinobacteria were the most differentially abundant phyla in forest soils compared to the expansion site rhizosphere. Moreover, Verrucomicrobia, Bacteroidetes and Nitrospirae phyla were more highly represented in the non-forest rhizosphere. Our study suggests that rhizospheric microbial communities of the same tree species may be affected by development stage and forest canopy cover via changes in soil pH and the C/N ratio.« less
Cobo-Díaz, Jose F.; Fernández-González, Antonio J.; Villadas, Pablo J.; ...
2017-10-12
Altitude significantly affects vegetation growth and distribution, including the developmental stages of a forest. We used shotgun Illumina sequencing to analyze microbial community composition and functional potential in melojo-oak ( Quercus pyrenaica Willd.) rhizospheric soil for three different development stages along an altitudinal gradient: (a) a low altitude, non-optimal site for forest maintenance; (b) an intermediate altitude, optimal site for a forest; and (c) a high altitude, expansion site with isolated trees but without a real forest canopy. We observed that, at each altitude, the same microbial taxa appear both in the taxonomic analysis of the whole metagenome and inmore » the functional analysis of the methane, sulfur and nitrogen metabolisms. Although there were no major differences at the functional level, there were significant differences in the abundance of each taxon at the phylogenetic level between the rhizospheres of the forest (low and intermediate altitudes) and the expansion site. Proteobacteria and Actinobacteria were the most differentially abundant phyla in forest soils compared to the expansion site rhizosphere. Moreover, Verrucomicrobia, Bacteroidetes and Nitrospirae phyla were more highly represented in the non-forest rhizosphere. Our study suggests that rhizospheric microbial communities of the same tree species may be affected by development stage and forest canopy cover via changes in soil pH and the C/N ratio.« less
A Review Study on Cloud Computing Issues
NASA Astrophysics Data System (ADS)
Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti
2018-05-01
Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.
NASA Astrophysics Data System (ADS)
Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; Giangrande, Scott; Silva Dias, Maria A. F.; Cecchini, Micael A.; Albrecht, Rachel; Andreae, Meinrat O.; Araujo, Wagner F.; Artaxo, Paulo; Borrmann, Stephan; Braga, Ramon; Burleyson, Casey; Eichholz, Cristiano W.; Fan, Jiwen; Feng, Zhe; Fisch, Gilberto F.; Jensen, Michael P.; Martin, Scot T.; Pöschl, Ulrich; Pöhlker, Christopher; Pöhlker, Mira L.; Ribaud, Jean-François; Rosenfeld, Daniel; Saraiva, Jaci M. B.; Schumacher, Courtney; Thalman, Ryan; Walter, David; Wendisch, Manfred
2018-05-01
This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. This study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weighted mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.
Masaki, T; Hata, S; Ide, Y
2015-03-01
In the present study, we analysed the habitat association of tree species in an old-growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6-ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10-m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well-scattered seed distribution via wind and bird dispersal, as well as conspecific density-dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Storch, Cornelia; Wagner, Thomas; Ramminger, Gernot; Pape, Marlon; Ott, Hannes; Hausler, Thomas; Gomez, Sharon
2016-08-01
The paper presents a description of the methods development for an automated processing chain for the classification of Forest Cover and Change based on high resolution multi-temporal time series Landsat and SPOT5Take5 data with focus on the dry forest ecosystems of Africa. The method has been developed within the European Space Agency (ESA) funded Global monitoring for Environment and Security Service Element for Forest Monitoring (GSE FM) project on dry forest areas; the demonstration site selected was in Malawi. The methods are based on the principles of a robust, but still flexible monitoring system, to cope with most complex Earth Observation (EO) data scenarios, varying in terms of data quality, source, accuracy, information content, completeness etc. The method allows automated tracking of change dates, data gap filling and takes into account phenology, seasonality of tree species with respect to leaf fall and heavy cloud cover during the rainy season.
Cloud Computing Based E-Learning System
ERIC Educational Resources Information Center
Al-Zoube, Mohammed; El-Seoud, Samir Abou; Wyne, Mudasser F.
2010-01-01
Cloud computing technologies although in their early stages, have managed to change the way applications are going to be developed and accessed. These technologies are aimed at running applications as services over the internet on a flexible infrastructure. Microsoft office applications, such as word processing, excel spreadsheet, access database…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
...., Suite A., Albuquerque, New Mexico 87113, 505-346-3869, or Angel Mayes, Roswell Field Office Manager, Bureau of Land Management, 2909 W. Second Street, Roswell, New Mexico 88201, 505-346-3869. Persons who...
NASA Astrophysics Data System (ADS)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.
2017-12-01
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.
Mantilla-Contreras, Jasmin
2018-01-01
Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae) in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient. PMID:29373542
Projected impacts of climate change on habitat availability for an endangered parakeet.
Hermes, Claudia; Keller, Klaus; Nicholas, Robert E; Segelbacher, Gernot; Schaefer, H Martin
2018-01-01
In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes.
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Delay, J. K.; Asner, G. P.; Martin, R. E.; Nullet, M. A.; Huang, M.; Mudd, R. G.; Takahashi, M.
2008-12-01
Tropical montane cloud forests (TMCFs) in Hawai'i are important zones of water input and stores of critically important native plant and animal species. Invasion by alien tree species threatens these forests and may alter the hydrological services they provide. At two TMCF sites in Hawai'i, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, we are conducting measurements of stand-level evapotranspiration (ET), transpiration (using sapflow techniques), energy balance, and related processes. Previously presented results showed that ET as a function of available energy was 27% higher at the invaded site than the native site, with the difference rising to 53% during dry- canopy periods. In this presentation, mechanisms for the observed higher ET rate at the invaded site are explored. The difference in measured xylem flow velocities of native and alien trees cannot explain the observed stand level ET difference. Tree basal area is lower at the invaded site than the native site, again contrary to the ET difference. However, the alien trees have much smaller stem diameters, on average, than the native trees, with little or no heartwood. Hence, the cross-sectional xylem area is much greater in the invaded stand, facilitating higher transpiration rates. These results demonstrate the importance of stand structural controls on ET and raise questions about whether higher ET is a transient feature of the succession or a persistent characteristic of invasive trees.
Projected impacts of climate change on habitat availability for an endangered parakeet
Keller, Klaus; Nicholas, Robert E.; Segelbacher, Gernot; Schaefer, H. Martin
2018-01-01
In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes. PMID:29364949
Oliveira, Rafael S.; Eller, Cleiton B.; Bittencourt, Paulo R. L.; Mulligan, Mark
2014-01-01
Background Tropical montane cloud forests (TMCFs) are characterized by a unique set of biological and hydroclimatic features, including frequent and/or persistent fog, cool temperatures, and high biodiversity and endemism. These forests are one of the most vulnerable ecosystems to climate change given their small geographic range, high endemism and dependence on a rare microclimatic envelope. The frequency of atmospheric water deficits for some TMCFs is likely to increase in the future, but the consequences for the integrity and distribution of these ecosystems are uncertain. In order to investigate plant and ecosystem responses to climate change, we need to know how TMCF species function in response to current climate, which factors shape function and ecology most and how these will change into the future. Scope This review focuses on recent advances in ecophysiological research of TMCF plants to establish a link between TMCF hydrometeorological conditions and vegetation distribution, functioning and survival. The hydraulic characteristics of TMCF trees are discussed, together with the prevalence and ecological consequences of foliar uptake of fog water (FWU) in TMCFs, a key process that allows efficient acquisition of water during cloud immersion periods, minimizing water deficits and favouring survival of species prone to drought-induced hydraulic failure. Conclusions Fog occurrence is the single most important microclimatic feature affecting the distribution and function of TMCF plants. Plants in TMCFs are very vulnerable to drought (possessing a small hydraulic safety margin), and the presence of fog and FWU minimizes the occurrence of tree water deficits and thus favours the survival of TMCF trees where such deficits may occur. Characterizing the interplay between microclimatic dynamics and plant water relations is key to foster more realistic projections about climate change effects on TMCF functioning and distribution. PMID:24759267
Taking the Pulse of PyroCumulus Clouds
NASA Technical Reports Server (NTRS)
Gatebe, C. K.; Varnai, T.; Poudyal, R.; Ichoku, C.; King, M. D.
2012-01-01
Forest fires can burn large areas, but can also inject smoke into the upper troposphere/lower stratosphere (UT/LS), where stakes are even higher for climate, because emissions tend to have a longer lifetime, and can produce significant regional and even global climate effects, as is the case with some volcanoes. Large forest fires are now believed to be more common in summer, especially in the boreal regions, where pyrocumulus (pyroCu), and occasionally pyrocumuionimbus (pyroCb) clouds are formed, which can transport emissions into the UT/LS. A major difficulty in developing realistic fire plume models is the lack of observational data within fire plumes that resolves structure at a few 100 m scales, which can be used to validate these models. Here, we report detailed airborne radiation measurements within strong pyroCu taken over boreal forest fires in Saskatchewan, Canada during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) summer field campaign in 2008. We find that the angular distribution of radiance within the pyroCu is closely related to the diffusion domain in water clouds and can be described by very similar simple cosine functions. We demonstrate with Monte Carlo simulations that radiation transport in pyroCu is inherently a 3D phenomenon and must account for particle absorption. However, the simple cosine function promises to offer an easy solution for climate models. The presence of a prominent smoke core, defined by strong extinction in the UV, VIS and NIR, suggests that the core might be an important pathway for emission transport to the upper troposphere and lower stratosphere. We speculate that this plume injection core is generated and sustained by complex processes not yet well understood, but not necessarily related directly to the intense fires that originally initiated the plume rise.
Lucy A. Rose; Emily M. Elliott; Mary Beth. Adams
2015-01-01
Nitrogen (N) deposition affects forest biogeochemical cycles worldwide, often contributing to N saturation. Using long-term (>30-year) records of stream nitrate (NO3-) concentrations at Fernow Experimental Forest (West Virginia, USA), we classified four watersheds into N saturation stages ranging from Stage 0 (N-...
NASA Astrophysics Data System (ADS)
Vastaranta, Mikko; Kankare, Ville; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Hyyppä, Hannu
2012-01-01
The two main approaches to deriving forest variables from laser-scanning data are the statistical area-based approach (ABA) and individual tree detection (ITD). With ITD it is feasible to acquire single tree information, as in field measurements. Here, ITD was used for measuring training data for the ABA. In addition to automatic ITD (ITD auto), we tested a combination of ITD auto and visual interpretation (ITD visual). ITD visual had two stages: in the first, ITD auto was carried out and in the second, the results of the ITD auto were visually corrected by interpreting three-dimensional laser point clouds. The field data comprised 509 circular plots ( r = 10 m) that were divided equally for testing and training. ITD-derived forest variables were used for training the ABA and the accuracies of the k-most similar neighbor ( k-MSN) imputations were evaluated and compared with the ABA trained with traditional measurements. The root-mean-squared error (RMSE) in the mean volume was 24.8%, 25.9%, and 27.2% with the ABA trained with field measurements, ITD auto, and ITD visual, respectively. When ITD methods were applied in acquiring training data, the mean volume, basal area, and basal area-weighted mean diameter were underestimated in the ABA by 2.7-9.2%. This project constituted a pilot study for using ITD measurements as training data for the ABA. Further studies are needed to reduce the bias and to determine the accuracy obtained in imputation of species-specific variables. The method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized.
NASA Astrophysics Data System (ADS)
Veremey, N. E.; Dovgalyuk, Yu. A.; Zatevakhin, M. A.; Ignatyev, A. A.; Morozov, V. N.
2014-04-01
Numerical nonstationary three-dimensional model of a convective cloud with parameterized description of microphysical processes with allowance for the electrization processes is considered. The results of numerical modeling of the cloud evolution for the specified atmospheric conditions are presented. The spatio-temporal distribution of the main cloud characteristics including the volume charge density and the electric field is obtained. The calculation results show that the electric structure of the cloud is different at its various life stages, i.e., it varies from unipolar to dipolar and then to tripolar. This conclusion is in fair agreement with the field studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...
2016-04-04
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
Lasso, Eloisa; Ackerman, James D
2013-01-01
From studies in seasonal lowland tropical forests, bromeliad epiphytes appear to be limited mainly by water, and to a lesser extent by nutrient supply, especially phosphorous. Less is understood about the mineral nutrition of tropical montane cloud forest (TMCF) epiphytes, even though their highest diversity is in this habitat. Nutrient limitation is known to be a key factor restricting forest productivity in TMCF, and if epiphytes are nutritionally linked to their host trees, as has been suggested, we would expect that they are also nutrient limited. We studied the effect of a higher nutrient input on reproduction and growth of the tank bromeliad Werauhia sintenisii in experimental plots located in a TMCF in Puerto Rico, where all macro- and micronutrients had been added quarterly starting in 1989 and continuing throughout the duration of this study. We found that bromeliads growing in fertilized plots were receiving litterfall with higher concentrations of N, P, and Zn and had higher concentrations of P, Zn, Fe, Al, and Na in their vegetative body. The N:P ratios found (fertilized = 27.5 and non-fertilized = 33.8) suggest that W. sintenisii may also be phosphorous limited as are lowland epiphytes. Fertilized plants had slightly longer inflorescences, and more flowers per inflorescence, than non-fertilized plants, but their flowers produced nectar in similar concentrations and quantities. Fertilized plants produced more seeds per fruit and per plant. Frequency of flowering in two consecutive years was higher for fertilized plants than for controls, suggesting that fertilized plants overcome the cost of reproduction more readily than non-fertilized plants. These results provide evidence that TMCF epiphytic bromeliads are nutrient limited like their lowland counterparts.
Roles of Fog and Topography in Redwood Forest Hydrology
NASA Astrophysics Data System (ADS)
Francis, E. J.; Asner, G. P.
2017-12-01
Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.
Satellite-derived attributes of cloud vortex systems and their application to climate studies
NASA Technical Reports Server (NTRS)
Carleton, Andrew M.
1987-01-01
Defense Meteorological Satellite Program (DMSP) visible and infrared mosaics are analyzed in conjunction with synoptic meteorological observations of sea level pressure (SLP) and upper-air height to derive composite patterns of cyclonic cloud vortices for the Northern Hemisphere. The patterns reveal variations in the structure and implied dynamics of cyclonic systems at different stages of development that include: (1) increasing vertical symmetry of the lower-level and upper-air circulations and (2) decreasing lower-tropospheric thicknesses and temperature advection, associated with increasing age of the vortex. Cloud vortices are more intense in winter than in summer and typically reach maximum intensity in the short-lived prespiral signature stage. There are major structural differences among frontal wave, polar air, and 'instant occlusion' cyclogenesis types. Cyclones in the dissipation stage may reintensify (deepen), as denoted by the appearance in the imagery of an asymmetric cloud band or a tightened spiral vortex. The satellite-derived statistics on cloud vortex intensity, which are seasonal- and latitude- as well as type-dependent, are applied to a preliminary examination of the synoptic manifestations of seasonal climate variability. An apparently close relationship is found, for two winter and spring seasons, between Northern Hemisphere cyclonic activity and variations in cryosphere variables, particularly the extent of Arctic sea ice. The results may indicate that increased snow and ice extent accompany a southward displacement of cyclonic activity and/or a predominance of deeper systems. However, there is also a strong regional dependence to the ice-synoptics feedback. This study demonstrates the utility of high resolution meteorological satellite imagery for studies of climate variations (climate dynamics).
Feature Relevance Assessment of Multispectral Airborne LIDAR Data for Tree Species Classification
NASA Astrophysics Data System (ADS)
Amiri, N.; Heurich, M.; Krzystek, P.; Skidmore, A. K.
2018-04-01
The presented experiment investigates the potential of Multispectral Laser Scanning (MLS) point clouds for single tree species classification. The basic idea is to simulate a MLS sensor by combining two different Lidar sensors providing three different wavelngthes. The available data were acquired in the summer 2016 at the same date in a leaf-on condition with an average point density of 37 points/m2. For the purpose of classification, we segmented the combined 3D point clouds consisiting of three different spectral channels into 3D clusters using Normalized Cut segmentation approach. Then, we extracted four group of features from the 3D point cloud space. Once a varity of features has been extracted, we applied forward stepwise feature selection in order to reduce the number of irrelevant or redundant features. For the classification, we used multinomial logestic regression with L1 regularization. Our study is conducted using 586 ground measured single trees from 20 sample plots in the Bavarian Forest National Park, in Germany. Due to lack of reference data for some rare species, we focused on four classes of species. The results show an improvement between 4-10 pp for the tree species classification by using MLS data in comparison to a single wavelength based approach. A cross validated (15-fold) accuracy of 0.75 can be achieved when all feature sets from three different spectral channels are used. Our results cleary indicates that the use of MLS point clouds has great potential to improve detailed forest species mapping.
Duan, Zhugeng; Zhao, Dan; Zeng, Yuan; Zhao, Yujin; Wu, Bingfang; Zhu, Jianjun
2015-01-01
Topography affects forest canopy height retrieval based on airborne Light Detection and Ranging (LiDAR) data a lot. This paper proposes a method for correcting deviations caused by topography based on individual tree crown segmentation. The point cloud of an individual tree was extracted according to crown boundaries of isolated individual trees from digital orthophoto maps (DOMs). Normalized canopy height was calculated by subtracting the elevation of centres of gravity from the elevation of point cloud. First, individual tree crown boundaries are obtained by carrying out segmentation on the DOM. Second, point clouds of the individual trees are extracted based on the boundaries. Third, precise DEM is derived from the point cloud which is classified by a multi-scale curvature classification algorithm. Finally, a height weighted correction method is applied to correct the topological effects. The method is applied to LiDAR data acquired in South China, and its effectiveness is tested using 41 field survey plots. The results show that the terrain impacts the canopy height of individual trees in that the downslope side of the tree trunk is elevated and the upslope side is depressed. This further affects the extraction of the location and crown of individual trees. A strong correlation was detected between the slope gradient and the proportions of returns with height differences more than 0.3, 0.5 and 0.8 m in the total returns, with coefficient of determination R2 of 0.83, 0.76, and 0.60 (n = 41), respectively. PMID:26016907
Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent
Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.
2012-01-01
In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.
The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project seeks to understand the feedbacks and inter-relationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated...
Positive lightning and severe weather
NASA Astrophysics Data System (ADS)
Price, C.; Murphy, B.
2003-04-01
In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.
Measuring visibility using smartphones
NASA Astrophysics Data System (ADS)
Friesen, Jan; Bialon, Raphael; Claßen, Christoph; Graffi, Kalman
2017-04-01
Spatial information on fog density is an important parameter for ecohydrological studies in cloud forests. The Dhofar cloud forest in Southern Oman exhibits a close interaction between the fog, trees, and rainfall. During the three month monsoon season the trees capture substantial amounts of horizontal precipitation from fog which increases net precipitation below the tree canopy. As fog density measurements are scarce, a smartphone app was designed to measure visibility. Different smartphone units use a variety of different parts. It is therefore important to assess the developed visibility measurement across a suite of different smartphones. In this study we tested five smartphones/ tablets (Google/ LG Nexus 5X, Huawei P8 lite, Huawei Y3, HTC Nexus 9, and Samsung Galaxy S4 mini) against digital camera (Sony DLSR-A900) and visual visibility observations. Visibility was assessed from photos using image entropy, from the number of visible targets, and from WiFi signal strength using RSSI. Results show clear relationships between object distance and fog density, yet a considerable spread across the different smartphone/ tablet units is evident.
NASA Astrophysics Data System (ADS)
Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan
2015-04-01
Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in-cloud sampling through the CVI contained mainly organic material and, to a lesser extent, nitrate.
A graphic user interface for efficient 3D photo-reconstruction based on free software
NASA Astrophysics Data System (ADS)
Castillo, Carlos; James, Michael; Gómez, Jose A.
2015-04-01
Recently, different studies have stressed the applicability of 3D photo-reconstruction based on Structure from Motion algorithms in a wide range of geoscience applications. For the purpose of image photo-reconstruction, a number of commercial and freely available software packages have been developed (e.g. Agisoft Photoscan, VisualSFM). The workflow involves typically different stages such as image matching, sparse and dense photo-reconstruction, point cloud filtering and georeferencing. For approaches using open and free software, each of these stages usually require different applications. In this communication, we present an easy-to-use graphic user interface (GUI) developed in Matlab® code as a tool for efficient 3D photo-reconstruction making use of powerful existing software: VisualSFM (Wu, 2015) for photo-reconstruction and CloudCompare (Girardeau-Montaut, 2015) for point cloud processing. The GUI performs as a manager of configurations and algorithms, taking advantage of the command line modes of existing software, which allows an intuitive and automated processing workflow for the geoscience user. The GUI includes several additional features: a) a routine for significantly reducing the duration of the image matching operation, normally the most time consuming stage; b) graphical outputs for understanding the overall performance of the algorithm (e.g. camera connectivity, point cloud density); c) a number of useful options typically performed before and after the photo-reconstruction stage (e.g. removal of blurry images, image renaming, vegetation filtering); d) a manager of batch processing for the automated reconstruction of different image datasets. In this study we explore the advantages of this new tool by testing its performance using imagery collected in several soil erosion applications. References Girardeau-Montaut, D. 2015. CloudCompare documentation accessed at http://cloudcompare.org/ Wu, C. 2015. VisualSFM documentation access at http://ccwu.me/vsfm/doc.html#.
Alonzo, Michael; Van Den Hoek, Jamon; Ahmed, Nabil
2016-10-11
The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world's largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to "peer through" atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km 2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson's r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events.
Alonzo, Michael; Van Den Hoek, Jamon; Ahmed, Nabil
2016-01-01
The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world’s largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to “peer through” atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson’s r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events. PMID:27725748
NASA Astrophysics Data System (ADS)
Alonzo, Michael; van den Hoek, Jamon; Ahmed, Nabil
2016-10-01
The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world’s largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to “peer through” atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson’s r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events.
Catenazzi, Alessandro; Ttito, Alex; Diaz, M Isabel; Shepack, Alexander
2017-01-01
A new species of Bryophryne from the humid montane forest of the Department of Cusco, Peru, is described. Specimens were collected at 2795-2850 m a.s.l. in the Área de Conservación Privada Ukumari Llaqta, Quispillomayo valley, in the province of Paucartambo. The new species is readily distinguished from all other species of Bryophryne by having green coloration on dorsum, and blue flecks on flanks and ventral parts. Specimens are characterized by lacking a distinct tympanic annulus, tympanic membrane, and dentigerous processes of vomers, and by having dorsal skin shagreen, discontinuous dorsolateral folds, skin tuberculate on flanks, skin areolate on ventral surfaces of the body, and fingers and toes without lateral fringes or webbing. The new species has a snout-vent length of 14.2-16.9 mm in three males and 22.2-22.6 mm in two females, and is smaller than all other congeneric species except for B. abramalagae . Generic allocation is supported by low genetic distances of the 16S mitochondrial gene and morphological similarity with other species of Bryophryne , and geographic distribution. Bryophryne phuyuhampatu sp. n. is only known from the type locality, a cloud forest along the Quispillomayo River in the upper Nusiniscato watershed.
Development of LiDAR aware allometrics for Abies grandis: A Case Study
NASA Astrophysics Data System (ADS)
Stone, G. A.; Tinkham, W. T.; Smith, A. M.; Hudak, A. T.; Falkowski, M. J.; Keefe, R.
2012-12-01
Forest managers rely increasingly on accurate allometric relationships to inform decisions regarding stand rotations, silvilcultural treatments, timber harvesting, and biometric modeling. At the same time, advances in remote sensing techniques like LiDAR (light detection and ranging) have brought about opportunities to advance how we assess forest growth, and thus are contributing to the need for more accurate allometries. Past studies have attempted to relate LiDAR data to both plot and individual tree measures of forest biomass. However, many of these studies have been limited by the accuracy of their coincident observations. In this study, 24 Abies grandis were measured, felled, and dissected for the explicit objective of developing LiDAR aware allometrics. The analysis predicts spatial variables of competition, growth potential (e.g, trees per acre, aspect, elevation, etc.) and common statistical distributional metrics (e.g., mean, mode, percentiles, variance, skewness, kurtosis, etc.) derived from LiDAR point cloud returns to coincident in situ measures of Abies grandis stem biomass. The resulting allometries exemplify a new approach for predicting structural attributes of interest (biomass, basal area, volume, etc.) directly from LiDAR point cloud data, precluding the measurement errors that are propogated by indirectly predicting these structure attributes of interest from LiDAR data using traditional plot-based measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
An Old-Growth Definition for Evergreen Bay Forests and Related Seral Communities
Martha R. McKevlin
1996-01-01
This document describes old-growth conditions in an evergreen bay forest stand. Bay forests occur throughout the Atlantic and Gulf Coastal Plains. However, they are considered rare and are present across the landscape in a patchwork mosaic with other forest types in various stages of succession. Bay forests can be found associated with pocosins, Carolina bays and...
Bark beetle conditions in western forests and formation of the Western Bark Beetle Research Group
Robert J. Cain; Jane L. Hayes
2009-01-01
The recent dramatic impacts of bark beetle outbreaks across conifer forests of the West have been mapped and reported by entomology and pathology professionals with Forest Health Protection (FHP), a component of USDA Forest Service's State and Private Forestry, and their state counterparts. These forest conditions set the stage for the formation of the Western...
Applicability Analysis of Cloth Simulation Filtering Algorithm for Mobile LIDAR Point Cloud
NASA Astrophysics Data System (ADS)
Cai, S.; Zhang, W.; Qi, J.; Wan, P.; Shao, J.; Shen, A.
2018-04-01
Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging) data post-processing. Cloth simulation filtering (CSF) algorithm, which based on a physical process, has been validated to be an accurate, automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the mobile laser scanning (MLS) has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM), 3D building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different features (such as point density feature, distribution feature and complexity feature) for mobile LiDAR point cloud. Some filtering algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain are selected to test the performance of this algorithm, which respectively yields total errors of 0.44 %, 0.77 % and1.20 %. Additionally, large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile LiDAR point cloud.
St. Lawrence Seaway, Quebec, Canada
1991-05-06
STS039-83-059 (28 April-6 May 1991) --- This high oblique view taken from over southeastern Quebec, looking to the southwest down the estuary of the St. Lawrence River (Fleuve Saint-Laurent). The primary road on the north side of the river (right) runs from Quebec, at the end of the estuary behind Ile D'Orleans, northeast to its terminus at Sept-Iles (near nadir, and not visible in this scene). The St. Lawrence disappears underneath the cloud bank over western New York and Ontario just to the west of Montreal. The light snow cover enhances the area of forests (dark) and non-forest (white). In this view, most of the irregular areas of white on the right side of the St. Lawrence River are previously forested areas that were burned over during the extraordinary Canadian forest fires of 1989.
Li, Taijun; Ren, Bowen; Wang, Dahui; Liu, Guobin
2015-01-01
Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China's Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p < 0.001). The C carrying capacity of the plantations was measured at 166.4 Mg C ha-1 (1 Mg = 106 g) in the semi-humid zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha-1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha-1 to 28.4 Mg C ha-1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration.
Li, Taijun; Ren, Bowen; Wang, Dahui; Liu, Guobin
2015-01-01
Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China’s Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p < 0.001). The C carrying capacity of the plantations was measured at 166.4 Mg C ha−1 (1 Mg = 106 g) in the semi-humid zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha−1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha−1 to 28.4 Mg C ha−1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration. PMID:25799100
The theory of QSO absorption line systems and their relationship to the galaxies
NASA Technical Reports Server (NTRS)
Charlton, Jane
1993-01-01
The fundamental goal of this effort is to paint a picture of what the Ly-alpha forest clouds are and how they are distributed in space. Progress during the first phase of this program involved development of the 'Cheshire Cat Model' of Ly-alpha clouds in which systems over a large range of column densities are produced by disks with somewhat smaller column densities than those of normal galaxies. A prediction of the slab model of Ly-alpha clouds was confirmed by a new observational result, and the comparison of models to the new data allowed an estimate of the pressure of the intergalactic medium. This result should be forthcoming in pre-print form within the next month. The various results will now be described in more detail.
García, Franger J; Delgado-Jaramillo, Mariana; Machado, Marjorie; Aular, Luis
2012-03-01
In Venezuela, mammals represent an important group of wildlife with high anthropogenic pressures that threaten their permanence. Focused on the need to generate baseline information that allows us to contribute to document and conserve the richness of local wildlife, we conducted a mammalogical inventory in Yurubí National Park, located in Yaracuy State in Venezuela. We carried out fieldworks in three selected vegetation types: an evergreen forest at 197m, a semi-deciduous forest ranging between 100-230m, and a cloud forest at 1 446m. We used Victor, Sherman, Havahart and pitfall traps for the capture of small non-volant mammals and mist nets for bats. In addition, we carried out interviews with local residents and direct-indirect observations for medium-large sized mammals. At least 79 species inhabit the area, representing 28% of the species recorded for the North side of the country. Chiroptera (39 spp.), Carnivora (13 spp.) and Rodentia (9 spp.) were the orders with the highest richness, as expected for the Neotropics. The evergreen forest had the greatest species richness (n=68), with a sampling effort of 128 net-hours, 32 bucket-days, 16 hours of observations, and three persons interviewed, followed by cloud forest (n=45) with 324 net-hours, 790 traps-night, 77 bucket-days, 10 hours of observations, and one person interviewed. The lowest richness value was in the semi-deciduous forest (n=41), with 591 traps-night, 15 net-hours, 10 hours of observations and three persons interviewed. Data and observations obtained in this inventory (e.g., endemism, species known as "surrogate species" threatened in Venezuela) give an important role at the Yurubí National Park in the maintenance and conservation of local ecosystems and wildlife, threatened by human pressures in the Cordillera de la Costa.
NASA Astrophysics Data System (ADS)
Spruce, J.; Hargrove, W. W.; Gasser, G.; Smoot, J. C.; Kuper, P.
2009-12-01
This presentation discusses a study on the use of MODIS NDVI data for viewing regional patterns of forest disturbance across the conterminous United States. This capability is a part of a national forest threat early warning system (EWS) being developed by the USDA Forest Service’s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. The viewing capability of the EWS was recently demonstrated for 2009, using near-real time (NRT) MODIS NDVI data from the USGS eMODIS Web site and historical NDVI data from standard MOD13 products. For this study, a historical maximum NDVI baseline for CONUS was computed from fused Aqua and Terra MOD13 data for June 10-July 27 of each year during 2000-2006. Comparable 2009 MODIS NDVI imagery was computed from fusion and re-compositing of eMODIS NRT Aqua and Terra 7-day products. For the historical data, time series data processing software was used to remove poor quality data and to mitigate data gaps mainly due to clouds. Although the NRT component was not as rigorously processed to mitigate noise, the processing still yielded largely cloud-free clean, coherent CONUS NDVI imagery initially with only 21-days of compositing. The principal end product of the study was a forest disturbance visualization product based on an NDVI RGB image that combines data from 2 dates (i.e. time frames). For this RGB, the historical maximum NDVI for the observed temporal window was assigned to the red color gun and the 2009 NRT product for the same time frame was assigned to the blue and green guns. The resulting image was masked with a USFS FIA 250-m type map to include only forested areas. The forest disturbance areas on the forest-masked 2-date NDVI RGB are shown in red tones with non-disturbed closed canopy forest generally shown in medium to bright gray tones. This product highlighted several broad-scaled forest canopy disturbances for the observed time in 2009, including damage from caterpillars, bark beetles, ice storms, hail and wind storms, and wildfire. The MODIS forest disturbance products compared well with reference data (e.g., Landsat, aerial sketch maps, and news accounts). These products have been useful in aiding development of the forest threat EWS. Information on location and extent of regional forest disturbance is important to Federal, State, and private sector forest managers. The 2-date RGB product for 2009 was also processed into a classification of forest disturbance for the Colorado Front Range. Validation of this classification is underway. Regional forest disturbance classifications in conjunction with available CONUS forest biomass products could be useful for assessing carbon impacts from biotic threats such as mountain pine beetle and from abiotic threats related to climate change. The latency of the NRT eMODIS products addresses an important need of the USFS EWS.
NASA Technical Reports Server (NTRS)
Lau, K-M.; Wu, H-T.
2010-01-01
This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.
Hu, Huifeng; Wang, Shaopeng; Guo, Zhaodi; Xu, Bing; Fang, Jingyun
2015-01-01
China’s forests are characterized by young age, low carbon (C) density and a large plantation area, implying a high potential for increasing C sinks in the future. Using data of provincial forest area and biomass C density from China’s forest inventories between 1994 and 2008 and the planned forest coverage of the country by 2050, we developed a stage-classified matrix model to predict biomass C stocks of China’s forests from 2005 to 2050. The results showed that total forest biomass C stock would increase from 6.43 Pg C (1 Pg = 1015 g) in 2005 to 9.97 Pg C (95% confidence interval: 8.98 ~ 11.07 Pg C) in 2050, with an overall net C gain of 78.8 Tg C yr−1 (56.7 ~ 103.3 Tg C yr−1; 1 Tg = 1012 g). Our findings suggest that China’s forests will be a large and persistent biomass C sink through 2050. PMID:26110831
Hu, Huifeng; Wang, Shaopeng; Guo, Zhaodi; Xu, Bing; Fang, Jingyun
2015-06-25
China's forests are characterized by young age, low carbon (C) density and a large plantation area, implying a high potential for increasing C sinks in the future. Using data of provincial forest area and biomass C density from China's forest inventories between 1994 and 2008 and the planned forest coverage of the country by 2050, we developed a stage-classified matrix model to predict biomass C stocks of China's forests from 2005 to 2050. The results showed that total forest biomass C stock would increase from 6.43 Pg C (1 Pg = 10(15) g) in 2005 to 9.97 Pg C (95% confidence interval: 8.98 ~ 11.07 Pg C) in 2050, with an overall net C gain of 78.8 Tg C yr(-1) (56.7 ~ 103.3 Tg C yr(-1); 1 Tg = 10(12) g). Our findings suggest that China's forests will be a large and persistent biomass C sink through 2050.
Zhang, Zhi-Ting; Song, Xin-Zhang; Xiao, Wen-Fa; Gao, Bao-Jia; Guo, Zhong-Ling
2009-06-01
An investigation was made on the soil seed banks in the logging gaps of Populus davidiana--Betula platyphylla secondary forest, secondary broad-leaved forest, and broad-leaved Korean pine mixed forest at their different succession stages in Changbai Mountains. Among the test forests, secondary broad-leaved forest had the highest individual density (652 ind x m(-2)) in its soil seed bank. With the succession of forest community, the diversity and uniformity of soil seed bank increased, but the dominance decreased. The seed density of climax species such as Pinus koraiensis, Abies nephrolepis, and Acer mono increased, whereas that of Maackia amurensis and Fraxinus mandshurica decreased. Moreover, the similarity in species composition between soil seed bank and the seedlings within logging gaps became higher. The individual density and similarity between soil seed bank and the seedlings in non-logging gaps were similar to those in logging gaps. All of these indicated that soil seed bank provided rich seed resources for forest recovery and succession, and the influence of soil seed bank on seedlings regeneration increased with the succession.
Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data
USDA-ARS?s Scientific Manuscript database
Land surface temperature (LST) is a critical parameter in environmental studies and resource management. The MODIS LST data product has been widely used in various studies, such as drought monitoring, evapotranspiration mapping, soil moisture estimation and forest fire detection. However, cloud cont...
UV Spectral Variability and the Lyman-Alpha Forest in the Lensed Quasar Q0957+561
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Michalitsianos, A. G.; Nguyen, Q. T.; Hill, R. J.
1999-01-01
Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and O VI lambda 1037 emission lines reported in IUE (International Ultraviolet Explorer) spectra. The fluxes in these lines vary on a time scale of weeks in the local rest frame (LRF), independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W (sub lambda) greater than or equal to 0.3 Angstroms in the LRF not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be LY-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approx. 1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W (sub lambda) greater than or equal to 0.3 Angstroms appear at 42 distinct wavelengths in the spectra of the two images. Two absorption lines in the spectrum of image A have no counterpart at that wavelength in the spectrum of image B, and two lines in image B have no counterpart in image A. Based on the separation of the lines of sight at the redshift of the absorption lines appearing in only one spectrum, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance of 79 (+34, -26) h (sub 50) (sup -1) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension is the radius. (We adopt H (sub 0)= 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2, and LAMBDA = 0 throughout the paper.) The two limits define the 68% confidence interval on the characteristic dimension, equivalent to the 1 sigma confidence interval for a Gaussian distribution. The 95% confidence interval extends from (32 - 250) h (sub 50) (sup -1) kpc. We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly converging power series in 1/r, where r the ratio of the radius of the cloud to the separation of the two LOS at the redshift of the cloud. This power series can be rewritten to give r in terms of the fraction of Ly-alpha forest wavelengths that appear in the spectrum of only one image. A simple linear approximation to the solution which everywhere agrees with the power series solution to better than 0.8% for r greater than or equal to 2 is derived in the Appendix.
Exploration for fossil and nuclear fuels from orbital altitudes
NASA Technical Reports Server (NTRS)
Short, N. M.
1975-01-01
A review of satellite-based photographic (optical and infrared) and microwave exploration and large-area mapping of the earth's surface in the ERTS program. Synoptic cloud-free coverage of large areas has been achieved with planimetric vertical views of the earth's surface useful in compiling close-to-orthographic mosaics. Radar penetration of cloud cover and infrared penetration of forest cover have been successful to some extent. Geological applications include map editing (with corrections in scale and computer processing of images), landforms analysis, structural geology studies, lithological identification, and exploration for minerals and fuels. Limitations of the method are noted.
UV 380 nm Reflectivity of the Earth's Surface
NASA Technical Reports Server (NTRS)
Herman, J. R.; Celarier, E.; Larko, D.
2000-01-01
The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.
Hydrologic Effects and Biogeographic Impacts of Coastal Fog, Channel Islands, California
NASA Astrophysics Data System (ADS)
Fischer, D. T.; Still, C. J.; Williams, A. P.
2006-12-01
Fog has long been recognized as an important component of the hydrological cycle in many ecosystems, including coastal desert fog belts, tropical cloud forests, and montane areas worldwide. Fog drip can be a major source of water, particularly during the dry season, and there is evidence in some ecosystems of direct fogwater uptake by foliar absorption. Fog and low clouds can also increase availability of water by reducing evaporative water losses. In the California Channel Islands, fog and low stratus clouds dramatically affect the water budget of coastal vegetation, particularly during the long summer drought. This work focuses on a population of Bishop pine (Pinus muricata D. Don) on Santa Cruz Island. This is the southernmost large stand of this species, and tree growth and survival appears to be strongly limited by water availability. We have used parallel measurement and modeling approaches to quantify the importance of fogwater inputs and persistent cloud cover to Bishop pine growth. We have modeled drought stress over the last century based on local climate records, calibrated against a dense network of 12 weather stations on a 7km coastal-inland elevation gradient. Water availability is highly variable year to year, with episodic droughts that are associated with widespread tree mortality. Frequent cloud cover near the coast reduces evapotranspiration relative to the inland site (on the order of 25%), thereby delaying the onset of, and moderating the severity of the annual summer drought. Substantial summer fog drip at higher elevations provides additional water inputs that also reduce drought severity. Beyond the theoretical availability of extra water from fog drip, tree ring analysis and xylem water isotopic data suggest that significant amounts of fog water are actually taken up by these trees. Stand boundaries appear to be driven by spatial patterns of mortality related to water availability and frequency of severe drought. These results suggest that coastal endemic forests may be particularly susceptible to climate change, particularly if it leads to changes in the fog and low stratus cloud regime, in agreement with palynological and plant macrofossil evidence from the Santa Barbara basin showing the contraction of coastal pines during warm periods over the last 160 kyrs.
NASA Technical Reports Server (NTRS)
Torres, O.; Jethva, H.; Bhartia, P. K.
2012-01-01
A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.
NASA Astrophysics Data System (ADS)
Székely, Balázs; Kania, Adam; Varga, Katalin; Heilmeier, Hermann
2017-04-01
Lacunarity, a measure of the spatial distribution of the empty space is found to be a useful descriptive quantity of the forest structure. Its calculation, based on laser-scanned point clouds, results in a four-dimensional data set. The evaluation of results needs sophisticated tools and visualization techniques. To simplify the evaluation, it is straightforward to use approximation functions fitted to the results. The lacunarity function L(r), being a measure of scale-independent structural properties, has a power-law character. Previous studies showed that log(log(L(r))) transformation is suitable for analysis of spatial patterns. Accordingly, transformed lacunarity functions can be approximated by appropriate functions either in the original or in the transformed domain. As input data we have used a number of laser-scanned point clouds of various forests. The lacunarity distribution has been calculated along a regular horizontal grid at various (relative) elevations. The lacunarity data cube then has been logarithm-transformed and the resulting values became the input of parameter estimation at each point (point of interest, POI). This way at each POI a parameter set is generated that is suitable for spatial analysis. The expectation is that the horizontal variation and vertical layering of the vegetation can be characterized by this procedure. The results show that the transformed L(r) functions can be typically approximated by exponentials individually, and the residual values remain low in most cases. However, (1) in most cases the residuals may vary considerably, and (2) neighbouring POIs often give rather differing estimates both in horizontal and in vertical directions, of them the vertical variation seems to be more characteristic. In the vertical sense, the distribution of estimates shows abrupt changes at places, presumably related to the vertical structure of the forest. In low relief areas horizontal similarity is more typical, in higher relief areas horizontal similarity fades out in short distances. Some of the input data have been acquired in the framework of the ChangeHabitats2 project financed by the European Union. BS contributed as an Alexander von Humboldt Research Fellow.
Price transmission between products at different stages of manufacturing in forest industries
Mo Zhou; Joseph Buongiorno
2005-01-01
The theory of demand and supply implies a positive relationship, or "price transmission" between the prices of products at different stages of manufacturing, This relationship was investigated with quarterly prices of softwood stumpage in the US South, and national prices of forest products, from 1977 to 2002. All prices, net of inflation, were found to be...
Hand pose estimation in depth image using CNN and random forest
NASA Astrophysics Data System (ADS)
Chen, Xi; Cao, Zhiguo; Xiao, Yang; Fang, Zhiwen
2018-03-01
Thanks to the availability of low cost depth cameras, like Microsoft Kinect, 3D hand pose estimation attracted special research attention in these years. Due to the large variations in hand`s viewpoint and the high dimension of hand motion, 3D hand pose estimation is still challenging. In this paper we propose a two-stage framework which joint with CNN and Random Forest to boost the performance of hand pose estimation. First, we use a standard Convolutional Neural Network (CNN) to regress the hand joints` locations. Second, using a Random Forest to refine the joints from the first stage. In the second stage, we propose a pyramid feature which merges the information flow of the CNN. Specifically, we get the rough joints` location from first stage, then rotate the convolutional feature maps (and image). After this, for each joint, we map its location to each feature map (and image) firstly, then crop features at each feature map (and image) around its location, put extracted features to Random Forest to refine at last. Experimentally, we evaluate our proposed method on ICVL dataset and get the mean error about 11mm, our method is also real-time on a desktop.
USDA-ARS?s Scientific Manuscript database
Land cover change affects climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Previous studies have highlighted that forest loss in high latitudes could c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Joel A
The major goals of this project were to make unique measurements, as part of the DOE sponsored Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign, of the volatility and molecular composition of organic aerosol, as well as gas-phase concentrations of oxygenated organic compounds that interact and affect organic aerosol. In addition, we aimed to conduct a similar set of measurements as part of a collaborative set of environmental simulation chamber experiments at PNNL, the aim of which was to simulate the atmospheric oxidation of key biogenic volatile organic compounds (BVOC) and study the associated formation and evolution of secondarymore » organic aerosol (SOA). The target BVOC were a set of monoterpenes, isoprene, and related intermediates such as IEPOX. The ultimate goal of such measurements are to develop a more detailed mechanistic understanding of the sensitivity of SOA mass formation and lifetime to precursor and environmental conditions. Molecular composition and direct volatility measurements provide robust tracers of chemical processing and properties. As such, meeting these goals will allow for stronger constraints on the types of processes and their fundamental descriptions needed to simulate aerosol particle number and size, and cloud nucleating ability in regional and global earth system models.« less
Annual Dynamics of Forest Areas in South America during 2007-2010 at 50-m Spatial Resolution
NASA Astrophysics Data System (ADS)
Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Wang, J.; Doughty, R.; Chen, Y.; Zou, Z.; Moore, B., III
2017-12-01
The user community has an urgent need for high accuracy tropical forest distribution and spatio-temporal changes since tropical forests are facing defragmentation and persistent clouds. In this study, we selected South America as a hotspot and presented a robust approach to map annual forests during 2007-2010 based on the coupled greenness-relevant MOD13Q1 NDVI and structure/biomass-relevant ALOS PALSAR time series data. We analyzed the consistency and uncertainty among eight major forest maps at continental, country, and pixel scales. The 50-m PALSAR/MODIS forest area in South America was about 8.63×106 km2 in 2010. Large differences in total forest area (8.2×106 km2-12.7×106 km2) existed among these forest products. Forest products generated under a similar forest definition had similar or even larger variation than those generated under differing forest definitions. One needs to consider leaf area index as an adjusting factor and use much higher threshold values in the VCF datasets to estimate forest cover. Analyses of PALSAR/MODIS forest maps showed a relatively small and equivalent rate of loss (3.2×104 km2 year-1) in net forest cover to that of FAO FRA (3.3×104 km2 year-1). PALSAR/MODIS forest maps showed that more and more deforestation occurred in the intact forest areas. The rate of forest loss (1.95×105 km2 year-1) was higher than that of Global Forest Watch (0.81×105 km2 year-1). Caution should be used when using the different forest maps to analyze forest loss and make policies regarding forest ecosystem services and biodiversity conservation.
Interacting disturbances: Wildfire severity affected by stage of forest disease invasion
Margaret Metz; Kerri Frangioso; Ross Meentemeyer; David Rizzo
2010-01-01
Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined pre-fire fuels from host species in a forest monitoring plot network...
Fires and forest succession in the Bitterroot Mountains of northern Idaho
J. A. Larsen
1929-01-01
Foresters have recently begun to seek a more intimate knowledge of the natural, successional stages by which forests regain terrain lost by extensive fires or other pronounced denuding agencies. Studies in this field lead to a closer understanding of the factors which control the distribution, composition and density of the present forest, the silvical requirements of...
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-01-01
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions. PMID:24811079
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-05-07
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.
Yuan, Zuoqiang; Wang, Shaopeng; Gazol, Antonio; Mellard, Jarad; Lin, Fei; Ye, Ji; Hao, Zhanqing; Wang, Xugao; Loreau, Michel
2016-12-01
Biodiversity can be measured by taxonomic, phylogenetic, and functional diversity. How ecosystem functioning depends on these measures of diversity can vary from site to site and depends on successional stage. Here, we measured taxonomic, phylogenetic, and functional diversity, and examined their relationship with biomass in two successional stages of the broad-leaved Korean pine forest in northeastern China. Functional diversity was calculated from six plant traits, and aboveground biomass (AGB) and coarse woody productivity (CWP) were estimated using data from three forest censuses (10 years) in two large fully mapped forest plots (25 and 5 ha). 11 of the 12 regressions between biomass variables (AGB and CWP) and indices of diversity showed significant positive relationships, especially those with phylogenetic diversity. The mean tree diversity-biomass regressions increased from 0.11 in secondary forest to 0.31 in old-growth forest, implying a stronger biodiversity effect in more mature forest. Multi-model selection results showed that models including species richness, phylogenetic diversity, and single functional traits explained more variation in forest biomass than other candidate models. The models with a single functional trait, i.e., leaf area in secondary forest and wood density in mature forest, provided better explanations for forest biomass than models that combined all six functional traits. This finding may reflect different strategies in growth and resource acquisition in secondary and old-growth forests.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)
2001-01-01
Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.
Using LiDAR data to measure the 3D green biomass of Beijing urban forest in China.
He, Cheng; Convertino, Matteo; Feng, Zhongke; Zhang, Siyu
2013-01-01
The purpose of the paper is to find a new approach to measure 3D green biomass of urban forest and to testify its precision. In this study, the 3D green biomass could be acquired on basis of a remote sensing inversion model in which each standing wood was first scanned by Terrestrial Laser Scanner to catch its point cloud data, then the point cloud picture was opened in a digital mapping data acquisition system to get the elevation in an independent coordinate, and at last the individual volume captured was associated with the remote sensing image in SPOT5(System Probatoired'Observation dela Tarre)by means of such tools as SPSS (Statistical Product and Service Solutions), GIS (Geographic Information System), RS (Remote Sensing) and spatial analysis software (FARO SCENE and Geomagic studio11). The results showed that the 3D green biomass of Beijing urban forest was 399.1295 million m(3), of which coniferous was 28.7871 million m(3) and broad-leaf was 370.3424 million m(3). The accuracy of 3D green biomass was over 85%, comparison with the values from 235 field sample data in a typical sampling way. This suggested that the precision done by the 3D forest green biomass based on the image in SPOT5 could meet requirements. This represents an improvement over the conventional method because it not only provides a basis to evalue indices of Beijing urban greenings, but also introduces a new technique to assess 3D green biomass in other cities.
Using LiDAR Data to Measure the 3D Green Biomass of Beijing Urban Forest in China
He, Cheng; Convertino, Matteo; Feng, Zhongke; Zhang, Siyu
2013-01-01
The purpose of the paper is to find a new approach to measure 3D green biomass of urban forest and to testify its precision. In this study, the 3D green biomass could be acquired on basis of a remote sensing inversion model in which each standing wood was first scanned by Terrestrial Laser Scanner to catch its point cloud data, then the point cloud picture was opened in a digital mapping data acquisition system to get the elevation in an independent coordinate, and at last the individual volume captured was associated with the remote sensing image in SPOT5(System Probatoired'Observation dela Tarre)by means of such tools as SPSS (Statistical Product and Service Solutions), GIS (Geographic Information System), RS (Remote Sensing) and spatial analysis software (FARO SCENE and Geomagic studio11). The results showed that the 3D green biomass of Beijing urban forest was 399.1295 million m3, of which coniferous was 28.7871 million m3 and broad-leaf was 370.3424 million m3. The accuracy of 3D green biomass was over 85%, comparison with the values from 235 field sample data in a typical sampling way. This suggested that the precision done by the 3D forest green biomass based on the image in SPOT5 could meet requirements. This represents an improvement over the conventional method because it not only provides a basis to evalue indices of Beijing urban greenings, but also introduces a new technique to assess 3D green biomass in other cities. PMID:24146792
Cost-effective age structure and geographical distribution of boreal forest reserves.
Lundström, Johanna; Ohman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald
2011-02-01
1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied.2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area.3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0-14 years than in forests 15-69 years.4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area.5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class.6.Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost-efficient to protect. This suggests that reserve networks should incorporate sites with high habitat quality of different forest ages. Since young forests are generally neglected in conservation, our approach is of interest also to other forest biomes where biodiversity is adapted to disturbance regimes resulting in open, early successional stages.
Joelsson, Klara; Hjältén, Joakim; Gibb, Heloise
2018-01-01
Management of forest for wood production has altered ecosystem structures and processes and led to habitat loss and species extinctions, worldwide. Deadwood is a key resource supporting forest biodiversity, and commonly declines following forest management. However, different forest management methods affect dead wood differently. For example, uneven-aged silviculture maintains an age-stratified forest with ongoing dead wood production, while even-aged silviculture breaks forest continuity, leading to long periods without large trees. We asked how deadwood-dependent beetles respond to different silvicultural practices and if their responses depend on deadwood volume, and beetles preference for decay stages of deadwood. We compared beetle assemblages in five boreal forest types with different management strategies: clearcutting and thinning (both representing even-aged silviculture), selective felling (representing uneven-aged silviculture), reference and old growth forest (both uneven-aged controls without a recent history [~50 years] of management, but the latter with high conservation values). We collected beetles using window traps and by sieving the bark from experimental logs (bolts). Beetle assemblages on clear-cuts differed from all other stand types, regardless of trapping method or decay stage preference. Thinning differed from reference stands, indicating incomplete recovery after clear-cutting, while selective felling differed only from clear-cuts. In contrast to our predictions, early and late successional species responded similarly to different silvicultural practices. However, there were indications of marginal assemblage differences both between thinned stands and selective felling and between thinned and old growth stands (p = 0.10). The stand volume of early decay stage wood influenced assemblage composition of early, but not late successional species. Uneven-aged silviculture maintained species assemblages similar to those of the reference and old growth stands and might therefore be a better management option when considering biodiversity conservation.
SAR For REDD+ in the Mai Ndombe District (DRC)
NASA Astrophysics Data System (ADS)
Haarpaintner, Jorg
2016-08-01
The overall goal of the project "SAR for REDD" is to provide cloud-penetrating satellite synthetic aperture radar (SAR) pre-processing and analysing capabilities and tools to support operational tropical forest monitoring in REDD countries and primarily in Africa. The project's end-user is the Observatoir Satellitale des Forêts d'Afrique Centrale (OSFAC).This paper presents an overall summary of the project and shows first results of the satellite products, that will be delivered to the user in addition to software tools to enhance the user's own technical capacity.The products shown here are SAR mosaics and derived forest-land cover maps based on C-band Sentinel-1A data for 2015, ALOS-PALSAR data for the period 2007-2010 and ALOS-2 PALSAR-2 for 2015. In addition, a forest cover change map from 2007 to 2010 based on ALOS PALSAR has been produced and is compared to results from the Global Forest Cover project [1].
The influence of surface roughness on cloud cavitation flow around hydrofoils
NASA Astrophysics Data System (ADS)
Hao, Jiafeng; Zhang, Mindi; Huang, Xu
2018-02-01
The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry (PIV) were used to obtain cavitation patterns images (Prog. Aerosp. Sci. 37: 551-581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α =8{°} for moderate Reynolds number of Re=5.6 × 105. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil (A) and a rough hydrofoil (B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B. Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages: (1) Attached cavities developed along the surface to the trailing edge; (2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages: (1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field; (2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process; (3) Cavities grew and shed again.
Towards a new parameterization of ice particles growth
NASA Astrophysics Data System (ADS)
Krakovska, Svitlana; Khotyayintsev, Volodymyr; Bardakov, Roman; Shpyg, Vitaliy
2017-04-01
Ice particles are the main component of polar clouds, unlike in warmer regions. That is why correct representation of ice particle formation and growth in NWP and other numerical atmospheric models is crucial for understanding of the whole chain of water transformation, including precipitation formation and its further deposition as snow in polar glaciers. Currently, parameterization of ice in atmospheric models is among the most difficult challenges. In the presented research, we present a renewed theoretical analysis of the evolution of mixed cloud or cold fog from the moment of ice nuclei activation until complete crystallization. The simplified model is proposed that includes both supercooled cloud droplets and initially uniform particles of ice, as well as water vapor. We obtain independent dimensionless input parameters of a cloud, and find main scenarios and stages of evolution of the microphysical state of the cloud. The characteristic times and particle sizes have been found, as well as the peculiarities of microphysical processes at each stage of evolution. In the future, the proposed original and physically grounded approximations may serve as a basis for a new scientifically substantiated and numerically efficient parameterizations of microphysical processes in mixed clouds for modern atmospheric models. The relevance of theoretical analysis is confirmed by numerical modeling for a wide range of combinations of possible conditions in the atmosphere, including cold polar regions. The main conclusion of the research is that until complete disappearance of cloud droplets, the growth of ice particles occurs at a practically constant humidity corresponding to the saturated humidity over water, regardless to all other parameters of a cloud. This process can be described by the one differential equation of the first order. Moreover, a dimensionless parameter has been proposed as a quantitative criterion of a transition from dominant depositional to intense collectional growth of ice particles; it could be used in models with bulk parameterization of cloud and precipitation formation processes.
The radiocesium dynamics in the Fukushima forests at the late stage after deposition
NASA Astrophysics Data System (ADS)
Yoschenko, Vasyl; Takase, Tsugiko; Nanba, Kenji; Konoplev, Alexei; Onda, Yuichi
2017-04-01
Forests cover about 2/3 of the territory of Areas 2 and 3 in the Fukushima prefecture. This territory was heavily contaminated with radiocesium released from the Fukushima Dai-Ichi Nuclear Power Plant in March 2011. The extensive decontamination measures aimed to prepare the return of population have been scheduled and are being implemented at the agricultural and residential lands at this territory. However, these measures will be not applied in the large scale in the Fukushima forests. The current radiocesium levels in wood at this territory exceed the Japanese standards for wood; thus, after return of population, the Fukushima forests may remain excluded from the economical use. Understanding of the further dynamics of radiocesium in the forest ecosystems is necessary for elaboration of the strategy concerning the radioactive contaminated Fukushima forests. In March 2011 radiocesium was intercepted by the tree canopies and then, at the early stage after the accident, was effectively transported to the soil surface with precipitation and litterfall, and partly translocated to wood forming the current levels. The general trend was the decrease of the radiocesium inventory in the aboveground forest biomass. After redistribution in the root-inhabited soil layer radiocesium became available for uptake into the trees through the roots. From the Chernobyl experience, the further levels of radiocesium in the forest ecosystem compartments at the late stage may increase or decrease depending on the intensities of the root uptake and removal fluxes. In the Fukushima forests, the stage of the root uptake has begun recently, and the parameters of the root uptake have not been studied well for the varieties of species, forest types and soil conditions. Our study is aimed to monitoring and modelling of the radiocesium redistribution in the Fukushima forests after the removal of its initial deposition from the tree canopies. The study has been performed since May 2014 at several experimental sites in the typical Fukushima forests (Japanese cedar, Japanese red pine). We observe the dynamics of the radiocesium concentrations and total inventories in the ecosystem compartments and quantify the biogenic fluxes of radiocesium which will determine its further redistribution between the biomass, soil and litter. Our study also includes characterization of the stable cesium distributions in the forest ecosystems and development of the methods for non-destructive monitoring of the radiocesium concentration in wood. We present the observation results for the period of 2014-2016 (annual and seasonal changes in the aboveground biomass, leaching from the forest litter, downward migration in soil), as well as the estimates of the radiocesium fluxes which will be used later for the modelling of its long-term dynamics in the Fukushima forests.
Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; ...
2018-05-07
This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago
This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less
Trace gas exchanges and transports over the Amazonian rain forest
NASA Technical Reports Server (NTRS)
Garstang, Michael; Greco, Steve; Scala, John; Harriss, Robert; Browell, Edward; Sachse, Glenn; Simpson, Joanne; Tao, Wei-Kuo; Torres, Arnold
1986-01-01
Early results are presented from a program to model deep convective transport of chemical species by means of in situ data collection and numerical models. Data were acquired during the NASA GTE Amazon Boundary Layer Experiment in July-August 1985. Airborne instrumentation, including a UV-DIAL system, collected data on the O3, CO, NO, temperature and water vapor profiles from the surface to 400 mb altitude, while GOES imagery tracked convective clouds over the study area. A two-dimensional cloud model with small amplitude random temperature fluctuations at low levels, which simulated thermals, was used to describe the movements of the chemical species sensed in the convective atmosphere. The data was useful for evaluating the accuracy of the cloud model, which in turn was effective in describing the circulation of the chemical species.
NASA Astrophysics Data System (ADS)
Tosca, M. G.; Diner, D. J.; Garay, M. J.; Kalashnikova, O. V.
2012-12-01
Fire-emitted aerosols modify cloud and precipitation dynamics by acting as cloud condensation nuclei in what is known as the first and second aerosol indirect effect. The cloud response to the indirect effect varies regionally and is not well understood in the highly convective tropics. We analyzed nine years (2003-2011) of aerosol data from the Multi-angle Imaging SpectroRadiometer (MISR), and fire emissions data from the Global Fire Emissions Database, version 3 (GFED3) over southeastern tropical Asia (Indonesia), and identified scenes that contained both a high atmospheric aerosol burden and large surface fire emissions. We then collected scenes from the Cloud Profiling Radar (CPR) on board the CLOUDSAT satellite that corresponded both spatially and temporally to the high-burning scenes from MISR, and identified differences in convective cloud dynamics over areas with varying aerosol optical depths. Differences in overpass times (MISR in the morning, CLOUDSAT in the afternoon) improved our ability to infer that changes in cloud dynamics were a response to increased or decreased aerosol emissions. Our results extended conclusions from initial studies over the Amazon that used remote sensing techniques to identify cloud fraction reductions in high burning areas (Koren et al., 2004; Rosenfeld, 1999) References Koren, I., Y.J. Kaufman, L.A. Remer and J.V. Martins (2004), Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342-1345 Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Gephys. Res. Lett., 26, 3105.
NASA Astrophysics Data System (ADS)
Székely, Balázs; Kania, Adam; Standovár, Tibor; Heilmeier, Hermann
2015-04-01
Forest ecosystems have characteristic structure of features defined by various structural elements of different scales and vertical positions: shrub layers, understory vegetation, tree trunks, and branches. Furthermore in most of the cases there are superimposed structures in distributions (mosaic or island patterns) due to topography, soil variability, or even anthropogenic factors like past/present forest management activity. This multifaceted spatial context of the forests is relevant for many ecological issues, especially for maintaining forest biodiversity. Our aim in this study is twofold: (1) to quantify this structural variability laterally and vertically using lacunarity, and (2) to relate these results to relevant ecological features, i.e quantitatively described forest properties. Airborne LiDAR data of various quality and point density have been used for our study including a number of forested sites in Central and East Europe (partly Natura 2000 sites). The point clouds have been converted to voxel format and then converted to horizontal layers as images. These images were processed further for the lacunarity calculation. Areas of interest (AOIs) have been selected based on evaluation of the forested areas and auxiliary field information. The calculation has been performed for the AOIs for all available vertical data slices. The lacunarity function referring to a certain point and given vicinity varies horizontally and vertically, depending on the vegetation structure. Furthermore, the topography may also influence this property as the growth of plants, especially spacing and size of trees are influenced by the local topography and relief (e.g., slope, aspect). The comparisons of the flatland and hilly settings show interesting differences and the spatial patterns also vary differently. Because of the large amount of data resulting from these calculations, sophisticated methods are required to analyse the results. The large data amount then has been structured according to AOIs and relevant AOI pairs or small groups have been formed for comparative purposes. Change detection techniques have been applied to reveal fine differences. The spatial variation can be related to ecologically relevant forest characteristics. Data used in this study have been acquired in the framework of ChangeHabitat2 project (an IAPP Marie Curie Actions project of the European Union), in Hungarian-Slovakian Transnational Cooperation Programme 2007-2013, "Management of World Heritage Aggtelek Karst/Slovakian Karst Caves" (HUSK/1101/221/0180, Aggtelek NP). These studies were partly carried out in the project 'Multipurpose assessment serving forest biodiversity conservation in the Carpathian region of Hungary', Swiss-Hungarian Cooperation Programme (SH/4/13 Project). BS contributed as an Alexander von Humboldt Research Fellow.
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; ...
2017-12-21
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
Particle removal by vegetation: comparison in a forest and a wetland.
Liu, Jiakai; Zhai, Jiexiu; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Zhang, Zhenming
2017-01-01
Vegetation collection is one of the most effective scavenging methods but relevant studies are limited. It can be described by some abstract parameters such as collection rates and deposition fluxes within the canopy. In order to estimate the dry deposition within the canopy of particular matters (PMs) in Beijing, a highly particle-polluted city, and reveal the PM pollution-removal abilities of plants in wetlands and forests, concentration and meteorological data were collected during the daytime in an artificial forest and a wetland in the Olympic Park in Beijing. The dry depositions within the canopy and vegetation collection rates were calculated by a well-developed model and validated by measured deposition fluxes in 11 random experiment days. The experiment year was divided into three plant growth stages based on canopy density, and the day was divided into four different times. Two heights, 10 and 1.5 m, were defined in the forest while in the wetland, 0.5 and 1.5 m were defined. The results showed that in Beijing, the most severe pollution by PMs occurs in the non-leaf stage (NS), and the full-leaf stage (FS) is the cleanest stage. In NS, namely winter, more fossil fuel was used for worms in Beijing and peripheral areas and this might be the reason for the serious pollution condition. Within the canopy, PM deposition fluxes in the wetland are more than those in the forest, but the vegetation collection rates of the forest are higher. The lower temperature conditions led to more dry deposition, and the larger canopy contributed to the higher collection rates. During the daytime, over the year, the deposition of PM 10 in three plant growth stages is NS ≥ half-leaf stages (HS) ≥ FS, whereas the deposition of PM 2.5 is NS ≥ FS ≥ HS, and during the daytime, the maximum deposition fluxes occur in 6:00-9:00 in the wetland while the minimum deposition values occur in 15:00-18:00. This phenomenon was related to the temporal variation of particle concentration.
NASA Technical Reports Server (NTRS)
Ripple, William J.
1995-01-01
NOAA-9 satellite data from the Advanced Very High Resolution Radiometer (AVHRR) were used in conjunction with Landsat Multispectral Scanner (MSS) data to determine the proportion of closed canopy conifer forest cover in the Cascade Range of Oregon. A closed canopy conifer map, as determined from the MSS, was registered with AVHRR pixels. Regression was used to relate closed canopy conifer forest cover to AVHRR spectral data. A two-variable (band) regression model accounted for more variance in conifer cover than the Normalized Difference Vegetation Index (NDVI). The spectral signatures of various conifer successional stages were also examined. A map of Oregon was produced showing the proportion of closed canopy conifer cover for each AVHRR pixel. The AVHRR was responsive to both the percentage of closed canopy conifer cover and the successional stage in these temperate coniferous forests in this experiment.
Using PVDF to locate the debris cloud impact position
NASA Astrophysics Data System (ADS)
Pang, Baojun; Liu, Zhidong
2010-03-01
With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.
Integrated Model to Assess Cloud Deployment Effectiveness When Developing an IT-strategy
NASA Astrophysics Data System (ADS)
Razumnikov, S.; Prankevich, D.
2016-04-01
Developing an IT-strategy of cloud deployment is a complex issue since even the stage of its formation necessitates revealing what applications will be the best possible to meet the requirements of a company business-strategy, evaluate reliability and safety of cloud providers and analyze staff satisfaction. A system of criteria, as well an integrated model to assess cloud deployment effectiveness is offered. The model makes it possible to identify what applications being at the disposal of a company, as well as new tools to be deployed are reliable and safe enough for implementation in the cloud environment. The data on practical use of the procedure to assess cloud deployment effectiveness by a provider of telecommunication services is presented. The model was used to calculate values of integral indexes of services to be assessed, then, ones, meeting the criteria and answering the business-strategy of a company, were selected.
Protection of electronic health records (EHRs) in cloud.
Alabdulatif, Abdulatif; Khalil, Ibrahim; Mai, Vu
2013-01-01
EHR technology has come into widespread use and has attracted attention in healthcare institutions as well as in research. Cloud services are used to build efficient EHR systems and obtain the greatest benefits of EHR implementation. Many issues relating to building an ideal EHR system in the cloud, especially the tradeoff between flexibility and security, have recently surfaced. The privacy of patient records in cloud platforms is still a point of contention. In this research, we are going to improve the management of access control by restricting participants' access through the use of distinct encrypted parameters for each participant in the cloud-based database. Also, we implement and improve an existing secure index search algorithm to enhance the efficiency of information control and flow through a cloud-based EHR system. At the final stage, we contribute to the design of reliable, flexible and secure access control, enabling quick access to EHR information.
Studies of extra-solar Oort clouds and the Kuiper disk
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1996-01-01
We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. According to 'standard' theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Belt (KB) and similar assemblages that may reside around other stars, including beta Pic.
NASA Astrophysics Data System (ADS)
Welch, R. M.; Ray, D. K.; Lawton, R. O.; Nair, U.
2005-12-01
In the region stretching between Mexico and Panama, the proposed Mesoamerican Biological Corridor (MBC) is an ambitious effort to stem and turn back the erosion of biodiversity in one of the world's biologically richest regions by connecting large existing parks and reserves with new protected areas by means of an extensive network of biological corridors. The success of this effort will depend in part on the ability of the connecting corridors to provide adequate habitats permitting the sustainability of some populations and the migratory movements of others. Ideally these connecting corridors would contain the biological communities which were originally present. Currently, however, many of these connecting corridors do not contain their original forest, but are instead occupied by agricultural landscapes containing croplands, grasslands and degraded woodlands. The forest types in northern Mesoamerica generally are those that require dry season rainfall for their survival, and it is not clear whether current environmental and climatological conditions are sufficient to maintain existing forests and regenerate the pristine forests in the deforested patches. Hourly climatological rainfall rates have been averaged for the time period of 1961 to 1997 at 266 stations in Guatemala and adjacent areas. These climatological rainfall rates have been segregated for forested and deforested regions of each of the major Holdridge life zones. Dry season cloud frequency of occurrences derived from GOES satellite imagery then are. correlated with the March climalogical data in order to generate regression estimates of current local rainfall. Differences between estimated current rainfall and historical values define regions under increased dry season water stress. In general dry season rainfall in March is markedly lower in deforested areas than in forested areas of the same life zone for most of the Holdridge life zones. In some deforested areas within the Holdridge wet forest life zones, estimated March rainfall deficits are >25 mm. Dry season deforested habitats tend to have higher daytime temperatures, are less cloudy, have lower estimated soil moisture and lower values of Normalized Difference Vegetation Index (NDVI) than do forested habitats in the same life zone. The result is hotter and drier air over deforested regions, with lower values of cloud formation and precipitation. The data suggest that deforestation is locally intensifying the dry season and increasing the risk of fire, especially for the long corridor connecting regions. In addition, forest regeneration in some parts of the MBC may not result in second-growth forest that is characteristic of that life zone but rather in forest regeneration more typical of drier conditions. The extent to which this would influence the conservation utility of any given corridor depends upon the ecological requirements of the organisms concerned.
H.E. Anderson; J. Breidenbach
2007-01-01
Airborne laser scanning (LIDAR) can be a valuable tool in double-sampling forest survey designs. LIDAR-derived forest structure metrics are often highly correlated with important forest inventory variables, such as mean stand biomass, and LIDAR-based synthetic regression estimators have the potential to be highly efficient compared to single-stage estimators, which...
The role of forest humus in watershed management in New England
G. R., Jr. Trimble; Howard W. Lull
1956-01-01
Forest humus is one of the most interesting components of the forest environment. Its surface serves as a depository for leaf fall and needle fall, with successive depths marking stages of transmutation from the freshly fallen to the decomposed. And humus is responsive: humus type and depth are indicators of forest treatment and, to some extent, of site quality....
Response of Brown Creepers to elevation and forest edges in the southern Sierra Nevada, California
Kathryn Purcell; Craig Thompson; Douglas Drynan
2012-01-01
We studied the responses of the Brown Creeper (Certhia americana) to forest edges in the southern Sierra Nevada, California. We censused birds and monitored nests in four forest types over an elevational gradient. We identified habitat patches homogeneous in terms of forest type, seral stage, and canopy cover and rated edges between adjoining...
Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong
2014-11-01
Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by litter quality.
Russell T. Graham; Theresa B. Jain
2007-01-01
The moist forests of the Rocky Mountains typically support late seral western hemlock, moist grand fir, or western redcedar forests. In addition to these species, Douglas-fir, western white pine, western larch, ponderosa pine, and lodgepole pine can occur creating a multitude of species compositions, structures, and successional stages that can be arrayed in a variety...
New photoionization models of intergalactic clouds
NASA Technical Reports Server (NTRS)
Donahue, Megan; Shull, J. M.
1991-01-01
New photoionization models of optically thin low-density intergalactic gas at constant pressure, photoionized by QSOs, are presented. All ion stages of H, He, C, N, O, Si, and Fe, plus H2 are modeled, and the column density ratios of clouds at specified values of the ionization parameter of n sub gamma/n sub H and cloud metallicity are predicted. If Ly-alpha clouds are much cooler than the previously assumed value, 30,000 K, the ionization parameter must be very low, even with the cooling contribution of a trace component of molecules. If the clouds cool below 6000 K, their final equilibrium must be below 3000 K, owing to the lack of a stable phase between 6000 and 3000 K. If it is assumed that the clouds are being irradiated by an EUV power-law continuum typical of WSOs, with J0 = 10 exp -21 ergs/s sq cm Hz, typical cloud thicknesses along the line of sight that are much smaller than would be expected from shocks, thermal instabilities, or gravitational collapse are derived.
Maldonado-Sánchez, Denisse; Gutiérrez-Rodríguez, Carla; Ornelas, Juan Francisco
2016-06-01
By integrating mitochondrial DNA (mtDNA), microsatellites and ecological niche modelling (ENM), we investigated the phylogeography of Mexican populations of the common bush-tanager Chlorospingus ophthalmicus to examine the relative role of geographical and ecological features, as well as Pleistocene climatic oscillations in driving the diversification. We sequenced mtDNA of individuals collected throughout the species range in Mexico and genotyped them at seven microsatellite loci. Phylogeographic, population genetics and coalescent methods were used to assess patterns of genetic structure, gene flow and demographic history. ENM was used to infer contractions and expansions at different time periods as well as differences in climatic conditions among lineages. The retrieved mitochondrial and microsatellite groups correspond with the fragmented cloud forest distribution in mountain ranges and morphotectonic provinces. Differing climatic conditions between mountain ranges were detected, and palaeodistribution modelling as well as demographic history analyses, indicated recent population expansions throughout the Sierra Madre Oriental (SMO). The marked genetic structure of C. ophthalmicus was promoted by the presence of ecological and geographical barriers that restricted the movement of individuals among mountain ranges. The SMO was mainly affected by Pleistocene climatic oscillations, with the moist forests model best fitting the displayed genetic patterns of populations in this mountain range. Copyright © 2016 Elsevier Inc. All rights reserved.
Catenazzi, Alessandro; Ttito, Alex; Diaz, M. Isabel; Shepack, Alexander
2017-01-01
Abstract A new species of Bryophryne from the humid montane forest of the Department of Cusco, Peru, is described. Specimens were collected at 2795–2850 m a.s.l. in the Área de Conservación Privada Ukumari Llaqta, Quispillomayo valley, in the province of Paucartambo. The new species is readily distinguished from all other species of Bryophryne by having green coloration on dorsum, and blue flecks on flanks and ventral parts. Specimens are characterized by lacking a distinct tympanic annulus, tympanic membrane, and dentigerous processes of vomers, and by having dorsal skin shagreen, discontinuous dorsolateral folds, skin tuberculate on flanks, skin areolate on ventral surfaces of the body, and fingers and toes without lateral fringes or webbing. The new species has a snout–vent length of 14.2–16.9 mm in three males and 22.2–22.6 mm in two females, and is smaller than all other congeneric species except for B. abramalagae. Generic allocation is supported by low genetic distances of the 16S mitochondrial gene and morphological similarity with other species of Bryophryne, and geographic distribution. Bryophryne phuyuhampatu sp. n. is only known from the type locality, a cloud forest along the Quispillomayo River in the upper Nusiniscato watershed. PMID:29089838
Dynamic Mesoscale Land-Atmosphere Feedbacks in Fragmented Forests in Amazonia
NASA Astrophysics Data System (ADS)
Rastogi, D.; Baidya Roy, S.
2011-12-01
This paper investigates land-atmosphere feedbacks in disturbed rainforests of Amazonia. Deforestation along the rapidly expanding highways and road network has created the unique fishbone land cover pattern in Rondonia, a state in southwestern Amazonia. Numerical experiments and observations show that sharp gradients in land cover due to the fishbone heterogeneity triggers mesoscale circulations. These circulations significantly change the spatial pattern of local hydrometeorology, especially convection, clouds and precipitation. The primary research question now is can these changes in local hydrometeorology affect vegetation growth in the clearings. If so, that would be a clear indication that land-atmosphere feedbacks can affect vegetation recovery in fragmented forests. A computationally-efficient modeling tool consisting of a mesoscale atmospheric model dynamically coupled with a plant growth model has been specifically developed to identify the atmospheric feedback pathways. Preliminary experiments focus on the seasonal-scale feedbacks during the dry season. Results show that temperature, incoming shortwave and precipitation are the three primary drivers through which the feedbacks operate. Increasing temperature increases respiratory losses generating a positive feedback. Increased cloud cover reduces incoming PAR and photosynthesis, resulting in a positive feedback. Increased precipitation reduces water stress and promotes growth resulting in a negative feedback. The net effect is a combination of these 3 feedback loops. These findings can significantly improve our understanding of ecosystem resiliency in disturbed tropical forests.
Evolution of the Oort Cloud under Galactic Perturbations
NASA Astrophysics Data System (ADS)
Higuchi, A.; Kokubo, E.; Mukai, T.
2005-08-01
The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.
Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey
2015-01-01
In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and positive feedbacks when evaluating the ecological effects of changes in the frequency and magnitude of climate extremes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodwell,G.M.; Holt, B. R.; Flaccus, E.
1973-08-23
Natural communities respond to disruption through a series of changes in plant and animal communities that are broadly predictable. The field-to-forest sere of central Long Island follows the pattern set forth earlier for the Piedmont of North Carolina and for New Jersey. The communities of herbs that occur in the years immediately after abandonment are followed by an Andropogon stage which is replaced before the 20th year by pine forest. The pine is replaced in the next 25 years by oak-pine, which in the normal Course is followed by oak-hickory. With repeated burning the oak-pine stage in various combinations ofmore » oaks and pine may be maintained indefinitely. Diversity, measured as number of species per unit land area, increased in this sere through the 3-5th years after abandonment to a maximum, dropped, and rose again in the later forest stages. Exotics were a conspicuous part of the communities of the earlier stages but their importance diminished as succession progressed and their contribution to net production was zero beyond the 20th year. The removal of exotics would probably not have changed the pattern of diversity appreciably. Net primary production increased with succession in this sere with major changes occurring as life-forms of the dominants shifted to woody plants. The peak net production was in the most mature forest, about 1200 g/m{sup 2}/yr. Root/shoot ratios declined from 4-5 in the early stages of succession to 0.3-0.5 with later stages. The standing crop of organic matter including humus throughout the sere was about 15 times the net production, indicating a halftime of residence for all organic matter throughout the sere of about 10 years.« less
Operational applications of satellite snowcover observations in Rio Grande drainage of Colorado
NASA Technical Reports Server (NTRS)
Washicheck, J. N.; Mikesell, T.
1975-01-01
Various mapping techniques were tried and evaluated. There were many problems encountered such as distinquishing clouds from snow and snow under trees. A partial solution to some of the problems involves ground reconnaissance and low air flights. Snow areas, cloud cover, and total areas were planimetered after transferring imagery by use of zoom transfer scope. These determinations were then compared to areas determined by use of a density slicer. Considerable adjustment is required for these two values to compare. NOAA pictures were also utilized in the evaluation. Forest cover is one of the parameters used in the modeling process. The determination of this percentage is being explored.
Growth rates of fine aerosol particles at a site near Beijing in June 2013
NASA Astrophysics Data System (ADS)
Zhao, Chuanfeng; Li, Yanan; Zhang, Fang; Sun, Yele; Wang, Pucai
2018-02-01
Growth of fine aerosol particles is investigated during the Aerosol-CCN-Cloud Closure Experiment campaign in June 2013 at an urban site near Beijing. Analyses show a high frequency (˜ 50%) of fine aerosol particle growth events, and show that the growth rates range from 2.1 to 6.5 nm h-1 with a mean value of ˜ 5.1 nm h-1. A review of previous studies indicates that at least four mechanisms can affect the growth of fine aerosol particles: vapor condensation, intramodal coagulation, extramodal coagulation, and multi-phase chemical reaction. At the initial stage of fine aerosol particle growth, condensational growth usually plays a major role and coagulation efficiency generally increases with particle sizes. An overview of previous studies shows higher growth rates over megacity, urban and boreal forest regions than over rural and oceanic regions. This is most likely due to the higher condensational vapor, which can cause strong condensational growth of fine aerosol particles. Associated with these multiple factors of influence, there are large uncertainties for the aerosol particle growth rates, even at the same location.
NOAA-AVHRR image mosaics applied to vegetation identification
NASA Astrophysics Data System (ADS)
de Almeida, Maria d. G.; Ruddorff, Bernardo F.; Shimabukuro, Yosio E.
2001-06-01
In this paper, the maximum-value composite of images procedure from Normalized Difference Vegetation Index is used to get a cloud free image mosaic. The image mosaic is used to identify vegetation targets such as tropical forest, savanna and caatinga as well to make the vegetation cover mapping of Minas Gerais state, Brazil.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Refining FIA plot locations using LiDAR point clouds
Charlie Schrader-Patton; Greg C. Liknes; Demetrios Gatziolis; Brian M. Wing; Mark D. Nelson; Patrick D. Miles; Josh Bixby; Daniel G. Wendt; Dennis Kepler; Abbey Schaaf
2015-01-01
Forest Inventory and Analysis (FIA) plot location coordinate precision is often insufficient for use with high resolution remotely sensed data, thereby limiting the use of these plots for geospatial applications and reducing the validity of models that assume the locations are precise. A practical and efficient method is needed to improve coordinate precision. To...
Voutilainen, Liina; Savola, Sakeri; Kallio, Eva Riikka; Laakkonen, Juha; Vaheri, Antti; Vapalahti, Olli; Henttonen, Heikki
2012-01-01
Intensive management of Fennoscandian forests has led to a mosaic of woodlands in different stages of maturity. The main rodent host of the zoonotic Puumala hantavirus (PUUV) is the bank vole (Myodes glareolus), a species that can be found in all woodlands and especially mature forests. We investigated the influence of forest age structure on PUUV infection dynamics in bank voles. Over four years, we trapped small mammals twice a year in a forest network of different succession stages in Northern Finland. Our study sites represented four forest age classes from young (4 to 30 years) to mature (over 100 years) forests. We show that PUUV-infected bank voles occurred commonly in all forest age classes, but peaked in mature forests. The probability of an individual bank vole to be PUUV infected was positively related to concurrent host population density. However, when population density was controlled for, a relatively higher infection rate was observed in voles trapped in younger forests. Furthermore, we found evidence of a “dilution effect” in that the infection probability was negatively associated with the simultaneous density of other small mammals during the breeding season. Our results suggest that younger forests created by intensive management can reduce hantaviral load in the environment, but PUUV is common in woodlands of all ages. As such, the Fennoscandian forest landscape represents a significant reservoir and source of hantaviral infection in humans. PMID:22745755
Chen, Xi; Liu, Wen-yao; Song, Liang; Li, Su; Wu, Yi; Shi, Xian-meng; Huang, Jun-biao; Wu, Chuan-sheng
2016-01-01
Atmospheric depositions pose significant threats to biodiversity and ecosystem function. However, the underlying physiological mechanisms are not well understood, and few studies have considered the combined effects and interactions of multiple pollutants. This in situ study explored the physiological responses of two epiphytic bryophytes to combined addition of nitrogen, phosphorus and sulfur. We investigated the electrical conductivity (EC), total chlorophyll concentration (Chl), nutrient stoichiometry and chlorophyll fluorescence signals in a subtropical montane cloud forest in south-west China. The results showed that enhanced fertilizer additions imposed detrimental effects on bryophytes, and the combined enrichment of simulated fertilization exerted limited synergistic effects in their natural environments. On the whole, EC, Chl, the effective quantum yield of photosystem II (ΦPSII) and photochemical quenching (qP) were the more reliable indicators of increased artificial fertilization. However, conclusions on nutrient stoichiometry should be drawn cautiously concerning the saturation uptake and nutrient interactions in bryophytes. Finally, we discuss the limitations of prevailing fertilization experiments and emphasize the importance of long-term data available for future investigations. PMID:27560190
NASA Astrophysics Data System (ADS)
Sai Bharadwaj, P.; Kumar, Shashi; Kushwaha, S. P. S.; Bijker, Wietske
Forests are important biomes covering a major part of the vegetation on the Earth, and as such account for seventy percent of the carbon present in living beings. The value of a forest's above ground biomass (AGB) is considered as an important parameter for the estimation of global carbon content. In the present study, the quad-pol ALOS-PALSAR data was used for the estimation of AGB for the Dudhwa National Park, India. For this purpose, polarimetric decomposition components and an Extended Water Cloud Model (EWCM) were used. The PolSAR data orientation angle shifts were compensated for before the polarimetric decomposition. The scattering components obtained from the polarimetric decomposition were used in the Water Cloud Model (WCM). The WCM was extended for higher order interactions like double bounce scattering. The parameters of the EWCM were retrieved using the field measurements and the decomposition components. Finally, the relationship between the estimated AGB and measured AGB was assessed. The coefficient of determination (R2) and root mean square error (RMSE) were 0.4341 and 119 t/ha respectively.
Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops
2015-01-01
Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436
The forgotten stage of forest succession: early-successional ecosystems on forest sites
Mark E. Swanson; Jerry F. Franklin; Robert L. Beschta; Charles M. Crisafulli; Dominick A. DellaSala; Richard L. Hutto; David B. Lindenmayer; Frederick J. Swanson
2010-01-01
Early-successional forest ecosystems that develop after stand-replacing or partial disturbances are diverse in species, processes, and structure. Post-disturbance ecosystems are also often rich in biological legacies, including surviving organisms and organically derived structures, such as woody debris. These legacies and postdisturbance plant communities provide...
An Old-Growth Definition for Eastern Riverfront Forests
James S. Meadows; Gregory J. Nowacki
1996-01-01
Eastern riverfront forests fall into one of three types: (1) nearly pure eastern cottonwood stands, (2) nearly pure black willow stands, and (3) typical riverfront hardwood stands containing many species, but generally dominated by sycamore, pecan, green ash, sugarberry, and American elm. The eastern riverfront forest represents an intermediate successional stage...
New Mexico's Forest Resources, 2000
Renee A. O' Brien
2003-01-01
This report presents a summary of the most recent inventory information for New Mexico's forest lands. Most of the data are from the inventory completed in 2000 that included National Forest System lands and reserved lands. This report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, successional stage,...
Arizona's Forest Resources, 1999
Renee O' Brien
2002-01-01
This report presents a summary of the most recent inventory information for Arizona's forest lands. Much of the data are from the inventory completed in 1999 that included National Forest System lands and reserved lands. This report includes tables and highlights of area, number of trees, biomass, volume, growth, mortality, successional stage, understory...