Sample records for cloud front propagates

  1. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  2. Numerical Simulation of Interacting Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Odstrcil, Dusan; Vandas, Marek; Pizzo, Victor J.; MacNeice, Peter

    2003-09-01

    A 212-D MHD numerical model is used to investigate the dynamic interaction between two flux ropes (clouds) in a homogeneous magnetized plasma. One cloud is set into motion while the other is initially at rest. The moving cloud generates a shock which interacts with the second cloud. Two cases with different characteristic speeds within the second cloud are presented. The shock front is significantly distorted when it propagates faster (slower) in the cloud with larger (smaller) characteristic speed. Correspondingly, the density behind the shock front becomes smaller (larger). Later, the clouds approach each other and by a momentum exchange they come to a common speed. The oppositely directed magnetic fields are pushed together, a driven magnetic reconnection takes a place, and the two flux ropes gradually coalescence into a single flux rope.

  3. Comparison of Cell Regeneration Mechanisms Between Isolated Cb Clouds Moving Along A Valley and Over Flat Terrain

    NASA Astrophysics Data System (ADS)

    Curic, M.; Janc, D.; Vuckovic, V.; Vujovic, D.

    Cell regeneration mechanism within air-mass Cb cloud moving along the river valley is investigated by three-dimensional mesoscale ARPS model with improved micro- physics. Simulated cloud characteristics are then compared with those performed for the flat terrain conditions. The Western Morava valley area (Serbia) has selected as an important place for formation of such clouds in agreement with observations. Ana- lyzed results suggest that the river valley plays an important role for the cell regenera- tion mechanism in front of the mother cloud. Futher, it contributes to the fast Cb cloud propagation along the valley. In contrast, the front-side cell regeneration mechanism is absent for the flat terrain conditions since the cold air below cloud base deverges in all directions without any restrictions. This investigation gives us more complete insight in cell regeneration mechanisms than classic approach.

  4. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  5. Doppler-radar observation of the evolution of downdrafts in convective clouds

    NASA Technical Reports Server (NTRS)

    Motallebi, N.

    1982-01-01

    A detailed analysis of the 20 July 1977 thunderstorm complex which formed and evolve over the South Park region in Central Colorado is presented. The storm was extensively analyzed using multiple Doppler radar and surface mesonet data, developed within an environment having very weak wind shear. The storm owed its intensification to the strength of the downdraft, which was nearly coincident with the region where the cloud had grown. The noteworthy features of this storm were its motion to the right of the cloud-level winds, its multicellular nature and discrete propagation, its north-south orientation, and its relatively large storm size and high reflectivity factor (55 dBZ). This scenario accounts for the observed mesoscale and cloud-scale event. A line of convergence was generated at the interface between the easterly upslope winds and westerly winds. During stage II, the convergence line subsequently propagated down the slopes of the Mosquito Range, and was the main forcing mechanism for the development of updraft on the west flank of the storm. The formation of downdraft on the eastern side of updraft blacked surface inflow, and created a detectable gust front. As the original downdraft intensified, the accumulation of evaporatively-chilled air caused the intensification of the mesohigh, which likely destroyed the earlier convergence line and created a stronger convergence line to the east, which forced up-lifting of the moist, westerly inflow and caused the formation of updraft to the east. An organized downdraft circulation, apparently maintained by precipitation drag and evaporational cooling, was responsible in sustaining a well-defined gust front. The storm attained its highest intensity as a consequence of merging with a neighboring cloud. The interaction of downdrafts or gust fronts from two intense cells appeared to be the primary mechanism of this merging process as suggested by Simpson et al. (1980). The merging process coincided with more rain than occurred in unmerged echoes.

  6. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  7. The thermodynamic and dynamical features of double front structures during 21 31 July 1998 in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yushu; Deng, Guo; Lei, Ting; Ju, Jianhua

    2005-11-01

    The daily 1° × 1° data of the Aviation (AVN) model, the black body temperature (TBB) data of cloud top, and cloud images by geostationary meteorological satellite (GMS) are used to identify a dew-point front near the periphery of the western Pacific subtropical high (WPSH). The results clearly demonstrate the existence of the dew-point front, and its thermodynamic and dynamic structural characteristics are analyzed in detail. The dew-point front is a transitional belt between the moist southwest monsoon flow and the dry adiabatic sinking flow near the WPSH, manifested by a large horizontal moisture gradient in the mid-lower troposphere and conjugated with the mei-yu front to form a predominant double-front structure associated with intense rainfall in the mei-yu period. The mei-yu front is located between 30° and 35°N, vertically extends from the ground level to the upper level and shifts northward. The dew-point front is to the south of the mei-yu front and lies up against the periphery of the WPSH. Generally, it is located between 850 hPa and 500 hPa. On the dew-point front side, the southwesterly prevails at the lower level and the northeasterly at the upper level; this wind distribution is different from that on the mei-yu front side. Vertical ascending motion exists between the two fronts, and there are descending motions on the north side of the mei-yu front and on the south side of the dew-point front, which form a secondary circulation. The dynamics of the double fronts also have some interesting features. At the lower level, positive vertical vorticity and obvious convergence between the two fronts are clearly identified. At the mid-lower level, negative local change of the divergence (corresponding to increasing convergence) is often embedded in the two fronts or against the mei-yu front. Most cloud clusters occur between the two fronts and propagate down stream in a wave-like manner.

  8. An electrodynamic description of lightning return strokes and dart leaders: Guided wave propagation along conducting cylindrical channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1995-02-20

    The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less

  9. Understanding the Links among the Magnetic Fields, Filament, Bipolar Bubble, and Star Formation in RCW 57A Using NIR Polarimetry

    NASA Astrophysics Data System (ADS)

    Eswaraiah, Chakali; Lai, Shih-Ping; Chen, Wen-Ping; Pandey, A. K.; Tamura, M.; Maheswar, G.; Sharma, S.; Wang, Jia-Wei; Nishiyama, S.; Nakajima, Y.; Kwon, Jungmi; Purcell, R.; Magalhães, A. M.

    2017-12-01

    The influence of magnetic fields (B-fields) on the formation and evolution of bipolar bubbles, due to the expanding ionization fronts (I-fronts) driven by the H II regions that are formed and embedded in filamentary molecular clouds, has not been well-studied yet. In addition to the anisotropic expansion of I-fronts into a filament, B-fields are expected to introduce an additional anisotropic pressure, which might favor the expansion and propagation of I-fronts forming a bipolar bubble. We present results based on near-infrared polarimetric observations toward the central ˜8‧ × 8‧ area of the star-forming region RCW 57A, which hosts an H II region, a filament, and a bipolar bubble. Polarization measurements of 178 reddened background stars, out of the 919 detected sources in the JHK s bands, reveal B-fields that thread perpendicularly to the filament long axis. The B-fields exhibit an hourglass morphology that closely follows the structure of the bipolar bubble. The mean B-field strength, estimated using the Chandrasekhar-Fermi method (CF method), is 91 ± 8 μG. B-field pressure dominates over turbulent and thermal pressures. Thermal pressure might act in the same orientation as the B-fields to accelerate the expansion of those I-fronts. The observed morphological correspondence among the B-fields, filament, and bipolar bubble demonstrate that the B-fields are important to the cloud contraction that formed the filament, to the gravitational collapse and star formation in it, and in feedback processes. The last one includes the formation and evolution of mid-infrared bubbles by means of B-field supported propagation and expansion of I-fronts. These may shed light on preexisting conditions favoring the formation of the massive stellar cluster in RCW 57A.

  10. Mesospheric front observations by the OH airglow imager carried out at Ferraz Station on King George Island, Antarctic Peninsula, in 2011

    NASA Astrophysics Data System (ADS)

    Giongo, Gabriel Augusto; Valentin Bageston, José; Prado Batista, Paulo; Wrasse, Cristiano Max; Dornelles Bittencourt, Gabriela; Paulino, Igo; Paes Leme, Neusa Maria; Fritts, David C.; Janches, Diego; Hocking, Wayne; Schuch, Nelson Jorge

    2018-02-01

    The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2 < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88-92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases.

  11. Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud.

    PubMed

    Bidabadi, Mehdi; Haghiri, Ali; Rahbari, Alireza

    2010-04-15

    In this study, an attempt has been made to analytically investigate the concentration and velocity profiles of particles across flame propagation through a micro-iron dust cloud. In the first step, Lagrangian particle equation of motion during upward flame propagation in a vertical duct is employed and then forces acting upon the particle, such as thermophoretic force (resulted from the temperature gradient), gravitation and buoyancy are introduced; and consequently, the velocity profile as a function of the distance from the leading edge of the combustion zone is extracted. In the resumption, a control volume above the leading edge of the combustion zone is considered and the change in the particle number density in this control volume is obtained via the balance of particle mass fluxes passing through it. This study explains that the particle concentration at the leading edge of the combustion zone is more than the particle agglomeration in a distance far from the flame front. This increase in the particle aggregation above the combustion zone has a remarkable effect on the lower flammability limits of combustible particle cloud. It is worth noticing that the velocity and particle concentration profiles show a reasonable compatibility with the experimental data. 2009 Elsevier B.V. All rights reserved.

  12. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  13. The Water-Mist Fire Suppression Experiment (Mist): Preliminary Results From The STS-107 Mission

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Amon, Francine; Gokoglu, Suleyman

    2003-01-01

    An investigation of the effect of water mists on premixed flame propagation has been conducted onboard the Space Shuttle to take advantage of the prolonged microgravity environment to study the effect of uniformly distributed clouds of polydisperse water mists on the speed and shape of propagating propane-air premixed flames. The suspension of a quiescent and uniform water mist cloud was confirmed during the microgravity tests. Preliminary results show good agreement with trends obtained by the numerical predictions of a computational model that uses a hybrid Eulerian-Lagrangian formulation to simulate the two-phase, flame/mist interaction. Effective flame suppression is observed at progressively higher water loadings and smaller water droplet sizes. Other unusual flame behavior, such as flame front breakup and pulsating flames, is still under investigation. The promising results from the microgravity tests will be used to assess the feasibility of using water mists as fire suppressants on Earth and on spacecraft.

  14. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive potential temperature anomalies are induced in the lower troposphere, suppressing convection in a moist environment. This simple model also reproduces convective momentum transport and CCKWs in agreement with results from a recent cloud resolving simulation.

  15. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  16. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less

  17. Implementation of a gust front head collapse scheme in the WRF numerical model

    NASA Astrophysics Data System (ADS)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2018-05-01

    Gust fronts are thunderstorm-related phenomena usually associated with severe winds which are of great importance in theoretical meteorology, weather forecasting, cloud dynamics and precipitation, and wind engineering. An important feature of gust fronts demonstrated through both theoretical and observational studies is the periodic collapse and rebuild of the gust front head. This cyclic behavior of gust fronts results in periodic forcing of vertical velocity ahead of the parent thunderstorm, which consequently influences the storm dynamics and microphysics. This paper introduces the first gust front pulsation parameterization scheme in the WRF-ARW model (Weather Research and Forecasting-Advanced Research WRF). The influence of this new scheme on model performances is tested through investigation of the characteristics of an idealized supercell cumulonimbus cloud, as well as studying a real case of thunderstorms above the United Arab Emirates. In the ideal case, WRF with the gust front scheme produced more precipitation and showed different time evolution of mixing ratios of cloud water and rain, whereas the mixing ratios of ice and graupel are almost unchanged when compared to the default WRF run without the parameterization of gust front pulsation. The included parameterization did not disturb the general characteristics of thunderstorm cloud, such as the location of updraft and downdrafts, and the overall shape of the cloud. New cloud cells in front of the parent thunderstorm are also evident in both ideal and real cases due to the included forcing of vertical velocity caused by the periodic collapse of the gust front head. Despite some differences between the two WRF simulations and satellite observations, the inclusion of the gust front parameterization scheme produced more cumuliform clouds and seem to match better with real observations. Both WRF simulations gave poor results when it comes to matching the maximum composite radar reflectivity from radar measurement. Similar to the ideal case, WRF model with the gust front scheme gave more precipitation than the default WRF run. In particular, the gust front scheme increased the area characterized with light precipitation and diminished the development of very localized and intense precipitation.

  18. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  19. Initiation and Activation of Faults in Dry and Wet Rock by Fluid Injection

    NASA Astrophysics Data System (ADS)

    Stanchits, S.; Mayr, S.; Shapiro, S. A.; Dresen, G.

    2008-12-01

    We studied fracturing of rock samples induced by water injection in axial compression tests on cylindrical specimens of Flechtingen sandstone and Aue granite of 50 mm diameter and 105-125 mm length. Samples were intact solid rock cylinders and cylinders with central boreholes of 5 mm diameter and 52 mm length or through-boreholes of 2.5 mm diameter. To monitor acoustic emissions (AE) and ultrasonic velocities, twelve P-wave and six polarized S-wave sensors were glued to the cylindrical surface of the rock. Full waveforms were stored in a 12 channel transient recording system (PROEKEL, Germany). Polarity of AE first motion was used to discriminate source types associated with tensile, shear and pore-collapse cracking. To monitor strain, two pairs of orthogonally oriented strain-gages were glued onto the specimen surface. Samples were deformed in two consecutive loading steps: 1) Initial triaxial loading was performed at 20-50 MPa confining pressure on dry (under vacuum) or fully saturated samples until the yield point was reached. 2) In a second stage distilled water was injected into the samples with pore pressure increasing up to 20 MPa. For saturated samples the pore pressure was increased in steps and in periodic pulses. Injection of water into dry porous sandstone resulted in propagation of an AE hypocenter cloud closely linked to propagation of the water front. Position of the migrating water front was estimated from ultrasonic velocity measurements and measurements of the injected water volume. Propagation rate of AE-induced cloud parallel to bedding was higher than perpendicular to bedding, possibly related to permeability anisotropy. Nucleation of a brittle shear fault occurred at a critical pore pressure level with a nucleation patch located at the central borehole. Micro-structural analysis of fractured samples shows excellent agreement between location of AE hypocenters and macroscopic faults.

  20. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less

  1. Pulsed Flow Pinch

    NASA Astrophysics Data System (ADS)

    Hartman, Charles

    2005-10-01

    Formation of a Pulsed Flow Pinch is discussed, based on 2-D, MHD numerical calculations. The PFP utilizes the observed stable, Btheta magnetic ``bubble'' which propagates from breach to muzzle during the run-down phase of the coaxial Marshall gun. We consider two ways of launching a PFP onto a fiber or cylindrical gas cloud: 1) by propagating the bubble to small radius along an exponentially-decreasing-radius center conductor and, 2) by a radial launch to form reflex PFP's propagating in opposite directions along a fiber. We show that the bubble velocity increases to high values as the radius is decreased making the rise time of Btheta at an axial point very short. A bubble, launched into uniform gas is found to undergo unstable pinching of the front. Results will be presented of calculations of a PFP driven, neutron-producing, snow-plow pinch. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  2. Propagation of transition fronts in nonlinear chains with non-degenerate on-site potentials

    NASA Astrophysics Data System (ADS)

    Shiroky, I. B.; Gendelman, O. V.

    2018-02-01

    We address the problem of transition front propagation in chains with a bi-stable nondegenerate on-site potential and a nonlinear gradient coupling. For generic nonlinear coupling, one encounters a special regime of transitions, characterized by extremely narrow fronts, far supersonic velocities of the front propagation, and long waves in the oscillatory tail. This regime can be qualitatively associated with a shock wave. The front propagation can be described with the help of a simple reduced-order model; the latter delivers a kinetic law, which is almost not sensitive to the fine details of the on-site potential. Besides, it is possible to predict all main characteristics of the transition front, including its velocity, as well as the frequency and the amplitude of the oscillatory tail. Numerical results are in good agreement with the analytical predictions. The suggested approach allows one to consider the effects of an external pre-load, the next-nearest-neighbor coupling and the on-site damping. When the damping is moderate, it is possible to consider the shock propagation in the damped chain as a perturbation of the undamped dynamics. This approach yields reasonable predictions. When the damping is high, the transition front enters a completely different asymptotic regime of a subsonic kink. The gradient nonlinearity generically turns negligible, and the propagating front converges to the regime described by a simple exact solution for a continuous model with linear coupling.

  3. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  4. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  5. A downslope propagating thermal front over the continental slope

    NASA Astrophysics Data System (ADS)

    van Haren, Hans; Hosegood, Phil J.

    2017-04-01

    In the ocean, internal frontal bores above sloping topography have many appearances, depending on the local density stratification, and on the angle and source of generation of the carrier wave. However, their common characteristics are a backward breaking wave, strong sediment resuspension, and relatively cool (denser) water moving more or less upslope underneath warm (less dense) water. In this paper, we present a rare example of a downslope moving front of cold water moving over near-bottom warm water. Large backscatter is observed in the downslope moving front's trailing edge, rather than the leading edge as is common in upslope moving fronts. Time series observations have been made during a fortnight in summer, using a 101 m long array of high-resolution temperature sensors moored with an acoustic Doppler current profiler at 396 m depth in near-homogeneous waters, near a small canyon in the continental slope off the Malin shelf (West-Scotland, UK). Occurring between fronts that propagate upslope with tidal periodicity, the rare downslope propagating one resembles a gravity current and includes strong convective turbulence coming from the interior rather than the more usual frictionally generated turbulence arising from interaction with the seabed. Its turbulence is 3-10 times larger than that of more common upslope propagating fronts. As the main turbulence is in the interior with a thin stratified layer close to the bottom, little sediment is resuspended by a downslope propagating front. The downslope propagating front is suggested to be generated by oblique propagation of internal (tidal) waves and flow over a nearby upstream promontory.

  6. In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J Y; Zhong, L; Wang, C M

    2010-12-09

    We report the creation of a nanoscale electrochemical device inside a transmission electron microscope—consisting of a single tin dioxide (SnO{sub 2}) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO{sub 2}) cathode—and the in situ observation of the lithiation of the SnO{sub 2} nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which are continuously nucleated and absorbed at the moving front. This dislocation cloud indicates large in-plane misfitmore » stresses and is a structural precursor to electrochemically driven solid-state amorphization. Because lithiation-induced volume expansion, plasticity, and pulverization of electrode materials are the major mechanical effects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important mechanistic insight for the design of advanced batteries.« less

  7. Simulating Roll Clouds associated with Low-Level Convergence.

    NASA Astrophysics Data System (ADS)

    Prasad, A. A.; Sherwood, S. C.

    2015-12-01

    Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.

  8. Coupling of Clouds and Moisture Transport in Extratropical Cyclonic Systems and the Associated Atmospheric Heating (Q1) and Moisture Sink (Q2)

    NASA Astrophysics Data System (ADS)

    Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.

    2017-12-01

    Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.

  9. Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts

    PubMed Central

    Zhalyalov, Ansar S.; Panteleev, Mikhail A.; Gracheva, Marina A.; Ataullakhanov, Fazoil I.

    2017-01-01

    Fibrinolysis is a cascade of proteolytic reactions occurring in blood and soft tissues, which functions to disintegrate fibrin clots when they are no more needed. In order to elucidate its regulation in space and time, fibrinolysis was investigated using an in vitro reaction-diffusion experimental model of blood clot formation and dissolution. Clotting was activated by a surface with immobilized tissue factor in a thin layer of recalcified blood plasma supplemented with tissue plasminogen activator (TPA), urokinase plasminogen activator or streptokinase. Formation and dissolution of fibrin clot was monitored by videomicroscopy. Computer systems biology model of clot formation and lysis was developed for data analysis and experimental planning. Fibrin clot front propagated in space from tissue factor, followed by a front of clot dissolution propagating from the same source. Velocity of lysis front propagation linearly depended on the velocity clotting front propagation (correlation r2 = 0.91). Computer model revealed that fibrin formation was indeed the rate-limiting step in the fibrinolysis front propagation. The phenomenon of two fronts which switched the state of blood plasma from liquid to solid and then back to liquid did not depend on the fibrinolysis activator. Interestingly, TPA at high concentrations began to increase lysis onset time and to decrease lysis propagation velocity, presumably due to plasminogen depletion. Spatially non-uniform lysis occurred simultaneously with clot formation and detached the clot from the procoagulant surface. These patterns of spatial fibrinolysis provide insights into its regulation and might explain clinical phenomena associated with thrombolytic therapy. PMID:28686711

  10. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  11. Modeling the Diffuse Cloud-Top Optical Emissions from Ground and Cloud Flashes

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Koshak, William

    2008-01-01

    A number of studies have indicated that the diffuse cloud-top optical emissions from intra-cloud (IC) lightning are brighter than that from normal negative cloud-to-ground (CG) lightning, and hence would be easier to detect from a space-based sensor. The primary reason provided to substantiate this claim has been that the IC is at a higher altitude within the cloud and therefore is less obscured by the cloud multiple scattering medium. CGs at lower altitudes embedded deep within the cloud are more obscured, so CG detection is thought to be more difficult. However, other authors claim that because the CG source current (and hence luminosity) is typically substantially larger than IC currents, the greater CG source luminosity is large enough to overcome the effects of multiple scattering. These investigators suggest that the diffuse cloud top emissions from CGs are brighter than from ICs, and hence are easier to detect from space. Still other investigators claim that the detection efficiency of CGs and ICs is about the same because modern detector sensitivity is good enough to "see" either flash type no matter which produces a brighter cloud top emission. To better assess which of these opinions should be accepted, we introduce an extension of a Boltzmann lightning radiative transfer model previously developed. It considers characteristics of the cloud (geometry, dimensions, scattering properties) and specific lightning channel properties (length, geometry, location, current, optical wave front propagation speed/direction). As such, it represents the most detailed modeling effort to date. At least in the few cases studied thus far, it was found that IC flashes appear brighter at cloud top than the lower altitude negative ground flashes, but additional model runs are to be examined before finalizing our general conclusions.

  12. Convection induced by thermal gradients on thin reaction fronts

    NASA Astrophysics Data System (ADS)

    Ruelas Paredes, David R. A.; Vasquez, Desiderio A.

    2017-09-01

    We present a thin front model for the propagation of chemical reaction fronts in liquids inside a Hele-Shaw cell or porous media. In this model we take into account density gradients due to thermal and compositional changes across a thin interface. The front separating reacted from unreacted fluids evolves following an eikonal relation between the normal speed and the curvature. We carry out a linear stability analysis of convectionless flat fronts confined in a two-dimensional rectangular domain. We find that all fronts are stable to perturbations of short wavelength, but they become unstable for some wavelengths depending on the values of compositional and thermal gradients. If the effects of these gradients oppose each other, we observe a range of wavelengths that make the flat front unstable. Numerical solutions of the nonlinear model show curved fronts of steady shape with convection propagating faster than flat fronts. Exothermic fronts increase the temperature of the fluid as they propagate through the domain. This increment in temperature decreases with increasing speed.

  13. Case study of mesospheric front dissipation observed over the northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Fragoso Medeiros, Amauri; Paulino, Igo; Wrasse, Cristiano Max; Fechine, Joaquim; Takahashi, Hisao; Valentin Bageston, José; Paulino, Ana Roberta; Arlen Buriti, Ricardo

    2018-03-01

    On 3 October 2005 a mesospheric front was observed over São João do Cariri (7.4° S, 36.5° W). This front propagated to the northeast and appeared in the airglow images on the west side of the observatory. By about 1.5 h later, it dissipated completely when the front crossed the local zenith. Ahead of the front, several ripple structures appeared during the dissipative process of the front. Using coincident temperature profile from the TIMED/SABER satellite and wind profiles from a meteor radar at São João do Cariri, the background of the atmosphere was investigated in detail. On the one hand, it was noted that a strong vertical wind shear in the propagation direction of the front produced by a semidiunal thermal tide was mainly responsible for the formation of duct (Doppler duct), in which the front propagated up to the zenith of the images. On the other hand, the evolution of the Richardson number as well as the appearance of ripples ahead of the main front suggested that a presence of instability in the airglow layer that did not allow the propagation of the front to the other side of the local zenith.

  14. Detonative propagation and accelerative expansion of the Crab Nebula shock front.

    PubMed

    Gao, Yang; Law, Chung K

    2011-10-21

    The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society

  15. Front propagation in one-dimensional spatially periodic bistable media

    NASA Astrophysics Data System (ADS)

    Löber, Jakob; Bär, Markus; Engel, Harald

    2012-12-01

    Front propagation in heterogeneous bistable media is studied using the Schlögl model as a representative example. Spatially periodic modulations in the parameters of the bistable kinetics are taken into account perturbatively. Depending on the ratio L/l (L is the spatial period of the heterogeneity, l is the front width), appropriate singular perturbation techniques are applied to derive an ordinary differential equation for the position of the front in the presence of the heterogeneities. From this equation, the dependence of the average propagation speed on L/l as well as on the modulation amplitude is calculated. The analytical results obtained predict velocity overshoot, different cases of propagation failure, and the propagation speed for very large spatial periods in quantitative agreement with the results of direct numerical simulations of the underlying reaction-diffusion equation.

  16. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  17. Lag-driven motion in front propagation

    NASA Astrophysics Data System (ADS)

    Amor, Daniel R.; Fort, Joaquim

    2013-10-01

    Front propagation is a ubiquitous phenomenon. It arises in physical, biological and cross-disciplinary systems as diverse as flame propagation, superconductors, virus infections, cancer spread or transitions in human prehistory. Here we derive a single, approximate front speed from three rather different time-delayed reaction-diffusion models, suggesting a general law. According to our approximate speed, fronts are crucially driven by the lag times (periods during which individuals or particles do not move). Rather surprisingly, the approximate speed is able to explain the observed spread rates of completely different biophysical systems such as virus infections, the Neolithic transition in Europe, and postglacial tree recolonizations.

  18. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    NASA Astrophysics Data System (ADS)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  19. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  20. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model.

    PubMed

    Tabereaux, Paul B; Walcott, Greg P; Rogers, Jack M; Kim, Jong; Dosdall, Derek J; Robertson, Peter G; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E

    2007-09-04

    The roles of Purkinje fibers (PFs) and focal wave fronts, if any, in the maintenance of ventricular fibrillation (VF) are unknown. If PFs are involved in VF maintenance, it should be possible to map wave fronts propagating from PFs into the working ventricular myocardium during VF. If wave fronts ever arise focally during VF, it should be possible to map them appearing de novo. Six canine hearts were isolated, and the left main coronary artery was cannulated and perfused. The left ventricular cavity was exposed, which allowed direct endocardial mapping of the anterior papillary muscle insertion. Nonperfused VF was induced, and 6 segments of data, each 5 seconds long, were analyzed during 10 minutes of VF. During 36 segments of data that were analyzed, 1018 PF or focal wave fronts of activation were identified. In 534 wave fronts, activation was mapped propagating from working ventricular myocardium to PF. In 142 wave fronts, activation was mapped propagating from PF to working ventricular myocardium. In 342 wave fronts, activation was mapped arising focally. More than 1 of these 3 patterns could occur in the same wave front. PFs are highly active throughout the first 10 minutes of VF. In addition to retrograde propagation from the working ventricular myocardium to PFs, antegrade propagation occurs from PFs to working ventricular myocardium, which suggests PFs are important in VF maintenance. Prior plunge needle recordings in dogs indicate activation propagates from the endocardium toward the epicardium after 1 minute of VF, which suggests that focal sites on the endocardium may represent foci and not breakthrough. If so, in addition to reentry, abnormal automaticity or triggered activity may also occur during VF.

  1. Hindrances to bistable front propagation: application to Wolbachia invasion.

    PubMed

    Nadin, Grégoire; Strugarek, Martin; Vauchelet, Nicolas

    2018-05-01

    We study the biological situation when an invading population propagates and replaces an existing population with different characteristics. For instance, this may occur in the presence of a vertically transmitted infection causing a cytoplasmic effect similar to the Allee effect (e.g. Wolbachia in Aedes mosquitoes): the invading dynamics we model is bistable. We aim at quantifying the propagules (what does it take for an invasion to start?) and the invasive power (how far can an invading front go, and what can stop it?). We rigorously show that a heterogeneous environment inducing a strong enough population gradient can stop an invading front, which will converge in this case to a stable front. We characterize the critical population jump, and also prove the existence of unstable fronts above the stable (blocking) fronts. Being above the maximal unstable front enables an invading front to clear the obstacle and propagate further. We are particularly interested in the case of artificial Wolbachia infection, used as a tool to fight arboviruses.

  2. Finite-time barriers to reaction front propagation

    NASA Astrophysics Data System (ADS)

    Locke, Rory; Mahoney, John; Mitchell, Kevin

    2015-11-01

    Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.

  3. Convectively-generated gravity waves and clear-air turbulence (CAT)

    NASA Astrophysics Data System (ADS)

    Sharman, Robert; Lane, Todd; Trier, Stanley

    2013-04-01

    Upper-level turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. The relation of convectively-induced gravity waves to turbulence outside the cloud (either above cloud or laterally away from cloud) is examined based on high resolution cloud-resolving simulations, both with and without cloud microphysics in the simulations. Results for both warm-season and cold-season cloud systems indicate that the turbulence in the clear air away from cloud is often caused by gravity wave production processes in or near the cloud which once initiated, are able to propagate away from the storm, and may eventually "break." Without microphysics of course this effect is absent and turbulence is not produced in the simulations. In some cases the convectively-induced turbulence may be many kilometers away from the active convection and can easily be misinterpreted as "clear-air turbulence" (CAT). This is a significant result, and may be cause for a reassessment of the working definition of CAT ("turbulence encountered outside of convective clouds", FAA Advisory Circular AC 00-30B, 1997).

  4. Nitrogen gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, R. C.; Van Sciver, S. W.

    2017-02-01

    We present experimental measurements and analysis of propagation of the nitrogen gas that was vented to a high vacuum tube immersed in liquid helium (LHe). The scenario resembles accidental venting of atmospheric air to a SRF beam-line and was investigated to understand how the in-flowing air would propagate in such geometry. The gas front propagation speed in the tube was measured using pressure probes and thermometers installed at regular intervals over the tube length. The experimental data show the front speed to decrease along the vacuum tube. The empirical and analytical models developed to characterize the front deceleration are summarized.

  5. Pyrotechnic hazards classification and evaluation program. Run-up reaction testing in pyrotechnic dust suspensions

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A preliminary investigation of the parameters included in run-up dust reactions is presented. Two types of tests were conducted: (1) ignition criteria of large bulk pyrotechnic dusts, and (2) optimal run-up conditions of large bulk pyrotechnic dusts. These tests were used to evaluate the order of magnitude and gross scale requirements needed to induce run-up reactions in pyrotechnic dusts and to simulate at reduced scale an accident that occurred in a manufacturing installation. Test results showed that propagation of pyrotechnic dust clouds resulted in a fireball of relatively long duration and large size. In addition, a plane wave front was observed to travel down the length of the gallery.

  6. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    PubMed

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  7. Clouds

    NASA Image and Video Library

    2010-09-14

    Clouds are common near the north polar caps throughout the spring and summer. The clouds typically cause a haze over the extensive dune fields. This image from NASA Mars Odyssey shows the edge of the cloud front.

  8. Fluctuation Effects on Propagating Waves of Self-Assembly in Organosilane Monolayers.

    NASA Astrophysics Data System (ADS)

    Douglas, Jack

    2008-03-01

    Wavefronts associated with reaction--diffusion and self-assembly processes are ubiquitous in the natural world. For example, propagating fronts arise in crystallization and diverse other thermodynamic ordering processes, in polymerization fronts involved in cell movement and division, as well as in the competitive social interactions and population dynamics of animals at much larger scales. Although it is often claimed that self-sustaining or autocatalytic front propagation is well described by mean-field ``reaction-- diffusion'' or ``phase field'' ordering models, it has recently become appreciated from simulations and theoretical arguments that fluctuation effects in lower spatial dimensions can lead to appreciable deviations from the classical mean-field theory (MFT) of this type of front propagation. The present work explores these fluctuation effects in a real physical system. In particular, we consider a high-resolution near-edge x-ray absorption fine structure spectroscopy (NEXAFS) study of the spontaneous frontal self-assembly of organosilane (OS) molecules into self-assembled monolayer (SAM) surface-energy gradients on oxidized silicon wafers. We find that these layers organize from the wafer edge as propagating wavefronts having well defined velocities. In accordance with two-dimensional simulations of this type of front propagation that take fluctuation effects into account, we find that the interfacial widths w(t) of these SAM self-assembly fronts exhibit a power-law broadening of in time w(t) ˜ t^β, rather than the constant width predicted by MFT. Moreover, the observed exponent values accord rather well with previous simulation and theoretical estimates. These observations have significant implications for diverse types of ordering fronts that occur under confinement conditions in biological or materials-processing contexts.

  9. Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2016-11-04

    We experimentally address the propagation of reaction-diffusion fronts in vortex lattices by combining, in a Hele-Shaw cell and at low Reynolds number, forced electroconvective flows and an autocatalytic reaction in solution. We consider both vortex chains and vortex arrays, the former referring to mixed free/rigid boundary conditions for vortices and the latter to free boundary conditions. Varying the depth of the fluid layer, we observe no variation of the mean front velocities for vortex arrays and a noticeable variation for vortex chains. This questions the two-dimensional character of front propagation in low Reynolds number vortex lattices, as well as the mechanisms of this dependence.

  10. Fracturing of porous rock induced by fluid injection

    NASA Astrophysics Data System (ADS)

    Stanchits, Sergei; Mayr, Sibylle; Shapiro, Serge; Dresen, Georg

    2011-04-01

    We monitored acoustic emission (AE) activity and brittle failure initiated by water injection into initially dry critically stressed cylindrical specimens of Flechtingen sandstone of 50 mm diameter and 105-125 mm length. Samples were first loaded in axial direction at 40-50 MPa confining pressure at dry conditions close to peak stress. Subsequently distilled water was injected either at the bottom of specimen or via a central borehole at pore pressures of 5-30 MPa. Water injection into stressed porous sandstone induced a cloud of AE events located close to the migrating water front. Water injection was monitored by periodic ultrasonic velocity measurements across the sample. Propagation of the induced cloud of AE was faster in the direction parallel to bedding than normal to it, indicating permeability anisotropy. Water injection was associated with significant AE activity demonstrating increased contribution of tensile source type. Brittle failure was accompanied by increased contribution of shear and pore collapse source types. At a critical pore pressure, a brittle fault nucleated from a cloud of induced AE events in all samples. Microstructural analysis of fractured samples shows excellent agreement between location of AE hypocenters and macroscopic faults.

  11. Visual monitoring of the melting front propagation in a paraffin-based PCM

    NASA Astrophysics Data System (ADS)

    Charvát, Pavel; Štětina, Josef; Mauder, Tomáš; Klimeš, Lubomír

    Experiments were carried out in an environmental chamber with the aim to monitor the melting front propagation in a rectangular cavity filled with a paraffin-based Phase Change Material (PCM). The PCM was contained in transparent containers with the heat flux introduced by means of an electric heating element. The stabilized power source was used to maintain the constant heat output of the heating elements. The experiments were performed for the heat flux introduced at the side wall of the container and at the upper surface of the PCM. The paraffin-based PCM RT28HC with the phase change temperature of 28 °C was used in the experiments. The temperature in the environmental chamber was maintained at the melting temperature of the PCM. The propagation of the melting front was monitored with a digital camera and temperatures at several locations were monitored with RTDs and thermocouples. Significant natural convection was observed for the heat flux introduced at the side wall of the container. As a result the melting front propagated much faster at the top of the container than at its bottom. The heat flux introduced at the upper-surface of the PCM resulted in almost one-dimensional propagation of the melting front. The acquired data are to be used for validation of an in-house developed numerical model based on the front-tracking method.

  12. Three-dimensional direct numerical simulation study of conditioned moments associated with front propagation in turbulent flows

    NASA Astrophysics Data System (ADS)

    Yu, R.; Lipatnikov, A. N.; Bai, X. S.

    2014-08-01

    In order to gain further insight into (i) the use of conditioned quantities for characterizing turbulence within a premixed flame brush and (ii) the influence of front propagation on turbulent scalar transport, a 3D Direct Numerical Simulation (DNS) study of an infinitely thin front that self-propagates in statistically stationary, homogeneous, isotropic, forced turbulence was performed by numerically integrating Navier-Stokes and level set equations. While this study was motivated by issues relevant to premixed combustion, the density was assumed to be constant in order (i) to avoid the influence of the front on the flow and, therefore, to know the true turbulence characteristics as reference quantities for assessment of conditioned moments and (ii) to separate the influence of front propagation on turbulent transport from the influence of pressure gradient induced by heat release. Numerical simulations were performed for two turbulence Reynolds numbers (50 and 100) and four ratios (1, 2, 5, and 10) of the rms turbulent velocity to the front speed. Obtained results show that, first, the mean front thickness is decreased when a ratio of the rms turbulent velocity to the front speed is decreased. Second, although the gradient diffusion closure yields the right direction of turbulent scalar flux obtained in the DNS, the diffusion coefficient Dt determined using the DNS data depends on the mean progress variable. Moreover, Dt is decreased when the front speed is increased, thus, indicating that the front propagation affects turbulent scalar transport even in a constant-density case. Third, conditioned moments of the velocity field differ from counterpart mean moments, thus, disputing the use of conditioned velocity moments for characterizing turbulence when modeling premixed turbulent combustion. Fourth, computed conditioned enstrophies are close to the mean enstrophy in all studied cases, thus, suggesting the use of conditioned enstrophy for characterizing turbulence within a premixed flame brush.

  13. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    PubMed

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  14. Very high pressure combustion; Reaction propagation rates of nitromethane within a diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, S.F.; Foltz, M.F.

    1991-11-01

    This paper reports on the combustion-front propagation rate of nitromethane that has been examined to pressures of 40 GPa. A new and general technique involving pulsed laser ignition of an energetic material within a diamond anvil cell and a method for monitoring the rapid decomposition of nitromethane and other explosives to more stable chemical products is described in detail. Nitromethane is shown to exhibit a flame propagation rate that increases smoothly to 100 m/s at 30 GPa as a function of pressure. Above 30 GPa, the final solid-state combustion products change dramatically and the flame propagation rate begins to decrease.more » The combustion-front propagation rate is analyzed in terms of an existing condensed-phase model that predicts a relationship between the front propagation rate, U, and the pressure derivative of the chemical kinetic activation energy, dE{sub a}/dP, such that a plot of logU{sup 2} vs. P should be linear. The activation energy is analyzed to yield an effective volume of activation, {Delta}V, of {minus}3.4 ml/mol. The chemical kinetic parameters determined from the combustion-front propagation rate analysis of solid high-pressure nitromethane is compared with results from other thermal decomposition studies of this prototypic molecular explosive.« less

  15. Burning invariant manifolds for reaction fronts in three-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Mitchell, Kevin; Solomon, Tom

    2017-11-01

    The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.

  16. CloudSat First Image of a Warm Front Storm Over the Norwegian Sea

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat's first image, of a warm front storm over the Norwegian Sea, was obtained on May 20, 2006. In this horizontal cross-section of clouds, warm air is seen rising over colder air as the satellite travels from right to left. The red colors are indicative of highly reflective particles such as water droplets (or rain) or larger ice crystals (or snow), while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less

  18. Bacterial properties of rainwater associated with cyclones, stationary fronts and typhoons in southwestern Japan

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Hu, W.; Niu, H.

    2016-12-01

    The activities and role of bioaerosols in aerosol-cloud-precipitation links are important but unresolved issues in atmospheric and microbiological sciences. Bacteria, a main part of bioaerosols, are ubiquitous in atmospheric water. They are considered to be involved in the processes of cloud condensation and ice nuclei formation. However, to date, little information on rainwater bacteria is available. Rainwater samples were collected at a suburban site in southwestern Japan during October 2014 to September 2015. Results show that the cell concentration of rainwater bacteria was 2.3±1.5×104 cells ml-1, with a viability of 80±10% on average. The bacterial abundance and viability systematically differed with the weather systems causing rain. In cold-front-derived rain, the average bacterial concentration was the highest (3.5±1.6×104 cells ml-1), with the lowest viability as 75%. In the stationary-front-derived rain during Meiyu period and typhoon rain, the average bacterial concentrations were lower, but with higher viability. In stationary-front-derived rain during non-Meiyu period, the average abundance was higher (2.4±1.6×104 cells ml-1), while the viability was lower (78%) than those during Meiyu period. It was suggested that clouds produced by air mass from ocean areas carried fewer bacteria but with higher viability than those originated from continental regions. Bacterial concentrations in rainwater did not show good correlations with the ratios of total and decreased airborne particle concentrations to rainfall. Combining the univariate and factorial analysis of chemical compositions and bacterial abundance, we found that bacteria in rainwater were mainly associated with nss-SO42-, nss-Ca2+, and NO3-, which can act as nuclei or be produced within clouds. The cultured heterotrophic marine bacteria were of much higher abundance in stationary-front-derived rain than those in cold-front-derived rain. Bacterial genera containing ice nucleation active bacteria species (Pseudomonas, Xanthomonas and Erwinia) and marine bacterial indicator taxa, were also identified in rainwater samples. These results implicated that besides below-cloud removal, in-cloud processes contributed bacteria to rainwater, and marine bacteria could be disseminated via cloud or rainwater.

  19. Drogue tracking using 3D flash lidar for autonomous aerial refueling

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Stettner, Roger

    2011-06-01

    Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.

  20. The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi; Instituto de Física Teórica; Pimentel, B.M., E-mail: pimentel@ift.unesp.br

    2014-12-15

    In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with thismore » propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.« less

  1. Propagation of a Toroidal Magnetic Cloud through the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Romashets, Eugene; Vandas, Marek

    2003-09-01

    An analytical solution for a potential magnetic field with arbitrary intensity around a toroidal magnetic cloud has been found. The background external field may have a gradient. The solution is used for calculation of magnetic cloud propagation. Obtained velocity profiles show a good agreement with in situ observations near the Earth's orbit.

  2. Evaluation of WRF physical parameterizations against ARM/ASR Observations in the post-cold-frontal region to improve low-level clouds representation in CAM5

    NASA Astrophysics Data System (ADS)

    Lamraoui, F.; Booth, J. F.; Naud, C. M.

    2017-12-01

    The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.

  3. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    NASA Astrophysics Data System (ADS)

    Long, E. J.; Hargrave, G. K.; Jarvis, S.; Justham, T.; Halliwell, N.

    2006-07-01

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.

  4. Influence of roughness bottom on the dynamics of a buoyant cloud : application to a powder avalanche

    NASA Astrophysics Data System (ADS)

    Brossard, D.; Naaim-Bouvet, F.; Naaim, M.; Caccamo, P.

    2009-04-01

    A powder avalanche is referred to as a turbulent flow of snow particles in air. In the past such avalanches have been modelled by buoyant cloud in a watertank: buoyant clouds flow along an inclined plane from a small immersed tank with a release gate (injection is of short duration). The powder avalanches are simulated by a heavy fluid (salt water + colorant or kaolin) which is dispersing in a lighter one. Such experiments allow studies for the influence of roughness bottoms on the dynamics of a buoyant clouds. The authors studied the flows of buoyant clouds on an uniform slope of 20° with different roughness: smooth PVC, abrasive paper, bottom covered with glued particles of PMMA or with glued glass beads of different sizes arranged in a compact way. The released volume varies between 2 to 4 liters and the density of salted water is 1.2. Two cameras are used to obtain the height together with the front velocity. Inside the study area the front velocity is approximately constant and the height of the clouds varies linearly with the distance from the released gate as usually observed in previous experiments. So for each roughness a front velocity and height growth can be defined. It was shown from the experiments that: As the bottom increases in roughness, the front speed increases and the height growth decreases. Nevertheless the height of glued elements does not seem to be the most appropriate parameter to characterize the roughness.

  5. HF Propagation Effects Caused by an Artificial Plasma Cloud in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Joshi, D. R.; Groves, K. M.; McNeil, W. J.; Caton, R. G.; Parris, R. T.; Pedersen, T. R.; Cannon, P. S.; Angling, M. J.; Jackson-Booth, N. K.

    2014-12-01

    In a campaign carried out by the NASA sounding rocket team, the Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma and measure the effects on high frequency (HF) radio wave propagation. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud that persisted for tens of minutes to hours in the post-sunset period. Data from the experiments has been analyzed to understand the impacts of the artificial ionization on HF radio wave propagation. Swept frequency HF links transiting the artificial ionization region were employed to produce oblique ionograms that clearly showed the effects of the samarium cloud. Ray tracing has been used to successfully model the effects of the ionized cloud. Comparisons between observations and modeled results will be presented, including model output using the International Reference Ionosphere (IRI), the Parameterized Ionospheric Model (PIM) and PIM constrained by electron density profiles measured with the ALTAIR radar at Kwajalein. Observations and modeling confirm that the cloud acted as a divergent lens refracting energy away from direct propagation paths and scattering energy at large angles relative to the initial propagation direction. The results confirm that even small amounts of ionized material injected in the upper atmosphere can result in significant changes to the natural propagation environment.

  6. HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment

    NASA Astrophysics Data System (ADS)

    Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha

    2017-06-01

    With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.

  7. Special Topics in Optical Propagation.

    DTIC Science & Technology

    1981-07-01

    first measurements of laser pulse stretching resulting from downward vertical propagation through a cloud. For the nonuniform clouds that were...feet to typically 6,000 or 7,000 feet." The tops in general were very nonuniform , and clouds varied typically from 6,000 to 10,000 feet. Sunset was at...responsible for these shorter pulsewidths is not completely understood at this time. It does appear that the nonuniform cloud layers experienced at Kauai do

  8. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    NASA Technical Reports Server (NTRS)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  9. Feasibility of reduced gravity experiments involving quiescent, uniform particle cloud combustion

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Facca, Lily T.; Berlad, Abraham L.; Tangirala, Venkat

    1989-01-01

    The study of combustible particle clouds is of fundamental scientific interest as well as a practical concern. The principal scientific interests are the characteristic combustion properties, especially flame structure, propagation rates, stability limits, and the effects of stoichiometry, particle type, transport phenomena, and nonadiabatic processes on these properties. The feasibility tests for the particle cloud combustion experiment (PCCE) were performed in reduced gravity in the following stages: (1) fuel particles were mixed into cloud form inside a flammability tube; (2) when the concentration of particles in the cloud was sufficiently uniform, the particle motion was allowed to decay toward quiescence; (3) an igniter was energized which both opened one end of the tube and ignited the suspended particle cloud; and (4) the flame proceeded down the tube length, with its position and characteristic features being photographed by high-speed cameras. Gravitational settling and buoyancy effects were minimized because of the reduced gravity enviroment in the NASA Lewis drop towers and aircraft. Feasibility was shown as quasi-steady flame propagation which was observed for fuel-rich mixtures. Of greatest scientific interest is the finding that for near-stoichiometric mixtures, a new mode of flame propagation was observed, now called a chattering flame. These flames did not propagate steadily through the tube. Chattering modes of flame propagation are not expected to display extinction limits that are the same as those for acoustically undisturbed, uniform, quiescent clouds. A low concentration of fuel particles, uniformly distributed in a volume, may not be flammable but may be made flammable, as was observed, through induced segregation processes. A theory was developed which showed that chattering flame propagation was controlled by radiation from combustion products which heated the successive discrete laminae sufficiently to cause autoignition.

  10. Influence of an electric field on the buoyancy-driven instabilities.

    PubMed

    Zadrazil, Ales; Sevcíková, Hana

    2005-11-01

    The influence of dc electric fields (EFs) on the development of buoyancy-driven instabilities of reaction fronts is investigated experimentally in a modified Hele-Shaw cell for the arsenous acid-iodate system. Assessment of effects of external EFs is made both visually and through dispersion curves. It is shown that density fingering, observed on ascending fronts, is suppressed by the EF if the front propagates towards the positive electrode and is enhanced when the front propagates towards the negative electrode. The stabilizing (destabilizing) effects include slower (faster) development of fingers and the decrease (increase) in their numbers. The descending front, stable under no EF conditions, remains stable when an EF is applied with the positive electrode facing the approaching front. When the descending front faces the negative electrode, the tiny fingerlike structure develops after quite a long time.

  11. Mapping the local reaction kinetics by PEEM: CO oxidation on individual (100)-type grains of Pt foil

    PubMed Central

    Vogel, D.; Spiel, C.; Suchorski, Y.; Urich, A.; Schlögl, R.; Rupprechter, G.

    2011-01-01

    The locally-resolved reaction kinetics of CO oxidation on individual (100)-type grains of a polycrystalline Pt foil was monitored in situ using photoemission electron microscopy (PEEM). Reaction-induced surface morphology changes were studied by optical differential interference contrast microscopy and atomic force microscopy (AFM). Regions of high catalytic activity, low activity and bistability in a (p,T)-parameter space were determined, allowing to establish a local kinetic phase diagram for CO oxidation on (100) facets of Pt foil. PEEM observations of the reaction front propagation on Pt(100) domains reveal a high degree of propagation anisotropy both for oxygen and CO fronts on the apparently isotropic Pt(100) surface. The anisotropy vanishes for oxygen fronts at temperatures above 465 K, but is maintained for CO fronts at all temperatures studied, i.e. in the range of 417 to 513 K. A change in the front propagation mechanism is proposed to explain the observed effects. PMID:22140277

  12. Propagating gene expression fronts in a one-dimensional coupled system of artificial cells

    NASA Astrophysics Data System (ADS)

    Tayar, Alexandra M.; Karzbrun, Eyal; Noireaux, Vincent; Bar-Ziv, Roy H.

    2015-12-01

    Living systems employ front propagation and spatiotemporal patterns encoded in biochemical reactions for communication, self-organization and computation. Emulating such dynamics in minimal systems is important for understanding physical principles in living cells and in vitro. Here, we report a one-dimensional array of DNA compartments in a silicon chip as a coupled system of artificial cells, offering the means to implement reaction-diffusion dynamics by integrated genetic circuits and chip geometry. Using a bistable circuit we programmed a front of protein synthesis propagating in the array as a cascade of signal amplification and short-range diffusion. The front velocity is maximal at a saddle-node bifurcation from a bistable regime with travelling fronts to a monostable regime that is spatially homogeneous. Near the bifurcation the system exhibits large variability between compartments, providing a possible mechanism for population diversity. This demonstrates that on-chip integrated gene circuits are dynamical systems driving spatiotemporal patterns, cellular variability and symmetry breaking.

  13. Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu

    2014-06-15

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less

  14. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafti, Matías; Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover; Borkenhagen, Benjamin

    The bistable NH{sub 3} + O{sub 2} reaction over a Rh(110) surface was explored in the pressure range 10{sup −6}–10{sup −3} mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

  15. Microstructure of wave propagation during combustion synthesis of advanced materials: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Hwang, Stephen

    Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.

  16. Fisher waves and front roughening in a two-species invasion model with preemptive competition.

    PubMed

    O'Malley, L; Kozma, B; Korniss, G; Rácz, Z; Caraco, T

    2006-10-01

    We study front propagation when an invading species competes with a resident; we assume nearest-neighbor preemptive competition for resources in an individual-based, two-dimensional lattice model. The asymptotic front velocity exhibits an effective power-law dependence on the difference between the two species' clonal propagation rates (key ecological parameters). The mean-field approximation behaves similarly, but the power law's exponent slightly differs from the individual-based model's result. We also study roughening of the front, using the framework of nonequilibrium interface growth. Our analysis indicates that initially flat, linear invading fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one transverse dimension. Further, this finding implies, and is also confirmed by simulations, that the temporal correction to the asymptotic front velocity is of O(t(-2/3)).

  17. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain

    2015-12-01

    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

  18. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  19. An Approach for Assessing Delamination Propagation Capabilities in Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2007-01-01

    An approach for assessing the delamination propagation capabilities in commercial finite element codes is presented and demonstrated for one code. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. Good agreement between the load-displacement relationship obtained from the propagation analysis results and the benchmark results could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as may be expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.

  20. An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2008-01-01

    An approach for assessing the delamination propagation simulation capabilities in commercial finite element codes is presented and demonstrated. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. The load-displacement relationship and the total strain energy obtained from the propagation analysis results and the benchmark results were compared and good agreements could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as was expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.

  1. Factors leading to the formation of arc cloud complexes

    NASA Technical Reports Server (NTRS)

    Welshinger, Mark John; Brundidge, Kenneth C.

    1987-01-01

    A total of 12 mesoscale convective systems (MCSs) were investigated. The duration of the gust front, produced by each MCS, was used to classify the MCSs. Category 1 MCSs were defined as ones that produced a gust front and the gust front lasted for more than 6 h. There were 7 category 1 MCSs in the sample. Category 2 MCSs were defined as ones that produced a gust front and the gust front lasted for 6 h or less. There were 4 category 2 MCSs. The MCS of Case 12 was not categorized because the precipitation characteristics were similar to a squall line, rather than an MCS. All of the category 1 MCSs produced arc cloud complexes (ACCs), while only one of the category 2 MCSs produced an ACC. To determine if there were any differences in the characteristics between the MCSs of the two categories, composite analyses were accomplished. The analyses showed that there were significant differences in the characteristics of category 1 and 2 MCSs. Category 1 MCSs, on average, had higher thunderstorm heights, greater precipitation intensities, colder cloud top temperatures and produced larger magnitudes of surface divergence than category 2 MCSs.

  2. Noise propagation effects in power supply distribution systems for high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.; Pradas, A.; Arcega, F. J.

    2017-12-01

    High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. This paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  3. Noise propagation effects in power supply distribution systems for high-energy physics experiments

    DOE PAGES

    Arteche, F.; Rivetta, C.; Iglesias, M.; ...

    2017-12-05

    High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  4. Noise propagation effects in power supply distribution systems for high-energy physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arteche, F.; Rivetta, C.; Iglesias, M.

    High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  5. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  6. Darrieus-Landau instability of premixed flames enhanced by fuel droplets

    NASA Astrophysics Data System (ADS)

    Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno

    2017-07-01

    Recent experiments on spray flames propagating in a Wilson cloud chamber have established that spray flames are much more sensitive to wrinkles or corrugations than single-phase flames. To propose certain elements of explanation, we numerically study the Darrieus-Landau (or hydrodynamic) instability (DL-instability) developing in premixtures that contain an array of fuel droplets. Two approaches are compared: numerical simulation starting from the general conservation laws in reactive media, and the numerical computation of Sivashinsky-type model equations for DL-instability. Both approaches provide us with results in deep agreement. It is first shown that the presence of droplets in fuel-air premixtures induces initial perturbations which are large enough to trigger the DL-instability. Second, the droplets are responsible for additional wrinkles when the DL-instability is developed. The latter wrinkles are of length scales shorter than those of the DL-instability, in such a way that the DL-unstable spray flames have a larger front surface and therefore propagate faster than the single-phase ones when subjected to the same instability.

  7. On ice rifts and the stability of non-Newtonian extensional flows on a sphere

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy

    2017-11-01

    Rifts that form at the fronts of floating ice shelves that spread into the ocean can trigger major calving events in the ice. The deformation of ice can be modeled as a thin viscous film driven by buoyancy. The front of such a viscous film that propagates over a flat surface with no-slip basal conditions is known to have stable axisymmetric solutions. In contrast, when the fluid propagates under free-slip conditions at the substrate, the front can become unstable to small perturbations if the fluid is sufficiently strain-rate softening. Consequently, the front will develop tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Here we investigate the stability of a spherical sheet of power-law fluids under free-slip basal conditions. The fluid is discharged at constant flux and axisymmetrically with respect to the pole, and propagates towards the equator. The propagating front in such a situation may become unstable due to its failure to sustain large extensional forces, resulting in the formation of rifts. This study has implications to understanding the cause of patterns that are observed on shells of floating ice in a range of planetary objects, and whether open rifts that sustain life were feasible in snowball earth. Israel Science Foundation 1368/16.

  8. Flame front propagation in a channel with porous walls

    NASA Astrophysics Data System (ADS)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  9. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  10. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  11. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  12. The structure of a magnetic-field front propagating non-diffusively in low-resistivity multi-species plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, B.; Doron, R., E-mail: ramy.doron@weizmann.ac.il; Maron, Y.

    2016-04-15

    We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.

  13. Frontal Polymerization of Dicyclopentadiene: A Numerical Study.

    PubMed

    Goli, Elyas; Robertson, Ian D; Geubelle, Philippe H; Moore, Jeffrey S

    2018-04-26

    As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e., front velocity and characteristic length scales. The second part of this study focuses on the prediction of the temperature spike associated with the merger of two polymerization fronts. The thermal peak, which might be detrimental to the properties of the polymerized material, is due to the inability of the heat associated with the highly exothermic reaction to be dissipated when the two fronts merge. The analysis investigates how the amplitude of the thermal spike is affected by the degree of cure at the time of the front merger.

  14. Theoretical basis for operational ensemble forecasting of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.; de Koning, C.; Cash, M.; Millward, G.; Biesecker, D. A.; Puga, L.; Codrescu, M.; Odstrcil, D.

    2015-10-01

    We lay out the theoretical underpinnings for the application of the Wang-Sheeley-Arge-Enlil modeling system to ensemble forecasting of coronal mass ejections (CMEs) in an operational environment. In such models, there is no magnetic cloud component, so our results pertain only to CME front properties, such as transit time to Earth. Within this framework, we find no evidence that the propagation is chaotic, and therefore, CME forecasting calls for different tactics than employed for terrestrial weather or hurricane forecasting. We explore a broad range of CME cone inputs and ambient states to flesh out differing CME evolutionary behavior in the various dynamical domains (e.g., large, fast CMEs launched into a slow ambient, and the converse; plus numerous permutations in between). CME propagation in both uniform and highly structured ambient flows is considered to assess how much the solar wind background affects the CME front properties at 1 AU. Graphical and analytic tools pertinent to an ensemble approach are developed to enable uncertainties in forecasting CME impact at Earth to be realistically estimated. We discuss how uncertainties in CME pointing relative to the Sun-Earth line affects the reliability of a forecast and how glancing blows become an issue for CME off-points greater than about the half width of the estimated input CME. While the basic results appear consistent with established impressions of CME behavior, the next step is to use existing records of well-observed CMEs at both Sun and Earth to verify that real events appear to follow the systematic tendencies presented in this study.

  15. A Satellite View of a Back-door Cold Front

    NASA Image and Video Library

    2014-05-29

    A "backdoor cold front" is bringing April temperatures to the U.S. northeast and Mid-Atlantic today, May 29. The backdoor cold front brings relief to the Mid-Atlantic after temperatures in Washington, D.C. hit 92F on Tuesday, May 27 and 88F on Wednesday, May 28 at Reagan National Airport, according to the National Weather Service (NWS). NWS forecasters expect the high temperature for May 29 to only reach 60F in the District of Columbia. NOAA's GOES-East satellite captured a view of the clouds associated with the backdoor cold front that stretch from southern Illinois to North Carolina. The National Weather Service forecast expects the backdoor cold front to bring showers to the Midwest, Northeast, and Mid-Atlantic today, May 29. According to the National Oceanic and Atmospheric Administration, a backdoor cold front is a cold front moving south or southwest along the Atlantic seaboard and Great Lakes; these are especially common during the spring months. This visible image was taken by NOAA's GOES-East satellite on May 29 at 12:30 UTC (8:30 a.m. EDT). The image was created at NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. In addition to the backdoor cold front clouds, the GOES-East image shows clouds circling around a low pressure area located in eastern Texas. That low pressure area is expected to bring rain from Texas eastward over the southeastern U.S. According to NOAA's National Weather Service, the slow-moving low pressure area in the Deep South "will bring heavy showers and thunderstorms from Louisiana to Alabama through Thursday. This area is already saturated from previous rainfall, so flash flooding will be possible." Image: NASA/NOAA GOES Project Caption: NASA Goddard/Rob Gutro

  16. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    PubMed Central

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-01-01

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials’ sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  17. Charged Particle Distribution near the Shock Front in a Glow Discharge

    NASA Astrophysics Data System (ADS)

    Baryshnikov, A. S.; Basargin, I. V.; Bezverkhnii, N. O.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.

    2018-02-01

    The charged particle distribution near the front of a shock wave propagating in the glow discharge plasma has been investigated. It has been found that the ion concentration before the front varies nonmonotonically. Behind the shock front, the charged particle concentration varies smoothly in contrast to the neutral component density.

  18. Does laser-driven heat front propagation depend on material microstructure?

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  19. Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Li, John; Boyer, Carleen; Solomon, Tom; Mitchell, Kevin A.

    2015-12-01

    The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in x y θ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.

  20. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  1. Discovery of a Molecular Collision Front in Interacting Galaxies NGC 4567/4568 with ALMA

    NASA Astrophysics Data System (ADS)

    Kaneko, Hiroyuki; Kuno, Nario; Saitoh, Takayuki R.

    2018-06-01

    We present results of 12CO(J = 1–0) imaging observations of NGC 4567/4568, a galaxy pair in a close encounter, with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we find clear evidence of a molecular collision front with a velocity dispersion that is 16.8 ± 1.4 km s‑1 at the overlapping region, owing to high spatial and velocity resolution. By integrating over the velocity width that corresponds to the molecular collision front, we find a long filamentary structure with a size of 1800 pc × 350 pc at the collision front. This filamentary molecular structure spatially coincides with a dark lane seen in the R-band image. We find four molecular clouds in the filament, each with a radius of 30 pc and mass of 106 M ⊙ the radii matching a typical value for giant molecular clouds (GMCs) and the masses corresponding to those between GMCs and giant molecular associations (GMAs). All four clouds are gravitationally bound. The molecular filamentary structure and its physical conditions are similar to the structure expected via numerical simulation. The filament could be a progenitor of super star clusters.

  2. High resolution far-infrared observations of the evolved H II region M16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-03-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emissionmore » has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.« less

  3. An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.

    PubMed

    Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris

    2017-07-01

    Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.

  4. Laser-driven heat-front propagation in foam vs. gas

    NASA Astrophysics Data System (ADS)

    Pérez, F.; Colvin, J. D.; May, M. J.; Gammon, S. A.; Fournier, K. B.

    2014-10-01

    A high-energy laser (several kJ, 1015 W/cm2) can propagate inside an underdense plasma over millimeters, along its associated heat front. This creates a large volume of hot plasma (several keV) able to produce bright hard-x-ray sources when a high-Z dopant is included in the material. In the past years, we investigated the behavior of both gases and foams under these circumstances. Their design and predictability relies on the understanding of the heat front propagation. In the case of foams, several studies tried to assess the effect of their micro-structure in altering the laser interaction and the heat front propagation, but no experimental data has shown clear evidence. We present here the design and results of a recent experiment, using the OMEGA laser, where a Ge-doped silica foam was compared to a Ne/Kr gas of very similar characteristics, the only difference between these two materials being their micro-structure to allow for a straightforward determination of its influence. The design of future similar experiments will also be reported. J. Colvin presents theoretical and modeling aspects of this subject in a companion presentation. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344.

  5. Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Korneev, N. V.

    2017-05-01

    The flame propagation velocity is one of the determining parameters characterizing the intensity of combustion process in the cylinder of an engine with spark ignition. Strengthening of requirements for toxicity and efficiency of the ICE contributes to gradual transition to sustainable alternative fuels, which include the mixture of natural gas with hydrogen. Currently, studies of conditions and regularities of combustion of this fuel to improve efficiency of its application are carried out in many countries. Therefore, the work is devoted to modeling the average propagation velocities of natural gas flame front laced with hydrogen to 15% by weight of the fuel, and determining the possibility of assessing the heat release characteristics on the average velocities of the flame front propagation in the primary and secondary phases of combustion. Experimental studies, conducted the on single cylinder universal installation UIT-85, showed the presence of relationship of the heat release characteristics with the parameters of the flame front propagation. Based on the analysis of experimental data, the empirical dependences for determination of average velocities of flame front propagation in the first and main phases of combustion, taking into account the change in various parameters of engine operation with spark ignition, were obtained. The obtained results allow to determine the characteristics of heat dissipation and to assess the impact of addition of hydrogen to the natural gas combustion process, that is needed to identify ways of improvement of the combustion process efficiency, including when you change the throttling parameters.

  6. Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump

    PubMed Central

    Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.

    2010-01-01

    Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230

  7. Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces.

    PubMed

    Amundsen, David Skålid; Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien

    2015-09-01

    The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.

  8. Observations and Simulations of Electron Dynamics Near an Active Neutral Line

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Hwang, Kyoung-Joo; Ashour-Abdalla, Maha; El-Aloui, Mostafa; Schriver, David; Richard, Robert; Zhou, Meng; Walker, Ray

    2010-01-01

    Recent observations in the Earth's magnetotail have shown rapid increases in the fluxes of energetic electrons with energies up to 100's of keV associated with dipolarization fronts that propagate into the inner magnetosphere. On August 15, 2001 the four Cluster spacecraft located slightly dawnward of midnight (yGSM approx. -5.4RE) at xGSM approx. -18RE observed a series of earthward propagating dipolarization fronts [Hwang et al., 2010]. At least 6 dipolarization fronts were observed in a 20m interval. Unlike previously reported cases the fluxes of electrons up to 95keV decreased during the passage of the first three fronts over the spacecraft. The energetic electron fluxes increased during the passage of the last three fronts. We have performed a global magnetohydrodynamic simulation of this event using solar wind observations from the ACE satellite to drive the simulation. In the simulation a very complex reconnection system in the near-Earth tail at XGSM approx. -20RE launched a series of earthward propagating dipolarization fronts that are similar to those observed on Cluster. The simulation results indicate that the Cluster spacecraft were just earthward of the reconnection site. In this paper we will present a study of the dynamics of electrons associated with these events by using the large-scale kinetic simulation approach in which we launch a large number of electrons into the electric and magnetic fields from this simulation.

  9. Propagation of High Power Pulses of 10.6 micrometers Radiation from A CO2 TEA Laser of Novel Design through Clouds Produced by Adiabatic Expansion in the Laboratory

    DTIC Science & Technology

    1976-07-01

    A AD PROPAGATION OF HIGH POWER PULSES OF 10.6 pm RADIATION FROM A C02 TEA LASER OF NOVEL DESIGN THROUGH CLOUDS PRODUCED BY ADIABATIC E•XPANS:’)N IN...PART A: CO2 LASER uEVELOPMENT Al High Power CO2 TEA Laser 2 A2 CW CO2 Laser 6 References 8 Diagrams 9 PART 8: CLOUD PROLDUCTION 61 Cloud Chamber...offer versatility, efficienr-y and high power . This report is concerned with the attenuation of 10.eum radiatiins, both high power pulsL.o and 04, by

  10. H-alpha images of the Cygnus Loop - A new look at shock-wave dynamics in an old supernova remnant

    NASA Technical Reports Server (NTRS)

    Fesen, Robert A.; Kwitter, Karen B.; Downes, Ronald A.

    1992-01-01

    Attention is given to deep H-alpha images of portions of the east, west, and southwest limbs of the Cygnus Loop which illustrate several aspects of shock dynamics in a multiphase interstellar medium. An H-alpha image of the isolated eastern shocked cloud reveals cloud deformation and gas stripping along the cloud's edges, shock front diffraction and reflection around the rear of the cloud, and interior remnant emission due to upstream shock reflection. A faint Balmer-dominated filament is identified 30 arcmin further west of the remnant's bright line of western radiative filaments. This detection indicates a far more westerly intercloud shock front position than previously realized, and resolves the nature of the weak X-ray, optical, and nonthermal radio emission observed west of NGC 6960. Strongly curved Balmer-dominated filaments along the remnant's west and southwest edge may indicate shock diffraction caused by shock wave passage in between clouds.

  11. A Similarity Theory for Unsaturated Downdrafts within Clouds.

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry A.

    1981-08-01

    Recent observations of cumulus clouds strongly support the hypothesis of Squires (1958) that much of the mixing within such clouds is associated with downward propagating currents initiated near their tops. A similarity theory is here proposed to describe the properties of such currents; the use of similarity is defended on the basis of the observed and predicted scale of the downdrafts. The theory suggests that downward-propagating unsaturated thermals are pervasive throughout all but the largest convective clouds and that quasi-steady unsaturated downdraft plumes may exist in the lower portions of cumulonimbi. In addition to providing a reasonable explanation for the microstructure of and liquid water distribution within cumulus clouds, the theory appears to account for certain severe convective phenomena, including down-bursts. A new but related cloud instability is proposed to account for the occurrence of mamma.

  12. The classification of magnetohydrodynamic regimes of thermonuclear combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remming, Ian S.; Khokhlov, Alexei M.

    2014-10-10

    Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Iamore » supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.« less

  13. The Nature of The Propagation of Sea Breeze Fronts in Central California

    DTIC Science & Technology

    1990-09-01

    propagation vector % ith stations in the southern portion of Monterey Bay shows that the front is curved on the mesoscale. 20 Distribution Availabilit of...solar radiation warms the land more than the adjacent water . The resulting temperature contrast produces a slight variation in pressure. The isobaric...surfaces bend upward over the land, producing an upper-level high. The upper-level air flows seaward increasing the surface pressure over the water . The

  14. Langevin approach to a chemical wave front: Selection of the propagation velocity in the presence of internal noise

    NASA Astrophysics Data System (ADS)

    Lemarchand, A.; Lesne, A.; Mareschal, M.

    1995-05-01

    The reaction-diffusion equation associated with the Fisher chemical model A+B-->2A admits wave-front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity vmin, as predicted by the marginal stability criterion. In order to test the relevance of this deterministic description we investigate the macroscopic consequences, on the velocity and the width of the front, of the intrinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin equations, deduced analytically from the master equation within a system size expansion procedure. We show that the mean profile associated with the stochastic solution propagates faster than the deterministic solution at a velocity up to 25% greater than vmin.

  15. ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions.

    PubMed

    Ashraf, Chowdhury; Jain, Abhishek; Xuan, Yuan; van Duin, Adri C T

    2017-02-15

    In this paper, we present the first atomistic-scale based method for calculating ignition front propagation speed and hypothesize that this quantity is related to laminar flame speed. This method is based on atomistic-level molecular dynamics (MD) simulations with the ReaxFF reactive force field. Results reported in this study are for supercritical (P = 55 MPa and T u = 1800 K) combustion of hydrocarbons as elevated pressure and temperature are required to accelerate the dynamics for reactive MD simulations. These simulations are performed for different types of hydrocarbons, including alkyne, alkane, and aromatic, and are able to successfully reproduce the experimental trend of reactivity of these hydrocarbons. Moreover, our results indicate that the ignition front propagation speed under supercritical conditions has a strong dependence on equivalence ratio, similar to experimentally measured flame speeds at lower temperatures and pressures which supports our hypothesis that ignition front speed is a related quantity to laminar flame speed. In addition, comparisons between results obtained from ReaxFF simulation and continuum simulations performed under similar conditions show good qualitative, and reasonable quantitative agreement. This demonstrates that ReaxFF based MD-simulations are a promising tool to study flame speed/ignition front speed in supercritical hydrocarbon combustion.

  16. Planar microlens with front-face angle: design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  17. Airborne Measurements of Atmospheric Volume Scattering Coefficients in Northern Europe, Summer, 1978

    DTIC Science & Technology

    1980-06-01

    in the southwestern quadrant . At 1200 GMT there was a 1000 millibar low centered near Genoa with a warm front east and southeast to the Adriatic Sea...occluded front 5’ west of the Irish coast. The track was in the northeast quadrant of the high with northeasterly surlace flow. At 1200 GMT a small 1025...The air mass was maritime polar. The satellite map for 1309 GM F showed thin clouds over western Europa aad heavier cloud cover over eastern ’ur:,pe

  18. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Jourdan, G.; Daniel, E.; Houas, L.; Tosello, R.

    2011-11-01

    We conducted a series of shock tube experiments to study the influence of a cloud of water droplets on the propagation of a planar shock wave. In a vertically oriented shock tube, the cloud of droplets was released downwards into the air at atmospheric pressure while the shock wave propagated upwards. Two shock wave Mach numbers, 1.3 and 1.5, and three different heights of clouds, 150 mm, 400 mm, and 700 mm, were tested with an air-water volume fraction and a droplet diameter fixed at 1.2% and 500 μm, respectively. From high-speed visualization and pressure measurements, we analyzed the effect of water clouds on the propagation of the shock wave. It was shown that the pressure histories recorded in the two-phase gas-liquid mixture are different from those previously obtained in the gas-solid case. This different behavior is attributed to the process of atomization of the droplets, which is absent in the gas-solid medium. Finally, it was observed that the shock wave attenuation was dependent on the exchange surface crossed by the shock combined with the breakup criterion.

  19. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  20. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  1. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  2. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  3. SDO AIA Observations of Large-Scale Coronal Disturbances in the Form of Propagating Fronts

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei

    2013-03-01

    One of the most spectacular phenomena detected by SOHO EIT was the large-scale propagating fronts associated with solar eruptions. Initially these 'EIT' waves were thought to be coronal counterparts of chromospheric Moreton waves. However, different spatial and kinematic properties of the fronts seen in H-alpha and EUV images, and far more frequent occurrences of the latter have led to various interpretations that are still actively debated by a number of researchers. A major factor for the lack of closure was the various limitation in EIT data, including the cadence that was typically every 12 minutes. Now we have significantly improved data from SDO AIA, which have revealed some very interesting phenomena associated with EIT waves. However, the studies so far conducted using AIA data have primarily dealt with single or a small number of events, where selection bias and particular observational conditions may prevent us from discovering the general and true nature of EIT waves. Although automated detection of EIT waves was promised for AIA images some time ago, it is still not actually implemented in the data pipeline. Therefore we have manually found nearly 200 examples of large-scale propagating fronts, going through movies of difference images from the AIA 193 A channel up to January 2013. We present our study of the kinematic properties of the fronts in a subset of about 150 well-observed events in relation with other phenomena that can accompany EIT waves. Our emphasis is on the relation of the fronts with the associated coronal eruptions often but not always taking the form of full-blown CMEs, utilizing STEREO data for a subset of more than 80 events that have occurred near the limb as viewed from one of the STEREO spacecraft. In these events, the availability of data from the STEREO inner coronagraph (COR1) as well as from the EUVI allows us to trace eruptions off the solar disk during the times of our propagating fronts. The representative relations between the fronts and CMEs will be discussed in terms of the evolution of EIT waves observed in different channels of AIA, which provide information of the thermal properties of the fronts. Our study will further clarify the variety of solar eruptions and their associated manifestations in the corona.

  4. Measurement of optical blurring in a turbulent cloud chamber

    NASA Astrophysics Data System (ADS)

    Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.

    2016-10-01

    Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the proposal of a closure experiment for verification of theoretical aerosol effects using actual clouds in a controlled laboratory setting.

  5. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  6. Sound, infrasound, and sonic boom absorption by atmospheric clouds.

    PubMed

    Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis

    2011-09-01

    This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America

  7. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated strain-rates introduced at the end of the structure where the load is applied. In addition, it is shown that when steep wave fronts are generated in the nonlinear viscoelastic material, energy dissipation is focused in those wave fronts implying deposition of energy in a highly localized region of the material. Novel mechanisms for brain tissue damage are proposed based on the results obtained. The first mechanism is related to the dissipation of energy at steep wave fronts, while the second one is related to the interaction of steep wave fronts with axons encountered on its way through the structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-06-01

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100μs. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  9. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography.

    PubMed

    Smilowitz, L; Henson, B F; Romero, J J; Asay, B W; Schwartz, C L; Saunders, A; Merrill, F E; Morris, C L; Kwiatkowski, K; Hogan, G; Nedrow, P; Murray, M M; Thompson, T N; McNeil, W; Rightley, P; Marr-Lyon, M

    2008-06-06

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 micros. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  10. Modeling wildland fire propagation with level set methods

    Treesearch

    V. Mallet; D.E Keyes; F.E. Fendell

    2009-01-01

    Level set methods are versatile and extensible techniques for general front tracking problems, including the practically important problem of predicting the advance of a fire front across expanses of surface vegetation. Given a rule, empirical or otherwise, to specify the rate of advance of an infinitesimal segment of fire front arc normal to itself (i.e., given the...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenau, Philip

    A wide variety of propagating disturbances in physical systems are described by equations whose solutions lack a sharp propagating front. We demonstrate that presence of particular nonlinearities may induce such fronts. To exemplify this idea, we study both dissipative u{sub t}+{partial_derivative}{sub x}f(u)=u{sub xx} and dispersive u{sub t}+{partial_derivative}{sub x}f(u)+u{sub xxx}=0 patterns, and show that a weakly singular convection f(u)=-u{sup {alpha}}+u{sup m}, 0<{alpha}<1

  12. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations

    NASA Technical Reports Server (NTRS)

    Osher, Stanley; Sethian, James A.

    1987-01-01

    New numerical algorithms are devised (PSC algorithms) for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be used also for more general Hamilton-Jacobi-type problems. The algorithms are demonstrated by computing the solution to a variety of surface motion problems.

  13. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulationmore » results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.« less

  14. Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles

    NASA Astrophysics Data System (ADS)

    Bernitt, Erik; Döbereiner, Hans-Günther; Gov, Nir S.; Yochelis, Arik

    2017-06-01

    During macropinocytosis, cells remodel their morphologies for the uptake of extracellular matter. This endocytotic mechanism relies on the collapse and closure of precursory structures, which are propagating actin-based, ring-shaped vertical undulations at the dorsal (top) cell membrane, a.k.a. circular dorsal ruffles (CDRs). As such, CDRs are essential to a range of vital and pathogenic processes alike. Here we show, based on both experimental data and theoretical analysis, that CDRs are propagating fronts of actin polymerization in a bistable system. The theory relies on a novel mass-conserving reaction-diffusion model, which associates the expansion and contraction of waves to distinct counter-propagating front solutions. Moreover, the model predicts that under a change in parameters (for example, biochemical conditions) CDRs may be pinned and fluctuate near the cell boundary or exhibit complex spiral wave dynamics due to a wave instability. We observe both phenomena also in our experiments indicating the conditions for which macropinocytosis is suppressed.

  15. Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles

    PubMed Central

    Bernitt, Erik; Döbereiner, Hans-Günther; Gov, Nir S.; Yochelis, Arik

    2017-01-01

    During macropinocytosis, cells remodel their morphologies for the uptake of extracellular matter. This endocytotic mechanism relies on the collapse and closure of precursory structures, which are propagating actin-based, ring-shaped vertical undulations at the dorsal (top) cell membrane, a.k.a. circular dorsal ruffles (CDRs). As such, CDRs are essential to a range of vital and pathogenic processes alike. Here we show, based on both experimental data and theoretical analysis, that CDRs are propagating fronts of actin polymerization in a bistable system. The theory relies on a novel mass-conserving reaction–diffusion model, which associates the expansion and contraction of waves to distinct counter-propagating front solutions. Moreover, the model predicts that under a change in parameters (for example, biochemical conditions) CDRs may be pinned and fluctuate near the cell boundary or exhibit complex spiral wave dynamics due to a wave instability. We observe both phenomena also in our experiments indicating the conditions for which macropinocytosis is suppressed. PMID:28627511

  16. Intracellular signal propagation in a two-dimensional autocatalytic reaction model.

    PubMed

    Castiglione, F; Bernaschi, M; Succi, S; Heinrich, R; Kirschner, M W

    2002-09-01

    We study a simple reaction scheme in a two-dimensional lattice of particles or molecules with a refractory state. We analyze the dynamics of the propagating front as a function of physical-chemical properties of the host medium. The anisotropy of the medium significantly affects the smoothness of the wave front. Similarly, if particles or molecules may diffuse slowly to neighboring sites, then the front wave is more likely to be irregular. Both situations affect the ability of the whole system to relax to the original state, which is a required feature in the biological cells. Attempts to map this simple reaction scheme to reactions involved in the intracellular pathways suggest that, in some cases, signal transduction might take both connotation of a random walk and a propagating wave, depending on the local density of the medium. In particular, a sufficient condition for the appearance of waves in high-density regions of the media, is the existence of at least one autocatalytic reaction in the chain of reactions characterizing the pathway.

  17. A Tailward Moving Current Sheet Normal Magnetic Field Front Followed by an Earthward Moving Dipolarization Front

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.

    2014-01-01

    A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.

  18. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE PAGES

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less

  19. Adaptive two-regime method: Application to front propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Flegg, Mark, E-mail: mark.flegg@monash.edu

    2014-03-28

    The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in termsmore » of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.« less

  20. In situ observation of self-propagating high temperature syntheses of Ta5Si3, Ti5Si3 and TiB2 by proton and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Bernert, T.; Winkler, B.; Haussühl, E.; Trouw, F.; Vogel, S. C.; Hurd, A. J.; Smilowitz, L.; Henson, B. F.; Merrill, F. E.; Morris, C. L.; Mariam, F. G.; Saunders, A.; Juarez-Arellano, E. A.

    2013-08-01

    Self-propagating high temperature reactions of tantalum and titanium with silicon and titanium with boron were studied using proton and X-ray radiography, small-angle neutron scattering, neutron time-of-flight, X-ray and neutron diffraction, dilatometry and video recording. We show that radiography allows the observation of the propagation of the flame front in all investigated systems and the determination of the widths of the burning zones. X-ray and neutron diffraction showed that the reaction products consisted of ≈90 wt% of the main phase and one or two secondary phases. For the reaction 5Ti + 3Si → Ti5Si3 flame front velocities of 7.1(3)-34.2(4) mm/s were determined depending on the concentration of a retardant added to the starting material, the geometry and the green density of the samples. The flame front width was determined to be 1.17(4)-1.82(8) mm and depends exponentially on the flame front velocity. Similarly, for the reaction Ti + 2B → TiB2 flame front velocities of 15(2)-26.6(4) mm/s were determined, while for a 5Ta + 3Si → Ta5Si3 reaction the flame front velocity was 7.05(4) mm/s. The micro structure of the product phase Ta5Si3 shows no texture. From SANS measurements the dependence of the specific surface of the product phase on the particle sizes of the starting materials was studied.

  1. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities

    NASA Astrophysics Data System (ADS)

    Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.

    2015-09-01

    A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.

  2. Twisted gravitational waves

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2018-03-01

    In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.

  3. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  4. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    NASA Astrophysics Data System (ADS)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; Donner, Leo; Golaz, Jean-Christophe; Seman, Charles

    2017-12-01

    We define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, and high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. We find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.

  5. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE PAGES

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; ...

    2017-11-16

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  6. Observational and numerical analysis of the genesis of a mesoscale convective system

    NASA Astrophysics Data System (ADS)

    Nachamkin, Jason Edward

    1998-11-01

    A high resolution observational and numerical study was conducted on a mesoscale convective system (MCS) that developed in northeastern Colorado on 19 July 1993. Convection was followed from its origins in the Rockies west of Denver as it grew to near mesoscale convective complex (MCC) proportions over the plains. Five-minute surface data was collected from 48 mesonet stations over eastern Colorado, and six-minute dual Doppler data were collected from the CSU-CHILL and Mile High radars. The Regional Atmospheric Modeling System (RAMS) was then used to simulate this case. Initialization with variable topography, soil moisture, and atmospheric conditions facilitated the simulation of the inhomogeneous environment and its interactions with the MCS. Convection was explicitly resolved on the finest of four telescopically nested, moving grids. Storms developed consistently within the model without any artificial triggers such as warm bubbles or cold pools. Comparisons with the observations showed strong agreement down to the scale of the individual Doppler scans. The results show that convective position was deterministically focused by thermally driven solenoidal circulations and their interaction with a preexisting surface front. Away from the mountains, convection was fed by an intense low level jet less than 200 km across. The jet formed over southeastern Colorado in a region of localized thermal contrasts on either side of the plains inversion. Interactions between convection and its surrounding environment existed in two modes. When the upward mass flux was of moderate strength, continuity was maintained by linear, low frequency gravity waves. Most of the wave energy propagated rearward from the convective line, even though strong upper tropospheric shear advected most of the condensate ahead of the line. Almost all of the environmental compensating motions propagated rearward with the waves, inducing upper tropospheric front-to-rear and mid tropospheric rear-to-front perturbations in their wake. Most of the subsidence heating was also restricted to the narrow zone of wave propagation. When the convective mass flux became intense near sunset, condensate, heat and momentum were advected directly into the upper troposphere in a nonlinear outflow. The oval- shaped cold cloud top was defined by the leading edge of the outflow, and unlike the gravity waves, gradients of heat and momentum only slowly dispersed. This suggests that intense MCSs and MCCs with well defined anvils are more likely to produce a balanced disturbance because proportionately less energy is lost to gravity waves.

  7. Fluid flow and reaction fronts: characterization of physical processes at the microscale using SEM analyses

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Toussaint, Renaud; Gomez-Rivas, Enrique; Bons, Paul; Chung, Peter; Martín-Martín, Juan Diego

    2014-05-01

    Fluid migrations are the principal agent for mineral replacement in the upper crust, leading to dramatic changes in the porosity and permeability of rocks over several kilometers. Consequently, a better understanding of the physical parameters leading to mineral replacement is required to better understand and model fluid flow and rock reservoir properties. Large-scale dolostone bodies are one of the best and most debated examples of such fluid-related mineral replacement. These formations received a lot of attention lately, and although genetic mechanics and implications for fluid volume are understood, the mechanisms controlling the formation and propagation of the dolomitization reaction front remain unclear. This contribution aims at an improvement of the knowledge about how this replacement front propagates over space and time. We study the front sharpness on hand specimen and thin section scale and what the influence of advection versus diffusion of material is on the front development. In addition, we demonstrate how preexisting heterogeneities in the host rock affect the propagation of the reaction front. The rock is normally not homogeneous but contains grain boundaries, fractures and stylolites, and such structures are important on the scale of the front width. Using Scanning Electron Microscopy and Raman Spectroscopy we characterized the reaction front chemistry and morphology in different context. Specimens of dolomitization fronts, collected from carbonate sequences of the southern Maestrat Basin, Spain and the Southwestern Scottish Highlands suggest that the front thickness is about several mm being relatively sharp. Fluid infiltrated grain boundaries and fractures forming mm-scale transition zone. We study the structure of the reaction zone in detail and discuss implications for fluid diffusion-advection models and mineral replacement. In addition we formulate a numerical model taking into account fluid flow, diffusion and advection of the mobile reactive species, reaction rates, disorder in the location of the potential replacement seeds, and permeability heterogeneities. The goal of this model is to compare the shape of the resulting patterns, notably in terms of thickness, and eventually roughness or fractal dimension.

  8. Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot of Puppis A

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Flanagan, Kathryn A.; Petre, Robert

    2005-01-01

    We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1 westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the "voided sphere" structures seen at late times in Klein et al. experimental simulat.ions of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an intera.ction time of roughly cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ray identified example of a cloud-shock interaction in this advanced phase. Closer t o the shock front, the X-ray emission of the compact knot in the eastern part of the BEK region implies a recent interaction with relatively denser gas, some of which lies in front of the remnant. The complex spatial relationship of the X-ray emission of the compact knot to optical [O III] emission suggests that there are multiple cloud interactions occurring along the line of sight.

  9. Development of the Tropospheric Water Vapor and Cloud ICE (TWICE) Millimeter- and Sub-millimeter Wave Radiometer Instrument for 6U-Class Nanosatellites

    NASA Astrophysics Data System (ADS)

    Reising, S. C.; Kangaslahti, P.; Schlecht, E.; Bosch-Lluis, X.; Ogut, M.; Padmanabhan, S.; Cofield, R.; Chahat, N.; Brown, S. T.; Jiang, J. H.; Deal, W.; Zamora, A.; Leong, K.; Shih, S.; Mei, G.

    2015-12-01

    Measurements of upper-tropospheric water vapor and cloud ice at a variety of local times are critically needed to provide information not currently available from microwave sensors in sun-synchronous orbits. Such global measurements would enable increasingly accurate cloud and moisture simulations in global circulation models, improving both climate predictions and knowledge of their uncertainty. In addition, this capability would address the need for measurements of cloud ice particle size distribution and water content in both clean and polluted environments. Complementary measurements of aerosol pollution would allow investigation of its effects on cloud properties and climate. This is particularly important since the uncertainty in the aerosol effect on climate is at least four times as great as the uncertainty in greenhouse gas effects. To address this unmet need, a collaborative team among Colorado State University, Caltech Jet Propulsion Laboratory and Northrop Grumman Corporation is developing and fabricating the Tropospheric Water and Cloud ICE (TWICE) radiometer instrument. TWICE is designed with size, mass, power consumption and downlink data rate compatible with deployment aboard a 6U-Class nanosatellite. TWICE is advancing the state of the art of spaceborne millimeter- and submillimeter-wave radiometers by transitioning from Schottky mixer-based front ends to InP HEMT MMIC low-noise amplifier front ends, substantially reducing the radiometer's mass, volume and power consumption. New low-noise amplifiers and related front-end components are being designed and fabricated by JPL and Northrop Grumman based on InP HEMT MMIC technology up to 670 GHz. The TWICE instrument will provide 16 radiometer channels, including window frequencies near 240, 310 and 670 GHz to perform ice particle sizing and determine total ice water content, as well as four sounding channels each near 118 GHz for temperature sounding and near 183 GHz and 380 GHz for water vapor sounding during nearly all weather conditions, particularly useful in the upper troposphere in the presence of ice clouds.

  10. Rockies

    Atmospheric Science Data Center

    2014-05-15

    article title:  Front Range of the Rockies     View ... north and east. Denver is situated just east of the Front Range of the Rocky Mountains, located in the lower right of the images. The ... of erosion. Scattered cumulus clouds floating above the mountain peaks are visible in these images, and stand out most dramatically in ...

  11. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. V. Nonisothermal Collapse Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P., E-mail: aboss@carnegiescience.edu

    Recent meteoritical analyses support an initial abundance of the short-lived radioisotope (SLRI) {sup 60}Fe that may be high enough to require nucleosynthesis in a core-collapse supernova, followed by rapid incorporation into primitive meteoritical components, rather than a scenario where such isotopes were inherited from a well-mixed region of a giant molecular cloud polluted by a variety of supernovae remnants and massive star winds. This paper continues to explore the former scenario, by calculating three-dimensional, adaptive mesh refinement, hydrodynamical code (FLASH 2.5) models of the self-gravitational, dynamical collapse of a molecular cloud core that has been struck by a thin shockmore » front with a speed of 40 km s{sup −1}, leading to the injection of shock front matter into the collapsing cloud through the formation of Rayleigh–Taylor fingers at the shock–cloud intersection. These models extend the previous work into the nonisothermal collapse regime using a polytropic approximation to represent compressional heating in the optically thick protostar. The models show that the injection efficiencies of shock front materials are enhanced compared to previous models, which were not carried into the nonisothermal regime, and so did not reach such high densities. The new models, combined with the recent estimates of initial {sup 60}Fe abundances, imply that the supernova triggering and injection scenario remains a plausible explanation for the origin of the SLRIs involved in the formation of our solar system.« less

  12. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    NASA Astrophysics Data System (ADS)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  13. Noise propagation issues in Belle II pixel detector power cable

    NASA Astrophysics Data System (ADS)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  14. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    ERIC Educational Resources Information Center

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  15. Meteorological effects on laser propagation for power transmission

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1982-01-01

    An examination of possible laser operating parameters for power transmission to earth from solar power satellites is presented, with particular attention paid to assuring optimal delivery at midlatitudes. The degradation of beam efficiency due to molecular scattering, molecular absorption, aerosol scattering, and aerosol absorption during beam propagation through the atmosphere can be alleviated by judicious choice of wavelength windows, elevating the receptor sites, using a vertical propagation path, or by hole boring, i.e., vaporizing the aerosol particles in the beam path. Analyses are given for the beam propagation through fog, haze, clouds, and snow using various transitions. Only weapons-quality lasers are seen as being capable of boring through clouds and aerosols, employing a CW beam with superimposed pulses at high power densities. It is concluded that further short wavelength transmission experiments be performed to demonstrate transmission feasibility with the CW/pulsed mode of beam propagation.

  16. Precursory, Nucleation and Propagation of Ruptures Along Heterogeneously Loaded, Circular Experimental Faults

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Zu, X.; Jeffers, J.

    2017-12-01

    We explored the evolution of dynamic rupture along a circular experimental fault composed of clear acrylic blocks. The ring-shaped fault surface has inner and outer diameters of 7.72 and 10.16 cm, respectively. An array of ten rossette strain-gauges is attached to the outer rim of one block that provide the 2D strain tensor in a plane normal to the fault. The 30 components of the gauges are monitored at 10^6 samples/second. One 3D miniature accelerometer is attached to the fault block. The initial asperities of the fault surface generated a non-uniform strain (=stress) distribution that was recorded, and indicated local deviations of ±30% from the mean stress. The mean normal stress was up to 3.5 MPa, the remotely applied velocity was up to .002 m/s, and the slip velocities during rupture were not measured. The rupture characteristics, namely propagation velocity and rupture front strain-field, were determined from strain-gauge outputs. The analysis of tens of stick-slip events revealed the following preliminary results: (1) The ruptures consistently nucleated at sites of high local strains (=stresses) that were formed by the pre-shear, normal stress loading. (2) The pre-rupture nucleation process was recognized a by temporal (< 0.1 s), local (<20 mm) reduction of the shear strain. (3) Commonly, the initiation of nucleation was associated with micro acoustic emissions, whereas the initiation of rupture was associated with intense acoustic activity. (4) Nucleation could occur quasi-simultaneously at two, highly stressed sites. (5) From the nucleation site, the ruptures propagated in two directions along the ring-shaped fault, and the collision between the two fronts led to rupture `shut-off'. (5) The strain-field of rupture fronts was well-recognized for ruptures propagating faster than 50 m/s, and the fastest fronts propagated at 1000 m/s. (7) It appears that the rupture front strain-field close to the nucleation site differs from the front strain-field far from nucleation site. (8) Post-shear examination of the fault surfaces revealed evidence of brittle wear of the acrylic including gouge formation, ploughing, and powder smearing. (9) Work in progress includes attempts to achieve faster dynamic ruptures, and the utilization of the existing monitoring system to rupture granite faults.

  17. Spring Regimes

    DTIC Science & Technology

    2003-04-15

    of Albuquerque, New Mexico. . Since the system has “bottomed out” one could project a straight line northeastward (with little eastward movement of...in determining if forecast model guidance is “on track.” 14. 14. Subject Terms: CLOUDS, COMMA CLOUD, DRY LINE , GULF STRATUS, HEIGHT FALL CENTERS...4-40 Warm Fronts, Squall Lines and Mesocyclones

  18. Japan's research on particle clouds and sprays

    NASA Technical Reports Server (NTRS)

    Sato, Jun'ichi

    1995-01-01

    Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.

  19. View of a dust storm taken from Atlantis during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-718-056 (11 September 2000) --- One of the STS-106 crew members on board the Space Shuttle Atlantis used a handheld 70mm camera to photograph this image of Afghanistan dust/front winds in the upper Amu Darya Valley. The strong winds along the northern border of Afghanistan lofted thick, light brown dust into the air (top half of the view). In this desert environment land surfaces are not protected by vegetation from the effect of blowing wind. The central Asian deserts experience the greatest number of dust storm days on the planet each year. The sharp dust front shows that the dust has not traveled far, but has been raised from the surfaces in the view. Dust is entrained in the atmosphere by horizontal winds but also by vertical movements. Here the vertical component is indicated by the fact that the higher points along the dust front are each topped by a small cumulus cloud, which appear as a line of small white puffballs. Cumulus clouds indicate upward motion and here the air which has entrained the dust is lifting the air above to the level of condensation at each point where a small cloud has formed.

  20. Geomorphological activity at a rock glacier front detected with a 3D density-based clustering algorithm

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2017-02-01

    Acquisition of high density point clouds using terrestrial laser scanners (TLSs) has become commonplace in geomorphic science. The derived point clouds are often interpolated onto regular grids and the grids compared to detect change (i.e. erosion and deposition/advancement movements). This procedure is necessary for some applications (e.g. digital terrain analysis), but it inevitably leads to a certain loss of potentially valuable information contained within the point clouds. In the present study, an alternative methodology for geomorphological analysis and feature detection from point clouds is proposed. It rests on the use of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), applied to TLS data for a rock glacier front slope in the Swiss Alps. The proposed methods allowed the detection and isolation of movements directly from point clouds which yield to accuracies in the following computation of volumes that depend only on the actual registered distance between points. We demonstrated that these values are more conservative than volumes computed with the traditional DEM comparison. The results are illustrated for the summer of 2015, a season of enhanced geomorphic activity associated with exceptionally high temperatures.

  1. Wave-clouds coupling in the Jovian troposphere.

    NASA Astrophysics Data System (ADS)

    Gaulme, P.; Mosser, B.

    2003-05-01

    First studies about Jovian oscillations are due to Vorontsov et al. (1976). Attempts to observe them started in the late 1980's (Deming et al. 1989, Mosser et al. 1991). The micro-satellite Jovis and ground-based observations campaign such as SŸMPA (e.g Baglin et al. 1999) account for an accurate analysis of the cloud response to an acoustic wave. Therefore, the propagation of sound or gravity waves in the Jovian troposphere is revisited, in order to estimate their effect on the highest clouds layer. From basic thermodynamics, the troposphere should be stratified in three major ice clouds layers: water-ammonia, ammonium-hydrosulfide and ammonia ice for the highest. The presence of ammonia ice clouds has been inferred from Kuiper in 1952, and was predicted to dominate the Jovian skies. However, they had been observed spectroscopically over less than one percent of the surface. This absence of spectral proof could come from a coating of ammonia particles from other substances (Baines et al. 2002). In this work, we study the behaviour of a cloud submitted to a periodic pressure perturbation. We suppose a vertical wave propagating in a plane parallel atmosphere including an ammonia ice cloud layer. We determine the relation between the Lagrangian pressure perturbation and the variation of the fraction of solid ammonia. The linearized equations governing the evolution of the Eulerian pressure and density perturbed terms allows us to study how the propagation is altered by the clouds and how the clouds move with the wave. Finally, because a pressure perturbation modifies the fraction of solid ammonia, we estimate how much an ammonia crystal should grow or decrease and how the clouds albedo could change with the wave. Baglin et al. 1999. BAAS 31, 813. Baines et al. 2002. Icarus 159, 74. Deming et al. 1989. Icarus 21, 943. Kuiper 1952.The atmospheres of the Earth and Planets pp. 306-405. Univ. of Chicago Press, Chicago. Mosser et al. 1991. A&A 251, 356. Vorontsov et al. 1976. Icarus 27, 109.

  2. pH Wave-Front Propagation in the Urea-Urease Reaction

    PubMed Central

    Wrobel, Magdalena M.; Bánsági, Tamás; Scott, Stephen K.; Taylor, Annette F.; Bounds, Chris O.; Carranza, Arturo; Pojman, John A.

    2012-01-01

    The urease-catalyzed hydrolysis of urea displays feedback that results in a switch from acid (pH ∼3) to base (pH ∼9) after a controllable period of time (from 10 to >5000 s). Here we show that the spatially distributed reaction can support pH wave fronts propagating with a speed of the order of 0.1−1 mm min−1. The experimental results were reproduced qualitatively in reaction-diffusion simulations including a Michaelis-Menten expression for the urease reaction with a bell-shaped rate-pH dependence. However, this model fails to predict that at lower enzyme concentrations, the unstirred reaction does not always support fronts when the well-stirred reaction still rapidly switches to high pH. PMID:22947878

  3. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.

  4. Convective instabilities in traveling fronts of addition polymerization

    NASA Technical Reports Server (NTRS)

    Pojman, John A.; Jones, Chris E.; Khan, Akhtar M.

    1993-01-01

    An autocatalytic reaction in an unstirred vessel can support a constant velocity wavefront resulting from the coupling of diffusion to the chemical reaction. A flare front is a common example in which heat is the autocatalytic species that diffuses into unreacted regions stimulating a reaction that produces more heat. Traveling fronts were studied in synthetic polymerization reactions under high pressure by workers in the former USSR. More recently, propagating fronts of methacrylic acid polymerization were studied under ambient conditions, both with video techniques and by NMR.

  5. Radiative thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  6. Radiative thermal conduction fronts

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-07-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  7. Front propagation and effect of memory in stochastic desertification models with an absorbing state

    NASA Astrophysics Data System (ADS)

    Herman, Dor; Shnerb, Nadav M.

    2017-08-01

    Desertification in dryland ecosystems is considered to be a major environmental threat that may lead to devastating consequences. The concern increases when the system admits two alternative steady states and the transition is abrupt and irreversible (catastrophic shift). However, recent studies show that the inherent stochasticity of the birth-death process, when superimposed on the presence of an absorbing state, may lead to a continuous (second order) transition even if the deterministic dynamics supports a catastrophic transition. Following these works we present here a numerical study of a one-dimensional stochastic desertification model, where the deterministic predictions are confronted with the observed dynamics. Our results suggest that a stochastic spatial system allows for a propagating front only when its active phase invades the inactive (desert) one. In the extinction phase one observes transient front propagation followed by a global collapse. In the presence of a seed bank the vegetation state is shown to be more robust against demographic stochasticity, but the transition in that case still belongs to the directed percolation equivalence class.

  8. Bistable front dynamics in a contractile medium: travelling wave and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    NASA Astrophysics Data System (ADS)

    Neufeld, Zoltan

    Recent studies have demonstrated that mechanical forces can lead to novel mechanisms of pattern formation such as clustering and oscillations in contractile systems. We investigate how contractile forces in mechanically active media can affect bistable front propagation. We found that contraction regulates the front speed or can fully suppress its propagation in space to create a static localized zone. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the actomyosin cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. The dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behaviour of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. In collaboration with: Zoltan Neufeld, Guillermo A. Gomez, and Alpha S. Yap, University of Queensland, Brisbane, Australia

  9. First-principles simulations of shock front propagation in liquid deuterium

    NASA Astrophysics Data System (ADS)

    Gygi, Francois; Galli, Giulia

    2001-03-01

    We present large-scale first-principles molecular dynamics simulations of the formation and propagation of a shock front in liquid deuterium. Molecular deuterium was subjected to supersonic impacts at velocities ranging from 10 to 30 km/s. We used Density Functional Theory in the local density approximation, and simulation cells containing 1320 deuterium atoms. The formation of a shock front was observed and its velocity was measured and compared with the results of laser-driven shock experiments [1]. The pressure and density in the compressed fluid were also computed directly from statistical averages in appropriate regions of the simulation cell, and compared with previous first-principles calculations performed at equilibrium [2]. Details of the electronic structure at the shock front, and their influence on the properties of the compressed fluid will be discussed. [1] J.W.Collins et al. Science 281, 1178 (1998). [2] G.Galli, R.Q.Hood, A.U.Hazi and F.Gygi, Phys.Rev. B61, 909 (2000).

  10. Remote sensing data from CLARET: A prototype CART data set

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Uttal, Taneil; Clark, Kurt A.; Cupp, Richard E.; Dutton, Ellsworth G.; Fedor, Leonard, S.; Intrieri, Janet M.; Matrosov, Sergey Y.; Snider, Jack B.; Willis, Ron J.

    1992-01-01

    The data set containing radiation, meteorological , and cloud sensor observations is documented. It was prepared for use by the Department of Energy's Atmospheric Radiation Measurement (ARM) Program and other interested scientists. These data are a precursor of the types of data that ARM Cloud And Radiation Testbed (CART) sites will provide. The data are from the Cloud Lidar And Radar Exploratory Test (CLARET) conducted by the Wave Propagation Laboratory during autumn 1989 in the Denver-Boulder area of Colorado primarily for the purpose of developing new cloud-sensing techniques on cirrus. After becoming aware of the experiment, ARM scientists requested archival of subsets of the data to assist in the developing ARM program. Five CLARET cases were selected: two with cirrus, one with stratus, one with mixed-phase clouds, and one with clear skies. Satellite data from the stratus case and one cirrus case were analyzed for statistics on cloud cover and top height. The main body of the selected data are available on diskette from the Wave Propagation Laboratory or Los Alamos National Laboratory.

  11. Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection.

    PubMed

    Rongy, L; Trevelyan, P M J; De Wit, A

    2008-08-22

    The dynamics of A+B-->C fronts in horizontal solution layers can be influenced by buoyancy-driven convection as soon as the densities of A, B, and C are not all identical. Such convective motions can lead to front propagation even in the case of equal diffusion coefficients and initial concentration of reactants for which reaction-diffusion (RD) scalings predict a nonmoving front. We show theoretically that the dynamics in the presence of convection can in that case be predicted solely on the basis of the knowledge of the one-dimensional RD density profile across the front.

  12. Fronts in extended systems of bistable maps coupled via convolutions

    NASA Astrophysics Data System (ADS)

    Coutinho, Ricardo; Fernandez, Bastien

    2004-01-01

    An analysis of front dynamics in discrete time and spatially extended systems with general bistable nonlinearity is presented. The spatial coupling is given by the convolution with distribution functions. It allows us to treat in a unified way discrete, continuous or partly discrete and partly continuous diffusive interactions. We prove the existence of fronts and the uniqueness of their velocity. We also prove that the front velocity depends continuously on the parameters of the system. Finally, we show that every initial configuration that is an interface between the stable phases propagates asymptotically with the front velocity.

  13. Kinematics of the Horsehead Nebula and IC 434 Ionization Front in CO and C+

    NASA Astrophysics Data System (ADS)

    Bally, John; Chambers, Ed; Guzman, Viviana; Keto, Eric; Mookerjea, Bhaswati; Sandell, Goran; Stanke, Thomas; Zinnecker, Hans

    2018-02-01

    Stratospheric Observatory for Infrared Astronomy [C II] 157 μm, APEX 860 μm J = 3‑2 CO, and archival James Clerk Maxwell Telescope J = 2‑1 CO and 13CO observations of the Horsehead Nebula are presented. The photon-dominated region (PDR) between the Orion B molecular cloud and the adjacent IC 434 H II region is used to study the radial velocity structure of the region and the feedback impacts of UV radiation. Multiple west-facing cloud edges are superimposed along the line of sight with radial velocities that differ by a few kilometers per second. The Horsehead lies in the foreground blueshifted portion of the Orion B molecular cloud and is predominantly illuminated from the rear. The mean H2 density of the Horsehead, ∼ 6× {10}3 {{cm}}-3, results in a spatially thin PDR where the photoablation flow has compressed the western cloud edge to an H2 density of (2{--}6)× {10}4 {{cm}}-3. The associated [C II] 157 μm layer has a width L < 0.05 pc. The background parts of the Orion B cloud in the imaged field consist of a clumpy medium surrounded by molecular gas with H2 densities lower by one to two orders of magnitude. Along the straight part of the IC 434 ionization front, the PDR layer probed by [C II] 157 μm emission is much thicker with L ∼ 0.5 pc. A possible model for the formation and evolution of this edge-on ionization front and PDR is presented. The [C II] data were independently analyzed and published by Pabst et al.

  14. Assessing the Suitability of the ClOud Reflection Algorithm (CORA) in Modelling the Evolution of an Artificial Plasma Cloud in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.

    2016-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiran; Liu, Siming; Yuan, Qiang, E-mail: liusm@pmo.ac.cn

    Recent precise measurements of cosmic-ray (CR) spectra show that the energy distribution of protons is softer than those of heavier nuclei, and there are spectral hardenings for all nuclear compositions above ∼200 GV. Models proposed for these anomalies generally assume steady-state solutions of the particle acceleration process. We show that if the diffusion coefficient has a weak dependence on the particle rigidity near shock fronts of supernova remnants (SNRs), time-dependent solutions of the linear diffusive shock acceleration at two stages of SNR evolution can naturally account for these anomalies. The high-energy component of CRs is dominated by acceleration in themore » free expansion and adiabatic phases with enriched heavy elements and a high shock speed. The low-energy component may be attributed to acceleration by slow shocks propagating in dense molecular clouds with low metallicity in the radiative phase. Instead of a single power-law distribution, the spectra of time-dependent solutions soften gradually with the increase of energy, which may be responsible for the “knee” of CRs.« less

  16. Poster 17: Methane storms as a driver of Titan's dune orientation.

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clement; Lebonnois, Sebastien; Rodriguez, Sebastien; Courech Du Pont, Sylvain; Lucas, Antoine

    2016-06-01

    Titan's equatorial regions are covered by eastward oriented linear dunes [1,2]. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth. We propose that Titan's dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation [3]. Using meso-scale simulations of convective methane clouds [4] with a GCM wind profile featuring the superrotation [5,6], we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind calculations and analogies with terrestrial dune fields [7], we show that Titan's dune propagation occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes as the divergence from the equator or the dune size and spacing. It also implies an equatorial origin of Titan's dune sand and a possible occurence of dust storms.

  17. Analytical Solution for Transport with Bimolecular Reactions in Fracture-Matrix Systems with Application to In-Situ Chemical Oxidation

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Arshadi, M.

    2016-12-01

    In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.

  18. Vertical cultural transmission effects on demic front propagation: Theory and application to the Neolithic transition in Europe

    NASA Astrophysics Data System (ADS)

    Fort, Joaquim

    2011-05-01

    It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined.

  19. Cavitation clouds created by shock scattering from bubbles during histotripsy

    PubMed Central

    Maxwell, Adam D.; Wang, Tzu-Yin; Cain, Charles A.; Fowlkes, J. Brian; Sapozhnikov, Oleg A.; Bailey, Michael R.; Xu, Zhen

    2011-01-01

    Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5−20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis. PMID:21973343

  20. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    NASA Technical Reports Server (NTRS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  1. An A-Train Climatology of Extratropical Cyclone Clouds

    NASA Technical Reports Server (NTRS)

    Posselt, Derek J.; van den Heever, Susan C.; Booth, James F.; Del Genio, Anthony D.; Kahn, Brian; Bauer, Mike

    2016-01-01

    Extratropical cyclones (ETCs) are the main purveyors of precipitation in the mid-latitudes, especially in winter, and have a significant radiative impact through the clouds they generate. However, general circulation models (GCMs) have trouble representing precipitation and clouds in ETCs, and this might partly explain why current GCMs disagree on to the evolution of these systems in a warming climate. Collectively, the A-train observations of MODIS, CloudSat, CALIPSO, AIRS and AMSR-E have given us a unique perspective on ETCs: over the past 10 years these observations have allowed us to construct a climatology of clouds and precipitation associated with these storms. This has proved very useful for model evaluation as well in studies aimed at improving understanding of moist processes in these dynamically active conditions. Using the A-train observational suite and an objective cyclone and front identification algorithm we have constructed cyclone centric datasets that consist of an observation-based characterization of clouds and precipitation in ETCs and their sensitivity to large scale environments. In this presentation, we will summarize the advances in our knowledge of the climatological properties of cloud and precipitation in ETCs acquired with this unique dataset. In particular, we will present what we have learned about southern ocean ETCs, for which the A-train observations have filled a gap in this data sparse region. In addition, CloudSat and CALIPSO have for the first time provided information on the vertical distribution of clouds in ETCs and across warm and cold fronts. We will also discuss how these observations have helped identify key areas for improvement in moist processes in recent GCMs. Recently, we have begun to explore the interaction between aerosol and cloud cover in ETCs using MODIS, CloudSat and CALIPSO. We will show how aerosols are climatologically distributed within northern hemisphere ETCs, and how this relates to cloud cover.

  2. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.

    PubMed

    Goicoechea, Javier R; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo

    2016-09-08

    The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H 2 vibrational emission (delineating the H/H 2 transition) and the edge of the observed CO and HCO + emission. This implies that the H/H 2 and C + /C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

  3. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar

    NASA Astrophysics Data System (ADS)

    Goicoechea, Javier R.; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo

    2016-09-01

    The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H2 vibrational emission (delineating the H/H2 transition) and the edge of the observed CO and HCO+ emission. This implies that the H/H2 and C+/C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

  4. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile gettingmore » significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.« less

  5. Mathematical model of a smoldering log.

    Treesearch

    Fernando de Souza Costa; David Sandberg

    2004-01-01

    A mathematical model is developed describing the natural smoldering of logs. It is considered the steady one dimensional propagation of infinitesimally thin fronts of drying, pyrolysis, and char oxidation in a horizontal semi-infinite log. Expressions for the burn rates, distribution profiles of temperature, and positions of the drying, pyrolysis, and smoldering fronts...

  6. Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging

    NASA Astrophysics Data System (ADS)

    McLaughlin, Joyce; Renzi, Daniel

    2006-04-01

    Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low-frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. Here we develop a fast level set based algorithm for finding the shear wave speed from the interior positions of the propagating front. We compare the performance of level curve methods developed here and our previously developed (McLaughlin J and Renzi D 2006 Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts Inverse Problems 22 681-706) distance methods. We give reconstruction examples from synthetic data and from data obtained from a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).

  7. Noise propagation issues in Belle II pixel detector power cable

    DOE PAGES

    Iglesias, M.; Arteche, F.; Echeverria, I.; ...

    2018-04-26

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  8. Noise propagation issues in Belle II pixel detector power cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, M.; Arteche, F.; Echeverria, I.

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  9. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  10. π-kink propagation in the damped Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Alfaro-Bittner, K.; Clerc, M. G.; García-Ñustes, M. A.; Rojas, R. G.

    2017-08-01

    Coupled dissipative nonlinear oscillators exhibit complex spatiotemporal dynamics. Frenkel-Kontorova is a prototype model of coupled nonlinear oscillators, which exhibits coexistence between stable and unstable state. This model accounts for several physical systems such as the movement of atoms in condensed matter and magnetic chains, dynamics of coupled pendulums, and phase dynamics between superconductors. Here, we investigate kinks propagation into an unstable state in the Frenkel-Kontorova model with dissipation. We show that unlike point-like particles π-kinks spread in a pulsating manner. Using numerical simulations, we have characterized the shape of the π-kink oscillation. Different parts of the front propagate with the same mean speed, oscillating with the same frequency but different amplitude. The asymptotic behavior of this propagation allows us to determine the minimum mean speed of fronts analytically as a function of the coupling constant. A generalization of the Peierls-Nabarro potential is introduced to obtain an effective continuous description of the system. Numerical simulations show quite fair agreement between the Frenkel-Kontorova model and the proposed continuous description.

  11. Barriers to front propagation in laminar, three-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.

    2018-03-01

    We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.

  12. Cloud statistics over the Indonesian Maritime Continent during the first and second CPEA campaigns

    NASA Astrophysics Data System (ADS)

    Marzuki; Vonnisa, Mutya; Rahayu, Aulya; Hashiguchi, Hiroyuki

    2017-06-01

    Improvement of precipitation prediction requires an understanding of the organization mechanism, such as the initiation and evolution of organized convective systems. This paper is a follow-up of a previous study on cloud propagation over the Indonesian Maritime Continent (IMC). Here, the infrared blackbody brightness temperature data is analyzed. A comprehensive cloud statistics model, including span, speed, duration, all possible directions, and size was estimated by applying the modified tracking reflectivity echoes by correlation (TREC) method to time-latitude-longitude space. Comparisons were made to cloud statistics during the first and second campaigns of Coupling Processes in the Equatorial Atmosphere, hereinafter called CPEA-I and CPEA-II. Although the two campaigns were conducted in different monsoon seasons, the cloud propagation directions during each campaign were similar. The cloud systems moved in most directions, except north and east, and preferred southwestward, westward and northwestward movements. Thus, westward-moving clouds were more dominant than eastward-moving clouds, in agreement with previous studies. This feature is consistent with the prevailing easterly wind in the middle and upper troposphere despite the difference in low-level wind during each campaign. The two campaign periods were different due to the phase of the Madden-Julian Oscillation (MJO). CPEA-I took place over the active MJO phase, with larger-sized clouds than CPEA-II. Thus, the MJO had an enormous impact on cloud size, but such an impact was not significantly observed in the speed, lifetime, span and direction of propagation. In the two campaigns, clouds moved with a speed of 3-30 m s-1 and in duration from a few hours to longer than one day. Clouds with long spans and high speeds were generally observed during the strong vertical shear of horizontal winds. In contrast, clouds with short spans and low speeds were found in the more varied environment of the IMC, but were dominant over land, which may have been associated with the diurnal heating cycle. Finally, the present results showed more complex behavior than a previous study in the Bay of Bengal, indicating precipitation mechanisms over the IMC including interactions between large-scale atmospheric phenomena (e.g., monsoon and MJO) with the diurnal precipitation cycles.

  13. Automated detection of secondary slip fronts in Cascadia

    NASA Astrophysics Data System (ADS)

    Bletery, Q.; Thomas, A.; Krogstad, R. D.; Hawthorne, J. C.; Skarbek, R. M.; Rempel, A. W.; Bostock, M. G.

    2016-12-01

    Slow slip events (SSEs) in subduction zones propagate along the plate interface at velocities on the order of 5 km/day and are largely confined to the region known as the transition zone, located down-dip of the seismogenically locked zone. As SSEs propagate, small on-fault asperities capable of generating seismic radiation fail in earthquake-like events known as low-frequency earthquakes. Recently, low-frequency earthquakes have been used to image smaller scale secondary slip fronts (SSFs) that occur within the actively slipping region of the fault after the main front associated with the SSE has passed. SSFs appear to occur over several different length and timescales and propagate both along dip and along strike. To date, most studies that have documented SSFs have relied on subjective methods, such as visual selection, to identify them. While such approaches have met with considerable success, it is likely that many small-scale fronts remain unidentifiable by visual inspection alone. We implement an algorithm to automatically detect SSFs from 2009 to 2015 along the Cascadia subduction zone. We also apply our algorithm to three large SSEs that were detected by campaign seismic instrumentation in the Vancouver Island area between 2003 and 2005. We find numerous SSFs at different time scales (from 30 min to 32 h duration). We provide a catalog of 1076 SSFs in Cascadia, including time, location, duration, area, propagation velocity, moment, stress drop, slip, slip velocity, and fracture energy for each of the detected SSFs. Analysis of their basic features indicate a wide spectra of stress drops, slip velocities, and fracture energy, as well as an intriguing relationship between SSF direction and duration that could potentially help discriminate between the different physical models proposed to explain slow slip phenomena.

  14. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Speed of pulled fronts with a cutoff

    NASA Astrophysics Data System (ADS)

    Benguria, R. D.; Depassier, M. C.

    2007-05-01

    We study the effect of a small cutoff γ on the velocity of a pulled front in one dimension by means of a variational principle. We obtain a lower bound on the speed dependent on the cutoff, for which the two leading order terms correspond to the Brunet-Derrida expression. To do so we cast a known variational principle for the speed of propagation of fronts in different variables which makes it more suitable for applications.

  16. Particle cloud mixing in microgravity

    NASA Technical Reports Server (NTRS)

    Ross, H.; Facca, L.; Tangirala, V.; Berlad, A. L.

    1989-01-01

    Quasi-steady flame propagation through clouds of combustible particles requires quasi-steady transport properties and quasi-steady particle number density. Microgravity conditions may be employed to help achieve the conditions of quiescent, uniform clouds needed for such combustion studies. Joint experimental and theoretical NASA-UCSD studies were concerned with the use of acoustic, electrostatic, and other methods of dispersion of fuel particulates. Results of these studies are presented for particle clouds in long cylindrical tubes.

  17. Numerical Models of Stopping Ruptures on a Bimaterial Interface

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Ampuero, J.

    2003-12-01

    Using a cross-correlation earthquake relocation technique, Rubin and Gillard (2000) and Rubin (2002) found that the nearest aftershocks of microearthquakes on the San Andreas fault were much more likely (by a ratio of nearly 3:1) to occur to the NW of the mainshock than to the SE. They attributed this asymmetry to the material contrast across the fault and the resulting dynamical reduction in normal stress near the rupture front propagating to the SE (the front moving in the direction of slip of the more compliant medium). Specifically, it was hypothesized that regions of the fault far enough from failure to resist this extra dynamical "kick" would be that much farther from failure once those dynamical stresses decayed. However, analytical (steady-state) models of propagating slip on a bimaterial interface (Weertman, 1980) show that, as with the static stress field, normal stress changes occur only behind the rupture front. The proposed explanation works most simply if the region ahead of the SE rupture front experiences a transient stress favorable for slip. In principal this stress transient could be associated with either rupture growth or arrest. To investigate this further, we ran 2-D numerical models of slip on a bimaterial interface with slip-weakening friction, using the code of Cochard and Rice (2000). The ruptures spontaneously accelerate to the generalized Rayleigh wave speed of the medium, when such exists. During this growth phase, large tensile stresses are indeed restricted to regions of large slip velocity behind the SE-propagating rupture front. Ahead of the rupture front the normal stresses are smaller and compressive. If the rupture front is stopped abruptly, the short-wavelength tensile stress pulse continues to propagate at roughly the same velocity. The above comments also apply in an anti-symmetric sense to the NW rupture front, although there the slip speeds and normal stress changes are lower. If the rupture is stopped by a more gradual reduction in the loading stress, the moving tensile pulse can spawn a decaying slip pulse at the SE front but not the NW. If this slip pulse marks the furthest extent of slip, the resulting static stress field is quite asymmetric even for a symmetric initial stress, lying on the failure envelope at the NW end of the rupture but well below it at the SE end. These results are at least permissive of the explanation proposed by Rubin and Gillard. For weaker slip pulses (due to any of a number of factors contributing to smaller maximum slip speeds), the furthest extent of slip near the SE rupture front can be driven by the stopping phase arriving from the NW end of the crack. Under such conditions the final stress field is more symmetric. We will be running models using heterogeneous stress fields to explore these questions further, and hope to use rate-and-state friction to investigate the observed temporal decay of the aftershock asymmetry.

  18. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    NASA Astrophysics Data System (ADS)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  19. Numerical simulation of cloud and precipitation structure during GALE IOP-2

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Perkey, D. J.; Seablom, M. S.

    1988-01-01

    A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.

  20. AIRS Storm Front Approaching California (animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the AIRS Storm Front Approaching California Animation

    NASA's Atmospheric Infrared Sounder instrument is able to peel back cloud cover to reveal 3-D structure of a storm's water vapor content, information that can be used to improve weather forecast models.

    In this animation the initial visible cloud image series shows a front moving toward the West Coast of the United States as a low pressure area moves into the Pacific Northwest. The 'Pineapple Express,' a stream of moisture that originates in the tropics South of Hawaii and usually crosses Mexico to enter New Mexico and Texas, has shifted Westward and is also visible moving into Baja California. The area preceding the front appears to be relatively clear in the visible images.

    As the view shifts from the visible to the infrared wavelengths which highlight water vapor, we see both cloud areas contain heavy burdens of moisture. The area which appears clear in the visible images is seen to contain water vapor near the coastline as well. The viewpoint then rotates so that we can see the vertical cross section of the fronts. The variability of the vertical extent of water vapor and the amount is now clearly visible. The storm moving in from the Gulf of Alaska is more heavily laden with water vapor than that moving in from the Southwest. The moisture is concentrated in the lower atmosphere. The colors indicate the amount of water vapor present. Blue areas denote low water vapor content; green areas are medium water vapor content; red areas signify high water vapor content. The vertical grid for the final frame ranges from 250 millibar pressure at the top to 1000 millibar pressure at the bottom. The top is about 10 km (6.2 miles) above the surface of the Earth.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  1. Light-front field theory in the description of hadrons

    NASA Astrophysics Data System (ADS)

    Ji, Chueng-Ryong

    2017-03-01

    We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  2. The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China

    NASA Astrophysics Data System (ADS)

    Xiao, Derong; Zhang, Liquan; Zhu, Zhenchang

    2010-06-01

    The range expansion patterns of Spartina alterniflora and the roles which sexual reproduction and asexual propagation play in range expansion were investigated at the Chongming Dongtan nature reserve in the Yangtze Estuary, China. Two range expansion patterns of S. alterniflora at its advancing fronts could be found (1) S. alterniflora-mudflat front (S-M) and (2) S. alterniflora- Scirpus mariqueter-mudflat front (S-S-M). One feature revealed by this study was that a flush of seedling recruitment and establishment in spring was a crucial way for S. alterniflora to colonize new habitats and achieve a fast rate of range expansion. The mean number of seedlings recruited at the S-M front was much higher than that at the S-S-M front. Once established, the survivorship of seedlings was high, both at the S-M and S-S-M fronts. The established seedlings formed new tussocks quickly by vegetative tillering and growth of rhizomes and these finally merged into dense meadows. The mean distance of range expansion of S. alterniflora, after one growing season at the S-M front, was 25.4 ± 3.1 m yr -1 and 2.7 ± 0.5 m yr -1 at the S-S-M front. Sexual reproduction by seedlings and asexual propagation by tillering and growth of rhizomes were the two main means by which S. alterniflora could maintain a fast rate of range expansion on the salt marshes of the Yangtze Estuary. The colonization behaviors of S. alterniflora on advancing fronts differed as a reaction to various external and internal factors. The impact of abiotic and biotic factors governing the range expansion of S. alterniflora and its implications for the spatial structure of tidal wetlands are discussed.

  3. Vertical cultural transmission effects on demic front propagation: theory and application to the Neolithic transition in Europe.

    PubMed

    Fort, Joaquim

    2011-05-01

    It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined. © 2011 American Physical Society

  4. Regularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results.

    PubMed

    Meulenbroek, Bernard; Ebert, Ute; Schäfer, Lothar

    2005-11-04

    The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.

  5. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  6. Analyses of electron runaway in front of the negative streamer channel

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.

    2017-08-01

    X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.

  7. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  8. Analytical framework for modeling of long-range transport of fungal plant epidemics

    NASA Astrophysics Data System (ADS)

    Kogan, Oleg; O'Keeffe, Kevin; Schneider, David; Myers, Christopher; Analytical FrameworksInfectious Disease Dynamics Team

    2015-03-01

    A new framework for the study of long-range transport of fungal plant epidemics is proposed. The null nonlinear model includes advective transport through the free atmosphere, spore production on the ground, and transfer of spores between the ground and the advective atmospheric layer. The competition between the growth wave on the ground and the effect of the wind is most strongly reflected in upwind fronts, which can propagate into the wind for exponential initial conditions. If the rate of spore transfer into the advective layer is below critical, this happens for initital conditions with arbitrary steepness. Upwind fronts from localized initial conditions will propagate in the direction of the wind above this critical parameter, and will not propagate below it. On the other hand, the speed of the downwind front does not have a strong dependence on the rate of spore transfer between the advective layer and the ground. Thus, even vanishingly small, but finite transfer rates result in a substantial epidemic wave in the direction of the wind. We also consider the effect of an additional, random-walk like mechanism of transport through the near-ground atmospheric boundary layer, and attempt to understand which route dominates the transport over long distances.

  9. PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, R.; Fulara, A.; Chen, P. F.

    We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less

  10. RADIAL COMBUSTION DYNAMICS IN Fe{sub 2}O{sub 3}/Al THERMITE: VARIABILITY OF THE FLAME PROPAGATION PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duraes, L.; Portugal, A.; Plaksin, I.

    2009-12-28

    In this work, the radial combustion in thin circular samples of stoichiometric and over aluminized Fe{sub 2}O{sub 3}/Al mixtures is studied. Two confinement materials are tested: stainless steel and PVC. The combustion front profiles are registered by digital video-crono-photography. The radial geometry allows an easy detection of sample heterogeneities, via the circularity distortions of the combustion front profiles. The influence of the Al content in the mixtures and the type of confinement on the combustion propagation dynamics is analyzed. Additionally, an asymmetry parameter of the combustion front profiles is defined and statistically treated via ANOVA. Although the type of confinementmore » contributes more than the mixture composition to the variability of the asymmetry parameter, they both have a weak influence. The main source of variability is the intrinsic variations of the samples, which are due to their heterogeneous character.« less

  11. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  12. Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Elder, Robert M.; Sliozberg, Yelena R.; Sirk, Timothy W.; Andzelm, Jan W.; Robbins, Mark O.

    2018-03-01

    Molecular dynamics simulations are used to analyze shock propagation in amorphous and crystalline polyethylene. Results for the shock velocity Us are compared to predictions from Pastine's equation of state and hydrostatic theory. The results agree with Pastine at high impact velocities. At low velocities the yield stress becomes important, increasing the shock velocity and leading to anisotropy in the crystalline response. Detailed analysis of changes in atomic order reveals the origin of the anisotropic response. For shock along the polymer backbone, an elastic front is followed by a plastic front where chains buckle with a characteristic wavelength. Shock perpendicular to the chain backbone can produce plastic deformation or transitions to different orthorhombic or monoclinic structures, depending on the impact speed and direction. Tensile loading does not produce stable shocks: Amorphous systems craze and fracture while for crystals the front broadens linearly with time.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya, E-mail: takahashi@kwasan.kyoto-u.ac.jp

    Flare-associated coronal shock waves sometimes interact with solar prominences, leading to large-amplitude prominence oscillations (LAPOs). Such prominence activation gives us a unique opportunity to track the time evolution of shock–cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock–cloud interaction has been extensively studied, coronal shock–solar prominence interaction is rarely studied in the context of shock–cloud interaction. Associated with the X5.4 class solar flare that occurred on 2012 March 7, a globally propagated coronal shock wave interacted with a polar prominence, leading to LAPO. In this paper, we studied bulk acceleration and excitation of the internal flow of themore » shocked prominence using three-dimensional magnetohydrodynamic (MHD) simulations. We studied eight MHD simulation runs, each with different mass density structure of the prominence, and one hydrodynamic simulation run, and we compared the result. In order to compare the observed motion of activated prominence with the corresponding simulation, we also studied prominence activation by injection of a triangular-shaped coronal shock. We found that the prominence is first accelerated mainly by magnetic tension force as well as direct transmission of the shock, and later decelerated mainly by magnetic tension force. The internal flow, on the other hand, is excited during the shock front sweeps through the prominence and damps almost exponentially. We construct a phenomenological model of bulk momentum transfer from the shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence activation model, we diagnosed physical parameters of the coronal shock wave. The estimated energy of the coronal shock is several percent of the total energy released during the X5.4 flare.« less

  14. High-Power, High-Intensity Laser Propagation and Interactions

    DTIC Science & Technology

    2014-03-10

    wave Brillouin mixing [89,90]. transmitted beam is phase conjugated target initial wave front nn  1 turbulent air Figure 14. Using phase and...discussed in connection with both high-power and high-intensity lasers is propagation in a turbulent atmosphere . Laser propagation in atmospheric ... turbulence can results in beam centroid wander, spreading and intensity scintillation. A phase conjugation technique to mitigate the effects of atmospheric

  15. Propagation of Avalanches in Mn12-Acetate: Magnetic Deflagration

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Sarachik, M. P.; Chudnovsky, E. M.; McHugh, S.; Gonzalez-Rubio, R.; Avraham, Nurit; Myasoedov, Y.; Zeldov, E.; Shtrikman, H.; Chakov, N. E.; Christou, G.

    2005-09-01

    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.

  16. On the formation and expansion of H II regions

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Tenorio-Tagle, Guillermo; Bodenheimer, Peter

    1990-01-01

    The evolution of H II regions in spherical clouds with small, constant-density cores and power-law density distributions r exp -w outside the core is described analytically. It is found that there is a critical exponent above which the cloud becomes completely ionized. Its value in the formation phase depends on the initial conditions, but it has a well-defined value w(crit) = 3/2 during the expansion phase. For w less than w(crit), the radius of the H II region grows at a given rate, while neutral mass accumulates in the interphase between the ionization and shock fronts. For w = w(crit), the fronts move together without mass accumulation. Cases with w greater than w(crit) lead to the champagne phase: once the cloud is fully ionized, the expansion becomes supersonic. For self-gravitating disks without magnetic fields, the main features include a new 'variable-size' stage. The initial shape of the H II region has a critical point beyond which the disk becomes completely ionized.

  17. Mathematical Formulation of the Remote Electric and Magnetic Emissions of the Lightning Dart Leader and Return Stroke

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward M. B.

    Lightning detection and geolocation networks have found widespread use by the utility, air traffic control and forestry industries as a means of locating strikes and predicting imminent recurrence. Accurate lightning geolocation requires detecting VLF radio emissions at multiple sites using a distributed sensor network with typical baselines exceeding 150 km, along with precision time of arrival estimation to triangulate the origin of a strike. The trend has been towards increasing network accuracy without increasing sensor density by incorporating precision GPS synchronized clocks and faster front-end signal processing. Because lightning radio waveforms evolve as they propagate over a finitely conducting earth, and that measurements for a given strike may have disparate propagation path lengths, accurate models are required to determine waveform fiducials for precise strike location. The transition between the leader phase and return stroke phase may offer such a fiducial and warrants quantitative modeling to improve strike location accuracy. The VLF spectrum of the ubiquitous downward negative lightning strike is able to be modeled by the transfer of several Coulombs of negative charge from cloud to ground in a two-step process. The lightning stepped leader ionizes a plasma channel downward from the cloud at a velocity of approximately 0.05c, leaving a column of charge in its path. Upon connection with a streamer, the subsequent return stroke initiates at or near ground level and travels upward at an average but variable velocity of 0.3c. The return stroke neutralizes any negative charge along its path. Subsequent dart leader and return strokes often travel smoothly down the heated channel left by a preceding stroke, lacking the halting motion of the preceding initial stepped leader and initial return stroke. Existing lightning models often neglect the leader current and rely on approximations when solving for the return stroke. In this thesis, I present an analytic solution to Maxwell's Equations for the lightning leader followed by a novel return stroke model. I model the leader as a downward propagating boxcar function of uniform charge density and constant velocity, and the subsequent return stroke is modeled as an upward propagating boxcar with a time dependent velocity. Charge conservation is applied to ensure self-consistency of the driving current and charge sources, and physical observations are used to support model development. The resulting transient electric and magnetic fields are presented at various distances and delay times and compared with measured waveforms and previously published models.

  18. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  19. Modelling wildland fire propagation by tracking random fronts

    NASA Astrophysics Data System (ADS)

    Pagnini, G.; Mentrelli, A.

    2013-11-01

    Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.

  20. Sub-diurnal Variation of SST Gradients in Infrared Satellite Data

    NASA Astrophysics Data System (ADS)

    Salter, J. P.; Cornillon, P. C.; Clayson, C. A.

    2016-02-01

    Ocean fronts are known to influence many physical, biological, and chemical processes including ocean mixing, air-sea interaction, cloud and wind patterns, and marine productivity. Satellite-derived Sea Surface Temperature (SST) measurements are an invaluable tool in studying ocean fronts because of the large spatial and temporal coverage of satellite data, extending back as far as the early 1980s. One of the limitations to satellite-derived ocean fronts is that they provide no information about the underlying vertical structure; furthermore, the dynamics on sub-diurnal time scales for ocean fronts are poorly understood. In this poster we examine the daily signal of SST gradient magnitudes for the eastern Mediterranean sea as the first step in quantifying a subset of ocean fronts globally and how they vary on sub-diurnal time scales. We find that mean gradient magnitude in summer months increases and peaks around 2-4 PM Local Sun Time (LST). We find that the peak in summer months results from an increase in the magnitude of weaker gradients while the magnitude of the strongest gradients decrease; however, the weaker gradients contribute more strongly to the mean signal, resulting in the increase. The mid-afternoon peak in SST gradient magnitude disappears in winter with only a suggestion of a peak earlier in the day although the paucity of cloud free data in winter precludes making a statistically significant statement in this regard.

  1. Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    NASA Technical Reports Server (NTRS)

    Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.

    2013-01-01

    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.

  2. Sine-Gordon Equation in (1+2) and (1+3) dimensions: Existence and Classification of Traveling-Wave Solutions.

    PubMed

    Zarmi, Yair

    2015-01-01

    The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.

  3. Propagation of light through small clouds of cold interacting atoms

    NASA Astrophysics Data System (ADS)

    Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.

    2016-11-01

    We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.

  4. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    NASA Astrophysics Data System (ADS)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-04-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

  5. Front propagation and clustering in the stochastic nonlocal Fisher equation

    NASA Astrophysics Data System (ADS)

    Ganan, Yehuda A.; Kessler, David A.

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  6. Front propagation and clustering in the stochastic nonlocal Fisher equation.

    PubMed

    Ganan, Yehuda A; Kessler, David A

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  7. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    NASA Astrophysics Data System (ADS)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  8. Cloud episode propagation over the Indonesian Maritime Continent from 10 years of infrared brightness temperature observations

    NASA Astrophysics Data System (ADS)

    Marzuki; Hashiguchi, Hiroyuki; Yamamoto, Masayuki K.; Yamamoto, Mamoru; Mori, Shuichi; Yamanaka, Manabu D.; Carbone, Richard E.; Tuttle, John D.

    2013-02-01

    The cloud-top brightness temperature data from 2001 to 2010 are used to derive a climatology of deep convection duration, span, and propagation speed over the Indonesian Maritime Continent (10°S-10°N, 80°E-160°E). The full domain of study is divided into northern (0°-10°N) and southern (0°-10°S) regions to investigate the seasonal and latitudinal variabilities of cloud streaks. The ratio of westward- to eastward-propagating cloud streaks is found to be approximately 3:1. Westward-moving streaks generally have longer spans and faster speeds than eastward-moving systems. Coherent episodes of westward- (eastward-) propagating systems have 9.5 (7.5) h durations and 519 (378) km spans on average; most episodes have zonal phase speeds of 6-30 m s- 1. Median zonal phase speeds of 14.2 (westward) and 13.5 m s- 1 (eastward) are found for events with > 1000 km spans and > 20 h durations. The recurrence frequency, which is categorized from 1 event per day to 1 event per month, is also discussed. The latitudinal and seasonal dependences of statistical properties are strongly influenced by the Inter-Tropical Convergence Zone annual cycle. The number of westward-migrating systems is significant every month, while eastward-migrating systems strongly vary by season and latitude. Eastward migration is less frequent in the southern region during June, July and August (JJA) and in the northern region during December, January and February (DJF). In the northern region, the westward-propagating events' mean span is much longer during JJA, September, October, and November (SON) than the other periods; this effect is partially due to the favorable environmental shear conditions necessary to sustain a long-lived system. Eastward- and westward-propagating events are found during the shortwave heating and dissipation modes of diurnal cycle phase. Thus, thermal forcing, which is associated with the elevated terrain found over the islands and the land-sea interface, is dominant on a daily basis. Several possible reasons behind the present results besides the environmental conditions are discussed. It is found that low-level wind may support the precipitation propagation speed, and its support may depend on the Madden-Julian Oscillation (MJO) phase. However, advection by wind alone is likely insufficient to propagate the precipitation as quickly, as our results show. The speed of precipitation migration particularly around Sumatra is similar to the values reported in the framework of propagating gravity waves and moist Kelvin waves.

  9. Cold Front Cools the Eastern U.S.

    NASA Image and Video Library

    2014-07-16

    Summertime heat and humidity in the U.S. East Coast is on hold for a couple of days thanks to a cold front and that brought clouds, showers, thunderstorms, and some severe weather on July 16 to the coast. The National Oceanic and Atmospheric Administration (NOAA) noted that the dip in the jet stream will create below normal temperatures for most of the Central and Eastern U.S. for the next couple of days. NOAA's GOES-East satellite captured an image of the clouds associated with the cold front on July 16 at 1630 UTC (12:30 p.m. EDT).The clouds follow the front which stretches from the Florida panhandle, across Florida and up the U.S. East Coast into eastern Canada. Along the front lie two areas of low pressure, one over eastern New England, and the other offshore from South Carolina. Both of those low pressure areas are associated with additional cloudiness along the front. GOES satellites are managed by NOAA. The image was created by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Image Credit: NASA/NOAA GOES Project, Text: Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  11. A new wave front shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties.

    PubMed

    Sen, Novonil; Kundu, Tribikram

    2018-07-01

    Estimating the location of an acoustic source in a structure is an important step towards passive structural health monitoring. Techniques for localizing an acoustic source in isotropic structures are well developed in the literature. Development of similar techniques for anisotropic structures, however, has gained attention only in the recent years and has a scope of further improvement. Most of the existing techniques for anisotropic structures either assume a straight line wave propagation path between the source and an ultrasonic sensor or require the material properties to be known. This study considers different shapes of the wave front generated during an acoustic event and develops a methodology to localize the acoustic source in an anisotropic plate from those wave front shapes. An elliptical wave front shape-based technique was developed first, followed by the development of a parametric curve-based technique for non-elliptical wave front shapes. The source coordinates are obtained by minimizing an objective function. The proposed methodology does not assume a straight line wave propagation path and can predict the source location without any knowledge of the elastic properties of the material. A numerical study presented here illustrates how the proposed methodology can accurately estimate the source coordinates. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Possible impacts of the pre-monsoon dry line and sea breeze front on nocturnal rainfall over northeast Bangladesh

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Toniazzo, Thomas; Kolstad, Erik; Spengler, Thomas

    2017-04-01

    The northeast region of Bangladesh receives a large amount of rainfall before the large-scale monsoon circulation begins. For example, in April (a "pre-monsoon" month) 2010, 804 mm of rain fell in the regional capital Sylhet. It was the second wettest month of the entire year. From our conversations with the local people, we know that this pre-monsoon rainfall is extremely important to their livelihoods. We therefore need to understand it's triggering mechanisms. Several theories have been published, all of which are likely to be at play. However, in this work we look more closely at how the sea breeze front and prominent pre-monsoonal dry line in this region may play a role. If these mechanisms play a role in the convection, then it is likely that they trigger convection further afield, and then the resulting systems then propagate towards northeast Bangladesh. We believe this because rainfall associated with dry line/sea-breeze front convection often occurs during the late afternoon, but the rainfall over northeast Bangladesh shows a clear late-night/early-morning maxima. At present, the temporal and spatial resolution of the regional observations is inappropriate for examining these possible mechanisms. We therefore use a numerical model (WRF) to investigate the possible links between the convection and the sea breeze front and dry line. We use April 2010 as a case study since it was such a wet pre-monsoon month. The simulation shows that a sea breeze circulation often develops during the day in the coastal zone of Bangladesh and northeast India. After sunset the sea breeze front propagates inland pushing back the hot, dry air over India. On several days during the simulation, convection is triggered along the sea breeze front, which then propagates towards northeast Bangladesh and intensifies across the topography surrounding the Sylhet region. From our simulations, it appears that nocturnal convection over northeast Bangladesh is triggered by several mechanisms, but that the dry line and sea breeze front could also be an active contributor.

  13. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.

    PubMed

    Rongy, L; Goyal, N; Meiburg, E; De Wit, A

    2007-09-21

    Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as square root Ra for Ra>5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts propagating in horizontal capillaries. We furthermore compare the buoyancy-driven dynamics studied here to Marangoni-driven deformation of traveling chemical fronts in solution open to the air in the absence of gravity previously studied in the same geometry [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)].

  14. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  15. Exploring Richtmyer-Meshkov instability phenomena and ejecta cloud physics

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Buttler, W. T.

    2008-09-01

    This effort investigates ejecta cloud expansion from a shocked Sn target propagating into vacuum. To assess the expansion, dynamic ejecta cloud density distributions were measured via piezoelectric pin diagnostics offset at three heights from the target free surface. The dynamic distributions were first converted into static distributions, similar to a radiograph, and then self compared. The cloud evolved self-similarly at the distances and times measured, inferring that the amount of mass imparted to the instability, detected as ejecta, either ceased or approached an asymptotic limit.

  16. Discreteness effects in a reacting system of particles with finite interaction radius.

    PubMed

    Berti, S; López, C; Vergni, D; Vulpiani, A

    2007-09-01

    An autocatalytic reacting system with particles interacting at a finite distance is studied. We investigate the effects of the discrete-particle character of the model on properties like reaction rate, quenching phenomenon, and front propagation, focusing on differences with respect to the continuous case. We introduce a renormalized reaction rate depending both on the interaction radius and the particle density, and we relate it to macroscopic observables (e.g., front speed and front thickness) of the system.

  17. Lightning Return-Stroke Current Waveforms Aloft, From Measured Field Change, Current, and Channel Geometry

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; LeVine, D. M.

    2002-01-01

    Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes, and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.

  18. Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier; Heng, Kevin

    2018-04-01

    Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.

  19. Vibrational Responses Of Structures To Impulses

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1990-01-01

    Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.

  20. On the description of the turbulent flame acceleration with Kolmogorov law

    NASA Astrophysics Data System (ADS)

    Golub, V. V.; Volodin, V. V.

    2018-01-01

    A series of experiments on the flame propagation in a hydrogen-air mixtures in a cylindrical envelope of 4.5 m3 volume were carried out. Flame front propagation was recorded using ionization probes and video in the visible and infrared ranges. The flame propagation data interpretation using the Kolmogorov law has been applied. For the first time variation of turbulent energy dissipation rate per weight with combustion propagation was used. This approach allows the experimental data for mixtures with different compositions in non-spherical volumes to be described.

  1. Formation of a katabatic induced cold front at the east Andean slopes

    NASA Astrophysics Data System (ADS)

    Trachte, K.; Nauss, T.,; Rollenbeck, R.; Bendix, J.

    2009-04-01

    Within the DFG research unit 816, climate dynamics in a tropical mountain rain forest in the national reserve of the Reserva Biósfera de San Francisco in South Ecuador are investigated. Precipitation measurements in the mountain environment of the Estación Científica de San Francisco (ECSF) with a vertical rain radar profiler have been made over the last seven years. They reveal unexpected constant early morning rainfall events. On the basis of cloud top temperatures from corresponding GOES satellite imageries, a Mesoscale Convective System could be derived. Its formation region is located south-east of the ECSF in the Peruvian Amazon basin. The generation of the MCS is assumed to results from an interaction of both local and mesoscale conditions. Nocturnal drainage air from the Andean slopes and valleys confluences in the Amazon basin due to the concave lined terrain. This cold air converges with the warm-moist air of the Amazon inducing a local cold front. This process yields to deep convection resulting in a MCS. With the numerical model ARPS the hypothesized formation of a cloud cluster due to a katabatic induced cold front is shown in an ideal case study. Therefor an ideal terrain model representing the features of the Andes in the target area has been used. The simplification of the oprography concerns a concave lined slope and a valley draining into the basin. It describes the confluence of the cold drainage air due to the shape of the terrain. Inside the basin the generation of a local cold front is shown, which triggers the formation of a cloud cluster.

  2. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  3. Spatial spread of the Hantavirus infection

    NASA Astrophysics Data System (ADS)

    Reinoso, José A.; de la Rubia, F. Javier

    2015-03-01

    The spatial propagation of Hantavirus-infected mice is considered a serious threat for public health. We analyze the spatial spread of the infected mice by including diffusion in the stage-dependent model for Hantavirus infection recently proposed by Reinoso and de la Rubia [Phys. Rev. E 87, 042706 (2013), 10.1103/PhysRevE.87.042706]. We consider a general scenario in which mice propagate in fronts from their refugia to the surroundings and find an expression for the speed of the front of infected mice. We also introduce a depletion time that measures the time scale for an appreciable impoverishment of the environment conditions and show how this new situation may change the spreading of the infection significantly.

  4. Quasi-Equilibrium States in the Tropics Simulated by a Cloud-Resolving Model. Part 1; Specific Features and Budget Analysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.

  5. PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.

    2009-12-01

    In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.

  6. Simulations of Variability and Waves at Cloud Altitudes Using a Venus Middle Atmosphere General Circulation Model

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Mitchell, J.

    2017-12-01

    We have developed a Venus general circulation model, the Venus Middle atmosphere Model (VMM), to simulate the atmosphere from just below the cloud deck 40 km altitude to around 100 km altitude. Our primary goal is to assess the influence of waves on the variability of winds and temperatures observed around Venus' cloud deck. Venus' deep atmosphere is not simulated directly in the VMM model, so the effects of waves propagating upwards from the lower atmosphere is represented by forcing at the lower boundary of the model. Sensitivity tests allow appropriate amplitudes for the wave forcing to be determined by comparison with Venus Express and probe measurements and allow the influence of waves on the cloud-level atmosphere to be investigated. Observations at cloud altitudes are characterized by waves with a wide variety of periods and wavelengths, including gravity waves, thermal tides, Rossby waves, and Kelvin waves. These waves may be generated within the cloud deck by instabilities, or may propagate up from the deep atmosphere. Our development of the VMM is motivated by the fact that the circulation and dynamics between the surface and the cloud levels are not well measured and wind velocities below 40 km altitude cannot be observed remotely, so we focus on the dynamics at cloud levels and above. Initial results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express observations and show reasonable agreement with the measurements.

  7. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  8. HUBBLE SPACE TELESCOPE AND HI IMAGING OF STRONG RAM PRESSURE STRIPPING IN THE COMA SPIRAL NGC 4921: DENSE CLOUD DECOUPLING AND EVIDENCE FOR MAGNETIC BINDING IN THE ISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Jeffrey D. P.; Abramson, Anne; Bravo-Alfaro, Hector, E-mail: jeff.kenney@yale.edu

    Remarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separatesmore » the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM–ISM interaction. We identify and characterize 100 pc–1 kpc scale substructure within this dust front caused by ram pressure, including head–tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM.« less

  9. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    NASA Astrophysics Data System (ADS)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  10. High Frequency Propagation modeling in a disturbed background ionosphere: Results from the Metal Oxide Space Cloud (MOSC) experiment

    NASA Astrophysics Data System (ADS)

    Joshi, D. R.; Groves, K. M.

    2015-12-01

    The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.

  11. Speed hysteresis and noise shaping of traveling fronts in neural fields: role of local circuitry and nonlocal connectivity

    NASA Astrophysics Data System (ADS)

    Capone, Cristiano; Mattia, Maurizio

    2017-01-01

    Neural field models are powerful tools to investigate the richness of spatiotemporal activity patterns like waves and bumps, emerging from the cerebral cortex. Understanding how spontaneous and evoked activity is related to the structure of underlying networks is of central interest to unfold how information is processed by these systems. Here we focus on the interplay between local properties like input-output gain function and recurrent synaptic self-excitation of cortical modules, and nonlocal intermodular synaptic couplings yielding to define a multiscale neural field. In this framework, we work out analytic expressions for the wave speed and the stochastic diffusion of propagating fronts uncovering the existence of an optimal balance between local and nonlocal connectivity which minimizes the fluctuations of the activation front propagation. Incorporating an activity-dependent adaptation of local excitability further highlights the independent role that local and nonlocal connectivity play in modulating the speed of propagation of the activation and silencing wavefronts, respectively. Inhomogeneities in space of local excitability give raise to a novel hysteresis phenomenon such that the speed of waves traveling in opposite directions display different velocities in the same location. Taken together these results provide insights on the multiscale organization of brain slow-waves measured during deep sleep and anesthesia.

  12. High Speed Video Observations of Natural Lightning and Their Implications to Fractal Description of Lightning

    NASA Astrophysics Data System (ADS)

    Liu, N.; Tilles, J.; Boggs, L.; Bozarth, A.; Rassoul, H.; Riousset, J. A.

    2016-12-01

    Recent high speed video observations of triggered and natural lightning flashes have significantly advanced our understanding of lightning initiation and propagation. For example, they have helped resolve the initiation of lightning leaders [Stolzenburg et al., JGR, 119, 12198, 2014; Montanyà et al, Sci. Rep., 5, 15180, 2015], the stepping of negative leaders [Hill et al., JGR, 116, D16117, 2011], the structure of streamer zone around the leader [Gamerota et al., GRL, 42, 1977, 2015], and transient rebrightening processes occurring during the leader propagation [Stolzenburg et al., JGR, 120, 3408, 2015]. We started an observational campaign in the summer of 2016 to study lightning by using a Phantom high-speed camera on the campus of Florida Institute of Technology, Melbourne, FL. A few interesting natural cloud-to-ground and intracloud lightning discharges have been recorded, including a couple of 8-9 stroke flashes, high peak current flashes, and upward propagating return stroke waves from ground to cloud. The videos show that the propagation of the downward leaders of cloud-to-ground lightning discharges is very complex, particularly for the high-peak current flashes. They tend to develop as multiple branches, and each of them splits repeatedly. For some cases, the propagation characteristics of the leader, such as speed, are subject to sudden changes. In this talk, we present several selected cases to show the complexity of the leader propagation. One of the effective approaches to characterize the structure and propagation of lightning leaders is the fractal description [Mansell et al., JGR, 107, 4075, 2002; Riousset et al., JGR, 112, D15203, 2007; Riousset et al., JGR, 115, A00E10, 2010]. We also present a detailed analysis of the high-speed images of our observations and formulate useful constraints to the fractal description. Finally, we compare the obtained results with fractal simulations conducted by using the model reported in [Riousset et al., 2007, 2010].

  13. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  14. Rossby waves, extreme fronts, and wildfires in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Reeder, Michael J.; Spengler, Thomas; Musgrave, Ruth

    2015-03-01

    The most catastrophic fires in recent history in southern Australia have been associated with extreme cold fronts. Here an extreme cold front is defined as one for which the maximum temperature at 2 m is at least 17°C lower on the day following the front. An anticyclone, which precedes the cold front, directs very dry northerlies or northwesterlies from the interior of the continent across the region. The passage of the cold front is followed by strong southerlies or southwesterlies. European Centre for Medium-Range Weather Forecasts ERA-Interim Reanalyses show that this regional synoptic pattern common to all strong cold fronts, and hence severe fire conditions, is a consequence of propagating Rossby waves, which grow to large amplitude and eventually irreversibly overturn. The process of overturning produces the low-level anticyclone and dry conditions over southern Australia, while simultaneously producing an upper level trough and often precipitation in northeastern Australia.

  15. Accounting for sub-pixel variability of clouds and/or unresolved spectral variability, as needed, with generalized radiative transfer theory

    DOE PAGES

    Davis, Anthony B.; Xu, Feng; Collins, William D.

    2015-03-01

    Atmospheric hyperspectral VNIR sensing struggles with sub-pixel variability of clouds and limited spectral resolution mixing molecular lines. Our generalized radiative transfer model addresses both issues with new propagation kernels characterized by power-law decay in space.

  16. Smashing a Jet into a Cloud to Form Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    What happens when the highly energetic jet from the center of an active galaxy rams into surrounding clouds of gas and dust? A new study explores whether this might be a way to form stars.The authors simulations at an intermediate (top) and final (bottom) stage show the compression in the gas cloud as a jet (red) enters from the left. Undisturbed cloud material is shown in blue, whereas green corresponds to cold, compressed gas actively forming stars. [Fragile et al. 2017]Impacts of FeedbackCorrelation between properties of supermassive black holes and their host galaxies suggest that there is some means of communication between them. For this reason, we suspect that feedback from an active galactic nucleus (AGN) in the form of jets, for instance controls the size of the galaxy by influencing star formation. But how does this process work?AGN feedback can be either negative or positive. In negative feedback, the gas necessary for forming stars is heated or dispersed by the jet, curbing or halting star formation. In positive feedback, jets propagate through the surrounding gas with energies high enough to create compression in the gas, but not so high that they heat it. The increased density can cause the gas to collapse, thereby triggering star formation.In a recent study, a team of scientists led by Chris Fragile (College of Charleston) modeled what happens when an enormous AGN jet slams into a dwarf-galaxy-sized, inactive cloud of gas. In particular, the team explored the possibility of star-forming positive feedback with the goal of reproducing recent observations of something called Minkowskis Object, a stellar nursery located at the endpoint of a radio jet emitted from the active galaxy NGC 541.The star formation rate in the simulated cloud increases dramatically as a result of the jets impact, reaching the rate currently observed for Minkowskis Objects within 20 million years. [Fragile et al. 2017]Triggering Stellar BirthFragile and collaborators used a computational astrophysics code called Cosmos++ to produce three-dimensional hydrodynamic simulations of an AGN jet colliding with a spherical intergalactic cloud. They show that the collision triggers a series shocks that move through and around the cloud, condensing the gas and triggering runaway cooling instabilities that can lead to cloud clumps collapsing to form stars.The authors are able to find a model in which the dramatic increase in the star formation rate matches that measured for Minkowskis Object very well. In particular, the increased star formation occurs upstream of the bulk of the available H I gas, which is consistent with observations of Minkowskis Object and implicates the jets interaction with the cloud as the cause.The spatial distribution of particles tracing stars that formed as a result of the jet entering from the left, after 40 million years. Color tracks the particle age (in Myr) in the top panel and particle velocity (in km/s) inthe bottom. [Adapted from Fragile et al. 2017]An intriguing result of the authors simulations is a look at the spatial distribution of the velocities of stars that form when triggered by the jet. Because the propagation speed of the star-formation front gradually slows, the fastest-moving stars are those that were formed first, and they are found furthest downstream. This provides an interesting testable prediction we can look to see if a similar distribution is visible in Minkowskis Object.Fragile and collaborators plan further refinements to their simulations, but they argue that the success of their model to reproduce observations of Minkowskis Object are very promising. Positive feedback from AGN jets indeed appears to have an important impact on the surrounding environment.CitationP. Chris Fragile et al 2017 ApJ 850 171. doi:10.3847/1538-4357/aa95c6

  17. Role of lower hybrid waves in ion heating at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.

    2017-05-01

    One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.

  18. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu

    2017-10-01

    Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.

  19. Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts

    NASA Astrophysics Data System (ADS)

    D'Hernoncourt, J.; De Wit, A.

    2010-06-01

    Across traveling exothermic autocatalytic fronts, a density jump can be observed due to changes in composition and temperature. These density changes are prone to induce buoyancy-driven convection around the front when the propagation takes place in absence of gel within the gravity field. Most recent experiments devoted to studying such reaction-diffusion-convection dynamics are performed in Hele-Shaw cells, two glass plates separated by a thin gap width and filled by the chemical solutions. We investigate here the influence of heat losses through the walls of such cells on the nonlinear fingering dynamics of exothermic autocatalytic fronts propagating in vertical Hele-Shaw cells. We show that these heat losses increase tip splittings and modify the properties of the flow field. A comparison of the differences between the dynamics in reactors with respectively insulating and conducting walls is performed as a function of the Lewis number Le, the Newton cooling coefficient α quantifying the amplitude of heat losses and the width of the system. We find that tip splitting is enhanced for intermediate values of α while coarsening towards one single finger dominates for insulated systems or large values of α leading to situations equivalent to isothermal ones.

  20. A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.

    2015-01-01

    Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their amount relates to the stability of the boundary layer. This test uses Aqua cloud and vertical atmospheric profiles and when applied to the model output can help assess the accuracy of the convection, boundary layer and cloud scheme.

  1. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.

    PubMed

    Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe

    2017-12-01

    Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.

  2. Development of Benchmark Examples for Delamination Onset and Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    An approach for assessing the delamination propagation and growth capabilities in commercial finite element codes was developed and demonstrated for the Virtual Crack Closure Technique (VCCT) implementations in ABAQUS. The Double Cantilever Beam (DCB) specimen was chosen as an example. First, benchmark results to assess delamination propagation capabilities under static loading were created using models simulating specimens with different delamination lengths. For each delamination length modeled, the load and displacement at the load point were monitored. The mixed-mode strain energy release rate components were calculated along the delamination front across the width of the specimen. A failure index was calculated by correlating the results with the mixed-mode failure criterion of the graphite/epoxy material. The calculated critical loads and critical displacements for delamination onset for each delamination length modeled were used as a benchmark. The load/displacement relationship computed during automatic propagation should closely match the benchmark case. Second, starting from an initially straight front, the delamination was allowed to propagate based on the algorithms implemented in the commercial finite element software. The load-displacement relationship obtained from the propagation analysis results and the benchmark results were compared. Good agreements could be achieved by selecting the appropriate input parameters, which were determined in an iterative procedure.

  3. Correlation between discrete probability and reaction front propagation rate in heterogeneous mixtures

    NASA Astrophysics Data System (ADS)

    Naine, Tarun Bharath; Gundawar, Manoj Kumar

    2017-09-01

    We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remming, Ian S.; Khokhlov, Alexei M.

    We present general equations for non-ideal, reactive flow magnetohydrodynamics (RFMHD) in the form best suited for describing thermonuclear combustion in high-density degenerate matter of SNe Ia. The relative importance of various non-ideal effects is analyzed as a function of characteristic spatial and temporal scales of the problem. From the general RFMHD equations, we derive the one-dimensional ordinary differential equations describing the steady-state propagation of a planar thermonuclear flame front in a magnetic field. The physics of the flame is first studied qualitatively using a simple case of one-step Arrhenius kinetics, a perfect gas equation of state (EOS), and constant thermalmore » conductivity coefficients. After that, the equations are solved, the internal flame front structure is calculated, and the flame velocity, S {sub l} , and flame thickness, δ {sub l} , are found for carbon–oxygen degenerate material of supernovae using a realistic EOS, transport properties, and detailed nuclear kinetics. The magnetic field changes the flame behavior significantly, both qualitatively and quantitatively, as compared to the non-magnetic case of classical combustion. (1) The magnetic field influences the evolutionarity of a flame front and makes it impossible for a flame to propagate steadily in a wide range of magnetic field strengths and orientations relative to the front. (2) When the flame moves steadily, it can propagate in several distinct modes, the most important being the slow C {sub S} and super-Alfvénic C {sub sup} modes. (3) The speed of the flame can be diminished or enhanced by up to several factors relative to the non-magnetic laminar flame speed.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mériaux, C. A., E-mail: cameriaux@fc.ul.pt; Kurz-Besson, C. B.; Zemach, T.

    In this study, we investigate the motion of particulate gravity currents in a horizontal V-shaped channel. The particulate currents consisted of particles whose size varied between 0 and 100 μm but whose mean size increased. Particles were poorly sorted as the variance of the grain size distributions varied between 50 and 200. While the phases of propagation of homogeneous currents in such a geometry have been studied in the literature, this study considers the effects of the grain size on the propagation. The distance of propagation and front velocity of full-depth high-Reynolds-number lock-release experiments and shallow-water equation simulations were analyzedmore » as the mean grain size of the initial particle distributions, defined by mass, was increased from 19 to 58 μm. Similar to the homogeneous currents, three consecutive phases of the front velocity could be identified but their characteristics and extent depend on the particle size. The initial phase, in particular, depends on a dimensionless settling number β that is defined as the ratio of two characteristic time scales, the propagation time x{sub 0}/U, where U is the scale for the front speed and x{sub 0} the lock length, and the settling time h{sub 0}/v{sub s}, where v{sub s} is the scale for the settling velocity and h{sub 0} the initial height of the current. For dimensionless settling numbers less than 0.001, the initial phase is characterized by a constant velocity for over about 6-7 lock lengths that is alike the initial slumping phase of perfectly constant velocity of the homogeneous currents. For dimensionless settling numbers greater than 0.001 and less than 0.015, the initial phase is no longer characterized by a constant velocity but an almost constant velocity for over about a similar 6-7 lock lengths. For dimensionless settling numbers greater than 0.015, however, as such, this phase is no longer seen. This initial phase is followed by a continuous decrease of the front advance, which results from the sedimentation of the particles. Unlike the homogeneous currents, this phase is a non-self-similar propagation. This phase is ended by a viscosity-dominated phase appearing to vary as ∼t{sup 1/7}. The good agreement between the front advance of the experiments and shallow-water equation simulations demonstrates that the mean size by mass is a fairly good proxy of poorly sorted particles.« less

  6. Thunderstorm clouds over Western Africa

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The overshooting tops of a series of strong thunderstorms are seen in this late afternoon scene over the African Ivory Coast, exact location unknown. The low sun angle of the setting sun casts long shadows, accentuating the shapes and heights of the clouds. This seasonal thunderstorm is an African Intertropical Front located along the land/sea breeze interface over the West African coastline and is a normal occurance for this time of year.

  7. Frontal Polymerization in Microgravity: Bubble Behavior and Convection on the KC-135 Aircraft

    NASA Technical Reports Server (NTRS)

    Pojman, John A.; Ainsworth, William; Chekanov, Yuri; Masere, Jonathan; Volpert, Vitaly; Dumont, Thierry; Wilke, Hermann

    2001-01-01

    Frontal polymerization is a mode of converting monomer into polymer via a localized exothermic reaction zone that propagates through the coupling of thermal diffusion and Arrhenius reaction kinetics. Frontal polymerization was discovered in Russia by Chechilo and Enikolopyan in 1972. The macrokinetics and dynamics of frontal polymerization have been examined in detail and applications for materials synthesis considered. Large temperature and concentration gradients that occur in the front lead to large density gradients. A schematic is presented for a liquid monomer, usually a monoacrylate, being converted to a liquid (thermoplastic) polymer. The velocity can be controlled by the initiator concentration but is on the order of a cm/min. If the liquid monomer is multifunctional, then a solid (thermoset) polymer is formed. Convection can occur with all types of monomers if the front propagates up a tube. Bowden et al. studied liquid/solid systems. McCaughey et al. studied liquid polymer systems. Descending fronts in thermoplastic systems are also susceptible to the Rayleigh-Taylor instability.

  8. Resent Status of ITER Equatorial Launcher Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Kajiwara, K.; Kasugai, A.

    2009-11-26

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less

  9. Transparency of a magnetic cloud boundary for cosmic rays

    NASA Astrophysics Data System (ADS)

    Petukhov, I. S.; Petukhov, S. I.

    2013-02-01

    We have suggested a model of magnetic cloud presented as a torus with magnetic flux rope structure situated inside the interplanetary corona mass ejecta expanding radially away from the Sun through the interplanetary medium. The magnetic field of the torus changing during its propagation has been obtained. The magnetic cloud — solar wind boundary transparency for cosmic rays with different energies depending on the cloud orientation and properties of the torus magnetic field has been determined by means of calculation of the particle trajectories at the boundary.

  10. Propagation characteristics of dust-acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-08-01

    The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Mangilal, E-mail: mangilal@ipr.res.in; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085; Mukherjee, S.

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a resultmore » of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.« less

  12. Holographic estimate of the meson cloud contribution to nucleon axial form factor

    NASA Astrophysics Data System (ADS)

    Ramalho, G.

    2018-04-01

    We use light-front holography to estimate the valence quark and the meson cloud contributions to the nucleon axial form factor. The free couplings of the holographic model are determined by the empirical data and by the information extracted from lattice QCD. The holographic model provides a good description of the empirical data when we consider a meson cloud mixture of about 30% in the physical nucleon state. The estimate of the valence quark contribution to the nucleon axial form factor compares well with the lattice QCD data for small pion masses. Our estimate of the meson cloud contribution to the nucleon axial form factor has a slower falloff with the square momentum transfer compared to typical estimates from quark models with meson cloud dressing.

  13. Failure Waves in Glass and Ceramics under Shock Compression

    NASA Astrophysics Data System (ADS)

    Singh Brar, N.

    1999-06-01

    The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the ``so called" failure wave or front has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance, and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress level. The shear strength [τ = 1/2(σ_x-σ_y)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 2 GPa for soda-lime, borosilicate, and filled glasses. The optical (high-speed photography) observations also confirm the formation of failure front. There is a general agreement among various researchers on these observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton is based on the process of nucleation of local densification due to shock compression followed by shear failure around inhomogeneities resulting in phase boundary between the comminuted from the intact material. The second, proposed by Grady involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe microcracking originating from impact face. The third, by Espinosa and Brar proposes that the front is created through shear microcracks, which nucleate and propagate from the impact face, as originally suggested by Kanel. This mechanism is incorporated in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et. al.

  14. Prize to a Faculty Member for Research in an Undergraduate: Chaotic mixing and front propagation

    NASA Astrophysics Data System (ADS)

    Solomon, Tom

    2014-03-01

    We present results from a series of experiments - all done with undergraduate students - on chaotic fluid mixing and the effects of fluid flows on the behavior of reaction systems. Simple, well-ordered laminar fluid flows can give rise to fluid mixing with complexity far beyond that of the underlying flow, with tracers that separate exponentially in time and invariant manifolds that act as barriers to transport. Recently, we have studied how fluid mixing affects the propagation of reaction fronts in a flow. This is an issue with applications to a wide range of systems including microfluidic chemical reactors, blooms of phytoplankton in the oceans, and the spreading of a disease in a moving population. To analyze and predict the behavior of the fronts, we generalize tools developed to describe passive mixing. In particular, the concept of an invariant manifold is expanded to account for reactive burning. ``Burning invariant manifolds'' (BIMs) are predicted and measured experimentally as structures in the flow that act as one-way barriers that block the motion of reaction fronts. We test these ideas experimentally in three fluid flows: (a) and chain of alternating vortices; (b) an extended, spatially-random pattern of vortices; and (c) a time-independent, three-dimensional, nested vortex flow. The reaction fronts are produced chemically with variations of the well-known Belousov-Zhabotinsky reaction. Supported by Research Corporation and the National Science Foundation.

  15. Single-photon nonlinearities in the propagation of focused beams through dense atomic clouds

    NASA Astrophysics Data System (ADS)

    Wang, Yidan; Gorshkov, Alexey; Gullans, Michael

    2017-04-01

    We theoretically study single-photon nonlinearities realized when a highly focused Gaussian beam passes through a dense atomic cloud. In this system, strong dipole-dipole interactions arise between closely spaced atoms and significantly affect light propagation. We find that the highly focused Gaussian beam can be treated as an effective one-dimensional waveguide, which simplifies the calculation of photon transmission and correlation functions. The formalism we develop is also applicable to the case where additional atom-atom interactions, such as interactions between Rydberg atoms, are involved. This work was supported by the ARL, NSF PFC at the JQI, AFOSR, NSF PIF, ARO, and AFOSR MURI.

  16. Aerodynamic properties of turbulent combustion fields

    NASA Technical Reports Server (NTRS)

    Hsiao, C. C.; Oppenheim, A. K.

    1985-01-01

    Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

  17. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  18. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium Imore » Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.« less

  19. Space-borne observation of mesospheric bore by Visible and near Infrared Spectral Imager onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.

    2017-12-01

    Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.

  20. Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME

    NASA Astrophysics Data System (ADS)

    Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.

    :Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.

  1. Observations of cloud cluster hierarchies over the tropical western Pacific

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Nakazawa, T.; Sui, C. H.

    1991-01-01

    The structure and propagation of tropical-cloud clusters are investigated during two contrasting periods over the tropical western Pacific in order to determine possible similarities or differences and to compare with previous studies. Three fundamental periodicities are found in tropical convection in the region: 1 day, 2-3 days, and 10-15 days. It is noted that the 10-15-day time scale is closely related to the intraseasonal oscillations propagating from the Indian Ocean to the western Pacific. Large convective complexes, supercloud clusters (SSC) are found to organize in this time scale. The SCC is made up from several cloud clusters generated at 2-3-day intervals. The diurnal variation is found to be most pronounced over the maritime continent, and the amplitude of the diurnal cycle is shown to be modulated by the 2-3-day and 10-15-day oscillations.

  2. Turbulent flame propagation and combustion in spark ignition engines

    NASA Technical Reports Server (NTRS)

    Beretta, G. P.; Rashidi, M.; Keck, J. C.

    1983-01-01

    Pressure measurements synchronized with high-speed motion-picture records of flame propagation have been made in a transparent-piston engine. The data show that the initial expansion speed of the flame front is close to that of a laminar flame. As the flame expands, its speed rapidly accelerates to a quasi-steady value comparable with that of the turbulent velocity fluctuations in the unburned gas. During the quasi-steady propagation phase, a significant fraction of the gas behind the visible front is unburned. Final burnout of the charge may be approximated by an exponential decay in time. The data have been analyzed in a model-independent way to obtain a set of empirical equations for calculating mass burning rates in spark-ignition engines. The burning equations contain three parameters: the laminar burning speed, a characteristic speed (uT), and a characteristic length (lT). The laminar burning speed is known from laboratory measurements. Tentative correlations relating uT and lT to engine geometry and operating variables have been derived from the engine data.

  3. Energy-flux characterization of conical and space-time coupled wave packets

    NASA Astrophysics Data System (ADS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-02-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  4. A terahertz in-line polarization converter based on through-via connected double layer slot structures

    PubMed Central

    Woo, Jeong Min; Hussain, Sajid; Jang, Jae-Hyung

    2017-01-01

    A terahertz (THz) in-line polarization converter that yields a polarization conversion ratio as high as 99.9% is demonstrated at 1 THz. It has double-layer slot structures oriented in orthogonal directions that are electrically connected by 1/8-wavelngth-long through-via holes beside the slot structures. The slots on the front metal-plane respond to the incident THz wave with polarization orthogonal to the slots and generates a circulating surface current around the slots. The surface current propagates along a pair of through-via holes that function as a two-wire transmission line. The propagating current generates a surface current around the backside slot structures oriented orthogonal to the slot structures on the front metal layer. The circulating current generates a terahertz wave polarized orthogonal to the backside slot structures and the 90° polarization conversion is completed. The re-radiating THz wave with 90° converted polarization propagates in the same direction as the incident THz wave. PMID:28211498

  5. Boundary-Layer Control to Helicopter Rotor Blades.

    NASA Image and Video Library

    1957-01-22

    Experimental investigation of boundary-layer control to helicopter rotor blades to increase forward speed capabilities. 3/4 front view. Shaft angle - 35deg. John Mc.Cloud in picture. He was a good guy.

  6. Using PVDF to locate the debris cloud impact position

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Liu, Zhidong

    2010-03-01

    With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.

  7. The emerging role of cloud computing in molecular modelling.

    PubMed

    Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W

    2013-07-01

    There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Measuring the iron spectral opacity in solar conditions using a double ablation front scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colaitis, A.; Ducret, J. E.; Turck-Chieze, S

    We propose a new method to achieve hydrodynamic conditions relevant for the investigation of the radiation transport properties of the plasma at the base of the solar convection zone. The method is designed in the framework of opacity measurements with high-power lasers and exploits the temporal and spatial stability of hydrodynamic parameters in counter-propagating Double Ablation Front (DAF) structures.

  9. Effects of Cloud-Microphysics on Tropical Atmospheric Hydrologic Processes in the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Wu, H. T.; Sud, Y. C.; Walker, G. K.

    2004-01-01

    The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.

  10. Evaluating the feasibility of global climate models to simulate cloud cover effect controlled by Marine Stratocumulus regime transitions

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Muelmenstaedt, Johannes; Rosenfeld, Daniel; Quaas, Johannes

    2017-04-01

    Marine stratocumulus clouds (MSC) occur in two main cloud regimes of open and closed cells that differ significantly by their cloud cover. Closed cells gradually get cleansed of high CCN concentrations in a process that involves initiation of drizzle that breaks the full cloud cover into open cells. The drizzle creates downdrafts that organize the convection along converging gust fronts, which in turn produce stronger updrafts that can sustain more cloud water that compensates the depletion of the cloud water by the rain. In addition, having stronger updrafts allow the clouds to grow relatively deep before rain starts to deplete its cloud water. Therefore, lower droplet concentrations and stronger rain would lead to lower cloud fraction, but not necessary also to lower liquid water path (LWP). The fundamental relationships between these key variables derived from global climate model (GCM) simulations are analyzed with respect to observations in order to determine whether the GCM parameterizations can represent well the governing physical mechanisms upon MSC regime transitions. The results are used to evaluate the feasibility of GCM's for estimating aerosol cloud-mediated radiative forcing upon MSC regime transitions, which are responsible for the largest aerosol cloud-mediated radiative forcing.

  11. Acceleration and Precipitation of Electrons during Substorm Dipolarization Events

    NASA Astrophysics Data System (ADS)

    Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond

    Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron precipitation due to the combination of these two mechanisms coincides spatially with observed auroral brightening during the disturbed event.

  12. Modelling wildland fire propagation by tracking random fronts

    NASA Astrophysics Data System (ADS)

    Pagnini, G.; Mentrelli, A.

    2014-08-01

    Wildland fire propagation is studied in the literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternatives to each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay, and it is not zero in an infinite domain, while the level-set method, which is a front tracking technique, generates a sharp function that is not zero inside a compact domain. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random nature and they are extremely important in wildland fire propagation. Consequently, the fire front gets a random character, too; hence, a tracking method for random fronts is needed. In particular, the level-set contour is randomised here according to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterising role that is typical of the level-set approach. The resulting model emerges to be suitable for simulating effects due to turbulent convection, such as fire flank and backing fire, the faster fire spread being because of the actions by hot-air pre-heating and by ember landing, and also due to the fire overcoming a fire-break zone, which is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation, a correction follows for the formula of the rate of spread which is due to the mean jump length of firebrands in the downwind direction for the leeward sector of the fireline contour. The presented study constitutes a proof of concept, and it needs to be subjected to a future validation.

  13. Desensitizing Flame Structure and Exhaust Emissions to Flow Parameters in an Ultra-Compact Combustor

    DTIC Science & Technology

    2012-03-22

    fuel .... 9 Figure 2.4: UNICORN model of hydrogen in air flame front propagation under the loading condition (a) 10 g’s and (b) 500 g’s...Lean Blowout ...................................................................................8 UNICORN Unsteady Ignition and Combustion with...computationally recreate Lewis’ experimental results. Using the Unsteady Ignition and 9 Combustion with Reactions ( UNICORN ) code, flame propagation

  14. Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation

    Treesearch

    Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu

    2015-01-01

    In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...

  15. Relativistic runaway ionization fronts.

    PubMed

    Luque, A

    2014-01-31

    We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum.

  16. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  17. Navy Tactical Applications Guide. Volume 2. Environmental Phenomena and Effects

    DTIC Science & Technology

    1979-01-01

    usually distinguished: the polar-front jet stream, associated with extratropical frontal systems; and the subtropical jet stream, overlying the poleward...patterns have formed in the cold air behind a frontal cloud band which extends from North Africa into Southern Europe . Note that the cellular cloud field...but because of the future potential of such areas for rapid storm " , development. (See Case 3 for the further development of these vorticity centers

  18. Bioconvection and front formation of Paramecium tetraurelia

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, So; Komori, Rie; Harumoto, Terue

    2007-10-01

    We have investigated the bioconvection of Paramecium tetraurelia in high-density suspensions made by centrifugal concentration. When a suspension is kept at rest in a Hele-Shaw cell, a crowded front of paramecia is formed in the vicinity of the bottom and it propagates gradually toward the water-air interface. Fluid convection occurs under this front, and it is driven persistently by the upward swimming of paramecia. The roll structures of the bioconvection become turbulent with an increase in the depth of the suspension; they also change rapidly as the density of paramecia increases. Our experimental results suggest that lack of oxygen in the suspension causes the active individual motions of paramecia to induce the formation of this front.

  19. Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, M.

    1992-01-01

    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.

  20. Comparison of the different approaches to generate holograms from data acquired with a Kinect sensor

    NASA Astrophysics Data System (ADS)

    Kang, Ji-Hoon; Leportier, Thibault; Ju, Byeong-Kwon; Song, Jin Dong; Lee, Kwang-Hoon; Park, Min-Chul

    2017-05-01

    Data of real scenes acquired in real-time with a Kinect sensor can be processed with different approaches to generate a hologram. 3D models can be generated from a point cloud or a mesh representation. The advantage of the point cloud approach is that computation process is well established since it involves only diffraction and propagation of point sources between parallel planes. On the other hand, the mesh representation enables to reduce the number of elements necessary to represent the object. Then, even though the computation time for the contribution of a single element increases compared to a simple point, the total computation time can be reduced significantly. However, the algorithm is more complex since propagation of elemental polygons between non-parallel planes should be implemented. Finally, since a depth map of the scene is acquired at the same time than the intensity image, a depth layer approach can also be adopted. This technique is appropriate for a fast computation since propagation of an optical wavefront from one plane to another can be handled efficiently with the fast Fourier transform. Fast computation with depth layer approach is convenient for real time applications, but point cloud method is more appropriate when high resolution is needed. In this study, since Kinect can be used to obtain both point cloud and depth map, we examine the different approaches that can be adopted for hologram computation and compare their performance.

  1. Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.

    1996-01-01

    Seismological observations of short slip duration on faults (short rise time on seismograms) during earthquakes are not consistent with conventional crack models of dynamic rupture and fault slip. In these models, the leading edge of rupture stops only when a strong region is encountered, and slip at an interior point ceases only when waves from the stopped edge of slip propagate back to that point. In contrast, some seismological evidence suggests that the duration of slip is too short for waves to propagate from the nearest edge of the ruptured surface, perhaps even if the distance used is an asperity size instead of the entire rupture dimension. What controls slip duration, if not dimensions of the fault or of asperities? In this study, dynamic earthquake rupture and slip are represented by a propagating shear crack. For all propagating shear cracks, slip velocity is highest near the rupture front, and at a small distance behind the rupture front, the slip velocity decreases. As pointed out by Heaton (1990), if the crack obeys a negative slip-rate-dependent strength relation, the lower slip velocity behind the rupture front will lead to strengthening that further reduces the velocity, and under certain circumstances, healing of slip can occur. The boundary element method of Hamano (1974) is used in a program adapted from Andrews (1985) for numerical simulations of mode II rupture with two different velocity-dependent strength functions. For the first function, after a slip-weakening displacement, the crack follows an exponential velocity-weakening relation. The characteristic velocity V0 of the exponential determines the magnitude of the velocity-dependence at dynamic velocities. The velocity-dependence at high velocity is essentially zero when V0 is small and the resulting slip velocity distribution is similar to slip weakening. If V0 is larger, rupture propagation initially resembles slip-weakening, but spontaneous healing occurs behind the rupture front. The rise time and rupture propagation velocity depend on the choice of constitutive parameters. The second strength function is a natural log velocity-dependent form similar to constitutive laws that fit experimental rock friction data at lower velocities. Slip pulses also arise with this function. For a reasonable choice of constitutive parameters, slip pulses with this function do not propagate at speeds greater than the Raleighwave velocity. The calculated slip pulses are similar in many aspects to seismic observations of short rise time. In all cases of self-healing slip pulses, the residual stress increases with distance behind the trailing edge of the pulse so that the final stress drop is much less than the dynamic stress drop, in agreement with the model of Brune (1976) and some recent seismological observations of rupture.

  2. GOES Satellite Sees Strong Front Bringing Blizzard Conditions to U.S. Southwest

    NASA Image and Video Library

    2017-12-08

    Image acquired December 19, 2011 A strong low pressure area in the southwestern U.S. today is bringing snowfall there as NOAA's GOES-13 satellite captured its associated clouds. Blizzard warnings are already posted for some areas. The image was created on Dec. 19 at 19:10 UTC (2:10 p.m. EST) from the Geostationary Operational Environmental Satellite called GOES-13. GOES-13 is operated by the National Oceanic and Atmospheric Administration. Images and animations are created by NASA's GOES Project, located at NASA's Goddard Space Flight Center, Greenbelt, Md. The low is forecast to move northeast across southeastern New Mexico today and reach southwest the Texas panhandle by early evening. The plains states including portions of Kansas, New Mexico and the Texas and Oklahoma panhandles could all have blizzard warnings later in the day on Dec. 19. Wind gusts to 60mph were recorded in northeastern New Mexico during the afternoon hours today. Kansas City may have a mix of rain, sleet and snow as the front moves past and temperatures fall. At 3 p.m. EST, the National Weather Service forecast indicated that moderate to heavy snow and strong north winds to impact the Texas and Oklahoma panhandles today into Tuesday morning. The low and associated cold front are expected to bring heavy snow to the Oklahoma panhandle and all but the far southeast Texas Panhandle. Behind the cold front, the strong winds will blow snow and lead to poor visibilities and blizzard conditions. The GOES image shows the large bank of clouds along the front stretching from the four corners states east-northeast through the Ohio Valley and into upstate New York. The rounded comma shape of clouds over Texas and stretching into Colorado indicate where the low pressure center is located. Image: NASA/NOAA GOES Project Text: NASA, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Creep rupture analysis of a beam resting on high temperature foundation

    NASA Technical Reports Server (NTRS)

    Gu, Randy J.; Cozzarelli, Francis A.

    1988-01-01

    A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.

  4. Episodic Growth of Fold-Thrust Belts: Insights from Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Yang, X.; Peel, F.; Sanderson, D. J.; McNeill, L. C.

    2016-12-01

    The sequential development of an imbricate thrust system was investigated using a set of 2D FEM models. This study provides new insights on how the style and location of thrust activity changes through cycles of thrust accretion by making refined measurements of the thrust system parameters through time and tracking these parameters through each cycle. In addition to conventional wedge parameters (i.e. surface slope, wedge width and height), the overall taper angle is used to determine how the critical taper angle is reached; a particular focus is on the region of outboard minor horizontal displacement provides insights into the forward propagation of material within, and in front of, the thrust wedge; tracking the position of the failure front (where the frontal thrust roots into the basal detachment) reveals the sequence and advancement of the imbricate thrusts. The model results show that a thrust system is generally composed of three deformation components: thrust wedge, pre-wedge and wedge front. A thrust belt involves growth that repeats episodically and cyclically. When a wedge reaches critical taper ( 10°), thrust movement within the wedge slows while the taper angle and wedge width gradually increase. In contrast, the displacement front (tracked here by the location of 0 m displacement) rapidly propagates forward along whilst the wedge height is fast growing. During this period, the wedge experiences a significant shortening after a new thrust initiates at the failure front, leading to an obvious decrease in wedge width. As soon as the critical taper is achieved, wedge interior (tracked here by the location of 50 m displacement) accelerates forward reducing the taper angle below critical. This is accompanied by a sudden increase in wedge width, slow advancement of displacement front, and slow uplift of the fold-thrust belt. The rapid movements within and in front of the wedge occur alternately. The model results also show that there is clear, although minor, activity (5-10 m displacement) in front of the thrust wedge, which distinguishes the failure front from the displacement front throughout the fold-thrust belt development. This spatial and temporal relationship may not have been previously recognized in natural systems.

  5. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  6. Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2017-12-01

    Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.

  7. Satellite and hydrographic observations of the Bering Sea ‘Green Belt’

    NASA Astrophysics Data System (ADS)

    Okkonen, Stephen R.; Schmidt, G. M.; Cokelet, E. D.; Stabeno, P. J.

    2004-05-01

    Green Belt is the aptly named region of high productivity occurring principally along and above the shelf-slope boundary in the Bering Sea. TOPEX altimeter measurements of sea-surface topography, SeaWiFS imagery of chlorophyll a concentration, and shipboard measurements of salinity and fluorescence are used to describe the surface structure of the Green Belt and its relationship to the Bering Slope Current eddy field during the 2000, 2001, and 2002 spring blooms. During spring 2000, high surface chlorophyll a concentrations (>10 mg m -3) were observed within a ˜200-km wide band adjacent to and seaward of the shelf break in the northwest Bering Sea. This high concentration chlorophyll band was associated with an anticyclonic eddy group that propagated along isobaths above the continental slope and entrained chlorophyll from the shelf-slope front. During spring 2001, anticyclonic eddies in the northwest Bering Sea had propagated off-slope prior to the onset of the spring bloom and were too far from the shelf-slope front to entrain frontal chlorophyll during the bloom. A second chlorophyll front associated with the leading edge of the off-slope eddies was observed. Between these two fronts was a region of relatively low chlorophyll a concentration (˜1 mg m -3). The eddy field during the 2002 spring bloom was observed to propagate northwestward adjacent to the shelf-break and entrain chlorophyll from the shelf-slope region in a manner similar to what was observed during the 2000 spring bloom. These observations suggest that eddies are important, if not the principal, agents that cause variability in the distribution of chlorophyll during the spring bloom in the central Bering Sea.

  8. The conductive propagation of nuclear flames. 2: Convectively bounded flames in C + O and O + Ne + Mg cores

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.; Taam, Ronald E.

    1994-01-01

    We determine the speeds, and many other physical properties, of flame fronts that propagate inward into degenerate and semidegenerate cores of carbon and oxygen (CO) and neon and oxygen (NeOMg) white dwarfs when such flames are bounded on their exterior by a convective region. Combustion in such fronts, per se, is incomplete, with only a small part of the initial mass function burned. A condition of balanced power is set up in the star where the rate of energy emitted as neutrinos from the convective region equals the power available from the unburned fuel that crosses the burning front. The propagation of the burning front itself is in turn limited by the temperature at the base of the convective shell, while cannot greatly exceed the adiabatic value. Solving for consistency between these two conditions gives a unique speed for the flame. Typical values for CO white dwarfs are a few hundredths of a centimeter per second. Flames in NeOMg mixtures are slower. Tables are presented in a form that can easily be implemented in stellar evolution codes and yield the rate at which the convective shell advances into the interior. Combining these velocities with the local equations for stellar structure, we find a minimum density for each gravitational potential below with the local equations for stellar structure, we find a minimum density for each gravitational potential below which the flame cannot propagate, and must die. Although detailed stellar models will have to be constructed to reslove some issues conclusively, our results that a CO white dwarf inginted at its edge will not burn carbon all the way to its center unless the mass of the white dwarf exceeds 0.8 solar mass. On the other hand, it is difficult to ignite carbon burning by compression alone anywhere in a white dwarf whose mass does not exceed 1.0 solar mass. Thus, compressionally ignited shell carbon burning in an accerting CO dwarf almost certainly propagates all the way to the center of the star. Implications for neutron star formation, and Type Ia supernova models, are briefly discussed. These are also applicable to massive stars in the about 10-12 solar mass range which ignite neon burning off center.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ -ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed bymore » shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.« less

  10. Detecting Motion from a Moving Platform; Phase 1: Biomimetic Vision Sensor

    DTIC Science & Technology

    2011-11-01

    optical design software, Zemax , was used to explore various optical configurations that led to the optical front-ends of the hardware prototypes...and a Truly Curved Surface 4.2. Modeling and Simulation Simulations were performed using both Zemax and MATLAB. In particular, the various...tradeoffs for light propagation through the front-end optics were investigated by simulating with Zemax , then building the physical optics for the best

  11. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  12. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts

    NASA Astrophysics Data System (ADS)

    McLaughlin, Joyce; Renzi, Daniel

    2006-04-01

    Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).

  14. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  15. Intermittent tremor migrations beneath Guerrero, Mexico, and implications for fault healing within the slow slip zone

    NASA Astrophysics Data System (ADS)

    Peng, Yajun; Rubin, Allan M.

    2017-01-01

    Slow slip events exhibit significant complexity in slip evolution and variations in recurrence intervals. Behavior that varies systematically with recurrence interval is likely to reflect different extents of fault healing between these events. Here we use high-resolution tremor catalogs beneath Guerrero, Mexico, to investigate the mechanics of slow slip. We observe complex tremor propagation styles, including rapid tremor migrations propagating either along the main tremor front or backward, reminiscent of those in northern Cascadia. We also find many migrations that originate well behind the front and repeatedly occupy the same source region during a tremor episode, similar to those previously reported from Shikoku, Japan. These migrations could be driven by slow slip in the surrounding regions, with recurrence intervals possibly modulated by tides. The propagation speed of these migrations decreases systematically with time since the previous migration over the same source area. Tremor amplitudes seem consistent with changes in the propagation speeds being controlled primarily by changes in the slip speeds. One interpretation is that the high propagation speeds and inferred high slip speeds during the migrations with short recurrence intervals are caused by incomplete healing within the host rock adjacent to the shear zone, which could lead to high permeability and reduced dilatant strengthening of the fault gouge. Similar processes may operate in other slow slip source regions such as Cascadia.

  16. Numerical studies of nonspherical carbon combustion models

    NASA Astrophysics Data System (ADS)

    Mueller, E.; Arnett, W. D.

    1982-10-01

    First results of axisymmetric numerical studies of the final evolution of degenerate C + O cores are reported. The two-dimensional convective flow is treated without a phenomenological theory of convection. The computations show that, in the beginning, the nuclear burning propagates slowly outward from the center of the star in a spherical combustion front. Small-scale eddies form, giving rise to bumps in the front. The bumps grow into blobs and eventually into fingers, which steadily elongate relative to the rest of the combustion front. This behavior is not well described by either the detonation or deflagration models, being more complex than either.

  17. Axial charges of octet and decuplet baryons in a perturbative chiral quark model

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.

    2018-05-01

    Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zardecki, A.

    The effect of multiple scattering on the validity of the Beer-Lambert law is discussed for a wide range of particle-size parameters and optical depths. To predict the amount of received radiant power, appropriate correction terms are introduced. For particles larger than or comparable to the wavelength of radiation, the small-angle approximation is adequate; whereas for small densely packed particles, the diffusion theory is advantageously employed. These two approaches are used in the context of the problem of laser-beam propagation in a dense aerosol medium. In addition, preliminary results obtained by using a two-dimensional finite-element discrete-ordinates transport code are described. Multiple-scatteringmore » effects for laser propagation in fog, cloud, rain, and aerosol cloud are modeled.« less

  19. Numerical simulations of self-focusing of ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Fibich, Gadi; Ren, Weiqing; Wang, Xiao-Ping

    2003-05-01

    Simulation of nonlinear propagation of intense ultrafast laser pulses is a hard problem, because of the steep spatial gradients and the temporal shocks that form during the propagation. In this study we adapt the iterative grid distribution method of Ren and Wang [J. Comput. Phys. 159, 246 (2000)] to solve the two-dimensional nonlinear Schrödinger equation with normal time dispersion, space-time focusing, and self-steepening. Our simulations show that, after the asymmetric temporal pulse splitting, the rear peak self-focuses faster than the front one. As a result, the collapse of the rear peak is arrested before that of the front peak. Unlike what has sometimes been conjectured, however, collapse of the two peaks is not arrested through multiple splittings, but rather through temporal dispersion.

  20. Two-zone elastic-plastic single shock waves in solids.

    PubMed

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  1. A nonlinear wave equation in nonadiabatic flame propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-06-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time.

  2. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  3. Surfing Jupiter

    NASA Image and Video Library

    2017-05-25

    Waves of clouds at 37.8 degrees latitude dominate this three-dimensional Jovian cloudscape, courtesy of NASA's Juno spacecraft. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image. The small bright high clouds are about 16 miles (25 kilometers) across and in some areas appear to form "squall lines" (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly composed of water and/or ammonia ice. https://photojournal.jpl.nasa.gov/catalog/PIA21646

  4. Control of wave propagation in a biological excitable medium by an external electric field.

    PubMed

    Sebestikova, Lenka; Slamova, Elena; Sevcikova, Hana

    2005-03-01

    We present an experimental evidence of effects of external electric fields (EFs) on the velocity of pulse waves propagating in a biological excitable medium. The excitable medium used is formed by a layer of starving cells of Dictyostelium discoideum through which the waves of increased concentration of cAMP propagate by reaction-diffusion mechanism. External dc EFs of low intensities (up to 5 V/cm) are shown to speed up the propagation of cAMP waves towards the positive electrode and slow it down towards the negative electrode. Electric fields were also found to support an emergence of new centers, emitting cAMP waves, in front of cAMP waves propagating towards the negative electrode.

  5. Microphysical Analysis of a Warm Front Using and Linking Radar and In-Situ Data.

    NASA Astrophysics Data System (ADS)

    Keppas, S.

    2017-12-01

    The northward movement of the Azores anticyclone over the ENE coast of Canada on 20th January 2009 caused the formation of a well-organized low pressure system in North Atlantic Ocean. That system was followed by a trough which approached the UK from the WNW on 21st January 2009. The corresponding warm front affected the UK with multiple rainbands. We present an analysis of the microphysical properties of the afore-mentioned situation using radar and in-situ data. The ground-based radars are located in Chilbolton (South England) and operate at 3 and 35 GHz frequency. Chilbolton's radar high resolution (0.4 Km in vertical and 0.3 Km in horizontal dimension) and dual-polarization technology offers a view of the different features of the hydrometeors over large scales. The in-situ measurements have been taken during a flight over the SW England in the framework of the APPRAISE Clouds project, funded by the Natural Environment Research Council (NERC). The data from microphysical probes (CDP, 2D-S, CIP15, CIP100) provide a complete picture of hydrometeor properties (cloud droplets, ice particles and snow) are used for the microphysical analysis of this well- defined warm front. Using these datasets, features we try to identify and analyse regions, within mixed-phase clouds, of embedded convection, long ice fall streaks and the warm conveyor belt. We also try to explain the way that the warm conveyor belt affects the ice multiplication processes and the formation of some particular ice-particles, which we called ice-lollies due to their similarities in shape. The main goals of this work are: a. the identification and interpretation of areas with specific ice crystal habits by comparing radar and in-situ observations and b. the determination of the polarimetric and microphysical characteristics of a warm front.

  6. Non linear dynamics of flame cusps: from experiments to modeling

    NASA Astrophysics Data System (ADS)

    Almarcha, Christophe; Radisson, Basile; Al-Sarraf, Elias; Quinard, Joel; Villermaux, Emmanuel; Denet, Bruno; Joulin, Guy

    2016-11-01

    The propagation of premixed flames in a medium initially at rest exhibits the appearance and competition of elementary local singularities called cusps. We investigate this problem both experimentally and numerically. An analytical solution of the two-dimensional Michelson Sivashinsky equation is obtained as a composition of pole solutions, which is compared with experimental flames fronts propagating between glass plates separated by a thin gap width. We demonstrate that the front dynamics can be reproduced numerically with a good accuracy, from the linear stages of destabilization to its late time evolution, using this model-equation. In particular, the model accounts for the experimentally observed steady distribution of distances between cusps, which is well-described by a one-parameter Gamma distribution, reflecting the aggregation type of interaction between the cusps. A modification of the Michelson Sivashinsky equation taking into account gravity allows to reproduce some other special features of these fronts. Aix-Marseille Univ., IRPHE, UMR 7342 CNRS, Centrale Marseille, Technopole de Château Gombert, 49 rue F. Joliot Curie, 13384 Marseille Cedex 13, France.

  7. Fingering instabilities in bacterial community phototaxis

    NASA Astrophysics Data System (ADS)

    Vps, Ritwika; Man Wah Chau, Rosanna; Casey Huang, Kerwyn; Gopinathan, Ajay

    Synechocystis sp PCC 6803 is a phototactic cyanobacterium that moves directionally in response to a light source. During phototaxis, these bacterial communities show emergent spatial organisation resulting in the formation of finger-like projections at the propagating front. In this study, we propose an analytical model that elucidates the underlying physical mechanisms which give rise to these spatial patterns. We describe the migrating front during phototaxis as a one-dimensional curve by considering the effects of phototactic bias, diffusion and surface tension. By considering the propagating front as composed of perturbations to a flat solution and using linear stability analysis, we predict a critical bias above which the finger-like projections appear as instabilities. We also predict the wavelengths of the fastest growing mode and the critical mode above which the instabilities disappear. We validate our predictions through comparisons to experimental data obtained by analysing images of phototaxis in Synechocystis communities. Our model also predicts the observed loss of instabilities in taxd1 mutants (cells with inactive TaxD1, an important photoreceptor in finger formation), by considering diffusion in mutually perpendicular directions and a lower, negative bias.

  8. Implementation of the pyramid wavefront sensor as a direct phase detector for large amplitude aberrations

    NASA Astrophysics Data System (ADS)

    Kupke, Renate; Gavel, Don; Johnson, Jess; Reinig, Marc

    2008-07-01

    We investigate the non-modulating pyramid wave-front sensor's (P-WFS) implementation in the context of Lick Observatory's Villages visible light AO system on the Nickel 1-meter telescope. A complete adaptive optics correction, using a non-modulated P-WFS in slope sensing mode as a boot-strap to a regime in which the P-WFS can act as a direct phase sensor is explored. An iterative approach to reconstructing the wave-front phase, given the pyramid wave-front sensor's non-linear signal, is developed. Using Monte Carlo simulations, the iterative reconstruction method's photon noise propagation behavior is compared to both the pyramid sensor used in slope-sensing mode, and the traditional Shack Hartmann sensor's theoretical performance limits. We determine that bootstrapping using the P-WFS as a slope sensor does not offer enough correction to bring the phase residuals into a regime in which the iterative algorithm can provide much improvement in phase measurement. It is found that both the iterative phase reconstructor and the slope reconstruction methods offer an advantage in noise propagation over Shack Hartmann sensors.

  9. Spontaneous Wave Generation from Submesoscale Fronts and Filaments

    NASA Astrophysics Data System (ADS)

    Shakespeare, C. J.; Hogg, A.

    2016-02-01

    Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.

  10. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  11. Three-dimensional effects in interfacial crack propagation

    NASA Astrophysics Data System (ADS)

    Liechti, K. M.; Chai, Y.-S.; Liang, Y.-M.

    1992-09-01

    The paper describes the use of crack-opening interferometry for examining the variation in normal crack-opening displacements (NCOD) along the front of an interfacial crack in an edge-cracked bimaterial strip under biaxial loading. For the glass/epoxy combination considered here, the crack front was concave in the direction of crack growth, in contrast to previous observations with a glass/polyurethane/glass sandwich specimen and cracks in homogeneous materials. The NCOD were greatest in the interior of the specimen for all mode-mixes considered and the exponents in a power-law fit of NCOD versus distance from the crack front decreased toward the free surface. The exponents varied with mode-mix, suggesting that interfacial crack-front geometries could be similarly affected.

  12. The structure and spectrum of a colliding-cloud system and its possible relationship to QSOs

    NASA Technical Reports Server (NTRS)

    Daltabuit, E.; Macalpine, G. M.; Cox, D. P.

    1978-01-01

    A collision between two gas clouds with initial densities of approximately 10 million per cu cm, velocities of about 1000 km/s, and radii of approximately 1 pc is investigated quantitatively by coupling a calculation of the radiation spectrum resulting from the anticipated shock fronts with a computation for the conversion of this high-energy radiation into optical emission in adjacent photoionized regions. The detailed structure of the colliding clouds is discussed, and the effects of an ambient magnetic field are considered. The combined emission-line spectrum is presented along with continuum emission estimates for thermal, synchrotron, and very-high-energy bremsstrahlung mechanisms. It is shown that significant continua can be produced over the range from 300 microns to 3 keV, including a blackbody contribution from a high-density neutral region between the shock fronts, free-free and free-bound radiation from the cooling zones directly behind the shocks, and free-free, free-bound, and two-photon radiation from the photoionized regions immediately ahead of and behind the cooling zones. The theoretical spectrum of the structure resulting from the collision is found to be similar in general and in some details to those observed for typical quasars.

  13. Satellite Shows Powerful Cold Front Moving Off U.S. East Coast

    NASA Image and Video Library

    2014-05-16

    NOAA's GOES-East satellite captured an image of a powerful cold front that triggered flash flood watches and warnings along the U.S. East Coast on May 16. NOAA's National Weather Service noted flash flooding was possible from New England into eastern North Carolina today, May 16. The clouds associated with the long cold front was captured using visible data from NOAA's GOES-East or GOES-13 satellite on at 1900 UTC (3:00 p.m. EDT) and was made into an image by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds stretched from Maine south through the Mid-Atlantic down to southern Florida with a tail of clouds extending into the western Caribbean Sea. South of Lake Michigan the rounded swirl of clouds indicates another low pressure system. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  15. Modeling of slow crack propagation in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Stormo, Arne; Hansen, Alex; Schmittbuhl, Jean

    2015-04-01

    Crack propagation in heterogeneous media is a rich problem which involves the interplay of various physical processes. The problem has been intensively investigated theoretically, numerically, and experimentally, but a unifying model capturing all the experimental features has not been entirely achieved despite its broad range of implications in Earth sciences problems. The slow propagation of a crack front where long range elastic interactions are dominant, is of crucial importance to fill the gap between experiments and models. Several theoretical and numerical works have been devoted to quasi-static models. Such models give rise to an intermittent local activity characterized by a depinning transition and can be viewed as a critical phenomenon. However these models fail to reproduce all experimental conditions, notably the front morphology does not display any cross-over length with two different roughness exponents above and below the cross-over as observed experimentally. Here, we compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations from a cantilever fiber bundle model. The model consists of a planar set of brittle fibers between an elastic half-space and a rigid square root shaped plate which loads the system in a cantilever configuration. The latter is shown to provide an improved opening and stress field in the process zone around the crack tip. The model shares a similar scale invariant roughening of the crack front both at small and large scales and a similar power law distribution of the local velocity of the crack front to experiments. Implications for induced seismicity at the brittle-creep transition are discussed. We show that a creep route for induced seismicity is possible when heterogeneities exist along the fault. Indeed, seismic event occurrences in time and space are in strong relation with the development of the aseismic motion recorded during the experiment and the model. We also infer the statistical properties of the organization of the seismicity that shows strong space-time clustering. We conclude that aseismic processes might drive seismicity in the brittle-creep regime.

  16. TEMPORAL VARIABILITY FROM THE TWO-COMPONENT ADVECTIVE FLOW SOLUTION AND ITS OBSERVATIONAL EVIDENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-10

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclinationmore » black hole source GX 339-4 during its 2006–07 outburst using RXTE /PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν {sub c}) of ∼3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.« less

  17. Pine Island Glacier, Antarctica, MISR Multi-angle Composite

    Atmospheric Science Data Center

    2013-12-17

    ...     View Larger Image (JPEG) A large iceberg has finally separated from the calving front ... next due to stereo parallax. This parallax is used in MISR processing to retrieve cloud heights over snow and ice. Additionally, a plume ...

  18. Modelling the Deformation Front of a Fold-Thrust Belt: the Effect of an Upper Detachment Horizon

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.; Koyi, H.; Nilfouroushan, F.; Cosgrove, J. W.

    2008-12-01

    Structures found at the deformation fronts of fold-thrust belts are variable in type, geometry and spatial organisation, as can be demonstrated from comparisons between structures in the Zagros Fold-Thrust Belt, Iran and the Sawtooth Range, Montana. A range of influencing factors has been suggested to account for this variation, including the mechanical properties and distribution of any detachment horizons within the cover rock succession. A series of analogue models was designed to test this hypothesis, under conditions scaled to represent the Sawtooth Range, Montana. A brittle sand pack, containing an upper ductile layer with variable geometry, was shortened above a ductile base and the evolution of the deformation front was monitored throughout the deformation using a high-accuracy laser scanner. In none of the experiments did the upper detachment horizon cover the entire model. In experiments where it pinched out perpendicular to the shortening direction, a triangle zone was formed when the deformation front reached the pinch out. This situation is analogous to the Teton Canyon region structures in the Sawtooth Range, Montana, where the Cretaceous Colorado Shale unit pinches out at the deformation front, favouring the development of a triangle zone in this region. When the pinch out was oblique to the shortening direction, a more complex series of structures was formed. However, when shortening stopped before the detachment pinch out was reached, the deformation front structures were foreland-propagating and no triangle zone was observed. This situation is analogous to foreland-propagating thrust structures developed at the deformation front in the Swift Dam region of the Sawtooth Range, Montana and to the development of fault-bend folds at the deformation front of the Zagros Fold-Thrust Belt, Iran. We suggest that the presence of a suitable intermediate detachment horizon within a sediment pile can be invoked as a valid explanation for the development of varied deformation front structures in fold-thrust belts. Specifically, the spatial extent of the upper detachment horizon with respect to the spatial extent of the deformed region is a key influence on the development of deformation front structures. However, we acknowledge that factors such as basement structure and variable sedimentation within the foreland basin may also be key influences on deformation front structures in other fold-thrust belts.

  19. Failure waves in glass and ceramics under shock compression

    NASA Astrophysics Data System (ADS)

    Brar, N. S.

    2000-04-01

    The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et al.

  20. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luketa, Anay; Rudeen, David Keith

    The objective of this work is to assess dispersion distances of a vapor mixture of species released from a railcar containing a tight crude oil. Tight crude oils can have higher levels of light ends as compared to conventional crude oils [1], which if released and dispersed could pose a potential hazard with regards to a flash fire, explosion, and/or asphyxiation. A historical accident involving rail transport in Viareggio, Italy illustrates how the spillage of LPG can lead to severe damage as a result of a propagating vapor cloud [2]. One of 14 railcars was punctured after derailment, releasing aboutmore » 110 m 3 of LPG into a densely populated area (2000 persons/km 2 ). The resulting vapor cloud propagated and infiltrated nearby buildings and houses which were an average of 10 m in height. Ignition of the cloud occurred approximately 100 to 300 seconds after the start of the spill. A flash fire and explosions resulted, killing 31 people. Evidence suggests that most deaths occurred due to the asphyxiation and thermal hazards from the flash fire. Thus, the motivation for this work is to assess if significant vapors can develop from a railcar carrying a tight crude oil and if this cloud could disperse potentially to nearby populations.« less

  2. Effect of dry large-scale vertical motions on initial MJO convective onset

    NASA Astrophysics Data System (ADS)

    Powell, Scott W.; Houze, Robert A.

    2015-05-01

    Anomalies of eastward propagating large-scale vertical motion with ~30 day variability at Addu City, Maldives, move into the Indian Ocean from the west and are implicated in Madden-Julian Oscillation (MJO) convective onset. Using ground-based radar and large-scale forcing data derived from a sounding array, typical profiles of environmental heating, moisture sink, vertical motion, moisture advection, and Eulerian moisture tendency are computed for periods prior to those during which deep convection is prevalent and those during which moderately deep cumulonimbi do not form into deep clouds. Convection with 3-7 km tops is ubiquitous but present in greater numbers when tropospheric moistening occurs below 600 hPa. Vertical eddy convergence of moisture in shallow to moderately deep clouds is likely responsible for moistening during a 3-7 day long transition period between suppressed and active MJO conditions, although moistening via evaporation of cloud condensate detrained into the environment of such clouds may also be important. Reduction in large-scale subsidence, associated with a vertical velocity structure that travels with a dry eastward propagating zonal wavenumbers 1-1.5 structure in zonal wind, drives a steepening of the lapse rate below 700 hPa, which supports an increase in moderately deep moist convection. As the moderately deep cumulonimbi moisten the lower troposphere, more deep convection develops, which itself moistens the upper troposphere. Reduction in large-scale subsidence associated with the eastward propagating feature reinforces the upper tropospheric moistening, helping to then rapidly make the environment conducive to formation of large stratiform precipitation regions, whose heating is critical for MJO maintenance.

  3. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    NASA Astrophysics Data System (ADS)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  4. Numerical study of the interaction between a head fire and a backfire propagating in grassland.

    Treesearch

    Dominique Morvan; Sofiane Meradji; William Mell

    2011-01-01

    One of the objectives of this paper was to simulate numerically the interaction between two line fires ignited in a grassland, on a flat terrain, perpendicularly to the wind direction, in such a way that the two fire fronts (a head fire and a backfire) propagated in opposite directions parallel to the wind. The numerical simulations were conducted in 3-0 using the new...

  5. Possible acceleration of cosmic rays in a rotating system: Uehling-Uhlenbeck model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwang-Hua, Chu Rainer, E-mail: 1559877413@qq.com

    2016-11-15

    We illustrate the possible acceleration of cosmic rays passing through a kind of amplification channel (via diffusion modes of propagating plane-wave fronts) induced by a rotating system. Our analysis is mainly based on the quantum discrete kinetic model (considering a discrete Uehling-Uhlenbeck collision term), which has been used to study the propagation of plane (e.g., acoustic) waves in a system of rotating gases.

  6. Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2015-07-01

    The properties of whistler modes excited by single and multiple magnetic loop antennas have been investigated in a large laboratory plasma. A single loop excites a wavepacket, but an array of loops across the ambient magnetic field B0 excites approximate plane whistler modes. The single loop data are measured. The array patterns are obtained by linear superposition of experimental data shifted in space and time, which is valid in a uniform plasma and magnetic field for small amplitude waves. Phasing the array changes the angle of wave propagation. The antennas are excited by an rf tone burst whose propagating envelope and oscillations yield group and phase velocities. A single loop antenna with dipole moment across B0 excites wave packets whose topology resembles m = 1 helicon modes, but without radial boundaries. The phase surfaces are conical with propagation characteristics of Gendrin modes. The cones form near the antenna with comparable parallel and perpendicular phase velocities. A physical model for the wave excitation is given. When a wave burst is applied to a phased antenna array, the wave front propagates both along the array and into the plasma forming a "whistler wing" at the front. These laboratory observations may be relevant for excitation and detection of whistler modes in space plasmas.

  7. Observations of thunderstorm-related 630 nm airglow depletions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2015-12-01

    The Midlatitude All-sky imaging Network for Geophysical Observations (MANGO) is an NSF-funded network of 630 nm all-sky imagers in the continental United States. MANGO will be used to observe the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network is actively being deployed and will ultimately consist of nine all-sky imagers. These imagers form a network providing continuous coverage over the western United States, including California, Oregon, Washington, Utah, Arizona and Texas extending south into Mexico. This network sees high levels of both medium and large scale wave activity. Apart from the widely reported northeast to southwest propagating wave fronts resulting from the so called Perkins mechanism, this network observes wave fronts propagating to the west, north and northeast. At least three of these anomalous events have been associated with thunderstorm activity. Imager data has been correlated with both GPS data and data from the AIRS (Atmospheric Infrared Sounder) instrument on board NASA's Earth Observing System Aqua satellite. We will present a comprehensive analysis of these events and discuss the potential thunderstorm source mechanism.

  8. Detonation suppression in hydrogen-air mixtures using porous coatings on the walls

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.

    2018-05-01

    We considered the problem of detonation suppression and weakening of blast wave effects occurring during the combustion of hydrogen-air mixtures in confined spaces. The gasdynamic processes during combustion of hydrogen, an alternative environmentally friendly fuel, were also considered. Detonation decay and flame propagation in hydrogen-air mixtures were experimentally investigated in rectangular cross-section channels with solid walls and two types of porous coatings: steel wool and polyurethane foam. Shock wave pressure dynamics inside the section with porous coating were studied using pressure sensors; flame front propagation was studied using photodiodes and high-speed camera visualization. For all mixtures, the detonation wave formed before entering the section with porous coating. For both porous materials, the steady detonation wave decoupled in the porous section of the channel into a shock wave and flame front propagating with a velocity around the Chapman-Jouguet acoustic velocity. By the end of the porous section, shock wave pressure reductions of 70 and 85% were achieved for the polyurethane foam and steel wool, respectively. The dependence of the flame velocity on the mixture composition (equivalence ratio) is presented.

  9. Fluctuation-controlled front propagation

    NASA Astrophysics Data System (ADS)

    Ridgway, Douglas Thacher

    1997-09-01

    A number of fundamental pattern-forming systems are controlled by fluctuations at the front. These problems involve the interaction of an infinite dimensional probability distribution with a strongly nonlinear, spatially extended pattern-forming system. We have examined fluctuation-controlled growth in the context of the specific problems of diffusion-limited growth and biological evolution. Mean field theory of diffusion-limited growth exhibits a finite time singularity. Near the leading edge of a diffusion-limited front, this leads to acceleration and blowup. This may be resolved, in an ad hoc manner, by introducing a cutoff below which growth is weakened or eliminated (8). This model, referred to as the BLT model, captures a number of qualitative features of global pattern formation in diffusion-limited aggregation: contours of the mean field match contours of averaged particle density in simulation, and the modified mean field theory can form dendritic features not possible in the naive mean field theory. The morphology transition between dendritic and non-dendritic global patterns requires that BLT fronts have a Mullins-Sekerka instability of the wavefront shape, in order to form concave patterns. We compute the stability of BLT fronts numerically, and compare the results to fronts without a cutoff. A significant morphological instability of the BLT fronts exists, with a dominant wavenumber on the scale of the front width. For standard mean field fronts, no instability is found. The naive and ad hoc mean field theories are continuum-deterministic models intended to capture the behavior of a discrete stochastic system. A transformation which maps discrete systems into a continuum model with a singular multiplicative noise is known, however numerical simulations of the continuum stochastic system often give mean field behavior instead of the critical behavior of the discrete system. We have found a new interpretation of the singular noise, based on maintaining the symmetry of the absorbing state, but which is unsuccessful at capturing the behavior of diffusion-limited growth. In an effort to find a simpler model system, we turned to modelling fitness increases in evolution. The work was motivated by an experiment on vesicular stomatitis virus, a short (˜9600bp) single-stranded RNA virus. A highly bottlenecked viral population increases in fitness rapidly until a certain point, after which the fitness increases at a slower rate. This is well modeled by a constant population reproducing and mutating on a smooth fitness landscape. Mean field theory of this system displays the same infinite propagation velocity blowup as mean field diffusion-limited aggregation. However, we have been able to make progress on a number of fronts. One is solving systems of moment equations, where a hierarchy of moments is truncated arbitrarily at some level. Good results for front propagation velocity are found with just two moments, corresponding to inclusion of the basic finite population clustering effect ignored by mean field theory. In addition, for small mutation rates, most of the population will be entirely on a single site or two adjacent sites, and the density of these cases can be described and solved. (Abstract shortened by UMI.)

  10. Properties of Deflagration Fronts and Models for Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Domínguez, I.; Höflich, P.

    2000-01-01

    Detailed models of the explosion of a white dwarf that include self-consistent calculations of the light curve and spectra provide a link between observational quantities and the underlying explosion model. These calculations assume spherical geometry and are based on parameterized descriptions of the burning front. Recently, the first multidimensional calculations for nuclear burning fronts have been performed. Although a fully consistent treatment of the burning fronts is beyond the current state of the art, these calculations provide a new and better understanding of the physics. Several new descriptions for flame propagation have been proposed by Khokhlov et al. and Niemeyer et al. Using various descriptions for the propagation of a nuclear deflagration front, we have studied the influence on the results of previous analyses of Type Ia supernovae, namely, the nucleosynthesis and structure of the expanding envelope. Our calculations are based on a set of delayed detonation models with parameters that give a good account of the optical and infrared light curves and of the spectral evolution. In this scenario, the burning front first propagates in a deflagration mode and subsequently turns into a detonation. The explosions and light curves are calculated using a one-dimensional Lagrangian radiation-hydro code including a detailed nuclear network. We find that the results of the explosion are rather insensitive to details of the description of the deflagration front, even if its speed and the time from the transition to detonation differ almost by a factor of 2. For a given white dwarf (WD) and a fixed transition density, the total production of elements changes by less than 10%, and the distribution in the velocity space changes by less than 7%. Qualitatively, this insensitivity of the final outcome of the explosion to the details of the flame propagation during the (slow) deflagration phase can be understood as follows: for plausible variations in the speed of the turbulent deflagration, the duration of this phase is several times longer than the sound crossing time in the initial WD. Therefore, the energy produced during the early nuclear burning can be redistributed over the entire WD, causing a slow preexpansion. In this intermediate state, the WD is still bound but its binding energy is reduced by the amount of nuclear energy. The expansion ratio depends mainly on the total amount of burning during the deflagration phase. Consequently, the conditions are very similar under which nuclear burning takes place during the subsequent detonation phase. In our example, the density and temperature at the burning front changes by less than 3%, and the expansion velocity changes by less than 10%. The burning conditions are very close to previous calculations which used a constant deflagration velocity. Based on a comparison with observations, those required low deflagration speeds (~2%-3% of the speed of sound). Exceptions to the similarity are the innermost layers of ~0.03-0.05 Msolar. Still, nuclear burning is in nuclear statistical equilibrium, but the rate of electron capture is larger for the new descriptions of the flame propagation. Consequently, the production of very neutron-rich isotopes is increased. In our example, close to the center Ye is about 0.44, compared to 0.46 in the model with constant deflagration speed. This increases the 48Ca production by more than a factor of 100 to 3.E-6 Msolar. Conclusions from previous analyses of light curves and spectra on the properties of the WD and the explosions will not change, and even with the new descriptions, the delayed detonation scenario is consistent with the observations. Namely, the central density results with respect to the chemical structure of the progenitor and the transition density from deflagration to detonation do not change. The reason for this similarity is the fact that the total amount of burning during the long deflagration phase determines the restructuring of the WD prior to the detonation. Therefore, we do not expect that the precise, microphysical prescription for the speed of a subsonic burning front has a significant effect on the outcome. However, at the current level of uncertainties for the burning front, the relation between properties of the burning front and of the initial white dwarf cannot be obtained from a comparison between observation and theoretical predictions by one-dimensional models. Multidimensional calculations are needed (1) to get inside the relations between model parameters such as central density and properties of the deflagration front and its relation to the transition density between deflagration and detonation and (2) to make use of information on asphericity that is provided by polarization measurements. These questions are essential to test, estimate, and predict some of the evolutionary effects of SNe Ia and their use as cosmological yardsticks.

  11. Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.

    2010-01-01

    Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.

  12. The effects of man-made smokes and battlefield-induced smokes on the propagation of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Vandewal, Anthony

    1993-11-01

    This paper provides an unclassified overview of the U.S. Army program that collects and disseminates information about the effects of battlefied smokes and obscurants on weapon system performance. The primary mechanism for collecting field data is an annual exercise called SMOKE WEEK. In SMOKE WEEK testing, a complete characterization is made of the ambient test conditions, of the electromagnetic radiation propagation in clear and obscured conditions, and of the obscuring cloud that the particles that comprise the cloud. This paper describes the instrumentation and methodology employed to make these field measurements, methods of analysis, and some typical results. The effects of these realistic battlefield environments on weapons system performance are discussed generically.

  13. Numerical simulation of idealized front motion in neutral and stratified atmosphere with a hyperbolic system of equations

    NASA Astrophysics Data System (ADS)

    Yudin, M. S.

    2017-11-01

    In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.

  14. Temperature in subsonic and supersonic radiation fronts measured at OMEGA

    NASA Astrophysics Data System (ADS)

    Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John

    2017-10-01

    Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.

  15. Forced imbibition through model porous media

    NASA Astrophysics Data System (ADS)

    Odier, Celeste; Levache, Bertrand; Bartolo, Denis

    2016-11-01

    A number of industrial and natural process ultimately rely on two-phase flow in heterogeneous media. One of the most prominent example is oil recovery which has driven fundamental and applied research in this field for decades. Imbibition occurs when a wetting fluid displaces an immiscible fluid e.g. in a porous media. Using model microfluidic experiment we control both the geometry and wetting properties of the heterogenous media, and show that the typical front propagation picture fails when imbibition is forced and the displacing fluid is less viscous than the non-wetting fluid. We identify and quantitatively characterize four different flow regimes at the pore scale yielding markedly different imbibition patterns at large scales. In particular we will discuss the transition from a conventional 2D-front propagation scenario to a regime where the meniscus dynamics is an intrinsically 3D process.

  16. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  17. Gas propagation following a sudden loss of vacuum in a pipe cooled by He I and He II.

    NASA Astrophysics Data System (ADS)

    Garceau, N.; Guo, W.; Dodamead, T.

    2017-12-01

    Many cryogenic systems around the world are concerned with the sudden catastrophic loss of vacuum for cost, preventative damage, safety or other reasons. The experiments in this paper were designed to simulate the sudden vacuum break in the beam-line pipe of a liquid helium cooled superconducting particle accelerator. This paper expands previous research conducted at the National High Magnetic Field Laboratory and evaluates the differences between normal helium (He I) and superfluid helium (He II). For the experiments, a straight pipe and was evacuated and immersed in liquid helium at 4.2 K and below 2.17 K. Vacuum loss was simulated by opening a solenoid valve on a buffer tank filled nitrogen gas. Gas front arrival was observed by a temperature rise of the tube. Preliminary results suggested that the speed of the gas front through the experiment decreased exponentially along the tube for both normal liquid helium and super-fluid helium. The system was modified to a helical pipe system to increase propagation length. Testing and analysis on these two systems revealed there was minor difference between He I and He II despite the difference between the two distinct helium phases heat transfer mechanisms: convection vs thermal counterflow. Furthermore, the results indicated that the temperature of the tube wall above the LHe bath also plays a significant role in the initial front propagation. More systematic measurements are planned in with the helical tube system to further verify the results.

  18. Simulation of Magnetic Cloud Erosion and Deformation During Propagation

    NASA Astrophysics Data System (ADS)

    Manchester, W.; Kozyra, J. U.; Lepri, S. T.; Lavraud, B.; Jackson, B. V.

    2013-12-01

    We examine a three-dimensional (3-D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with it's high speed, the ICME evolves in ways that give it a unique appearance at 1AU that does not resemble a typical ICME. First, as the ICME decelerates in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport azimuthal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely open configuration near its nose. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence such remarkable behavior has occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material, and the analysis of SMEI data provides the trajectory of this dense plasma from the Sun. Consistent with the simulation, we find the azimuthal flux (Bz) to be entirely unbalanced giving the appearance that the flux rope has completely eroded on the anti-sunward side.

  19. Front acceleration by dynamic selection in Fisher population waves

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.

    2012-10-01

    We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.

  20. The Impact of Discontinuity Front Orientation on the Accuracy of L1 Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Szabo, A.

    2013-12-01

    Current space weather forecasting from the Sun-Earth first Lagrange (L1) point assumes that all observed solar wind discontinuity fronts (interplanetary shocks, ICME boundaries) are perpendicular to the Sun-Earth line and are propagating radially out from eh Sun. In reality, these weather fronts can have significantly tilted orientation. Combined ACE, Wind and Soho observations allow the quantification of this effect. With the launch of the DSCOVR spacecraft in early 2015, dual real-time solar wind measurements will become available (at least at some time). Algorithms and their impact exploiting this unique scenario will be discussed.

  1. Software Reviews.

    ERIC Educational Resources Information Center

    McGrath, Diane, Ed.

    1989-01-01

    Reviewed are two computer software programs for Apple II computers on weather for upper elementary and middle school grades. "Weather" introduces the major factors (temperature, humidity, wind, and air pressure) affecting weather. "How Weather Works" uses simulation and auto-tutorial formats on sun, wind, fronts, clouds, and…

  2. NASA AIRS Instrument Captures Data on Monster Winter Storm Affecting 30 States

    NASA Image and Video Library

    2011-02-02

    This visible image from NASA Aqua satellite Jan. 31 shows thickening clouds along a developing intense front in the plains and Midwestern states that will produce excessive snow, freezing rain, sleet, and wind in those areas.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less

  4. Carbon Dioxide Snow Storms During the Polar Night on Mars

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Colaprete, Anthony

    2001-01-01

    The Mars Orbiter Laser Altimeter (MOLA) detected clouds associated with topographic features during the polar night on Mars. While uplift generated from flow over mountains initiates clouds on both Earth and Mars, we suggest that the Martian clouds differ greatly from terrestrial mountain wave clouds. Terrestrial wave clouds are generally compact features with sharp edges due to the relatively small particles in them. However, we find that the large mass of condensible carbon dioxide on Mars leads to clouds with snow tails that may extend many kilometers down wind from the mountain and even reach the surface. Both the observations and the simulations suggest substantial carbon dioxide snow precipitation in association with the underlying topography. This precipitation deposits CO2, dust and water ice to the polar caps, and may lead to propagating geologic features in the Martian polar regions.

  5. CYLINDRICAL WAVES OF FINITE AMPLITUDE IN DISSIPATIVE MEDIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naugol'nykh, K.A.; Soluyan, S.I.; Khokhlov, R.V.

    1962-07-01

    Propagation of diverging and converging cylindrical waves in a nonlinear, viscous, heat conducting medium is analyzed using approximation methods. The KrylovBogolyubov method was used for small Raynold's numbers, and the method of S. I. Soluyan et al. (Vest. Mosk. Univ. ser. phys. and astronomy 3, 52-81, 1981), was used for large Raynold's numbers. The formation and dissipation of shock fronts and spatial dimensions of shock phenomena were analyzed. It is shown that the problem of finiteamplitude cylindrical wave propagation is identical to the problem of plane wave propagations in a medium with variable viscosity. (tr-auth)

  6. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates

    NASA Astrophysics Data System (ADS)

    Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.

    2018-04-01

    In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.

  7. On factors controlling precursor slip fronts in the laboratory and their relation to slow slip events in nature

    NASA Astrophysics Data System (ADS)

    Selvadurai, Paul A.; Glaser, Steven D.; Parker, Jessica M.

    2017-03-01

    Spatial variations in frictional properties on natural faults are believed to be a factor influencing the presence of slow slip events (SSEs). This effect was tested on a laboratory frictional interface between two polymethyl methacrylate (PMMA) bodies. We studied the evolution of slip and slip rates that varied systematically based on the application of both high and low normal stress (σ0=0.8 or 0.4 MPa) and the far-field loading rate (VLP). A spontaneous, frictional rupture expanded from the central, weaker, and more compliant section of the fault that had fewer asperities. Slow rupture propagated at speeds Vslow˜0.8 to 26 mm s-1 with slip rates from 0.01 to 0.2 μm s-1, resulting in stress drops around 100 kPa. During certain nucleation sequences, the fault experienced a partial stress drop, referred to as precursor detachment fronts in tribology. Only at the higher level of normal stress did these fronts exist, and the slip and slip rates mimicked the moment and moment release rates during the 2013-2014 Boso SSE in Japan. The laboratory detachment fronts showed rupture propagation speeds Vslow/VR∈ (5 to 172) × 10-7 and stress drops ˜ 100 kPa, which both scaled to the aforementioned SSE. Distributions of asperities, measured using a pressure sensitive film, increased in complexity with additional normal stress—an increase in normal stress caused added complexity by increasing both the mean size and standard deviation of asperity distributions, and this appeared to control the presence of the detachment front.

  8. RADAR performance experiments

    NASA Technical Reports Server (NTRS)

    Leroux, C.; Bertin, F.; Mounir, H.

    1991-01-01

    Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.

  9. Nonlinear wave fronts and ionospheric irregularities observed by HF sounding over a powerful acoustic source

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth; Rickel, Dwight

    1989-06-01

    Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.

  10. The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.

    1997-01-01

    Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.

  11. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2009-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  12. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  13. Intraseasonal Variations in Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2009-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  14. Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.

    NASA Astrophysics Data System (ADS)

    Hafner, Jan; Xie, Shang-Ping

    2003-12-01

    Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.

  15. Studies on possible propagation of microbial contamination in planetary clouds

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.

    1973-01-01

    One of the key parameters in estimation of the probability of contamintion of the outer planets (Jupiter, Saturn, Uranus, etc.) is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter appears to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer planets. Current work is directed at demonstration of aerial metabolism under near optimal conditions and tests of propagation in simulated Jovian atmospheres.

  16. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostlymore » filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations« less

  17. Radiation efficiency during slow crack propagation: an experimental study.

    NASA Astrophysics Data System (ADS)

    Jestin, Camille; Lengliné, Olivier; Schmittbuhl, Jean

    2017-04-01

    Creeping faults are known to host a significant aseismic deformation. However, the observations of micro-earthquake activity related to creeping faults (e.g. San Andreas Faults, North Anatolian Fault) suggest the presence of strong lateral variabilities of the energy partitioning between radiated and fracture energies. The seismic over aseismic slip ratio is rather difficult to image over time and at depth because of observational limitations (spatial resolution, sufficiently broad band instruments, etc.). In this study, we aim to capture in great details the energy partitioning during the slow propagation of mode I fracture along a heterogeneous interface, where the toughness is strongly varying in space.We lead experiments at laboratory scale on a rock analog model (PMMA) enabling a precise monitoring of fracture pinning and depinning on local asperities in the brittle-creep regime. Indeed, optical imaging through the transparent material allows the high resolution description of the fracture front position and velocity during its propagation. At the same time, acoustic emissions are also measured by accelerometers positioned around the rupture. Combining acoustic records, measurements of the crack front position and the loading curve, we compute the total radiated energy and the fracture energy. We deduce from them the radiation efficiency, ηR, characterizing the proportion of the available energy that is radiated in form of seismic wave. We show an increase of ηR with the crack rupture speed computed for each of our experiments in the sub-critical crack propagation domain. Our experimental estimates of ηR are larger than the theoretical model proposed by Freund, stating that the radiation efficiency of crack propagation in homogeneous media is proportional to the crack velocity. Our results are demonstrated to be in agreement with existing studies which showed that the distribution of crack front velocity in a heterogeneous medium can be well described by a power-law decay function above the average fracture front speed, ⟨v⟩, and then establishing a relation of the type ηR ∝⟨v ⟩0.55. These observations suggest that the radiation efficiency in heterogeneous media is defined by a power law involving a lower exponent value than the one predicted for a homogeneous media, but is sensitive to the shape of the velocity distribution of the heterogeneous interface. Finally, when studying the case of similar events observed in natural conditions, such as seismic swarms associated to slow slip along a fault, we notice a good agreement between our results and the radiation efficiency computed for these field data.

  18. The impact of the diurnal cycle on the propagation of Madden-Julian Oscillation convection across the Maritime Continent

    DOE PAGES

    Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; ...

    2016-09-19

    Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value,more » the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. Here, an analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.« less

  19. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  20. Integral field spectroscopy of selected areas of the Bright bar and Orion-S cloud in the Orion nebula

    NASA Astrophysics Data System (ADS)

    Mesa-Delgado, A.; Núñez-Díaz, M.; Esteban, C.; López-Martín, L.; García-Rojas, J.

    2011-10-01

    We present integral field spectroscopy of two selected zones in the Orion nebula obtained with the Potsdam Multi-Aperture Spectrophotometer, covering the optical spectral range from 3500 to 7200 Å and with a spatial resolution of 1 arcsec. The observed zones are located on the prominent Bright bar and on the brightest area at the north-east of the Orion south cloud, both containing remarkable ionization fronts. We obtain maps of emission-line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, whose ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [O II] lines used to derive the O+ abundance, and that our nominal values of electron density - derived from the [S II] line ratio - may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of O II in the field at the north-east of the Orion south cloud, allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  1. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2012-12-01

    The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.

  2. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes

    PubMed Central

    Maxwell, Joshua T; Blatter, Lothar A

    2012-01-01

    The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145

  3. Emissivity corrected pyrometry of reactive multilayers

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Abere, Michael; Rupper, Stephen; Conwell, Thomas; Tappan, Alexander; Adams, David

    2017-06-01

    Ignition of sputter deposited nano-laminates results in rapid, self-propagating reactions. Due to high (10's of m/s) reaction front velocities, temperatures in the 1,000's of °K, and rapid phase changes occurring during reaction, direct measurement of temperature has proven difficult. This work presents a pyrometry technique with sub-microsecond time resolution, 10-6 m spatial resolution, and real time calculation of emissivity. By modulating a laser at 100 kHz and then Fourier processing the summed signal of emission and modulated reflectance, this emissivity corrected pyrometer overcomes the traditional limitations of two-color pyrometery for samples that do not follow the grey body approximation. The instrument has allowed for the direct measurement of temperature in NiAl and AlPt flame fronts, which allows for a determination of heat loss from an adiabatic condition. Further, a bilayer thickness dependence study has shown the relationship between front propagation velocity and flame temperature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. A Luenberger observer for reaction-diffusion models with front position data

    NASA Astrophysics Data System (ADS)

    Collin, Annabelle; Chapelle, Dominique; Moireau, Philippe

    2015-11-01

    We propose a Luenberger observer for reaction-diffusion models with propagating front features, and for data associated with the location of the front over time. Such models are considered in various application fields, such as electrophysiology, wild-land fire propagation and tumor growth modeling. Drawing our inspiration from image processing methods, we start by proposing an observer for the eikonal-curvature equation that can be derived from the reaction-diffusion model by an asymptotic expansion. We then carry over this observer to the underlying reaction-diffusion equation by an ;inverse asymptotic analysis;, and we show that the associated correction in the dynamics has a stabilizing effect for the linearized estimation error. We also discuss the extension to joint state-parameter estimation by using the earlier-proposed ROUKF strategy. We then illustrate and assess our proposed observer method with test problems pertaining to electrophysiology modeling, including with a realistic model of cardiac atria. Our numerical trials show that state estimation is directly very effective with the proposed Luenberger observer, while specific strategies are needed to accurately perform parameter estimation - as is usual with Kalman filtering used in a nonlinear setting - and we demonstrate two such successful strategies.

  5. Collective cell migration without proliferation: density determines cell velocity and wave velocity

    NASA Astrophysics Data System (ADS)

    Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François

    2018-05-01

    Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.

  6. Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data

    NASA Astrophysics Data System (ADS)

    Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.

    2010-03-01

    We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.

  7. Free-Stream Boundaries of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Kistler, Alan L

    1955-01-01

    Report presents the results of an experimental and theoretical study made of the instantaneously sharp and irregular front which is always found to separate turbulent fluid from contiguous "nonturbulent" fluid at a free-stream boundary. This distinct demarcation is known to give an intermittent character to hot-wire signals in the boundary zone. The overall behavior of the front is described statistically in terms of its wrinkle-amplitude growth and its lateral propagation relative to the fluid as functions of downstream coordinate.

  8. A Numerical Simulation of the Energy Conversion Process in Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya

    2008-04-28

    In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.

  9. Two Low Pressure Areas Fighting to Control the U.S. Mid-Atlantic Weather

    NASA Image and Video Library

    2017-12-08

    NOAA's GOES-14 satellite captured a visible image of a low pressure area that will affect the Mid-Atlantic, Ohio Valley and northeast over the next couple of days. The low pressure area, the rounded area of clouds near southern Louisiana, is now moving in a northerly direction from the Gulf coast, and will track northward to the Great Lakes, passing west of the Mid-Atlantic region and bringing clouds and showers. It's associated warm front will also move up the U.S. East coast bringing a surge of warmth before a cold front sweeps in from the west. The clouds draped across the Mid-Atlantic today, Oct. 1, are from an area of low pressure and trailing frontal boundary located over the Atlantic Ocean just off the North Carolina coast and stretching back to the Gulf low. The image was created at NASA's Goddard Space Flight Center in Greenbelt, Md. by the NASA GOES Project. Credit: NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. The physics of lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Uman, Martin A.

    2014-01-01

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is lightning initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in lightning initiation and how? What is the role of various forms of ice and water in lightning initiation? What physical mechanisms govern the propagation of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics of upward connecting leaders from those objects or from the ground? What is the physics of compact intra-cloud discharges (CIDs) (that produce a narrow bipolar wideband electric field pulse, a narrow bipolar event or NBE, apparently multiple-reflecting propagating waves within 1 km height, and copious HF and VHF radiation)? How are CIDs related to other types of preliminary breakdown pulses? Are CIDs related to the Terrestrial Gamma-Ray Flashes (TGFs) observed on orbiting satellites or to the Transient Luminous Events (TLEs) photographed above cloud tops, particularly to so-called “gigantic jets”? By what physical mechanisms do lightning leaders emit pulses of X-rays? Do the X-rays play a role in lightning propagation? By what mechanism do thunderclouds generate relatively-steady internal X-rays? Do X-rays and other high energy radiation affect cloud electrification and play a role in lightning initiation? By what physical mechanisms are Terrestrial Gamma-Ray Flashes (TGFs) produced? Do TGFs pose a hazard to individuals in aircraft? How do cloud-to-ground and intra-cloud lightning affect the upper atmosphere and ionosphere? What are the physics of the Transient Luminous Events (TLEs), “Sprites”, “jets”, and “elves”? What is the energy input into the ionosphere/magnetosphere from lightning? How exactly does rocket-and-wire (“classical” with a grounded wire and “altitude” with a floating wire) triggering of lightning work? Are there other possible and practical triggering techniques such as laser triggering? Can triggering reduce or eliminate the local occurrence of natural lightning? What are the power and energy of the component processes of lightning flashes and how are they distributed among electromagnetic processes (DC to light), thermal processes, mechanical (acoustic) processes, and relativistic (high energy) processes (runaway electrons, runaway positrons, X-ray, and gamma rays)? What is the physics of ball lightning? Is there more than one type of ball lightning? Questions 1, 2, 4, 5, 6, and 7 will be addressed directly in the following sections of this paper: Section 3. The Lightning Initiation Problem; Section 4. Lightning Propagation; Section 5. High-Energy Atmospheric Physics; Section 6. CIDs; and Section 7. TLEs.

  11. Solar Eruptions, CMEs and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from the Sun and propagate far into the interplanetary medium. CMEs represent energy output from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of solar storms.

  12. Cross-shore transport of nearshore sediment by river plume frontal pumping

    NASA Astrophysics Data System (ADS)

    Horner-Devine, Alexander R.; Pietrzak, Julie D.; Souza, Alejandro J.; McKeon, Margaret A.; Meirelles, Saulo; Henriquez, Martijn; Flores, Raúl P.; Rijnsburger, Sabine

    2017-06-01

    We present a new mechanism for cross-shore transport of fine sediment from the nearshore to the inner shelf resulting from the onshore propagation of river plume fronts. Onshore frontal propagation is observed in moorings and radar images, which show that fronts penetrate onshore through the nearshore and surf zone, almost to the waterline. During frontal passage a two-layer counterrotating velocity field characteristic of tidal straining is immediately set up, generating a net offshore flow beneath the plume. The seaward flow at depth carries with it high suspended sediment concentrations, which appear to have been generated by wave resuspension in the nearshore region. These observations describe a mechanism by which vertical density stratification can drive exchange of material between the nearshore region and the inner shelf. To our knowledge these are the first observations of this frontal pumping mechanism, which is expected to play an important role in sediment transport near river mouths.

  13. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    DOE PAGES

    Forst, M.; Wilkins, S. B.; Caviglia, A. D.; ...

    2015-07-06

    Static strain in complex oxide heterostructures 1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium 3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically 4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO 3 substrate we induce magnetic order melting in a NdNiO 3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speedmore » that suggests electronically driven motion. Lastly, light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.« less

  14. Methodology for interpretation of SST retrievals using the AVHRR split window algorithm

    NASA Technical Reports Server (NTRS)

    Barbieri, R. W.; Mcclain, C. R.; Endres, D. L.

    1983-01-01

    Intercomparisons of sea surface temperature (SST) products derived from the operational NOAA-7 AVHRR-II algorithm and in situ observations are made. The 1982 data sets consist of ship survey data during the winter from the Mid-Atlantic Bight (MAB), ship and buoy measurements during April and September in the Gulf of Mexico and shipboard observations during April off the N.W. Spanish coast. The analyses included single pixel comparisons and the warmest pixel technique for 2 x 2 pixel and 10 x 10 pixel areas. The reason for using multi-pixel areas was for avoiding cloud contaminated pixels in the vicinity of the field measurements. Care must be taken when applying the warmest pixel technique near oceanic fronts. The Gulf of Mexico results clearly indicate a persistent degradation in algorithm accuracy due to El Chichon aerosols. The MAB and Spanish data sets indicate that very accurate estimates can be achieved if care is taken to avoid clouds and oceanic fronts.

  15. A Multistep Algorithm for the Radiation Hydrodynamical Transport of Cosmological Ionization Fronts and Ionized Flows

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Norman, Michael L.

    2006-02-01

    Radiation hydrodynamical transport of ionization fronts (I-fronts) in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is a photon-conserving method that correctly tracks the position of I-fronts at much lower resolutions than nonconservative techniques. The method applies direct hierarchical updates to the ionic species, bypassing the need for the costly matrix solutions required by implicit methods while retaining sufficient accuracy to capture the true evolution of the fronts. We review the physics of ionization fronts in power-law density gradients, whose analytical solutions provide excellent validation tests for radiation coupling schemes. The advantages and potential drawbacks of direct and implicit schemes are also considered, with particular focus on problem time-stepping, which if not properly implemented can lead to morphologically plausible I-front behavior that nonetheless departs from theory. We also examine the effect of radiation pressure from very luminous central sources on the evolution of I-fronts and flows.

  16. Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation

    NASA Astrophysics Data System (ADS)

    Kim, Jinwon; Waliser, Duane E.; Cesana, Gregory V.; Jiang, Xianan; L'Ecuyer, Tristan; Neena, J. M.

    2018-03-01

    The cloud water content (CW) and radiative heating rate (QR) structures related to northward propagating boreal summer intraseasonal oscillations (BSISOs) are analyzed using data from A-train satellites in conjunction with the ERA-Interim reanalysis. It is found that the northward movement of CW- and QR anomalies are closely synchronized with the northward movement of BSISO precipitation maxima. Commensurate with the northward propagating BSISO precipitation maxima, the CW anomalies exhibit positive ice (liquid) CW maxima in the upper (middle/low) troposphere with a prominent tilting structure in which the low-tropospheric (upper-tropospheric) liquid (ice) CW maximum leads (lags) the BSISO precipitation maximum. The BSISO-related shortwave heating (QSW) heats (cools) the upper (low) troposphere; the longwave heating (QLW) cools (heats) the upper (middle/low) troposphere. The resulting net radiative heating (QRN), being dominated by QLW, cools (heats) the atmosphere most prominently above the 200 hPa level (below the 600 hPa level). Enhanced clouds in the upper and middle troposphere appears to play a critical role in increasing low-level QLW and QRN. The vertically-integrated QSW, QLW and QRN are positive in the region of enhanced CW with the maximum QRN near the latitude of the BSISO precipitation maximum. The bottom-heavy radiative heating anomaly resulting from the cloud-radiation interaction may act to strengthen convection.

  17. Thunderstorm intensity as determined from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1979-01-01

    Digital infrared data from SMS 2 obtained on May 6, 1975 are used to study thunderstorm vertical growth rates and cloud top structure in relation to the occurrence of severe weather (tornadoes, hail, and high wind) on the ground. All thunderstorms from South Dakota to Texas along a N-S oriented cold front were monitored for a 4 h period with 5 min interval data. Thunderstorm growth rate, as determined by the rate of blackbody temperature isotherm expansion and minimum cloud top temperature, are shown to be correlated with reports of severe weather on the ground.

  18. Modal propagation angles in ducts with soft walls and their connection with suppressor performance

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1979-01-01

    The angles of propagation of the wave fronts associated with duct modes are derived for a cylindrical duct with soft walls (acoustic suppressors) and a uniform steady flow. The angle of propagation with respect to the radial coordinate (angle of incidence on the wall) is shown to be a better correlating parameter for the optimum wall impedance of spinning modes than the previously used mode cutoff ratio. Both the angle of incidence upon the duct wall and the propagation angle with respect to the duct axis are required to describe the attenuation of a propagating mode. Using the modal propagation angles, a geometric acoustics approach to suppressor acoustic performance was developed. Results from this approximate method were compared to exact modal propagation calculations to check the accuracy of the approximate method. The results are favorable except in the immediate vicinity of the modal optimum impedance where the approximate method yields about one-half of the exact maximum attenuation.

  19. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    NASA Astrophysics Data System (ADS)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  20. Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2017-10-01

    Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.

  1. Modeling deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  2. High-gain thompson-scattering X-ray free-electron laser by time-synchronic laterally tilted optical wave

    DOEpatents

    Chang, Chao; Tang, Chuanxiang; Wu, Juhao

    2017-05-09

    An improved optical undulator for use in connection with free electron radiation sources is provided. A tilt is introduced between phase fronts of an optical pulse and the pulse front. Two such pulses in a counter-propagating geometry overlap to create a standing wave pattern. A line focus is used to increase the intensity of this standing wave pattern. An electron beam is aligned with the line focus. The relative angle between pulse front and phase fronts is adjusted such that there is a velocity match between the electron beam and the overlapping optical pulses along the line focus. This allows one to provide a long interaction length using short and intense optical pulses, thereby greatly increasing the radiation output from the electron beam as it passes through this optical undulator.

  3. Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project

    NASA Astrophysics Data System (ADS)

    Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer

    2017-11-01

    New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.

    For each dataset a digital object identifier has been issued:

    Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002

    Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002

    Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002

    Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002

    Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002

    Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002

  4. Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and Its Heating Evolution with VAULT2.0 and IRIS Observations

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; De Pontieu, Bart; Martínez-Sykora, Juan; Pereira, Tiago M. D.; Vourlidas, Angelos; Tun Beltran, Samuel

    2018-04-01

    We present results from an observing campaign in support of the VAULT2.0 sounding rocket launch on 2014 September 30. VAULT2.0 is a Lyα (1216 Å) spectroheliograph capable of providing spectroheliograms at high cadence. Lyα observations are highly complementary to the IRIS observations of the upper chromosphere and the low transition region (TR) but have previously been unavailable. The VAULT2.0 data provide new constraints on upper-chromospheric conditions for numerical models. The observing campaign was closely coordinated with the IRIS mission. Taking advantage of this simultaneous multi-wavelength coverage of target AR 12172 and by using state-of-the-art radiative-MHD simulations of spicules, we investigate in detail a type-II spicule associated with a fast (300 km s‑1) network jet recorded in the campaign observations. Our analysis suggests that spicular material exists suspended high in the atmosphere but at lower temperatures (seen in Lyα) until it is heated and becomes visible in TR temperatures as a network jet. The heating begins lower in the spicule and propagates upwards as a rapidly propagating thermal front. The front is then observed as fast, plane-of-the-sky motion typical of a network jet, but contained inside the pre-existing spicule. This work supports the idea that the high speeds reported in network jets should not be taken as real mass upflows but only as apparent speeds of a rapidly propagating heating front along the pre-existing spicule.

  5. Multiple stable isotope fronts during non-isothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.

  6. Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission

    PubMed Central

    Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin

    2015-01-01

    In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746

  7. A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Hargrave, G. K.

    2006-01-01

    Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.

  8. Ignitable heterogeneous stratified structure for the propagation of an internal exothermic chemical reaction along an expanding wavefront and method of making same

    DOEpatents

    Barbee, T.W. Jr.; Weihs, T.

    1996-07-23

    A multilayer structure has a selectable, (1) propagating reaction front velocity V, (2) reaction initiation temperature attained by application of external energy, and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.

  9. Ignitable heterogeneous stratified structure for the propagation of an internal exothermic chemical reaction along an expanding wavefront and method of making same

    DOEpatents

    Barbee, Jr., Troy W.; Weihs, Timothy

    1996-01-01

    A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)] and n is about 0.8 to 1.2.

  10. Periodic cracks and temperature-dependent stress in Mo/Si multilayers on Si substrates

    NASA Astrophysics Data System (ADS)

    Kravchenko, Grygoriy; Tran, Hai T.; Volinsky, Alex A.

    2018-07-01

    This work examines formation of the peculiar periodic crack patterns observed in the thermally loaded Mo/Si multilayers. Using the substrate curvature measurements, the macroscopic film stress evolution during thermal cycling was investigated. Then high-speed microscopic observation of crack propagation in the annealed Mo/Si multilayers was presented providing experimental evidence of the mechanism underlying formation of the periodic crack patterns. The origin of the peculiar periodic crack patterns was determined. They were observed to form by the slow crack propagation under quasi-static conditions as a result of the interaction between the channelling crack propagation and the advance of the delamination front.

  11. Molecular Gas toward the Gemini OB1 Molecular Cloud Complex. II. CO Outflow Candidates with Possible WISE Associations

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Li, Fa-Cheng; Xu, Ye; Wang, Chen; Du, Xin-Yu; Yang, Wenjin; Yang, Ji

    2018-03-01

    We present a large-scale survey of CO outflows in the Gem OB1 molecular cloud complex and its surroundings, using the Purple Mountain Observatory Delingha 13.7 m telescope. A total of 198 outflow candidates were identified over a large area (∼58.5 square degrees), of which 193 are newly detected. Approximately 68% (134/198) are associated with the Gem OB1 molecular cloud complex, including clouds GGMC 1, GGMC 2, BFS 52, GGMC 3, and GGMC 4. Other regions studied are: the Local arm (Local Lynds, West Front), Swallow, Horn, and Remote cloud. Outflow candidates in GGMC 1, BFS 52, and Swallow are mainly located at ring-like or filamentary structures. To avoid excessive uncertainty in distant regions (≳3.8 kpc), we only estimated the physical parameters for clouds in the Gem OB1 molecular cloud complex and in the Local arm. In those clouds, the total kinetic energy and the energy injection rate of the identified outflow candidates are ≲1% and ≲3% of the turbulent energy and the turbulent dissipation rate of each cloud, indicating that the identified outflow candidates cannot provide enough energy to balance turbulence of their host cloud at the scale of the entire cloud (several to dozens of parsecs). The gravitational binding energy of each cloud is ≳135 times the total kinetic energy of the identified outflow candidates within the corresponding cloud, indicating that the identified outflow candidates cannot cause major disruptions to the integrity of their host cloud at the scale of the entire cloud.

  12. Winds and Weather, Teacher's Edition. Probing the Natural World/3.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Dept. of Science Education.

    The teacher's edtion for the Intermediate Science Curriculum Study Level III unit entitled "Winds and Weather" provides instructions for teachers for examining some principles underlying thermal convention, weather observation, closed systems, moisture and cloud formation, the heated-air model, and fronts. A brief introduction dealing…

  13. Molecules, dust, and protostars in NGC 3503

    NASA Astrophysics Data System (ADS)

    Duronea, N. U.; Vasquez, J.; Romero, G. A.; Cappa, C. E.; Barbá, R.; Bronfman, L.

    2014-05-01

    Aims: We present here a follow-up study of the molecular gas and dust in the environs of the star forming region NGC 3503. This study aims at dealing with the interaction of the Hii region NGC 3503 with its parental molecular cloud, and also with the star formation in the region, that was possibly triggered by the expansion of the ionization front against the parental cloud. Methods: To analyze the molecular gas we use CO(J = 2 → 1), 13CO(J = 2 → 1), C18O(J = 2 → 1), and HCN(J = 3 → 2) line data obtained with the on-the-fly technique from the APEX telescope. To study the distribution of the dust, we make use of unpublished images at 870 μm from the ATLASGAL survey and IRAC-GLIMPSE archival images. We use public 2MASS and WISE data to search for infrared candidate young stellar objects (YSOs) in the region. Results: The new APEX observations allowed the substructure of the molecular gas in the velocity range from ~-28 km s-1 to -23 km s-1 to be imaged in detail. The morphology of the molecular gas close to the nebula, the location of the PDR, and the shape of radio continuum emission suggest that the ionized gas is expanding against its parental cloud, and confirm the champagne flow scenario. We have identified several molecular clumps and determined some of their physical and dynamical properties such as density, excitation temperature, mass, and line width. Clumps adjacent to the ionization front are expected to be affected by the Hii region, unlike those that are distant from it. We have compared the physical properties of the two kinds of clumps to investigate how the molecular gas has been affected by the Hii region. Clumps adjacent to the ionization fronts of NGC 3503 and/or the bright rimmed cloud SFO 62 have been heated and compressed by the ionized gas, but their line width is not different from those that are too distant from the ionization fronts. We identified several candidate YSOs in the region. Their spatial distribution suggests that stellar formation might have been boosted by the expansion of the nebula. We discard the collect-and-collapse scenario and propose alternative mechanisms such as radiatively driven implosion on pre-existing molecular clumps or small-scale Jeans gravitational instabilities. Tables 5 and 6 are available in electronic form at http://www.aanda.org

  14. Spatially Extended Relativistic Particles Out of Traveling Front Solutions of Sine-Gordon Equation in (1+2) Dimensions

    PubMed Central

    Zarmi, Yair

    2016-01-01

    Slower-than-light multi-front solutions of the Sine-Gordon in (1+2) dimensions, constructed through the Hirota algorithm, are mapped onto spatially localized structures, which emulate free, spatially extended, massive relativistic particles. A localized structure is an image of the junctions at which the fronts intersect. It propagates together with the multi-front solution at the velocity of the latter. The profile of the localized structure obeys the linear wave equation in (1+2) dimensions, to which a term that represents interaction with a slower-than-light, Sine-Gordon-multi-front solution has been added. This result can be also formulated in terms of a (1+2)-dimensional Lagrangian system, in which the Sine-Gordon and wave equations are coupled. Expanding the Euler-Lagrange equations in powers of the coupling constant, the zero-order part of the solution reproduces the (1+2)-dimensional Sine-Gordon fronts. The first-order part is the spatially localized structure. PACS: 02.30.Ik, 03.65.Pm, 05.45.Yv, 02.30.Ik. PMID:26930077

  15. Analysis of fratricide effect observed with GeMS and its relevance for large aperture astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Neichel, Benoit; Wang, Lianqi; Boyer, Corinne; Ellerbroek, Brent; Rigaut, François

    2013-12-01

    Large aperture ground-based telescopes require Adaptive Optics (AO) to correct for the distortions induced by atmospheric turbulence and achieve diffraction limited imaging quality. These AO systems rely on Natural and Laser Guide Stars (NGS and LGS) to provide the information required to measure the wavefront from the astronomical sources under observation. In particular one such LGS method consists in creating an artificial star by means of fluorescence of the sodium atoms at the altitude of the Earth's mesosphere. This is achieved by propagating one or more lasers, at the wavelength of the Na D2a resonance, from the telescope up to the mesosphere. Lasers can be launched from either behind the secondary mirror or from the perimeter of the main aperture. The so-called central- and side-launch systems, respectively. The central-launch system, while helpful to reduce the LGS spot elongation, introduces the so-called "fratricide" effect. This consists of an increase in the photon-noise in the AO Wave Front Sensors (WFS) sub-apertures, with photons that are the result of laser photons back-scattering from atmospheric molecules (Rayleigh scattering) and atmospheric aerosols (dust and/or cirrus clouds ice particles). This affects the performance of the algorithms intended to compute the LGS centroids and subsequently compute and correct the turbulence-induced wavefront distortions. In the frame of the Thirty Meter Telescope (TMT) project and using actual LGS WFS data obtained with the Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS), we show results from an analysis of the temporal variability of the observed fratricide effect, as well as comparison of the absolute magnitude of fratricide photon-flux level with simulations using models that account for molecular (Rayleigh) scattering and photons backscattered from cirrus clouds.

  16. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  17. The Propagation of a Surge Front on Bering Glacier, Alaska, 2001-2011

    NASA Technical Reports Server (NTRS)

    Turrin, James; Forster, Richard R.; Larsen, Chris; Sauber, Jeanne

    2013-01-01

    Bering Glacier, Alaska, USA, has a 20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 plus or minus 0.017 kilometers per a in the mid-ablation zone, which decreased to 1.2 plus or minus 0.015 kilometers per a in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 plus or minus 0.03 kilometers per a in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 plus or minus 2.0 kilometers per a between September 2002 and April 2009, then accelerated to 13.9 plus or minus 2.0 kilometers per a as it entered the piedmont lobe between April 2009 and September 2010. Thewave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area.

  18. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-09-15

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less

  19. Experimental studies of one-way reaction front barriers in three-dimensional vortex flows

    NASA Astrophysics Data System (ADS)

    Gannon, Joanie; Doan, Minh; Simons, Jj; Mitchell, Kevin; Solomon, Tom

    2017-11-01

    We present results of experimental studies of the evolution of the excitable, Ruthenium (Ru)-catalyzed, Belousov-Zhabotinsky (BZ) reaction in a three-dimensional (3D) flow composed of the superposition of horizontal and vertical vortex chains. The reaction fronts are imaged in 3D with a scanning, laser-induced fluorescence technique that takes advantage of the differential fluoresence of the Ruthenium indicated at the front. When the horizontal and vertical vortex chains are lined up, a dominant scroll structure is observed that acts as a one-way barrier blocking fronts propagating across vortex boundaries and into vortex centers. A second, quarter-tube barrier is observed along the edges of the unit cell. When the vortices are shifted relative to each other, tube-like barriers are observed in the interior. All of these barriers are compared with burning invariant manifolds predicted from a 6D set of differential equations describing the evolution of front elements in the flow. Supported by NSF Grants DMR-1361881 and DUE-1317446.

  20. The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data

    NASA Technical Reports Server (NTRS)

    Wakimoto, R. M.

    1982-01-01

    This paper presents the time-dependent analysis of the thunderstorm gust front with the use of Project NIMROD data. RHI cross sections of reflectivity and Doppler velocity are constructed to determine the entire vertical structure. The life cycle of the gust front is divided into four stages: (1) the formative stage; (2) the early mature stage; (3) the late mature stage; and (4) the dissipation stage. A new finding is a horizontal roll detected in the reflectivity pattern resulting from airflow that is deflected upward by the ground, while carrying some of the smaller precipitation ahead of the main echo core of the squall line. This feature is called a 'precipitation roll'. As determined from rawinsonde data, the cold air behind the gust front accounts for the observed surface pressure rise. Calculations confirm that the collision of two fluids produce a nonhydrostatic pressure at the leading edge of the outflow. The equation governing the propagation speed of a density current accurately predicts the movement of the gust front.

  1. Influence of Substrate Temperature on the Transformation Front Velocities That Determine Thermal Stability of Vapor-Deposited Glasses

    DOE PAGES

    Dalal, Shakeel S.; Ediger, M. D.

    2015-02-09

    Stable organic glasses prepared by physical vapor deposition transform into the supercooled liquid via propagating fronts of molecular mobility, a mechanism different from that exhibited by glasses prepared by cooling the liquid. In this paper, we show that spectroscopic ellipsometry can directly observe this front-based mechanism in real time and explore how the velocity of the front depends upon the substrate temperature during deposition. For the model glass former indomethacin, we detect surface-initiated mobility fronts in glasses formed at substrate temperatures between 0.68T g and 0.94T g. At each of two annealing temperatures, the substrate temperature during deposition can changemore » the transformation front velocity by a factor of 6, and these changes are imperfectly correlated with the density of the glass. We also observe substrate-initiated fronts at some substrate temperatures. By connecting with theoretical work, we are able to infer the relative mobilities of stable glasses prepared at different substrate temperatures. Finally, an understanding of the transformation behavior of vapor-deposited glasses may be relevant for extending the lifetime of organic semiconducting devices.« less

  2. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  3. Striking Distance Determined From High-Speed Videos and Measured Currents in Negative Cloud-to-Ground Lightning

    NASA Astrophysics Data System (ADS)

    Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena

    2017-12-01

    First and subsequent return strokes' striking distances (SDs) were determined for negative cloud-to-ground flashes from high-speed videos exhibiting the development of positive and negative leaders and the pre-return stroke phase of currents measured along a short tower. In order to improve the results, a new criterion was used for the initiation and propagation of the sustained upward connecting leader, consisting of a 4 A continuous current threshold. An advanced approach developed from the combined use of this criterion and a reverse propagation procedure, which considers the calculated propagation speeds of the leaders, was applied and revealed that SDs determined solely from the first video frame showing the upward leader can be significantly underestimated. An original approach was proposed for a rough estimate of first strokes' SD using solely records of current. This approach combines the 4 A criterion and a representative composite three-dimensional propagation speed of 0.34 × 106 m/s for the leaders in the last 300 m propagated distance. SDs determined under this approach showed to be consistent with those of the advanced procedure. This approach was applied to determine the SD of 17 first return strokes of negative flashes measured at MCS, covering a wide peak-current range, from 18 to 153 kA. The estimated SDs exhibit very high dispersion and reveal great differences in relation to the SDs estimated for subsequent return strokes and strokes in triggered lightning.

  4. MMS Observations of Protons and Heavy Ions Acceleration at Plasma Jet Fronts

    NASA Astrophysics Data System (ADS)

    Catapano, F.; Retino, A.; Zimbardo, G.; Cozzani, G.; Breuillard, H.; Le Contel, O.; Alexandrova, A.; Mirioni, L.; Cohen, I. J.; Turner, D. L.; Perri, S.; Greco, A.; Mauk, B.; Torbert, R. B.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Giles, B. L.; Fuselier, S. A.; Moore, T. E.; Burch, J.

    2017-12-01

    Plasma jet fronts in the Earth's magnetotail are kinetic-scale boundaries separating hot fast plasma jets, generally attributed to reconnection outflows, from colder ambient plasma. Jet fronts are typically associated with a sharp increase of the vertical component of the magnetic field Bz, an increase of the plasma temperature and a drop of plasma density. Spacecraft observations and numerical simulations indicate that jet fronts are sites of major ion acceleration. The exact acceleration mechanisms as well as the dependence of such mechanisms on ion composition are not fully understood, yet. Recent high-resolution measurements of ion distribution functions in the magnetotail allow for the first time to study the acceleration mechanisms in detail. Here, we show several examples of jet fronts and discuss ion acceleration therein. We show fronts that propagate in the mid-tail magnetotail both as isolated laminar boundaries and as multiple boundaries embedded in strong magnetic fluctuations and turbulence. We also show fronts in the near-Earth jet braking region, where they interact with the dipolar magnetic field and are significantly decelerated/diverted. Finally, we study the acceleration of different ion species (H+, He++, O+) at different types of fronts and we discuss possible different acceleration mechanisms and how they depend on the ion species.

  5. Atmospheric Propagation Effects Relevant to Optical Communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. This article reviews the effects of clear-air turbulence as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study, Useful information on the atmospheric propagation of light in resolution to optical deep-space communications to an earth-based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  6. Atmospheric propagation effects relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  7. Studies on possible propagation of microbial contamination in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Wolochow, H.; Chatigny, M. A.

    1975-01-01

    Maintained aerosols were studied to demonstrate the metabolism and propagation of microbes in clouds which could occur in the course of a probe of a planetary atmosphere. Bacteriophage was used as a tool to test whether the mechanisms for DNA production remain intact and functional within the airborne bacterial cell. In one test method, bacteria were mixed with coliphage in an atomizer to allow attachment before aerosolization; in another, two suspensions were atomized saperately into a common air stream prior to aerosolization. Results show that biochemical and physiological mechanisms to allow aerobic microbes to propagate in the airborne state do exist.

  8. Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices

    DOE PAGES

    Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...

    2016-01-25

    We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less

  9. Fatigue disbonding analysis of wide composite panels by means of Lamb waves

    NASA Astrophysics Data System (ADS)

    Michalcová, Lenka; Rechcígel, Lukáš; Bělský, Petr; Kucharský, Pavel

    2018-03-01

    Guided wave-based monitoring of composite structures plays an important role in the area of structural health monitoring (SHM) of aerospace structures. Adhesively bonded joints have not yet fulfilled current airworthiness requirements; hence, assemblies of carbon fibre-reinforced parts still require mechanical fasteners, and a verified SHM method with reliable disbonding/delamination detection and propagation assessment is needed. This study investigated the disbonding/delamination propagation in adhesively bonded panels using Lamb waves during fatigue tests. Analyses focused on the proper frequency and mode selection, sensor placement and selection of parameter sensitive to the growth of disbonding areas. Piezoelectric transducers placed across the bonded area were used as actuators and sensors. Lamb wave propagation was investigated considering the actual shape of the crack front and the mode of the crack propagation. The actual cracked area was determined by ultrasonic A-scans. A correlation between the crack propagation rate and the A0 mode velocity was found.

  10. A plausible energy source and structure for quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Daltabuit, E.; Cox, D.

    1972-01-01

    If a collision of two large, massive, fast gas clouds occurs, their kinetic energy is converted to radiation in a pair of shock fronts at their interface. The resulting structure is described, and the relevance of this as a radiation source for quasi-stellar objects is considered.

  11. 14 CFR Appendix I to Part 141 - Additional Aircraft Category and/or Class Rating Course

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (b) For a private pilot certificate, the following aeronautical knowledge areas must be included in a... Aviation Administration for private pilot privileges, limitations, and flight operations; (2) Safe and..., including knowledge and effects of fronts, frontal characteristics, cloud formations, icing, and upper-air...

  12. 14 CFR Appendix I to Part 141 - Additional Aircraft Category and/or Class Rating Course

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (b) For a private pilot certificate, the following aeronautical knowledge areas must be included in a... Aviation Administration for private pilot privileges, limitations, and flight operations; (2) Safe and..., including knowledge and effects of fronts, frontal characteristics, cloud formations, icing, and upper-air...

  13. Development and Evaluation of HawkLearn: A Next Generation Learning Management System

    ERIC Educational Resources Information Center

    Round, Kimberlee L.

    2013-01-01

    Cloud-based computing in higher education has the potential to impact institutions on a myriad of fronts, including technology governance, flexibility, financial, and intellectual property. As the demand for blended and online education increases, institutions are considering expedient approaches to implementing learning management systems (LMSs).…

  14. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

    USGS Publications Warehouse

    Bizzarri, A.; Dunham, Eric M.; Spudich, P.

    2010-01-01

    We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation of 5%-damped absolute response spectral accelerations (SA) in the period band 0.05–0.4 s observed at stations that presumably experienced Mach pulses during the 1979 Imperial Valley, 1999 Kocaeli, and 2002 Denali Fault earthquakes compared to SA observed at non-Mach pulse stations in the same earthquakes. A 20% amplification of short period SA is seen only at a few of the Imperial Valley stations closest to the fault. This lack of elevated SA suggests that either Mach pulses in real earthquakes are even more incoherent that in our simulations or that Mach pulses are vulnerable to attenuation through nonlinear soil response. In any case, this result might imply that current engineering models of high frequency earthquake ground motions do not need to be modified by more than 20% close to the fault to account for Mach pulses, provided that the existing data are adequately representative of ground motions from supershear earthquakes.

  15. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.

    2017-12-01

    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity <5% (Erickson and Jarrard, 1998), possibly reflecting enhanced consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong, similar to observations from offshore Sumatra, where strongly consolidated sediments at the deformation front are interpreted to facilitate megathrust rupture to the trench (Hupers et al., 2017). A uniformly strong plate interface at Cascadia may inhibit microseismicity while building stress that is released in great earthquakes.

  16. Measurements of ion velocity separation and ionization in multi-species plasma shocks

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.

    2018-05-01

    The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.

  17. Measurements of shock-front structure in multi-species plasmas on OMEGA

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Wilks, S. C.; Amendt, P. A.; Heeter, R. F.; Katz, J.; Hoffman, N. M.; Vold, E.; Taitano, W.; Simakov, A.; Chacon, L.

    2016-10-01

    The structure of a shock front in a plasma with multiple ion species is measured for the first time in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%)+Ne(2%) and H(98%)+C(2%). Separation of the ion species within the shock front is inferred. Although shocks play an important role in ICF and astrophysical plasmas, the intrinsically kinetic nature of the shock front indicates the need for experiments to benchmark hydrodynamic models. Comparison with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented. This work performed under auspices of U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  19. Optical analysis of laser systems using interferometry

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Liberman, I.; Lawrence, G.; Seery, B. D.

    1980-06-01

    It is noted that previous approaches of predicting focal spot parameters involved the digitization of interference patterns of the optical components and propagation of the complex amplitude and phase of the wave front throughout the system. The present paper describes an approach in which the computational procedure is extended to produce computer plots of the final emerging wave front. It is shown that this enables direct comparison with the experimentally produced wave front of the total system and makes possible the optical analysis, design, and possible optimization of laser systems. A description is given of the computational procedure and the Twyman-Green and Smartt IR interferometers constructed to verify this approach. Finally, consideration is given to the implications of the results.

  20. Coarsening in the buoyancy-driven instability of a reaction-diffusion front.

    PubMed

    Böckmann, Martin; Müller, Stefan C

    2004-10-01

    When propagating in a vertical direction an autocatalytic reaction front associated with a change in density can become buoyantly unstable, leading to the formation of a fingerlike pattern. Later on these fingers start to interact. Their temporal evolution is studied experimentally by tracking the horizontal and vertical locations of the extrema of the front pattern. A proceeding development towards larger spatial scales is found. This is reflected in the differences in the vertical speed of neighboring fingers: continually some fingers start to decelerate and vanish finally in the neighboring ones which show a simultaneous acceleration. In addition, weak lateral movements of fingers towards gaps are observed, but there is no evidence for a correlation with the extinction of fingers.

  1. Light-front Ward-Takahashi identity for two-fermion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinho, J. A. O.; Frederico, T.; Pace, E.

    We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, andmore » the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity.« less

  2. Evaluation of ERA-interim and MERRA Cloudiness in the Southern Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.

    2014-01-01

    The Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive observations, but they also reveal that low-level clouds in other parts of the cyclones are also not properly represented in the reanalyses. The two reanalyses are in fairly good agreement for the dynamic and thermodynamic characteristics of the cyclones, suggesting that the cloud, convection, or boundary layer schemes are the problem instead. An examination of the lower-tropospheric stability distribution in the cyclones from both reanalyses suggests that the parameterization of shallow cumulus clouds may contribute in a large part to the problem. However, the differences in the cloud schemes and in particular in the precipitation processes, which may also contribute, cannot be excluded.

  3. Boundary-layer effects on cold fronts at a coastline

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1986-07-01

    The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.

  4. Millimeter-wave Molecular Line Observations of the Tornado Nebula

    NASA Astrophysics Data System (ADS)

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-08-01

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, 13CO, and HCO+ with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V LSR = -14 km s-1 and +5 km s-1. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado "head" in the -14 km s-1 cloud, also suggesting the interaction. Virial analysis shows that the +5 km s-1 cloud is more tightly bound by self-gravity than the -14 km s-1 cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s-1 cloud collided into the -14 km s-1 cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  5. Combining Advanced Turbulent Mixing and Combustion Models with Advanced Multi-Phase CFD Code to Simulate Detonation and Post-Detonation Bio-Agent Mixing and Destruction

    DTIC Science & Technology

    2017-10-01

    perturbations in the energetic material to study their effects on the blast wave formation. The last case also makes use of the same PBX, however, the...configuration, Case A: Spore cloud located on the top of the charge at an angle 45 degree, Case B: Spore cloud located at an angle 45 degree from the charge...theoretical validation. The first is the Sedov case where the pressure decay and blast wave front are validated based on analytical solutions. In this test

  6. Fault Wear by Damage Evolution During Steady-State Slip

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev

    2014-11-01

    Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.

  7. An accurate front capturing scheme for tumor growth models with a free boundary limit

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tang, Min; Wang, Li; Zhou, Zhennan

    2018-07-01

    We consider a class of tumor growth models under the combined effects of density-dependent pressure and cell multiplication, with a free boundary model as its singular limit when the pressure-density relationship becomes highly nonlinear. In particular, the constitutive law connecting pressure p and density ρ is p (ρ) = m/m-1 ρ m - 1, and when m ≫ 1, the cell density ρ may evolve its support according to a pressure-driven geometric motion with sharp interface along its boundary. The nonlinearity and degeneracy in the diffusion bring great challenges in numerical simulations. Prior to the present paper, there is lack of standard mechanism to numerically capture the front propagation speed as m ≫ 1. In this paper, we develop a numerical scheme based on a novel prediction-correction reformulation that can accurately approximate the front propagation even when the nonlinearity is extremely strong. We show that the semi-discrete scheme naturally connects to the free boundary limit equation as m → ∞. With proper spatial discretization, the fully discrete scheme has improved stability, preserves positivity, and can be implemented without nonlinear solvers. Finally, extensive numerical examples in both one and two dimensions are provided to verify the claimed properties in various applications.

  8. Mechanical signaling coordinates the embryonic heartbeat.

    PubMed

    Chiou, Kevin K; Rocks, Jason W; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F; Prosser, Benjamin L; Discher, Dennis E; Liu, Andrea J

    2016-08-09

    In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.

  9. Comparison of measured and computed Strehl ratios for light propagated through a channel flow of a He N 2 mixing layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.

    1997-04-01

    A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.

  10. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.

    1994-01-01

    Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.

  11. An error analysis of tropical cyclone divergence and vorticity fields derived from satellite cloud winds on the Atmospheric and Oceanographic Information Processing System (AOIPS)

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Rodgers, E. B.

    1977-01-01

    An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.

  12. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, E.; Darny, T.; Dozias, S.

    2015-12-15

    Atmospheric pressure plasma propagation inside long dielectric tubes is analyzed for the first time through nonintrusive and nonperturbative time resolved bi-directional electric field (EF) measurements. This study unveils that plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position usually revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have an amplitude of several kV/cm for helium or neon plasmas and are preserved almost constant along a few tens of cm inside a capillary. All these experimental measurements aremore » in excellent agreement with previous model calculations. The key roles of the voltage pulse polarity and of the target nature on the helium flow patterns when plasma jet is emerging in ambient air are documented from Schlieren visualization. The second part of this work is then dedicated to the development of multi jet systems, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are reported and analyzed from ICCD imaging and time resolved EF measurements. This allows for the design and the feasibility validation of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation, and electrostatic influence between the produced secondary jets.« less

  13. Electrical and Hydrometeor Structure of Thunderstorms that produce Upward Lightning

    NASA Astrophysics Data System (ADS)

    dos Santos Souza, J. C.; Albrecht, R. I.; Lang, T. J.; Saba, M. M.; Warner, T. A.; Schumann, C.

    2017-12-01

    Upward lightning (UL) flashes at tall structures have been reported to be initiated by in-cloud branching of a parent positive cloud-to-ground (CG) or intracloud (IC) lightning during the decaying stages of thunderstorms, and associated with stratiform precipitation. This in-cloud branching of the parent CG lightning into lower layers of the stratiform precipitation, as well as other situational modes of UL triggering, are indicative of a lower charge center. The objective of this study is to determine the hydrometeor characteristics of thunderstorms that produce UL, especially at the lower layers of the stratiform region where the bidirectional leader of the parent CG or IC lightning propagates through. We investigated 17 thunderstorms that produced 56 UL flashes in São Paulo, SP, Brazil and 10 thunderstorms (27 UL) from the UPLIGHTS field experiment in Rapid City, SD, USA. We used polarimetric radar data and 3D lighting mapping or the combination of total (i.e., intracloud and cloud-to-ground) and cloud-to-ground lightning strokes data. The Hydrometeor Identification for the thunderstorms of this study consider the information from polarimetric variables ZH, ZDR, KDP and RHOHV to infer radar echoes into rain (light, medium, heavy), hail, dry snow, wet snow, ice crystals, graupel and rain-hail mixtures. Charge structure is inferred by the 3D very-high-frequency (VHF) Lightning Mapping Array by monitoring lightning propagation closely in time and space and constructing vertical histograms of VHF source density. The results of this research project are important to increase the understanding of the phenomenon, the storm evolution and the predictability of UL.

  14. Ionization Waves of Arbitrary Velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, D.; Franke, P.; Katz, J.

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  15. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.

    2007-12-01

    The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  16. Ionization Waves of Arbitrary Velocity

    DOE PAGES

    Turnbull, D.; Franke, P.; Katz, J.; ...

    2018-05-31

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  17. Fast Transverse Instability and Electron Cloud Measurements in Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffery; Adamson, Philip; Capista, David

    2015-03-01

    A new transverse instability is observed that may limit the proton intensity in the Fermilab Recycler. The instability is fast, leading to a beam-abort loss within two hundred turns. The instability primarily affects the first high-intensity batch from the Fermilab Booster in each Recycler cycle. This paper analyzes the dynamical features of the destabilized beam. The instability excites a horizontal betatron oscillation which couples into the vertical motion and also causes transverse emittance growth. This paper describes the feasibility of electron cloud as the mechanism for this instability and presents the first measurements of the electron cloud in the Fermilabmore » Recycler. Direct measurements of the electron cloud are made using a retarding field analyzer (RFA) newly installed in the Fermilab Recycler. Indirect measurements of the electron cloud are made by propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. The maximum betatron amplitude growth and the maximum electron cloud signal occur during minimums of the bunch length oscillation.« less

  18. A Novel Videography Method for Generating Crack-Extension Resistance Curves in Small Bone Samples

    PubMed Central

    Katsamenis, Orestis L.; Jenkins, Thomas; Quinci, Federico; Michopoulou, Sofia; Sinclair, Ian; Thurner, Philipp J.

    2013-01-01

    Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the millimetre and sub-millimetre scale. This research proposes a novel “whitening front tracking” method that uses videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be observed. Here we present this method on sharp edge notched samples (<1 mm×1 mm×Length) prepared from four human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the “whitening front tracking” method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane longitudinal orientation were similar to those found in the literature, being between the published longitudinal and transverse orientations. The proposed technique shows the ability to generate full “crack” extension resistance curves by tracking the whitening front propagation to overcome the small size limitations and the single value approach. PMID:23405186

  19. Instability of an infiltration-driven dissolution-precipitation front with a nonmonotonic porosity profile

    NASA Astrophysics Data System (ADS)

    Kondratiuk, Paweł; Dutka, Filip; Szymczak, Piotr

    2016-04-01

    Infiltration of a rock by an external fluid very often drives it out of chemical equilibrium. As a result, alteration of the rock mineral composition occurs. It does not however proceed uniformly in the entire rock volume. Instead, one or more reaction fronts are formed, which are zones of increased chemical activity, separating the altered (product) rock from the yet unaltered (primary) one. The reaction fronts propagate with velocities which are usually much smaller than those of the infiltrating fluid. One of the simplest examples of such alteration is the dissolution of some of the minerals building the primary rock. For instance, calcium carbonate minerals in the rock matrix can be dissolved by infiltrating acidic fluids. In such a case the product rock has higher porosity and permeability than the primary one. Due to positive feedbacks between the reactant transport, fluid flow, and porosity generation, the reaction fronts in porosity-generating replacement systems are inherently unstable. An arbitrarily small protrusion of the front gets magnified and develops into a highly porous finger-like or funnel-like structure. This feature of dissolution fronts, dubbed the "reactive-infiltration instability" [1], is responsible for the formation of a number of geological patterns, such as solution pipes or various karst forms. It is also of practical importance, since spontaneous front breakup and development of localized highly porous flow paths (a.k.a. "wormholes") is favourable by petroleum engineers, who apply acidization to oil-bearing reservoirs in order to increase their permeability. However, more complex chemical reactions might occur during infiltration of a rock by a fluid. In principle, the products of dissolution might react with other species present either in the fluid or in the rock and reprecipitate [2]. The dissolution and precipitation fronts develop and and begin to propagate with equal velocities, forming a single dissolution-precipitation front. The porosity profile is not monotonic as in the case of pure dissolution, but it typically has a minimum in the vicinity of the front. Additionally, the porosity difference between the initial rock far-downstream and the well-developed secondary rock far-upstream can be either negative or positive, which either destabilizes of stabilized the front. We propose a theoretical model of a simple infiltration-driven dissolution-precipitation system and find the morphology of the resulting planar reaction front. By performing linear stability analysis of the stationary planar solutions we show that the front can be unstable for a wide range of control parameters, even if the porosity of the secondary rock is lower than the porosity of the primary rock. Next, by numerical simulations of the full nonlinear model we present the long-term evolution of the system. [1] D. Chadam et al., IMA J. Appl. Math. 36, 207-221, 1986. [2] A. Putnis, Rev. Mineral. Geochemistry, 70(1), 87-124, 2009.

  20. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.

    PubMed

    Miura, Hiroaki; Satoh, Masaki; Nasuno, Tomoe; Noda, Akira T; Oouchi, Kazuyoshi

    2007-12-14

    A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.

  1. The terminal area simulation system. Volume 2: Verification cases

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    The numerical simulation of five case studies are presented and are compared with available data in order to verify the three-dimensional version of the Terminal Area Simulation System (TASS). A spectrum of convective storm types are selected for the case studies. Included are: a High-Plains supercell hailstorm, a small and relatively short-lived High-Plains cumulonimbus, a convective storm which produced the 2 August 1985 DFW microburst, a South Florida convective complex, and a tornadic Oklahoma thunderstorm. For each of the cases the model results compared reasonably well with observed data. In the simulations of the supercell storms many of their characteristic features were modeled, such as the hook echo, BWER, mesocyclone, gust fronts, giant persistent updraft, wall cloud, flanking-line towers, anvil and radar reflectivity overhang, and rightward veering in the storm propagation. In the simulation of the tornadic storm a horseshoe-shaped updraft configuration and cyclic changes in storm intensity and structure were noted. The simulation of the DFW microburst agreed remarkably well with sparse observed data. The simulated outflow rapidly expanded in a nearly symmetrical pattern and was associated with a ringvortex. A South Florida convective complex was simulated and contained updrafts and downdrafts in the form of discrete bubbles. The numerical simulations, in all cases, always remained stable and bounded with no anomalous trends.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEsmore » interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished.« less

  3. Cyclonic Vortices in Polar Airmasses

    NASA Astrophysics Data System (ADS)

    Businger, Steven

    Cyclonic vortices in polar airmasses are investigated to determine their storm-scale and mesoscale structures and the nature of the environments conducive to their formation. Case studies of polar low outbreaks show that the environments conducive to the development of strong polar lows include deep outflow of arctic air over open water and a broad closed-low aloft. Once favorable environmental conditions for the formation of polar lows have developed, several storms may form in close proximity to each other during a relatively short time interval. Furthermore, these conditions may persist for several days. To develope a climatology of the synoptic environments conducive to the formation of polar lows, NMC gridded data were composited. The results reveal the presence of significant negative anomalies in the temperature and height fields at the 500 mb level on the days when mature polar lows were present, indicating the presence of strong positive vorticity and low static stability over the area. Aircraft observations made during the 1984 FOX field study indicate that convection in an incipient comma cloud was organized into distinct rainbands ((TURN)50 km wavelength), with tops extending to the tropopause. Equivalent -potential vorticity, computed from cross sections of the dropwindsonde data, showed that the region in which the convective activity was embedded was unstable to moist -symmetric overturnings. As the comma cloud approached a pre-existing polar front, a wave cyclone rapidly developed on the front. Surface data showed unexpectedly strong winds and heavy rain squalls when the comma cloud passed Juneau. Comprehensive data sets were collected in two comma cloud systems during CYCLES. Rainbands, with a wavelength of (TURN)50 km, were present in both comma-cloud systems. Precipitation cores, produced by embedded convection within the rainbands contained updraft speeds of (TURN)1-2 m s('-1) and relatively high liquid water counts; they retained their identities over periods of several hours. The spacing and orientation of the rainbands may be explained by the theory for mixed dynamic/convective instability developed by Sun (1978).

  4. A cloud collision model for water maser excitation.

    PubMed

    Tarter, J C; Welch, W J

    1986-06-01

    High-velocity collisions between small, dense, neutral clouds or between a dense cloud and a dense shell can provide the energy source required to excite H2O maser emission. The radiative precursor from the surface of the collisional shock front rapidly diffuses through the cloud, heating the dust grains but leaving the H2 molecules cool. Transient maser emission occurs as the conditions for the Goldreich and Kwan "hot-dust cold-gas" maser pump scheme are realized locally within the cloud. In time the local maser action quenches due to the heating of the H2 molecules by collisions against the grains. Although this model cannot explain the very long-lived steady maser features, it is quite successful in explaining a number of the observed properties of the high-velocity features in such sources as Orion, W51, and W49. In particular, it provides a natural explanation for the rapid time variations, the narrow line widths, juxtaposition of high- and low-velocity features, and the short lifetimes which are frequently observed for the so-called high-velocity maser "bullets" thought to be accelerated by strong stellar winds.

  5. Towards an e-Health Cloud Solution for Remote Regions at Bahia-Brazil.

    PubMed

    Sarinho, V T; Mota, A O; Silva, E P

    2017-12-19

    This paper presents CloudMedic, an e-Health Cloud solution that manages health care services in remote regions of Bahia-Brazil. For that, six main modules: Clinic, Hospital, Supply, Administrative, Billing and Health Business Intelligence, were developed to control the health flow among health actors at health institutions. They provided database model and procedures for health business rules, a standard gateway for data maintenance between web views and database layer, and a multi-front-end framework based on web views and web commands configurations. These resources were used by 2042 health actors in 261 health posts covering health demands from 118 municipalities at Bahia state. They also managed approximately 2.4 million health service 'orders and approximately 13.5 million health exams for more than 1.3 million registered patients. As a result, a collection of health functionalities available in a cloud infrastructure was successfully developed, deployed and validated in more than 28% of Bahia municipalities. A viable e-Health Cloud solution that, despite municipality limitations in remote regions, decentralized and improved the access to health care services at Bahia state.

  6. Analysing spectroscopically the propagation of a CME from its source on the disk to its impact as it propagates outwards

    NASA Astrophysics Data System (ADS)

    Harra, Louise K.; Doschek, G. A.; Matthews, Sarah A.; De Pontieu, Bart; Long, David

    We analyse a complex coronal mass ejection observed by Hinode, SDO and IRIS. SDO AIA shows that the eruption occurs between several active regions with flaring occurring in all of them. Hinode EIS observed one of the flaring active regions that shows a fast outwards propagation which is related to the CME lifting off. The eruption is then observed as it propagates away from the Sun, pushing the existing post-flare loops downwards as it goes. Spectroscopic observations are made during this time with IRIS measuring the impact that this CME front has as it pushes the loops downwards. Strong enhancements in the cool Mg II emission at these locations that show complex dynamics. We discuss these new observations in context of CME models.

  7. European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science

    DTIC Science & Technology

    1993-01-01

    Geophys. Res. diabatic effects of the midlatitude storm- 73, 487-492 (1968). track clouds on the climate system; 4. J. Testud , G. Breger, P. Amayenc...A. Clough and J. Testud , "The FRONTS- network will probably be to the northwest of Scot- 87 Experiment and Mesoscale Frontal Dy- land. Other

  8. Convective cell development and propagation in a mesoscale convective complex

    NASA Technical Reports Server (NTRS)

    Ahn, Yoo-Shin; Brundidge, Kenneth C.

    1987-01-01

    A case study was made of the mesoscale convective complex (MCC) which occurred over southern Oklahoma and northern Texas on 27 May 1981. This storm moved in an eastsoutheasterly direction and during much of its lifetime was observable by radars at Oklahoma City, Ok. and Stephenville, Tx. It was found that the direction of cell (VIP level 3 or more reflectivity) propagation was somewhat erratic but approximately the same as the system (VIP level 1 reflectivity) movement and the ambient wind. New cells developed along and behind the gust front make it appear that once the MCC is initiated, a synergistic relationship exists between the gust front and the MCC. The relationship between rainfall patterns and amounts and the infrared (IR) temperature field in the satellite imagery were examined. The 210 K isotherm of GOES IR imagery was found to encompass the rain area of the storm. The heaviest rainfall was in the vicinity of the VIP level 3 cells and mostly contained within the 205 K isotherm of GOES IR imagery.

  9. Wetting transition on patterned surfaces: transition states and energy barriers.

    PubMed

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  10. Stability of cosmological detonation fronts

    NASA Astrophysics Data System (ADS)

    Mégevand, Ariel; Membiela, Federico Agustín

    2014-05-01

    The steady-state propagation of a phase-transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.

  11. Impact Processes in the Solar System

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2004-01-01

    Our laboratory has previously conducted impact fracture and dynamic failure tests. Polanskey and Ahrens [1990] mapped the fractures from a series of laboratory craters (Fig. 1) and Ahrens and Rubin [ 1993] inferred that the usually further extending radial cracks resulted from tensional failure during the compression of the shock propagation. The radial spreading induced by the particle velocity field caused the stresses perpendicular to the shock front to become sufficiently large and tensile. This induces "radial fractures." The concentric fractures are attributed to the tensional failure occurring after the initial compressive phase. Upon radial propagation of the stress wave the negative tension behind the stress-wave front caused failure along the quasi-spherical concentric fractures. The near-surface and spall fractures are attributed to the fractures described by Melosh [1984]. These are activated by impact and can launch relatively unshocked samples of planetary surfaces to speeds exceeding escape velocity. In the case of Mars, some of these surface samples presumably become the SNC (Mars) meteorites.

  12. High-resolution imaging of a shock front in plastic by phase contrast imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Jiang, S.; Zhao, Y.; Schropp, A.; Fernandez-Panella, A.; Rinderknecht, H. G.; Wilks, S.; Fournier, K.; Galtier, E.; Xing, Z.; Granados, E.; Gamboa, E.; Glenzer, S. H.; Heimann, P.; Zastrau, U.; Cho, B. I.; Eggert, J. H.; Collins, G. W.; Ping, Y.

    2017-10-01

    Understanding the propagation of shock waves is important for many areas of high energy density physics, including inertial confinement fusion (ICF) and shock compression science. In order to probe the shock front structures in detail, a diagnostic capable of detecting both the small spatial and temporal changes in the material is required. Here we show the experiment using hard X-ray phase contrast imaging (PCI) to probe the shock wave propagation in polyimide with submicron spatial resolution. The experiment was performed at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Lightsource (LCLS). PCI together with the femtosecond time scales of x-ray free electron lasers enables the imaging of optically opaque materials that undergo rapid temporal and spatial changes. The result reveals the evolution of the density profile with time. Work performed under DOE Contract No. DE-AC52-07NA27344 with support from OFES Early Career and LLNL LDRD program.

  13. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  14. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  15. Feature-constrained surface reconstruction approach for point cloud data acquired with 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Sheng, Yehua; Lu, Guonian; Tian, Peng; Zhang, Kai

    2008-04-01

    Surface reconstruction is an important task in the field of 3d-GIS, computer aided design and computer graphics (CAD & CG), virtual simulation and so on. Based on available incremental surface reconstruction methods, a feature-constrained surface reconstruction approach for point cloud is presented. Firstly features are extracted from point cloud under the rules of curvature extremes and minimum spanning tree. By projecting local sample points to the fitted tangent planes and using extracted features to guide and constrain the process of local triangulation and surface propagation, topological relationship among sample points can be achieved. For the constructed models, a process named consistent normal adjustment and regularization is adopted to adjust normal of each face so that the correct surface model is achieved. Experiments show that the presented approach inherits the convenient implementation and high efficiency of traditional incremental surface reconstruction method, meanwhile, it avoids improper propagation of normal across sharp edges, which means the applicability of incremental surface reconstruction is greatly improved. Above all, appropriate k-neighborhood can help to recognize un-sufficient sampled areas and boundary parts, the presented approach can be used to reconstruct both open and close surfaces without additional interference.

  16. OFF-AXIS THERMAL AND SYNCHROTRON EMISSION FOR SHORT GAMMA RAY BURST

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi

    2018-01-01

    We present light curves of photospheric and synchrotron emission from a relativistic jet propagating through the ejecta cloud of a neutron star merger. We use a moving-mesh relativistic hydrodynamics code with adaptive mesh refinement to compute the continuous evolution of jet over 13 orders of magnitude in radius from the scale of the central merger engine all the way through the late afterglow phase. As the jet propagates through the cloud it forms a hot cocoon surrounding the jet core. We find that the photospheric emission released by the hot cocoon is bright for on-axis observers and is detectable for off-axis observers at a wide range of observing angles for sufficiently close sources. As the jet and cocoon drive an external shock into the surrounding medium we compute synchrotron light curves and find bright emission for off-axis observers which differs from top-hat Blandford-McKee jets, especially for lower explosion energies.

  17. On the cosmic ray diffusion in a violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Bykov, A. M.; Toptygin, I. N.

    1985-01-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  18. Observations of Seven Blue/Gigantic Jets above One Storm over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Liu, N.; Spiva, N.; Dwyer, J. R.; Rassoul, H.; Free, D. L.; Cummer, S. A.

    2013-12-01

    Blue/gigantic jets are electrical discharges developing from thundercloud tops and propagating to the upper atmosphere [e.g., Pasko et al., Nature, 416, 152, 2002; Su et al., Nature, 423, 973, 2003]. Not just producing an impressive display, gigantic jets establish a direct path of electrical contact between the upper troposphere and the lower ionosphere, capable of transferring a large amount of charge between them [Cummer et al., Nat. Geosci., 2, 617, 2009]. It has been suggested that they may play an important role in the earth's electrical environment [e. g., Pasko, Nature, 423, 927, 2003]. Upward discharges from thunderstorms like blue/gigantic jets are believed to originate from lightning leaders escaping from thunderclouds when the cloud's charges of different polarities are not balanced [Krehbiel et al., Nat. Geosci., 1, 233, 2008; Riousset et al., JGR, 115, A00E10, 2010]. On the evening of August 2, 2013, 4 gigantic jets, 2 blue jets and 1 blue starter were recorded within 26 min above a storm over the Atlantic Ocean by a low light level camera from the campus of Florida Institute of Technology. The events were also captured by two all-sky cameras: one again from the Florida Tech campus and the other from a nearby location. According to the NLDN data, positive intra-cloud flashes preceded all events except one gigantic jet. The distance between the observation site to the locations of the NLDN lightning discharges varies from 77 to 82 km. Optical signatures of intra-cloud discharge activities accompanied the events are clearly visible in the videos. The duration of each jet varies from about 300 ms to 1.2 s, and the 1.2 s duration is probably the longest that has been reported to date for jets. Rebrightening of gigantic jet structures occurs for at least two of the events. The upper terminal altitude of the 4 gigantic jets is greater than 76-81 km, the 2 blue jets reach about 48 and 51 km altitude, respectively, and the blue starter reaches 24 km altitude. The altitude of cloud tops varies from 14 to 20 km. All events exhibit a tree-like structure and develop in an impulsive manner. Similar to other observations of gigantic jets, bright beads appear at the tops of the gigantic jets. The impulsive upward propagation of the jets together with the positive polarity of the preceding intra-cloud discharges suggests that the jets originate from upward propagating negative leaders initiated inside the thundercloud. All events propagate upward from the top of the cloud nearly vertically except for one event that develops in a slanted direction, about twenty three degrees from the vertical. With only a few branches, the three blue jet/starter events display a structure very similar to a cloud-to-ground lightning stroke. Our observations support the unified view of the upward discharges from thunderclouds advanced by Krehbiel et al. [2008] and Riousset et al. [2010]. In this talk, we discuss the video observations of the events and the associated radio signatures in detail.

  19. Open Boundary Particle-in-Cell Simulation of Dipolarization Front Propagation

    NASA Technical Reports Server (NTRS)

    Klimas, Alex; Hwang, Kyoung-Joo; Vinas, Adolfo F.; Goldstein, Melvyn L.

    2014-01-01

    First results are presented from an ongoing open boundary 2-1/2D particle-in-cell simulation study of dipolarization front (DF) propagation in Earth's magnetotail. At this stage, this study is focused on the compression, or pileup, region preceding the DF current sheet. We find that the earthward acceleration of the plasma in this region is in general agreement with a recent DF force balance model. A gyrophase bunched reflected ion population at the leading edge of the pileup region is reflected by a normal electric field in the pileup region itself, rather than through an interaction with the current sheet. We discuss plasma wave activity at the leading edge of the pileup region that may be driven by gradients, or by reflected ions, or both; the mode has not been identified. The waves oscillate near but above the ion cyclotron frequency with wavelength several ion inertial lengths. We show that the waves oscillate primarily in the perpendicular magnetic field components, do not propagate along the background magnetic field, are right handed elliptically (close to circularly) polarized, exist in a region of high electron and ion beta, and are stationary in the plasma frame moving earthward. We discuss the possibility that the waves are present in plasma sheet data, but have not, thus far, been discovered.

  20. Detection of long duration cloud contamination in hyper-temporal NDVI imagery

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.

    2012-04-01

    NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.

  1. Studies on possible propagation of microbial contamination in planetary clouds

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.

    1973-01-01

    Current U.S. planetary quarantine standards based on international agreements require consideration of the probability of contamination (Pc) of the outer planets, Venus, Jupiter, Saturn, etc. One of the key parameters in estimation of the Pc of these planets is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter and Saturn appear to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer plants.

  2. Climatology and variability of SST frontal activity in Eastern Pacific Ocean over the past decade

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yuan, Y.

    2016-12-01

    Distribution of sea surface temperature (SST) fronts are derived from high-resolution MODIS dataset in Eastern Pacific Ocean from 2003 to 2015. Daily distribution of frontal activities shows detailed feature and movement of front and the discontinuity of the track of front cause by cloud coverage. Monthly frontal probability is calculated to investigate corresponding climatology and variability. Frontal probability is generally higher along the coast and decreasing offshore. The frontal activity could extend few hundreds of kilometers near the major capes and central Pacific Ocean. SST gradient associated with front is changing over different latitude with stronger gradient near the mid-latitude and under major topographic effects near tropics. Corresponding results from empirical orthogonal functions (EOF) shows major variability of SST front is found in mid-latitude and central Pacific Ocean. The temporal variability captures a strong interannual and annual variability in those regions, while Intraannual variability are found more important at small scale near major capes and topographic features. The frontal variability is highly impacted by wind stress, upwelling, air-sea interaction, current, topography, eddy activity, El Nino along with other factors. And front plays an importance role in influencing the distribution of nutrients, the activity of fisheries and the development of ecosystems.

  3. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  4. Coupling of acoustic waves to clouds in the jovian troposphere

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick; Mosser, Benoît

    2005-11-01

    Seismology is the best tool for investigating the interior structure of stars and giant planets. This paper deals with a photometric study of jovian global oscillations. The propagation of acoustic waves in the jovian troposphere is revisited in order to estimate their effects on the planetary albedo. According to the standard model of the jovian cloud structure there are three major ice cloud layers (e.g., [Atreya et al., 1999. A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet Space Sci. 47, 1243-1262]). We consider only the highest layers, composed of ammonia ice, in the region where acoustic waves are trapped in Jupiter's atmosphere. For a vertical wave propagating in a plane parallel atmosphere with an ammonia ice cloud layer, we calculate first the relative variations of the reflected solar flux due to the smooth oscillations at about the ppm level. We then determine the phase transitions induced by the seismic waves in the clouds. These phase changes, linked to ice particle growth, are limited by kinetics. A Mie model [Mishchenko et al., 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge Univ. Press, Cambridge, pp. 158-190] coupled with a simple radiation transfer model allows us to estimate that the albedo fluctuations of the cloud perturbed by a seismic wave reach relative variations of 70 ppm for a 3-mHz wave. This albedo fluctuation is amplified by a factor of ˜70 relative to the previously published estimates that exclude the effect of the wave on cloud properties. Our computed amplifications imply that jovian oscillations can be detected with very precise photometry, as proposed by the microsatellite JOVIS project, which is dedicated to photometric seismology [Mosser et al., 2004. JOVIS: A microsatellite dedicated to the seismic analysis of Jupiter. In: Combes, F., Barret, D., Contini, T., Meynadier, F., Pagani, L. (Eds.), SF2A-2004, Semaine de l'Astrophysique Francaise, Les Ulis. In: EdP-Sciences Conference Series, pp. 257-258].

  5. Principal curvatures and area ratio of propagating surfaces in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Tianhang; You, Jiaping; Yang, Yue

    2017-10-01

    We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.

  6. Nonequilibrium chemistry in shocked molecular clouds. [interstellar gases

    NASA Technical Reports Server (NTRS)

    Iglesias, E. R.; Silk, J.

    1978-01-01

    The gas-phase chemistry is studied behind a 10-km/s shock propagating into a dense molecular cloud. The principal conclusions are that: the concentrations of certain molecules (CO, NH3, HCN, N2) are unperturbed by the shock; other molecules (H2CO, CN, HCO(+)) are greatly decreased in abundance; and substantial amounts of H2O, HCO, and CH4 are produced. Approximately 1 million yr (independent of the density) must elapse after shock passage before chemical equilibrium is attained.

  7. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  8. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.

    PubMed

    Rongy, L; Schuszter, G; Sinkó, Z; Tóth, T; Horváth, D; Tóth, A; De Wit, A

    2009-06-01

    The spatiotemporal dynamics of vertical autocatalytic fronts traveling horizontally in thin solution layers closed to the air can be influenced by buoyancy-driven convection induced by density gradients across the front. We perform here a combined experimental and theoretical study of the competition between solutal and thermal effects on such convection. Experimentally, we focus on the antagonistic chlorite-tetrathionate reaction for which solutal and thermal contributions to the density jump across the front have opposite signs. We show that in isothermal conditions the heavier products sink below the lighter reactants, providing an asymptotic constant finger shape deformation of the front by convection. When thermal effects are present, the hotter products, on the contrary, climb above the reactants for strongly exothermic conditions. These various observations as well as the influence of the relative weight of the solutal and thermal effects and of the thickness of the solution layer on the dynamics are discussed in terms of a two-dimensional reaction-diffusion-convection model parametrized by a solutal R(C) and a thermal R(T) Rayleigh number.

  9. Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls

    NASA Astrophysics Data System (ADS)

    Dong, Shaohua; Zhang, Yu; Guo, Huijie; Duan, Jingwen; Guan, Fuxin; He, Qiong; Zhao, Haibin; Zhou, Lei; Sun, Shulin

    2018-01-01

    Controlling the wave fronts of surface waves (including surface-plamon polaritons and their equivalent counterparts) at will is highly important in photonics research, but the available mechanisms suffer from the issues of low efficiency, bulky size, and/or limited functionalities. Inspired by recent studies of metasurfaces that can freely control the wave fronts of propagating waves, we propose to use metawalls placed on a plasmonic surface to efficiently reshape the wave fronts of incident surface waves (SWs). Here, the metawall is constructed by specifically designed meta-atoms that can reflect SWs with desired phases and nearly unit amplitudes. As a proof of concept, we design and fabricate a metawall in the microwave regime (around 12 GHz) that can anomalously reflect the SWs following the generalized Snell's law with high efficiency (approximately 70%). Our results, in excellent agreement with full-wave simulations, provide an alternative yet efficient way to control the wave fronts of SWs in different frequency domains. We finally employ full-wave simulations to demonstrate a surface-plasmon-polariton focusing effect at telecom wavelength based on our scheme.

  10. Bigdata Driven Cloud Security: A Survey

    NASA Astrophysics Data System (ADS)

    Raja, K.; Hanifa, Sabibullah Mohamed

    2017-08-01

    Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.

  11. A fast point-cloud computing method based on spatial symmetry of Fresnel field

    NASA Astrophysics Data System (ADS)

    Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui

    2017-10-01

    Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.

  12. Lightning-channel conditioning

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, R.; da Silva, C. L.; Eack, K.; Edens, H. E.; Harley, J.; McHarg, M.; Contreras Vidal, L.

    2017-12-01

    The concept of "conditioning" has several distinct applications in understanding lightning. It is commonly associated to the greater speed of dart-leaders vs. stepped leaders and the retrace of a cloud-to-ground channel by later return strokes. We will showadditional examples of conditioning: (A) High-speed videos of triggered flashes show "dark" periods of up to 50 ms between rebrightenings of an existing channel. (B) Interferometer (INTF) images of intra-cloud (IC) flashes demonstrate that electric-field "K-changes" correspond to rapid propagation of RF impulses along a previously formed channel separated by up to 20 ms with little RF emission on that channel. (C) Further, INTF images (like the one below) frequently show that the initial IC channel is more branched and "fuzzier'' than its later incarnations. Also, we contrast high-speed video, INTF observations, and spectroscopic measurements with possible physical mechanisms that can explain how channel conditioning guides and facilitates dart leader propagation. These mechanisms include: (1) a plasmochemical effect where electrons are stored in negative ions and released during the dart leader propagation via field-induced detachment; (2) small-amplitude residual currents that can maintain electrical conductivity; and (3) slow heat conduction cooling of plasma owing to channel expansion dynamics.

  13. The eastern front of the Sierra Nevada; prone to earthquakes and volcanic eruption

    USGS Publications Warehouse

    Rinehart, C.D.; Smith, W.C.

    1981-01-01

    On Sunday morning, May 25, 1980, the weather at Mammoth Lakes, Calif., was sunny and brisk. Suddenly, just before 9:33 a.m, the world became a jarring, lurching, unstable place. Along the front of the Sierra Nevada, the muffled thunder of rockfalls and avalanches prolonged the confusion of sound and motion and added the spectacle of large, rising dust clouds. Three geysers, one 30 ft high, suddenly roared into the air at Hot Creek, although none survived more than a few hours. Some new boiling pools appeared, while many existing hot springs and pools became hotter and more active. 

  14. Anomalous Decimeter Radio Noise from the Region of the Atmospheric Front: I. Characteristics of the Detected Radio Noise and Meteorological Parameters of the Frontal Cloudiness

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Mareev, E. A.

    2018-03-01

    An extraordinary experimental fact is presented and analyzed, namely, a rather intense broadband radio noise detected during the passage of an atmospheric front through the field of view of UHF antennas. Local atmospheric properties and possible sources of the extraordinary noise, including the thermal noise from cloudiness and extra-atmospheric sources, are considered. A conclusion is made about the presence of an additional nonthermal source of radio noise in the frontal cloudiness. According to the proposed hypothesis, these are multiple electric microdicharges on hydrometeors in the convective cloud.

  15. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  16. Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting

    NASA Astrophysics Data System (ADS)

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2017-12-01

    Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.

  17. BP artificial neural network based wave front correction for sensor-less free space optics communication

    NASA Astrophysics Data System (ADS)

    Li, Zhaokun; Zhao, Xiaohui

    2017-02-01

    The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.

  18. The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems

    NASA Astrophysics Data System (ADS)

    Morillo, Robin; Manz, Niklas

    We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.

  19. X-ray driven reaction front dynamics at calcite-water interfaces

    DOE PAGES

    Laanait, Nouamane; Callagon, Erika Blanca R.; Zhang, Zhan; ...

    2015-09-18

    The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. As a result, these instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less

  20. Effect of vorticity flip-over on the premixed flame structure: Experimental observation of type-I inflection flames

    NASA Astrophysics Data System (ADS)

    El-Rabii, Hazem; Kazakov, Kirill A.

    2015-12-01

    Premixed flames propagating in horizontal tubes are observed to take on a convex shape towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report experimental realization of this regime. Our experiments on ethane and n -butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with that theoretically predicted.

Top