Science.gov

Sample records for cloud motion vector

  1. Cloud Motion Vectors from MISR using Sub-pixel Enhancements

    NASA Technical Reports Server (NTRS)

    Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu

    2007-01-01

    The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.

  2. MISR 17.6 KM Gridded Cloud Motion Vectors: Overview and Assessment

    NASA Technical Reports Server (NTRS)

    Mueller, Kevin; Garay, Michael; Moroney, Catherine; Jovanovic, Veljko

    2012-01-01

    The MISR (Multi-angle Imaging SpectroRadiometer) instrument on the Terra satellite has been retrieving cloud motion vectors (CMVs) globally and almost continuously since early in 2000. In February 2012 the new MISR Level 2 Cloud product was publicly released, providing cloud motion vectors at 17.6 km resolution with improved accuracy and roughly threefold increased coverage relative to the 70.4 km resolution vectors of the current MISR Level 2 Stereo product (which remains available). MISR retrieves both horizontal cloud motion and height from the apparent displacement due to parallax and movement of cloud features across three visible channel (670nm) camera views over a span of 200 seconds. The retrieval has comparable accuracy to operational atmospheric motion vectors from other current sensors, but holds the additional advantage of global coverage and finer precision height retrieval that is insensitive to radiometric calibration. The MISR mission is expected to continue operation for many more years, possibly until 2019, and Level 2 Cloud has the possibility of being produced with a sensing-to-availability lag of 5 hours. This report compares MISR CMV with collocated motion vectors from arctic rawinsonde sites, and from the GOES and MODISTerra instruments. CMV at heights below 3 km exhibit the smallest differences, as small as 3.3 m/s for MISR and GOES. Clouds above 3 km exhibit larger differences, as large as 8.9 m/s for MISR and MODIS. Typical differences are on the order of 6 m/s.

  3. Upgrades to the NOAA/NESDIS automated Cloud-Motion Vector system

    NASA Technical Reports Server (NTRS)

    Nieman, Steve; Menzel, W. Paul; Hayden, Christopher M.; Wanzong, Steve; Velden, Christopher S.

    1993-01-01

    The latest version of the automated cloud motion vector software has yielded significant improvements in the quality of the GOES cloud-drift winds produced operationally by NESDIS. Cloud motion vectors resulting from the automated system are now equal or superior in quality to those which had the benefit of manual quality control a few years ago. The single most important factor in this improvement has been the upgraded auto-editor. Improved tracer selection procedures eliminate targets in difficult regions and allow a higher target density and therefore enhanced coverage in areas of interest. The incorporation of the H2O-intercept height assignment method allows an adequate representation of the heights of semi-transparent clouds in the absence of a CO2-absorption channel. Finally, GOES-8 water-vapor motion winds resulting from the automated system are superior to any done previously by NESDIS and should now be considered as an operational product.

  4. Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhui; Sui, Xinxiu; Zhang, Qing; Yang, Lu; Zhao, Hang; Tang, Min; Zhan, Yizhe; Zhang, Zhiguo

    2017-02-01

    The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split window (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.

  5. The effect of the arbitrary level assignment of satellite cloud motion wind vectors on wind analyses in the pre-thunderstorm environment

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1986-01-01

    The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.

  6. The effect of the arbitrary level assignment of satellite cloud motion wind vectors on wind analyses in the pre-thunderstorm environment

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1985-01-01

    The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.

  7. Noctilucent Clouds in Motion

    NASA Video Gallery

    Swedish photographer Peter Rosén took this close-up, time-lapse movieof Noctilucent Clouds (NLCs) over Stockholm, Sweden on the evening ofJuly 16, 2012. "What looked like a serene view from a di...

  8. Wind estimates from cloud motions - Phase 1 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W.; Skillman, W.

    1976-01-01

    An initial experiment has been conducted to verify geostationary-satellite-derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of 1/2 to 2 h were obtained for 3-10 km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error drops out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 to 5 m/sec from the cloud motion vector.

  9. Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W.

    1974-01-01

    An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.

  10. Global velocity constrained cloud motion prediction for short-term solar forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping

    2016-09-01

    Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.

  11. Study to determine cloud motion from meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Clark, B. B.

    1972-01-01

    Processing techniques were tested for deducing cloud motion vectors from overlapped portions of pairs of pictures made from meteorological satellites. This was accomplished by programming and testing techniques for estimating pattern motion by means of cross correlation analysis with emphasis placed upon identifying and reducing errors resulting from various factors. Techniques were then selected and incorporated into a cloud motion determination program which included a routine which would select and prepare sample array pairs from the preprocessed test data. The program was then subjected to limited testing with data samples selected from the Nimbus 4 THIR data provided by the 11.5 micron channel.

  12. A Fourier approach to cloud motion estimation

    NASA Technical Reports Server (NTRS)

    Arking, A.; Lo, R. C.; Rosenfield, A.

    1977-01-01

    A Fourier technique is described for estimating cloud motion from pairs of pictures using the phase of the cross spectral density. The method allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. Results obtained are presented and compared with the results of a Fourier domain cross correlation scheme. Using both artificial and real cloud data show that the technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects.

  13. Operational Cloud-Motion Winds from Meteosat Infrared Images.

    NASA Astrophysics Data System (ADS)

    Schmetz, Johannes; Holmlund, Kenneth; Hoffman, Joel; Strauss, Bernard; Mason, Brian; Gaertner, Volker; Koch, Arno; van de Berg, Leo

    1993-07-01

    The displacement of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction.This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR image (10.5 12.5 µm) of the European geostationary Meteostat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7 7.1 µm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles.This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteostat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds have been reduced from about 4 to 1.3 m s1 for a mean wind speed of 24 m s1. Correspondingly, the rms vectors error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s1. Medium- and low-level CMWs were also significantly improved.

  14. Wind estimates from cloud motions - Results from Phases I, II and III of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1977-01-01

    An experiment is in progress to verify geostationary-satellite-derived cloud-motion wind estimates by in-situ aircraft wind-velocity measurements. One or more low-level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high-level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. To date the experiment has been conducted over tropical oceans and in the western Gulf of Mexico. A total of 60 h have been spent tracking some 40 tropical cumulus and five cirrus clouds. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at cloud base. The magnitude of the vector difference between the cloud motion and the cloud-base wind is less than 1.3 m/s for 67% of the cases with track lengths of 1 h or longer. Similarly, the vector differences between the cloud motion and the wind at sub-cloud (150 m), mid-cloud, and cloud-top levels are 1.5, 3.6 and 7.0 m/s, respectively. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/s.

  15. Wind estimates from cloud motions - Preliminary results from phases I, II and III of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1976-01-01

    The accuracy of wind estimates derived from cloud motion is under investigation. Aircraft measurements of the ambient wind field have been compared with simultaneous inertial navigation system descriptions of the extent and motion of 40 tropical cumulus and 5 cirrus clouds. Preliminary results indicate that cloud-motion wind estimates are sufficiently accurate to be used in sensitive divergence, vorticity, and vertical motion calculations. The magnitude of the vector difference between the cirrus cloud velocity and the mean wind of the cloud layer was found to be about 1.6 m/sec. The major source of error is thought to be in determination of the position of the cloud. In the case of cumulus clouds, the magnitude of the vector difference between the aircraft-measured cloud motion and the cloud-base wind is less than 1.3 m/sec.

  16. Motion Estimation System Utilizing Point Cloud Registration

    NASA Technical Reports Server (NTRS)

    Chen, Qi (Inventor)

    2016-01-01

    A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.

  17. Fourier transform techniques for the inference of cloud motion

    NASA Technical Reports Server (NTRS)

    Lo, R. C.; Rosenfeld, A.

    1974-01-01

    The development and evaluation are reported of phase shift techniques based on the Fourier transform for the estimation of cloud motion from geosynchronous meteorological satellite photographs. An alternative approach to cloud motion estimation, involving thresholding, was proposed and studied.

  18. Image segmentation via motion vector estimates

    NASA Astrophysics Data System (ADS)

    Abdel-Malek, Aiman A.; Hasekioglu, Orkun; Bloomer, John J.

    1990-07-01

    In the visual world moving edges in the periphery represent vital pieces of information that directs the human foveation mechanism to selectively gather information around these specific locations. This computationally efficient approach of allocating resources at key locations has inspired computer visionists to develop new target detection and hacking algorithms based on motion detection in image sequences. In this study we implemented a recursive algorithm for estimating motion vector fields for each pixel in a sequence of Digital Subtraction Angiography (DSA) images. Velocity information is used to segment the image and perform linear quadratic and acceleration-based frame interpolation to produce an apparent frame rate increase. Our results demonstrate the feasibility of low-rate digital fluoroscopy hence less exposure risks while preserving image quality. Furthermore the technique can be useful in the medical Picture Archival and Communication Systems (PACS) where image data can be compressed by storing and transmiting only the motion fields associated with the moving pixels. 1.

  19. Relative motion in a debris cloud

    NASA Astrophysics Data System (ADS)

    Kebe, Fatoumata

    2016-07-01

    After an explosion or collision in space, a hundred or thousands of debris are generated. To be able to study a debris cloud it's necessary to develop new analysis tools. In that sense, we have studied several representations of the relative motion with the parent body's orbit as the reference. Thus, in the case of an explosion the original spacecraft has a circular orbit which will be the reference one in the relative motion's equations while, in the case of a collision, we will take one of the spacecraft's orbit as the reference. We mainly focus on the relative motion method that used the differential elements instead of the Cartesian coordinates as it allows to take into account the main perturbation.

  20. IMPROVEMENTS ON THE RONNE SYSTEM OF CLOUD MEASUREMENTS FROM AIRCRAFT MOTION PICTURE FILMS,

    DTIC Science & Technology

    AIRCRAFT, MOTION PICTURE CAMERAS, MOTION PICTURE FILM , COMPUTER PROGRAMMING, METEOROLOGICAL INSTRUMENTS.... MOTION PICTURE PHOTOGRAPHY, AERIAL PHOTOGRAPHY, AERIAL PHOTOGRAPHY, CLOUD HEIGHT INDICATORS, CLOUDS, HEIGHT FINDING, DISTANCE MEASURING EQUIPMENT

  1. Thunderstorm-associated cloud motions as computed from 5-minute SMS pictures. [Synchronous Meteorological Satellite

    NASA Technical Reports Server (NTRS)

    Tecson, J. J.; Umenhofer, T. A.; Fujita, T. T.

    1977-01-01

    The five-minute rapid-scan imagery from the Synchronous Meteorological Satellite is employed to study cloud motions associated with the Omaha tornado of May 6, 1975. Cloud-motion vectors derived from automated and man-machine interactive systems provide an account of the mesoscale phenomena. In addition to the geostationary satellite data, aerial photography obtained during a cloud-truth mission is used in the severe storm investigation. For tracking overland cumuli with short half-lives, a three-minute scan interval appears necessary for the satellite imagery.

  2. Wind estimates from cloud motions: Preliminary results from phases 1, 2, and 3 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1975-01-01

    Low level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. The aerial photographs were also used to make a positive identification in a satellite picture of the cloud observed by the low level aircraft. The experiment was conducted over the tropical oceans in the vicinity of Florida, Puerto Rico, Panama and in the Western Gulf of Mexico. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at the cloud base. The magnitude of the vector difference between the cloud motion and the cloud base wind is less than 1.3 m/sec for 67% of the cases with track lengths of 1 hour or longer. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/sec.

  3. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    NASA Technical Reports Server (NTRS)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  4. Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Self, S.

    1980-01-01

    Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.

  5. Vector Analysis of Human Limb Motion.

    ERIC Educational Resources Information Center

    Laferriere, Joseph E.

    1994-01-01

    Uses vectors to illustrate movement of the human appendicular structures to help students visualize the interaction of the various muscles and understand how a small number of muscles can affect movement in a potentially infinite number of directions. (ZWH)

  6. Clouds on Neptune: Motions, Evolution, and Structure

    NASA Technical Reports Server (NTRS)

    Sromovsky, Larry A.; Morgan, Thomas (Technical Monitor)

    2001-01-01

    The aims of our original proposal were these: (1) improving measurements of Neptune's circulation, (2) understanding the spatial distribution of cloud features, (3) discovery of new cloud features and understanding their evolutionary process, (4) understanding the vertical structure of zonal cloud patterns, (5) defining the structure of discrete cloud features, and (6) defining the near IR albedo and light curve of Triton. Towards these aims we proposed analysis of existing 1996 groundbased NSFCAM/IRTF observations and nearly simultaneous WFPC2 observations from the Hubble Space Telescope. We also proposed to acquire new observations from both HST and the IRTF.

  7. Rapid ray motions in barium plasma clouds and auroras

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Hallinan, T. J.; Stenbaek-Nielsen, H. C.; Swift, D. W.; Wallis, D. D.

    1993-01-01

    On two evenings in 1968, anomalous field-aligned brightenings or emission enhancements of up to 3X were observed to move rapidly through three different Ba(+) clouds over Andoya, Norway. Similar effects were observed in Ba(+) clouds released from rockets launched from Poker Flat, Alaska, on March 21, 1973 and on March 22, 1980. On these occasions, auroras on or near the Ba(+) L shell also exhibited active rapid ray motions, which prompts the assumption that the two phenomena are related and the expectation that an explanation of the rapid ray motions in the Ba(+) clouds would lead to a better understanding of the physics of auroral ray motions and the auroral atmosphere. Seven possible mechanisms to produce the observed moving emission enhancements are discussed. The observations provide strong evidence for the existence of transient electric fields of order 100 mV/m at altitudes as low as 200 km during active aurora with rapid ray motions.

  8. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  9. Dynamics of gas and particulate clouds: parametric analysis of cloud motion

    NASA Astrophysics Data System (ADS)

    Anderson, Mark E.; Larsen, Jeremy C.; Cornelsen, Scott S.; Call, Seth T.; Stokes, Scott T.; Earl, Curtis L.; Hayes, Travis M.; Wilkerson, Thomas D.

    2004-09-01

    This paper describes a project on automating the interpretation of cloud images recorded during several types of atmospheric observations: (1) dust clouds generated by controlled explosions, (2) chemical releases of infrared-active gases, and (3) lidar measurements of cloud altitude winds. This program began with a basic cloud tracking system for lidar comparisons, which has since been upgraded. We describe automated methods for tracking clouds of relatively constant shape, segmenting time-dependent clouds and plumes from scenic backgrounds, characterizing cloud and plume shapes, and measuring the speed and direction of cloud motion. Dust clouds were created by fireworks, releases of pressurized aerosols and by propane-driven blast tubes. Chemical clouds of organic vapors were created by evaporation or with pressurized balloon releases. Cloud imagery for particle releases was recorded primarily with a pair of visible video cameras. The chemical clouds were imaged with a high framing rate infrared camera in the 2.5 - 3.5 micron region. Current project goals include an end-to-end system for cloud warnings, wind measurement, and dispersion predictions in real time.

  10. The role of the harmonic vector average in motion integration.

    PubMed

    Johnston, Alan; Scarfe, Peter

    2013-01-01

    The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition to the geometrically correct global velocity as indicated by the intersection of constraints (IOC) solution. Here a new combination rule, the harmonic vector average (HVA), is introduced, as well as a new algorithm for computing the IOC solution. The vector sum can be discounted as an integration strategy as it increases with the number of elements. The vector average over local vectors that vary in direction always provides an underestimate of the true global speed. The HVA, however, provides the correct global speed and direction for an unbiased sample of local velocities with respect to the global motion direction, as is the case for a simple closed contour. The HVA over biased samples provides an aggregate velocity estimate that can still be combined through an IOC computation to give an accurate estimate of the global velocity, which is not true of the vector average. Psychophysical results for type II Gabor arrays show perceived direction and speed falls close to the IOC direction for Gabor arrays having a wide range of orientations but the IOC prediction fails as the mean orientation shifts away from the global motion direction and the orientation range narrows. In this case perceived velocity generally defaults to the HVA.

  11. Automated detection of Martian water ice clouds using Support Vector Machine and simple feature vectors

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Munetomo, Takafumi; Hatanaka, Yuji; Okumura, Susumu

    2016-12-01

    We present a method for evaluating the presence of Martian water ice clouds using difference images and cross-correlation distributions calculated from blue band images of the Valles Marineris obtained by the Mars Orbiter Camera onboard the Mars Global Surveyor (MGS/MOC). We derived one subtracted image and one cross-correlation distribution from two reflectance images. The difference between the maximum and the average, variance, kurtosis, and skewness of the subtracted image were calculated. Those of the cross-correlation distribution were also calculated. These eight statistics were used as feature vectors for training Support Vector Machine because they were the simplest of features that was expected to be closely associated with the physical properties of water ice clouds. The generalization ability was tested using 10-fold cross-validation. F-measure and accuracy tended to be approximately 0.8 if the maximum in the normalized reflectance and the difference of the maximum and the average in the cross-correlation were selected as features. This result can be physically explained because the blue band as well as the red band is sensitive to water ice clouds. A simple and low-dimensional feature vector enables us to understand the detected water ice clouds physically and presents the lower bound of the score that classifiers trained using more sophisticated feature vectors have to achieve.

  12. Vertical Motions in Convective Clouds Over Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Mallinson, H.; Schumacher, C.; Ahmed, F.

    2015-12-01

    Vertical motions are essential in parameterizing convection in large-scale models. Yet in tropical systems vertical motions are difficult to obtain, especially in areas of active convection. This study uses three months of profiler data from Darwin, Australia to directly compare vertical velocity and spectrum width with reflectivity at a height of 1 km (a near-surface rain proxy) for shallow, mid-level, and deep convective clouds. Vertical velocities for all convective clouds were also compared to echo-top heights of varying reflectivities to better understand convective cloud dynamics in relation to their vertical structure. In shallow convective clouds (tops <4 km) three distinct regimes appear: a weak up-and downdraft couplet at low reflectivities (0-15 dBz), a robust updraft at moderate reflectivities (20-35 dBz), and strong downdrafts at large reflectivities (>40 dBz). These regimes could represent different stages in the convective cloud life cycle with strong updrafts and moderate reflectivity occurring in the growing phase and strong downdrafts and large reflectivity occurring in the mature phase. The weak up-and downdraft couplet and low reflectivities suggest a dissipating phase. Mid-level convective clouds (tops 4-8 km) also show three distinct regimes: moderate updrafts at low reflectivities (possible growing phase), a weak up-and downdraft couplet at moderate reflectivities (possible dissipating phase), and strong up-and downdrafts at large reflectivities (mature phase). Deep convective clouds (tops >8 km) show strong updrafts above 4 km for all reflectivities with the strongest downdrafts occurring at large reflectivities. While maximum updrafts vary in height and occur at different reflectivities among cloud types, mean downdraft depth never exceeds 3 km and is always strongest at large reflectivities, which may allow better characterization of cold pool properties. Throughout all convective cloud types, spectrum width has the highest values at lower

  13. An R-D optimized transcoding resilient motion vector selection

    NASA Astrophysics Data System (ADS)

    Aminlou, Alireza; Semsarzadeh, Mehdi; Fatemi, Omid

    2014-12-01

    Selection of motion vector (MV) has a significant impact on the quality of an encoded, and particularly a transcoded video, in terms of rate-distortion (R-D) performance. The conventional motion estimation process, in most existing video encoders, ignores the rate of residuals by utilizing rate and distortion of motion compensation step. This approach implies that the selected MV depends on the quantization parameter. Hence, the same MV that has been selected for high bit rate compression may not be suitable for low bit rate ones when transcoding the video with motion information reuse technique, resulting in R-D performance degradation. In this paper, we propose an R-D optimized motion selection criterion that takes into account the effect of residual rate in MV selection process. Based on the proposed criterion, a new two-piece Lagrange multiplier selection is introduced for motion estimation process. Analytical evaluations indicate that our proposed scheme results in MVs that are less sensitive to changes in bit rate or quantization parameter. As a result, MVs in the encoded bitstream may be used even after the encoded sequence has been transcoded to a lower bit rate one using re-quantization. Simulation results indicate that the proposed technique improves the quality performance of coding and transcoding without any computational overhead.

  14. GOCI Level-2 Processing Improvements and Cloud Motion Analysis

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne

    2015-01-01

    The Ocean Biology Processing Group has been working with the Korean Institute of Ocean Science and Technology (KIOST) to process geosynchronous ocean color data from the GOCI (Geostationary Ocean Color Instrument) aboard the COMS (Communications, Ocean and Meteorological Satellite). The level-2 processing program, l2gen has GOCI processing as an option. Improvements made to that processing are discussed here as well as a discussion about cloud motion effects.

  15. Rapid ray motions in barium plasma clouds and auroras

    SciTech Connect

    Wescott, E.M.; Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Swift, D.W.; Wallis, D.D. )

    1993-03-01

    Barium plasma clouds released at high latitudes characteristically become striated with many field-aligned rays. The rays which often resemble auroral features usually drift as a whole with the E [times] B/B[sup 2] drift of the cloud and alter position only slowly (order or tens of seconds). On two evenings in 1968, in releases from Andoya, Norway, anomalous field-aligned brightenings or emission enhancements of up to 3X were observed to move rapidly (10-20 km/s) through three different Ba[sup +] clouds. Similar effects were observed in Ba[sup +] clouds released from rockets launched from Poker Flat, Alaska: On March 21, 1973, in two Ba thermite releases and on March 22, 1980, in the Ba-shaped charge experiment Miss Peggy.' On these occasions, auroras on or near the Ba[sup +] L shell, also exhibited active rapid ray motions. This leads to the assumption that the two phenomena are related and the expectation that an explanation of the rapid ray motions in the Ba[sup +] clouds would lead to a better understanding of the physics of auroral ray motions and the auroral ionosphere. Seven possible mechanisms to produce the observed moving emission enhancements are discussed. Direct motion of an isolated Ba[sup +] ray past the other rays by E [times] B/B[sup 2] motion seems very unlikely due to the observed variations in the enhancements and the large E field required (> 500 mV/m). Compressional waves do not seem to be of sufficient amplitude or velocity. Absorption or radiation of Doppler shifted Ba[sup +] emissions by ions gyrating or moving at a few kilometers per second seems to be the most promising mechanism for producing the enhancements. The observations provide compelling evidence for the existence of transient electric fields of order 100 mV/m at altitudes as low as 200 km during active aurora with rapid ray motions. The affected regions have dimensions of order a few kilometers across B and move eastward at 10-20 km/s. 36 refs., 10 figs., 1 tab.

  16. The effect of wind and moisture gradients on the arbitrary assignment of cloud motions to a vertical coordinate system in two Sesame cases

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1984-01-01

    Satellite-derived cloud motion 'wind' vectors (CMV) are increasingly used in mesoscale and in global analyses, and questions have been raised regarding the uncertainty of the level assignment for the CMV. One of two major problems in selecting a level for the CMV is related to uncertainties in assigning the motion vector to either the cloud top or base. The second problem is related to the inability to transfer the 'wind' derived from the CMV at individually specified heights to a standard coordinated surface. The present investigation has the objective to determine if the arbitrary level assignment represents a serious obstacle to the use of cloud motion wind vectors in the mesoscale analysis of a severe storm environment.

  17. Digital video steganalysis using motion vector recovery-based features.

    PubMed

    Deng, Yu; Wu, Yunjie; Zhou, Linna

    2012-07-10

    As a novel digital video steganography, the motion vector (MV)-based steganographic algorithm leverages the MVs as the information carriers to hide the secret messages. The existing steganalyzers based on the statistical characteristics of the spatial/frequency coefficients of the video frames cannot attack the MV-based steganography. In order to detect the presence of information hidden in the MVs of video streams, we design a novel MV recovery algorithm and propose the calibration distance histogram-based statistical features for steganalysis. The support vector machine (SVM) is trained with the proposed features and used as the steganalyzer. Experimental results demonstrate that the proposed steganalyzer can effectively detect the presence of hidden messages and outperform others by the significant improvements in detection accuracy even with low embedding rates.

  18. Verification of sectoral cloud motion based direct normal irradiance nowcasting from satellite imagery

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, Marion; Gesell, Gerhard

    2016-05-01

    The successful integration of solar electricity from photovoltaics or concentrating solar power plants into the existing electricity supply requires an electricity production forecast for 48 hours, while any improved surface irradiance forecast over the next upcoming hours is relevant for an optimized operation of the power plant. While numerical weather prediction has been widely assessed and is in commercial use, the short-term nowcasting is still a major field of development. European Commission's FP7 DNICast project is especially focusing on this task and this paper reports about parts of DNICast results. A nowcasting scheme based on Meteosat Second Generation cloud imagery and cloud movement tracking has been developed for Southern Spain as part of a solar production forecasting tool (CSP-FoSyS). It avoids the well-known, but not really satisfying standard cloud motion vector approach by using a sectoral approach and asking the question at which time any cloud structure will affect the power plant. It distinguishes between thin cirrus clouds and other clouds, which typically occur in different heights in the atmosphere and move in different directions. Also, their optical properties are very different - especially for the calculation of direct normal irradiances as required by concentrating solar power plants. Results for Southern Spain show a positive impact of up to 8 hours depending of the time of the day and a RMSD reduction of up to 10% in hourly DNI irradiation compared to day ahead forecasts. This paper presents the verification of this scheme at other locations in Europe and Northern Africa (BSRN and EnerMENA stations) with different cloud conditions. Especially for Jordan and Tunisia as the most relevant countries for CSP in this station list, we also find a positive impact of up to 8 hours.

  19. Characteristics of vertical air motion in isolated convective clouds

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; French, Jeffrey R.

    2016-08-01

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (< 500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFs are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (> 20 m s-1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 104 kg m-1 s-1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.

  20. Influence of shear motion on evolution of molecular clouds in the spiral galaxy M 51

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yusuke; Nakai, Naomasa; Kuno, Nario

    2014-04-01

    We have investigated the dynamics of the molecular gas and the evolution of giant molecular associations (GMAs) in the spiral galaxy M 51 with the Nobeyama Radio Observatory 45-m telescope. The velocity components of the molecular gas perpendicular and parallel to the spiral arms are derived at each spiral phase from the distribution of the line-of-sight velocity of the CO gas. In addition, the shear motion in the galactic disk is determined from the velocity vectors at each spiral phase. It is revealed that the distributions of the shear strength and of GMAs are anti-correlated. GMAs exist only in the area of the weak shear strength and further on the upstream side of the high shear strength. GMAs and most giant molecular clouds (GMCs) exist in the regions where the shear critical surface density is smaller than the gravitational critical surface density, indicating that they can stably grow by self-gravity and the collisional agglomeration of small clouds without being destroyed by shear motion. These factors indicate that the shear motion is an important factor in evolution of GMCs and GMAs.

  1. Fast motion vector estimation by using spatiotemporal correlation of motion field

    NASA Astrophysics Data System (ADS)

    Kim, Sungook; Chalidabhongse, Junavit; Kuo, C.-C. Jay

    1995-04-01

    Motion vector (MV) estimation plays an important role in motion compensated video coding. In this research, we first examine a stochastic MV model which enables us to exploit the strong correlation of MVs in both spatial and temporal domains in a given image sequence. Then, a new fast stochastic block matching algorithm (SBMA) is proposed. The basic idea is to select a set of good MV candidates and choose from them the one which satisfies a certain spatio-temporal correlation rule. The proposed algorithm reduces matching operations to about 2% of that of the full block matching algorithm (FBMA) with only 2% increase of the sum of absolute difference (SAD) in motion compensated residuals. The excellent performance of the new algorithm is supported by extensive experimental results.

  2. Characteristics of vertical air motion in isolated convective clouds

    DOE PAGES

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...

    2016-08-11

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (<  500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (>  20 m s−1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 104 kg m−1 s−1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less

  3. Spatio-temporal Rich Model Based Video Steganalysis on Cross Sections of Motion Vector Planes.

    PubMed

    Tasdemir, Kasim; Kurugollu, Fatih; Sezer, Sakir

    2016-05-11

    A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.

  4. Reducing and filtering point clouds with enhanced vector quantization.

    PubMed

    Ferrari, Stefano; Ferrigno, Giancarlo; Piuri, Vincenzo; Borghese, N Alberto

    2007-01-01

    Modern scanners are able to deliver huge quantities of three-dimensional (3-D) data points sampled on an object's surface, in a short time. These data have to be filtered and their cardinality reduced to come up with a mesh manageable at interactive rates. We introduce here a novel procedure to accomplish these two tasks, which is based on an optimized version of soft vector quantization (VQ). The resulting technique has been termed enhanced vector quantization (EVQ) since it introduces several improvements with respect to the classical soft VQ approaches. These are based on computationally expensive iterative optimization; local computation is introduced here, by means of an adequate partitioning of the data space called hyperbox (HB), to reduce the computational time so as to be linear in the number of data points N, saving more than 80% of time in real applications. Moreover, the algorithm can be fully parallelized, thus leading to an implementation that is sublinear in N. The voxel side and the other parameters are automatically determined from data distribution on the basis of the Zador's criterion. This makes the algorithm completely automatic. Because the only parameter to be specified is the compression rate, the procedure is suitable even for nontrained users. Results obtained in reconstructing faces of both humans and puppets as well as artifacts from point clouds publicly available on the web are reported and discussed, in comparison with other methods available in the literature. EVQ has been conceived as a general procedure, suited for VQ applications with large data sets whose data space has relatively low dimensionality.

  5. Error Evaluation of Planetary Atmospheric Motion Vectors by Statistical Presumption Technique.

    NASA Astrophysics Data System (ADS)

    MURACHI, T.; IMAMURA, T.; HIGUCHI, T.; NAKAMURA, M.

    2002-05-01

    In the Solar System there are the planets (e.g. Venus etc.) whose surface environment and general atmospheric circulation differs from Earth_fs one. If we can understand the meteorology of these planets, we get the information of meteorological mechanism which completely differs from the Earth_f one. By returning this information to the Earth's meteorology we more deeply understand the meteorological phenomenon of the Earth than now. Therefore, it is important to research the meteorology of these planets. In past meteorological researches of the atmospheric planets they had not reached to detailed understanding. This reason is that in many cases target physical phenomenon is covered with the error because of data shortage. For solving this problem we must obtain the many data. However, examining the past research, I notice that the possibility of overestimate of error. Concretely, it is like below. In past meteorological researches of the atmospheric planets except the Earth, in which the Atmospheric Motion Vectors (AMVs) are derived from their cloud images, the AMVs' accuracy is evaluated from the spatial and time adjustment. The AMVs which depart the permissible range are deleted, which is decided in view of the spatial and time scale of the target physical phenomenon and the possibility of miss-matching. The error of AMVs is defined as the standard deviation of neighboring AMVs. In this definition, however, the error of AMVs depends on the permissible range and is anticipated to be as large as the target physical phenomenon. In fact, there were some researches that they couldn't prove whether the target physical phenomenon existed because of the large error of itself. The proper error evaluation as well as the observation method is important for proving the existence of the target physical phenomenon. The purpose of this study is to establish the error evaluation of AMVs, which reflects influence of the image spatial resolution and the change of cloud shape upon

  6. Self-powered thin-film motion vector sensor

    PubMed Central

    Jing, Qingshen; Xie, Yannan; Zhu, Guang; Han, Ray P. S.; Wang, Zhong Lin

    2015-01-01

    Harnessing random micromeso-scale ambient energy is not only clean and sustainable, but it also enables self-powered sensors and devices to be realized. Here we report a robust and self-powered kinematic vector sensor fabricated using highly pliable organic films that can be bent to spread over curved and uneven surfaces. The device derives its operational energy from a close-proximity triboelectrification of two surfaces: a polytetrafluoroethylene film coated with a two-column array of copper electrodes that constitutes the mover and a polyimide film with the top and bottom surfaces coated with a two-column aligned array of copper electrodes that comprises the stator. During relative reciprocations, the electrodes in the mover generate electric signals of ±5 V to attain a peak power density of ≥65 mW m−2 at a speed of 0.3 ms−1. From our 86,000 sliding motion tests of kinematic measurements, the sensor exhibits excellent stability, repeatability and strong signal durability. PMID:26271603

  7. Landsat 7 Reveals Large-scale Fractal Motion of Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Landsat 7 image of clouds off the Chilean coast near the Juan Fernandez Islands (also known as the Robinson Crusoe Islands) on September 15, 1999, shows a unique pattern called a 'von Karman vortex street.' This pattern has long been studied in the laboratory, where the vortices are created by oil flowing past a cylindrical obstacle, making a string of vortices only several tens of centimeters long. Study of this classic 'flow past a circular cylinder' has been very important in the understanding of laminar and turbulent fluid flow that controls a wide variety of phenomena, from the lift under an aircraft wing to Earth's weather. Here, the cylinder is replaced by Alejandro Selkirk Island (named after the true 'Robinson Crusoe,' who was stranded here for many months in the early 1700s). The island is about 1.5 km in diameter, and rises 1.6 km into a layer of marine stratocumulus clouds. This type of cloud is important for its strong cooling of the Earth's surface, partially counteracting the Greenhouse warming. An extended, steady equatorward wind creates vortices with clockwise flow off the eastern edge and counterclockwise flow off the western edge of the island. The vortices grow as they advect hundreds of kilometers downwind, making a street 10,000 times longer than those made in the laboratory. Observing the same phenomenon extended over such a wide range of sizes dramatizes the 'fractal' nature of atmospheric convection and clouds. Fractals are characteristic of fluid flow and other dynamic systems that exhibit 'chaotic' motions. Both clockwise and counter-clockwise vortices are generated by flow around the island. As the flow separates from the island's leeward (away from the source of the wind) side, the vortices 'swallow' some of the clear air over the island. (Much of the island air is cloudless due to a local 'land breeze' circulation set up by the larger heat capacity of the waters surrounding the island.) The 'swallowed' gulps of clear island air

  8. Characterizing Tropospheric Winds by Combining MISR Cloud-Track and QuikSCAT Surface Wind Vectors

    NASA Astrophysics Data System (ADS)

    Davies, R.; Garay, M. J.; Moroney, C. M.; Liu, W. T.

    2007-12-01

    Numerous studies have found that the inclusion of wind observations results in a significantly greater improvement in operational weather forecasts compared to the addition of temperature or pressure observations alone. However, global tropospheric wind measurements are only available from 12-hourly rawinsonde launches from selected locations, primarily over land. For years the world's oceans were "data voids" in terms of wind measurements. Only recently have satellites begun to fill this gap. The SeaWinds scatterometer on the QuikSCAT satellite obtains winds referenced to 10 meters above the surface over the global oceans under nearly all weather conditions. The wind speed and direction data from QuikSCAT have been extensively tested against surface observations and are of such quality that these data are routinely assimilated into numerical weather prediction models run by both the National Center for Environmental Prediction (NCEP) and the European Centre for Medium Range Weather Forecasting (ECMWF). However, scatterometer data only provide wind information near the ocean surface. This information can be complemented with satellite cloud-track winds that provide information about winds in the free troposphere over the ocean, as well as over land, where scatterometer data are not available. In particular, the height resolved cloud motion vectors from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the NASA EOS Terra satellite yield wind speeds for clouds at altitudes less than approximately 2.5 km that are shown to compare favorably with the QuikSCAT winds globally. In addition, the direction of the MISR winds is similar to the QuikSCAT wind vectors when compared on the same basis. The synergistic use of these two sets of wind observations has the potential to make possible a variety of new studies: from improved forecast and climate model validation; to increased understanding of tropospheric water vapor transport; to observations of the coupling

  9. Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds

    NASA Astrophysics Data System (ADS)

    Handel, P. H.

    2007-05-01

    When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud

  10. Cloud morphology and motions from Pioneer Venus images

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Del Genio, A. D.; Limaye, S. S.; Travis, L. D.; Stone, P. H.

    1980-01-01

    The horizontal and vertical cloud structures, atmospheric waves, and wind velocities at the cloud top level were determined by the Pioneer Venus photopolarimeter images in the UV from January through March 1979. The images indicate long-term evolution of cloud characteristics, the atmospheric dynamics, and rapid small changes in cloud morphology. The clouds show a globally coordinated oscillation relative to latitude circles; retrograde zonal winds of 100 m/s near the equator are determined from the tracking of small-scale cloud properties, but two hemispheres show important variations. The zonal wind velocity in the southern hemisphere is reduced toward the poles at a rate similar to solid body rotation; the midlatitude jet stream noted by Mariner 10 is not observed.

  11. Effect of GOES-R Image Navigation and Registration Errors on Atmospheric Motion Vectors

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2008-01-01

    High temporal frequency imagery from geostationary satellites allows for the continuous monitoring of rapidly changing atmospheric constituents such as smoke, dust, water vapor and clouds. The image sequences are often used to quantify the displacement of image features such as water vapor and clouds to produce atmospheric motion vectors (AMVs) which are used as diagnostic tools and also assimilated into numerical weather forecast models. The basic principle behind the determination of AMVs is the calculation of the physical displacement of features from one image (time) to the next. This process assumes that the features being tracked do not change as a function of time, usually requiring the use of short time interval imagery to minimize substantial change in size and shape of the features being tracked. High spatial resolution imagery also is required for reliable feature identification. While these image resolution and temporal sampling requirements often provide major drivers for space-based instrument design requirements, accurate image navigation and registration, INn (between a sequence of images), is also critical to the derivation of useful AMVs. In this paper and poster to be presented at the conference, the image navigation and registration (INR) accuracy expected for the Advanced Baseline Imager (ABI) on the GOES-R series of satellites will be discussed in light of its impact on AMV accuracy. Significant satellite platform and modeling enhancements are planned which should significantly improve INn performance of the GOES-R instruments. Some of these improvements have been demonstrated for the GOES-13 satellite which was launched in summer of 2006. An analysis of GOES-13 INR data, from the special satellite check out period, will be used in the assessment.

  12. Validation of INSAT-3D atmospheric motion vectors for monsoon 2015

    NASA Astrophysics Data System (ADS)

    Sharma, Priti; Rani, S. Indira; Das Gupta, M.

    2016-05-01

    Atmospheric Motion Vector (AMV) over Indian Ocean and surrounding region is one of the most important sources of tropospheric wind information assimilated in numerical weather prediction (NWP) system. Earlier studies showed that the quality of Indian geo-stationary satellite Kalpana-1 AMVs was not comparable to that of other geostationary satellites over this region and hence not used in NWP system. Indian satellite INSAT-3D was successfully launched on July 26, 2013 with upgraded imaging system as compared to that of previous Indian satellite Kalpana-1. INSAT-3D has middle infrared band (3.80 - 4.00 μm) which is capable of night time pictures of low clouds and fog. Three consecutive images of 30-minutes interval are used to derive the AMVs. New height assignment scheme (using NWP first guess and replacing old empirical GA method) along with modified quality control scheme were implemented for deriving INSAT-3D AMVs. In this paper an attempt has been made to validate these AMVs against in-situ observations as well as against NCMRWF's NWP first guess for monsoon 2015. AMVs are subdivided into three different pressure levels in the vertical viz. low (1000 - 700 hPa), middle (700 - 400 hPa) and high (400 - 100 hPa) for validation purpose. Several statistics viz. normalized root mean square vector difference; biases etc. have been computed over different latitudinal belt. Result shows that the general mean monsoon circulations along with all the transient monsoon systems are well captured by INSAT-3D AMVs, as well as the error statistics viz., RMSE etc of INSAT-3D AMVs is now comparable to other geostationary satellites.

  13. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  14. ACARS wind measurements - An intercomparison with radiosonde, cloud motion and VAS thermally derived winds. [Communications, Addressing and Reporting System VISSR Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Lord, R. J.; Menzel, W. P.; Pecht, L. E.

    1984-01-01

    Statistical comparisons between winds measured by ACARS and winds obtained from radiosondes, geostationary satellite image cloud motions, and VAS are presented. Observations from three separate comparisons reveal over 60 percent of wind vector magnitude differences are within 9 m/s, and 70 percent of the directional differences are within 15 deg. The comparisons indicate that the ACARS system provides an independent source of wind data that complements other sources of wind data for constructing composite wind field analyses.

  15. Retrieving microphysical properties and air motion of cirrus clouds based on the doppler moments method using cloud radar

    NASA Astrophysics Data System (ADS)

    Zhong, Lingzhi; Liu, Liping; Deng, Min; Zhou, Xiuji

    2012-05-01

    Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion. Unlike strong precipitation, the motion of particles in cirrus clouds is quite close to the air motion around them. In this study, a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity, mass-weighted diameter, effective particle size, and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships; however, the former is a more reasonable method.

  16. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  17. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  18. Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B

    NASA Astrophysics Data System (ADS)

    Orkisz, Jan H.; Pety, Jérôme; Gerin, Maryvonne; Bron, Emeric; Guzmán, Viviana V.; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Roueff, Evelyne; Sievers, Albrecht; Tremblin, Pascal

    2017-03-01

    Context. The nature of turbulence in molecular clouds is one of the key parameters that control star formation efficiency: compressive motions, as opposed to solenoidal motions, can trigger the collapse of cores, or mark the expansion of Hii regions. Aims: We try to observationally derive the fractions of momentum density (ρv) contained in the solenoidal and compressive modes of turbulence in the Orion B molecular cloud and relate these fractions to the star formation efficiency in the cloud. Methods: The implementation of a statistical method applied to a 13CO(J = 1-0) datacube obtained with the IRAM-30 m telescope, enables us to retrieve 3-dimensional quantities from the projected quantities provided by the observations, which yields an estimate of the compressive versus solenoidal ratio in various regions of the cloud. Results: Despite the Orion B molecular cloud being highly supersonic (mean Mach number 6), the fractions of motion in each mode diverge significantly from equipartition. The cloud's motions are, on average, mostly solenoidal (excess > 8% with respect to equipartition), which is consistent with its low star formation rate. On the other hand, the motions around the main star forming regions (NGC 2023 and NGC 2024) prove to be strongly compressive. Conclusions: We have successfully applied to observational data a method that has so far only been tested on simulations, and we have shown that there can be a strong intra-cloud variability of the compressive and solenoidal fractions, these fractions being in turn related to the star formation efficiency. This opens a new possibility for star formation diagnostics in galactic molecular clouds. Based on observations carried out at the IRAM-30 m single-dish telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  19. Steady-State Pursuit Is Driven by Object Motion Rather Than the Vector Average of Local Motions

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, B. R.; Lorenceau, J. D.; Ahumada, Al (Technical Monitor)

    1997-01-01

    We have previously shown that humans can pursue the motion of objects whose trajectories can be recovered only by spatio-temporal integration of local motion signals. We now explore the integration rule used to derive the target-motion signal driving pursuit. We measured the pursuit response of 4 observers (2 naive) to the motion of a line-figure diamond viewed through two vertical bar apertures (0.2 cd/square m). The comers were always occluded so that only four line segments (93 cd/square m) were visible behind the occluding foreground (38 cd/square m). The diamond was flattened (40 & 140 degree vertex angles) such that vector averaging of the local normal motions and vertical integration (e.g. IOC) yield very I or different predictions, analogous to using a Type II plaid. The diamond moved along Lissajous-figure trajectories (Ax = Ay = 2 degrees; TFx = 0.8 Hz; TFy = 0.4 Hz). We presented only 1.25 cycles and used 6 different randomly interleaved initial relative phases to minimize the role of predictive strategies. Observers were instructed to track the diamond and reported that its motion was always coherent (unlike type II plaids). Saccade-free portions of the horizontal and vertical eye-position traces sampled at 240 Hz were fit by separate sinusoids. Pursuit gain with respect to the diamond averaged 0.7 across subjects and directions. The ratio of the mean vertical to horizontal amplitude of the pursuit response was 1.7 +/- 0.7 averaged across subjects (1SD). This is close to the prediction of 1.0 from vertical motion-integration rules, but far from 7.7 predicted by vector averaging and infinity predicted by segment- or terminator-tracking strategies. Because there is no retinal motion which directly corresponds to the diamond's motion, steady-state pursuit of our "virtual" diamond is not closed-loop in the traditional sense. Thus, accurate pursuit is unlikely to result simply from local retinal negative feedback. We conclude that the signal driving steady

  20. PROPER-MOTION STUDY OF THE MAGELLANIC CLOUDS USING SPM MATERIAL

    SciTech Connect

    Vieira, Katherine; Girard, Terrence M.; Van Altena, William F.; Casetti-Dinescu, Dana I.; Korchagin, Vladimir I.; Herrera, David E-mail: terry.girard@yale.ed

    2010-12-15

    Absolute proper motions are determined for stars and galaxies to V = 17.5 over a 450 deg{sup 2} area that encloses both Magellanic Clouds. The proper motions are based on photographic and CCD observations of the Yale/San Juan Southern Proper Motion program, which span a baseline of 40 years. Multiple, local relative proper-motion measures are combined in an overlap solution using photometrically selected Galactic disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog of 1.4 million objects is used to derive the mean absolute proper motions of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC); ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub LMC} = (1.89, + 0.39) {+-} (0.27, 0.27) masyr{sup -1} and ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub SMC} = (0.98, - 1.01) {+-} (0.30, 0.29) masyr{sup -1}. These mean motions are based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion (0.25 mas yr{sup -1}) of the formal errors is due to the estimated uncertainty in the inertial system of the Hipparcos Catalog stars used to anchor the bright end of our proper motion measures. A more precise determination can be made for the proper motion of the SMC relative to the LMC; ({mu}{sub {alpha}cos {delta}}, {mu}{sub {delta}}){sub SMC-LMC} = (-0.91, - 1.49) {+-} (0.16, 0.15) masyr{sup -1}. This differential value is combined with measurements of the proper motion of the LMC taken from the literature to produce new absolute proper-motion determinations for the SMC, as well as an estimate of the total velocity difference of the two clouds to within {+-}54 km s{sup -1}. The absolute proper-motion results are consistent with the Clouds' orbits being marginally bound to the Milky Way, albeit on an elongated orbit. The inferred relative velocity between the Clouds places them near their binding energy limit and

  1. Motion data classification on the basis of dynamic time warping with a cloud point distance measure

    NASA Astrophysics Data System (ADS)

    Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.

  2. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  3. Water vapor motion signal extraction from FY-2E longwave infrared window images for cloud-free regions: The temporal difference technique

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Wang, Zhenhui; Chu, Yanli; Zhao, Hang; Tang, Min

    2014-11-01

    The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery, where the traditional cloud motion wind technique fails. A new tracer selection procedure, which we call the temporal difference technique, is demonstrated in this paper. This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature ( T B) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions. The T B difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model. The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions: tropical, midlatitude summer, U.S. standard, and midlatitude winter. The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the T B "wind". This technique is valid over cloud-free ocean areas. The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD), speed bias (BIAS), mean vector difference (MVD), standard deviation (SD), and root-mean-square error (RMSE), when compared with the wind field of NCEP reanalysis data and rawinsonde observations.

  4. Retrievals of Vertical Air Motion from the HIAPER Cloud Radar during CSET

    NASA Astrophysics Data System (ADS)

    Schwartz, M. C.; Ghate, V. P.; Vivekanandan, J.; Tsai, P.; Ellis, S. M.

    2015-12-01

    the ocean surface echoes, together with aircraft motion data, will be used to ameliorate the radar beam broadening due to aircraft motion. After accounting for the aircraft motion we will explore techniques to retrieve the vertical air motion and cloud microphysical variables from the radar Doppler spectrum.

  5. The use of MISR Multiangle Image Data to Visualize Cloud Morphology and Motion

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.; Moroney, C. M.; Davies, R.

    2002-12-01

    The Multiangle Imaging SpectroRadiometer (MISR), currently orbiting the Earth aboard NASA's Terra spacecraft, acquires image data at 9 distinct viewing angles simultaneously. This multiangle imaging is accomplished through the use of 9 cameras, with one camera providing a nadir view and the remaining cameras providing views 26.1, 45.6, 60.0, and 70.5 degrees fore and aft of nadir. Each camera, in turn, measures scene radiance in 4 spectral bands (red, green, blue, and near infrared). One of the objectives of the MISR mission is to infer the physical properties of atmospheric aerosols, clouds, and land cover (including snow, ice, and vegetation) from angular variations in scene radiance. One step in the operational processing of MISR data is to map these data into a Space Oblique Mercator projection. As a result of this projection, features at elevations above or below the reference ellipsoid (WGS 84) exhibit an apparent displacement, known as parallax or disparity, in the off-nadir images. The disparities exhibited by clouds can be used to estimate the height of the clouds, and cloud-top height maps are an operational MISR data product. Although the 9 MISR cameras acquire data simultaneously, approximately 7 minutes are required to obtain a suite of fore- and aft-viewing images that depict the same scene. This time lag allows MISR to capture the motion of clouds due to winds, and maps of wind direction and wind speed are operational data products. Visualization of the cloud properties measured by MISR presents several unique challenges, such as registration of the angular distribution of radiance above a cloud with its surface morphology and depiction of cloud motion independent of the disparity resulting from cloud height. We will present some of the tools and animation techniques developed to address these challenges. For example, MISR_Shift is an interactive tool that allows us to evaluate the effects of changes (or uncertainties) in cloud height and wind speed

  6. A hybrid approach to estimate the complex motions of clouds in sky images

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2016-09-14

    Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this article, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approachmore » with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Furthermore, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images.« less

  7. Specifying heights and velocities of cloud motion from geostationary sounding data

    NASA Technical Reports Server (NTRS)

    Menzel, P.; Stewart, T. R.; Smith, W. L.

    1983-01-01

    Data from the geostationary Visible Infrared Spin-Scan Radiometer (VISSR) Atmospheric Sounder (VAS) for assigning simultaneous heights and velocities of cloud motion winds were processed. The following two techniques are discussed: The technique which delivers qualitative height assignments from imagery; and which uses the radiometric information contained in the VAS data to calculate quantitative heights.

  8. A hybrid approach to estimate the complex motions of clouds in sky images

    SciTech Connect

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Kalb, Paul

    2016-09-14

    Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this article, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approach with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Furthermore, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images.

  9. Observing Vertical Motion of Deep Convective Clouds by Stereo Photogrammetry

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Romps, D. M.

    2013-12-01

    Using stereo photography, the vertical velocities of convective clouds are measured over Biscayne Bay in Miami. When applied to deep convection, the stereo cameras observe typical ascent speeds in excess of 10 m/s. With a high frame rate, fine spatial resolution, and long range, the cameras are able to reconstruct the trajectories -- in three-dimensional space -- of individual convective plumes through their lifecycle deep into the upper troposphere. To ensure high accuracy when looking out over water, a novel algorithm has been designed to calibrate the orientation of the cameras in the absence of traditional landmarks. The accuracy is validated by comparing the cloud heights obtained from the stereo cameras to data from a colocated ceilometer, and by comparing the stereo-camera winds to data from nearby radiosondes. With the ability to capture full field-of-view data at a high frame rate (i.e., 0.1 to 10 Hz), stereo photography provides a unique and powerful complement to traditional radar technology.

  10. Gas motions within high-velocity cloud Complex A reveal that it is dissolving into the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Huey-You, Cannan; Barger, Kathleen; Nidever, David L.; Rueff, Katherine Meredith

    2017-01-01

    A massive gas cloud, known as Complex A, is headed towards our Galaxy. This high-velocity cloud is made up of 2 million solar masses of neutral and ionized hydrogen. This cloud is traveling through the Galactic halo, which causes a headwind that damages the cloud. Light escaping the Milky Way’s disk also hits the cloud and ionizes it. Using 21-cm radio observations from the Green Bank Telescope, we studied the motions of the gas. We found that diffuse gas is lagging behind the denser parts of the cloud. These motions suggest that gas is being stripped off the cloud and that it is dissolving into the Galactic halo. This disruptive process means that less gas will safely reach the disk of Milky Way and therefore the cloud will provide less gas for making future stars.

  11. Proper motion of the Large Magellanic Cloud and the mass of the galaxy. 1: Observational results

    NASA Astrophysics Data System (ADS)

    Jones, B. F.; Klemola, A. R.; Lin, D. N. C.

    1994-04-01

    We have measured the proper motion of the Large Magellanic Cloud (LMC) using 21 plates taken with the Cerro-Tololo Inter-American Observatory (CTIO) 4 m telescope and covering an epoch span of 14 yr. The plates were centered on the globular cluster NGC 2257, lying on the northeast periphery of the Cloud. Proper motions were determined for 251 LMC members, chosen on the basis of the photometry of Stryker (1984), using 92 galaxies as a reference frame. The measured mean absolute proper motion of the LMC stars in our region is mualpha = 0.120 sec +/- 0.028 sec century-1, mudelta=0.026 sec +/- 0.027 sec century-1. After correcting for the rotation of the LMC and the effects of solar motion, this proper motion combined with the radial velocity of the LMC implies a galactocentric coordinate radial velocity for the Cloud of 48 +/- 41 km s-1 and a total galactocentric transverse velocity of 215 +/- 48 km s-1.

  12. Stratiform clouds and their interaction with atmospheric motion

    NASA Technical Reports Server (NTRS)

    Clark, John H. E.; Shirer, Hampton N.

    1990-01-01

    During 1989 and 1990, the researchers saw the publication of two papers and the submission of a third for review on work supported primarily by the previous contract, NAS8-36150; the delivery of an invited talk at the SIAM Conference on Dynamical Systems in Orlando, Florida; and the start of two new projects on the radiative effects of stratocumulus on the large-scale flow. The published papers discuss aspects of stratocumulus circulations (Laufersweiler and Shirer, 1989) and the Hadley to Rossby regime transition in rotating spherical systems (Higgins and Shirer, 1990). The submitted paper (Haack and Shirer, 1990) discusses a new nonlinear model of roll circulations that are forced both dynamically and thermally. The invited paper by H. N. Shirer and R. Wells presented an objective means for determining appropriate truncation levels for low-order models of flows involving two incommensurate periods; this work has application to the Hadley to Rossby transition problem in quasi-geostrophic flows (Moroz and Holmes, 1984). The new projects involve the development of a multi-layered quasi-geostrophic channel model for study of the modulation of the large-scale flow by stratocumulus clouds that typically develop off the coasts of continents. In this model the diabatic forcing in the lowest layer will change in response to the (parameterized) development of extensive fields of stratocumulus clouds. To guide creation of this parameterization scheme, researchers are producing climatologies of stratocumulus frequency and the authors correlate these frequencies with the phasing and amplitude of the large-scale flow pattern. Researchers discuss the above topics in greater detail.

  13. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  14. Earthquake slip vectors and estimates of present-day plate motions

    NASA Technical Reports Server (NTRS)

    Demets, Charles

    1993-01-01

    Two alternative models for present-day global plate motions are derived from subsets of the NUVEL-1 data in order to investigate the degree to which earthquake slip vectors affect the NUVEL-1 model and to provide estimates of present-day plate velocities that are independent of earthquake slip vectors. The data set used to derive the first model excludes subduction zone slip vectors. The primary purpose of this model is to demonstrate that the 240 subduction zone slip vectors in the NUVEL-1 data set do not greatly affect the plate velocities predicted by NUVEL-1. A data set that excludes all of the 724 earthquake slip vectors used to derive NUVEL-1 is used to derive the second model. This model is suitable as a reference model for kinematic studies that require plate velocity estimates unaffected by earthquake slip vectors. The slip-dependent slip vector bias along transform faults is investigated using the second model, and evidence is sought for biases in slip directions along spreading centers.

  15. NPS State Vector Analysis and Relative Motion Plotting Software for STS-51. Appendix C

    DTIC Science & Technology

    1994-03-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A282 910 ,: ,.TIC ELECTE THESIS NPS STATE VECTOR ANALYSIS AND RELATIVE MOTION PLOTTING SOFTWARE FOR...STS-51 APPENDIX C by Lieutenant Lee A. Barker March, 1994 Thesis Advisor: Dr. Rudolf Panholzer "Approved -for public releas; distribution is...buffer, then process "* all the valid samples. */ if (this- > ring-full YES) I samples = this- > ringmax; begin-time - this->begintme = this-> ring

  16. PET Image Reconstruction and Deformable Motion Correction Using Unorganized Point Clouds.

    PubMed

    Klyuzhin, Ivan; Sossi, Vesna

    2017-03-02

    Quantitative PET imaging often requires correcting the image data for deformable motion. With cyclic motion, this is traditionally achieved by separating the coincidence data into a relatively small number of gates, and incorporating the inter-gate image transformation matrices into the reconstruction algorithm. In the presence of non-cyclic deformable motion, this approach may be impractical due to a large number of required gates. In this work, we propose an alternative approach to iterative image reconstruction with correction for deformable motion, wherein unorganized point clouds are used to model the imaged objects in the image space, and motion is corrected for explicitly by introducing a time-dependency into the point coordinates. The image function is represented using constant basis functions with finite support determined by the boundaries of the Voronoi cells in the point cloud. We validate the quantitative accuracy and stability of the proposed approach by reconstructing noise-free and noisy projection data from digital and physical phantoms. The pointcloud based MLEM and one-pass list-mode OSEM algorithms are validated. The results demonstrate that images reconstructed using the proposed method are quantitatively stable, with noise and convergence properties comparable to image reconstruction based on the use of rectangular and radially-symmetric basis functions.

  17. Dipole-dipole induced global motion of Rydberg-dressed atom clouds

    NASA Astrophysics Data System (ADS)

    Genkin, M.; Wüster, S.; Möbius, S.; Eisfeld, A.; Rost, J. M.

    2014-05-01

    We consider two clouds of ground-state alkali atoms in two distinct hyperfine ground states. Each level is far off-resonantly coupled to a Rydberg state, which leads to dressed ground states with a weak admixture of the Rydberg state properties. Due to this admixture, for a proper choice of the Rydberg states, the atoms experience resonant dipole-dipole interactions that induce mechanical forces acting on all atoms within both clouds. This behaviour is in contrast to the dynamics predicted for bare dipole-dipole interactions between Rydberg superatoms, where only a single atom per cloud is subject to dipole-dipole induced motion (Möbius et al 2013 Phys. Rev. A 88 012716).

  18. Transverse motion of high-speed barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, H. G., Jr.; Fedder, J. A.; Huba, J. D.; Zalesak, S. T.

    1985-01-01

    Simulation results, based on a field-line-integrated, two-dimensional, electrostatic model, are presented for the motion of a barium cloud injected transverse to the geomagnetic field in the ionosphere at high speeds. It is found that the gross evaluation of injected plasma clouds depends on the initial conditions, as well as the nature of the background coupling. For a massive (mass of about 10 kg), orbital (velocity of about 5 km/s) release in the F region (350-450 km), it is found that plasma clouds can drift tens of kilometers across the magnetic field in tens of seconds after ionization. This type of release is similar to those which are planned for the Combined Release and Radiation Effects Satellite mission.

  19. Intraseasonal behavior of clouds, temperature, and motion in the tropics

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Hendon, Harry H.

    1994-01-01

    The spectral character of tropical convection is investigated in an 11-yr record of outgoing longwave radiation from the Advanced Very High Resolution Radiometer (AVHRR) to identify interaction with the tropical circulation. Along the equator in the eastern hemisphere, the space-time spectrum of convection possesses a broad peak at wavenumbers 1-3 and eastward periods of 35-95 days. Significantly broader than the dynamical signal of the Madden-Julian oscillation (MJO), this quasi-discrete convective signal is associatd with a large-scale anomaly that propagates across and modulates time mean or 'climatological convection' over the equatorial Indian Ocean and western Pacific. Outside that region the convective signal is small, even though, under amplified conditions, coherence can be found east of the date line and in the subtropics. Having a zonal scale of approximately wavenumber 2, anomalous convection propagates eastward at some 5 m/s and suppresses as well as reinforces climatological in the eastern hemisphere. The convective signal amplifies to a seasonal maximum near vernal equinox and, to a weaker degree, again near autumnal equinox, when climatological convection and warm sea surface temperature (SST) cross the equator. Contemporaneous records of motion from European Center for medium-Range Weather Forecasts (ECMWF) analyses and tropospheric-mean temperature from Microwave Sounding Unit reveal an anomalous component of the tropical circulation that coexists with the convective signal and embodies many of the established properties of the MJO. In the eastern hemisphere, subtropical Rossby gyres and zonal Kelvin structure along the equator flank the convective anomaly as it tracks eastward, giving the anomalous circulation to form of a 'forced response.' In the western hemisphere, the dynamical signal is composed chiefly of wavenumber-1 Kelvin structure, which as the form of a 'propagating response' that is excited in and radiates away from anomalous

  20. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds

    NASA Astrophysics Data System (ADS)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.

    2013-12-01

    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic analysis, resulting in real time predictions of ash cloud motion that account for varying wind conditions and a range of model variables. We show how coupling a real-time model for ash dispersal, PUFF, with a volcanic eruption model, BENT, allows for the definition of the variability in the dispersal model inputs and hence classify the uncertainty that can then propagate for the ash cloud location and downwind concentrations. We additionally analyze the uncertainty in the numerical weather prediction forecast data used by the dispersal model by using ensemble forecasts and assess how this affects the downwind concentrations. These are all coupled together and by combining polynomical chaos quadrature with stochastic integration techniques, we provide a quantitative measure of the reliability (i.e. error) of those predictions. We show comparisons of the downwind height calculations and mass loadings with observations of ash clouds available from satellite remote sensing data. The aim is to provide a probabilistic forecast of location and ash concentration that can be generated in real-time and used by those end users in the operational ash cloud hazard assessment environment.

  1. Cloud field classification based upon high spatial resolution textural features. II - Simplified vector approaches

    NASA Technical Reports Server (NTRS)

    Chen, D. W.; Sengupta, S. K.; Welch, R. M.

    1989-01-01

    This paper compares the results of cloud-field classification derived from two simplified vector approaches, the Sum and Difference Histogram (SADH) and the Gray Level Difference Vector (GLDV), with the results produced by the Gray Level Cooccurrence Matrix (GLCM) approach described by Welch et al. (1988). It is shown that the SADH method produces accuracies equivalent to those obtained using the GLCM method, while the GLDV method fails to resolve error clusters. Compared to the GLCM method, the SADH method leads to a 31 percent saving in run time and a 50 percent saving in storage requirements, while the GLVD approach leads to a 40 percent saving in run time and an 87 percent saving in storage requirements.

  2. Generation of Classical DInSAR and PSI Ground Motion Maps on a Cloud Thematic Platform

    NASA Astrophysics Data System (ADS)

    Mora, Oscar; Ordoqui, Patrick; Romero, Laia

    2016-08-01

    This paper presents the experience of ALTAMIRA INFORMATION uploading InSAR (Synthetic Aperture Radar Interferometry) services in the Geohazard Exploitation Platform (GEP), supported by ESA. Two different processing chains are presented jointly with ground motion maps obtained from the cloud computing, one being DIAPASON for classical DInSAR and SPN (Stable Point Network) for PSI (Persistent Scatterer Interferometry) processing. The product obtained from DIAPASON is the interferometric phase related to ground motion (phase fringes from a SAR pair). SPN provides motion data (mean velocity and time series) on high-quality pixels from a stack of SAR images. DIAPASON is already implemented, and SPN is under development to be exploited with historical data coming from ERS-1/2 and ENVISAT satellites, and current acquisitions of SENTINEL-1 in SLC and TOPSAR modes.

  3. Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector

    NASA Technical Reports Server (NTRS)

    Keyser, Daniel; Schmidt, Brian D.; Duffy, Dean G.

    1992-01-01

    In a recent paper on the kinematics of frontogenesis, Keyser et al. (1988) conjectured that partitioning the Q vector into along- and cross-isentrope components yields vertical-motion patterns that are respectively cellular and banded: the former on the scale of the baroclinic disturbance, and the latter on the scale of the embedded frontal zones. This conjecture is examined diagnostically through solution of the quasi-geostrophic omega equation, using the output from a nearly adiabatic and frictionless f-plane primitive equation channel model of the evolution of a baroclinic disturbance to finite amplitude. The results of the present study support the proposed conjecture, suggesting the following interpretation of the characteristic comma structure of the vertical-motion field in midlatitude baroclinic disturbances: the dipole is associated with the along-isentrope component of the Q vector, reflecting the wavelike pattern in the potential temperature field within the baroclinic disturbance; the asymmetries are associated with the cross-isentrope component of the Q vector, reflecting the presence of frontal zones within the baroclinic disturbance.

  4. In situ aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.; Shenk, W. E.; Steranka, J.

    1979-01-01

    A 5-year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft Inertial Navigation System wind measurements is presented. Cloud motions measured by satellite and aircraft wind measurements that were coincident in time and space, and the results from the experiment are for undisturbed to moderately disturbed oceanic weather regimes. The results show that satellite measured cumulus cloud motions are good estimators of the cloud-base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud-base wind was determined; for cumulus clouds near frontal regions, the cloud motions agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions most closely followed the mean wind in the cloud layer.

  5. Pacific-North American plate motion from very long baseline interferometry compared with motion inferred from magnetic anomalies, transform faults, and earthquake slip vectors

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.

    1990-01-01

    Geodetic VLBI measurements were used to test whether the Pacific-North American plate velocity averaged over several years of direct observation (1984-1987) equals that averaged over millions of years. It was also tested whether this velocity parallels the San Andreas fault, transform faults and earthquake slip vectors in the Gulf of California, and earthquake slip vectors along the Queen Charlotte fault, along the Alaskan peninsula, and along the Kamchatkan peninsula. The VLBI data provide an estimate of the direction of plate motion that is independent of estimates from fault azimuths and earthquake slip vectors. The Euler vector determined from VLBI was found to be nearly identical to the Euler vector of plate motion model NUVEL-1, which is based on the trends of transform faults, earthquake slip vectors, and spreading rates from marine magnetic anomalies that average motion since 3 Ma. The velocity between the Pacific and North American plates averaged over the past several years equals or nearly equals its velocity averaged over the past several million years, the difference along their boundary nowhere exceeding 4 + or - 7 mm/yr.

  6. Bio-signal analysis system design with support vector machines based on cloud computing service architecture.

    PubMed

    Shen, Chia-Ping; Chen, Wei-Hsin; Chen, Jia-Ming; Hsu, Kai-Ping; Lin, Jeng-Wei; Chiu, Ming-Jang; Chen, Chi-Huang; Lai, Feipei

    2010-01-01

    Today, many bio-signals such as Electroencephalography (EEG) are recorded in digital format. It is an emerging research area of analyzing these digital bio-signals to extract useful health information in biomedical engineering. In this paper, a bio-signal analyzing cloud computing architecture, called BACCA, is proposed. The system has been designed with the purpose of seamless integration into the National Taiwan University Health Information System. Based on the concept of. NET Service Oriented Architecture, the system integrates heterogeneous platforms, protocols, as well as applications. In this system, we add modern analytic functions such as approximated entropy and adaptive support vector machine (SVM). It is shown that the overall accuracy of EEG bio-signal analysis has increased to nearly 98% for different data sets, including open-source and clinical data sets.

  7. Feature extraction and wall motion classification of 2D stress echocardiography with support vector machines

    NASA Astrophysics Data System (ADS)

    Chykeyuk, Kiryl; Clifton, David A.; Noble, J. Alison

    2011-03-01

    Stress echocardiography is a common clinical procedure for diagnosing heart disease. Clinically, diagnosis of the heart wall motion depends mostly on visual assessment, which is highly subjective and operator-dependent. Introduction of automated methods for heart function assessment have the potential to minimise the variance in operator assessment. Automated wall motion analysis consists of two main steps: (i) segmentation of heart wall borders, and (ii) classification of heart function as either "normal" or "abnormal" based on the segmentation. This paper considers automated classification of rest and stress echocardiography. Most previous approaches to the classification of heart function have considered rest or stress data separately, and have only considered using features extracted from the two main frames (corresponding to the end-of-diastole and end-of-systole). One previous attempt [1] has been made to combine information from rest and stress sequences utilising a Hidden Markov Model (HMM), which has proven to be the best performing approach to date. Here, we propose a novel alternative feature selection approach using combined information from rest and stress sequences for motion classification of stress echocardiography, utilising a Support Vector Machines (SVM) classifier. We describe how the proposed SVM-based method overcomes difficulties that occur with HMM classification. Overall accuracy with the new method for global wall motion classification using datasets from 173 patients is 92.47%, and the accuracy of local wall motion classification is 87.20%, showing that the proposed method outperforms the current state-of-the-art HMM-based approach (for which global and local classification accuracy is 82.15% and 78.33%, respectively).

  8. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression.

    PubMed

    Riaz, Nadeem; Shanker, Piyush; Wiersma, Rodney; Gudmundsson, Olafur; Mao, Weihua; Widrow, Bernard; Xing, Lei

    2009-10-07

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  9. The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.

  10. In-motion coarse alignment method based on reconstructed observation vectors

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Xu, Xiaosu; Yao, Yiqing; Wang, Zhicheng

    2017-03-01

    In this paper, an in-motion coarse alignment method is proposed based on the reconstructed observation vectors. Since the complicated noises are contained in the outputs of the inertial sensors, the components of measurement observation vectors, which are constructed by the sensors' outputs, are analyzed in detail. To suppress the high-frequency noises, an effective digital filter based on the Infinite Impulse Response technology is employed. On the basis of the parameter models of the observation vectors, a new form Kalman filter, which is also an adaptive filter, is designed for the recognition of the parameter matrix. Furthermore, a robust filter technology, which is based on the Huber's M-estimation, is employed to suppress the gross outliers, which are caused by the movement of the carrier. Simulation test and field trial are designed to verify the proposed method. All the alignment results demonstrate that the performance of the proposed method is superior to the conventional optimization-based alignment and the digital filter alignment, which are the current popular methods.

  11. A Motion-Stabilized W-Band Radar for Shipboard Observations of Marine Boundary-Layer Clouds

    NASA Astrophysics Data System (ADS)

    Moran, Ken; Pezoa, Sergio; Fairall, Chris; Williams, Chris; Ayers, Tom; Brewer, Alan; de Szoeke, Simon P.; Ghate, Virendra

    2012-04-01

    Cloud radars at X, Ka and W-bands have been used in the past for ocean studies of clouds, but the lack of suitable stabilization has limited their usefulness in obtaining accurate measurements of the velocity structure of cloud particles and the heights of cloud features. A 94 GHz (W-band) radar suitable for use on shipboard studies of clouds has been developed that is small and lightweight and can maintain the radar's beam pointing in the vertical to reduce the affects of the pitch and roll of the ship. A vertical velocity sensor on the platform allows the effects of the ship's heave to be removed from the measured cloud particle motions. Results from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) field program on the NOAA vessel Ronald H. Brown demonstrate the improvements to the cloud measurements after the ship's motion effects are removed. The compact design of the radar also makes it suitable for use in aircraft studies. The radar is being repackaged to fit in an aft bay of a NOAA P3 aircraft to observe sea-spray profiles during ocean storms.

  12. Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds

    NASA Astrophysics Data System (ADS)

    Khoshelham, Kourosh

    2016-04-01

    Registration is often a prerequisite step in processing point clouds. While planar surfaces are suitable features for registration, most of the existing plane-based registration methods rely on iterative solutions for the estimation of transformation parameters from plane correspondences. This paper presents a new closed-form solution for the estimation of a rigid motion from a set of point-plane correspondences. The role of normalization is investigated and its importance for accurate plane fitting and plane-based registration is shown. The paper also presents a thorough evaluation of the closed-form solutions and compares their performance with the iterative solution in terms of accuracy, robustness, stability and efficiency. The results suggest that the closed-form solution based on point-plane correspondences should be the method of choice in point cloud registration as it is significantly faster than the iterative solution, and performs as well as or better than the iterative solution in most situations. The normalization of the point coordinates is also recommended as an essential preprocessing step for point cloud registration. An implementation of the closed-form solutions in MATLAB is available at: http://people.eng.unimelb.edu.au/kkhoshelham/research.html#directmotion.

  13. Shocks, Superbubbles, and Filaments: Investigations into Large Scale Gas Motions in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Pon, Andrew Richard

    2013-12-01

    Giant molecular clouds (GMCs), out of which stars form, are complex, dynamic systems, which both influence and are shaped by the process of star formation. In this dissertation, I examine three different facets of the dynamical motions within GMCs. Collapse modes in different dimensional objects. Molecular clouds contain lower dimensional substructures, such as filaments and sheets. The collapse properties of finite filaments and sheets differ from those of spherical objects as well as infinite sheets and filaments. I examine the importance of local collapse modes of small central perturbations, relative to global collapse modes, in different dimensional objects to elucidate whether strong perturbations are required for molecular clouds to fragment to form stars. I also calculate the dependence of the global collapse timescale upon the aspect ratio of sheets and filaments. I find that lower dimensional objects are more readily fragmented, and that for a constant density, lower dimensional objects and clouds with larger aspect ratios collapse more slowly. An edge-driven collapse mode also exists in sheets and filaments and is most important in elongated filaments. The failure to consider the geometry of a gas cloud is shown to lead to an overestimation of the star formation rate by up to an order of magnitude. Molecular tracers of turbulent energy dissipation. Molecular clouds contain supersonic turbulence that simulations predict will decay rapidly via shocks. I use shock models to predict which species emit the majority of the turbulent energy dissipated in shocks and find that carbon monoxide, CO, is primarily responsible for radiating away this energy. By combining these shock models with estimates for the turbulent energy dissipation rate of molecular clouds, I predict the expected shock spectra of CO from molecular clouds. I compare the results of these shock models to predictions for the emission from the unshocked gas in GMCs and show that mid

  14. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  15. A vector-dyadic development of the equations of motion for N-coupled rigid bodies and point masses

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1974-01-01

    The equations of motion are derived, in vector-dyadic format, for a topological tree of coupled rigid bodies, point masses, and symmetrical momentum wheels. These equations were programmed, and form the basis for the general-purpose digital computer program N-BOD. A complete derivation of the equations of motion is included along with a description of the methods used for kinematics, constraint elimination, and for the inclusion of nongyroscope forces and torques acting external or internal to the system.

  16. Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1981-01-01

    The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates.

  17. The Motions and Morphologies of cloud features on Neptune: continued monitoring with Keck Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Martin, S. C.; de Pater, I.; Gibbard, S. G.; Macintosh, B. A.; Roe, H. G.; Max, C. E.

    2002-09-01

    We present near infrared images taken in the H band (1.4-1.8 microns) using the newly commissioned NIRC2 at the W. M. Keck II telescope as part of a continuing program to monitor the atmospheric dynamics of Neptune using Adaptive Optics. These images with a resolution of .06 arcseconds reveal five infrared bright groups of features. Two groups of features (30-40 deg N and 20-50 deg S) are confined in latitude but span all longitudes creating bands around the planet. Small cloud morphology and relative motions in the wide Southern band (20-50 deg S) identify apparent cloud shearing events and differences in relative speeds within latitude bands. One localized group of features (30 deg N) shows interesting morphologies with marked departures from lines of latitude. Another localized group of South Polar features (70 deg S) show changes in morphology from a teardrop to a train of clouds to an arc of features during three years of observations. The final group of features is spatially diffuse and spans many latitude lines but is tightly confined in longitude. This research was supported in part by the STC Program of the National Science Foundation under Agreement No. AST-9876783, and in part under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory, Univ. of Calif. under contract No. W-7405-Eng-48. Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  18. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  19. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    SciTech Connect

    Jaskowiak, J; Ahmad, S; Ali, I; Alsbou, N

    2015-06-15

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were used to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased

  20. Automatic Registration of Wide Area Motion Imagery to Vector Road Maps by Exploiting Vehicle Detections.

    PubMed

    Elliethy, Ahmed; Sharma, Gaurav

    2016-11-01

    To enrich large-scale visual analytics applications enabled by aerial wide area motion imagery (WAMI), we propose a novel methodology for accurately registering a geo-referenced vector roadmap to WAMI by using the locations of detected vehicles and determining a parametric transform that aligns these locations with the network of roads in the roadmap. Specifically, the problem is formulated in a probabilistic framework, explicitly allowing for spurious detections that do not correspond to on-road vehicles. The registration is estimated via the expectation-maximization (EM) algorithm as the planar homography that minimizes the sum of weighted squared distances between the homography-mapped detection locations and the corresponding closest point on the road network, where the weights are estimated posterior probabilities of detections being on-road vehicles. The weighted distance minimization is efficiently performed using the distance transform with the Levenberg-Marquardt nonlinear least-squares minimization procedure, and the fraction of spurious detections is estimated within the EM framework. The proposed method effectively sidesteps the challenges of feature correspondence estimation, applies directly to different imaging modalities, is robust to spurious detections, and is also more appropriate than feature matching for a planar homography. Results over three WAMI data sets captured by both visual and infrared sensors indicate the effectiveness of the proposed methodology: both visual comparison and numerical metrics for the registration accuracy are significantly better for the proposed method as compared with the existing alternatives.

  1. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    NASA Technical Reports Server (NTRS)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  2. The Impact of Satellite Atmospheric Motion Vectors in the GMAO GEOS-5 Global Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Gelaro, R. D.; Merkova, D.; Tai, King-Sheng; McCarty, W.

    2012-01-01

    The impact of satellite-derived atmospheric motion vectors (AMVs) on numerical weather forecasts is examined using the GEOS-5 global atmospheric data assimilation system. Cycling data assimilation experiments, including twice-daily 5-day forecasts, are conducted for two 6-week periods during the 2010 Atlantic hurricane season and 2010-2011Northern Hemisphere winter season. Results from a control experiment that includes all AMVs and other data types assimilated operationally in GEOS-5 are compared with those from an experiment in which the GEOS-5 AMVs (only) are replaced by ones produced by the U. S. Navy?s NAVDAS-AR atmospheric data assimilation system. The Navy AMVs are assimilated in their entirety as well as in various subset combinations. The primary objective of these experiments is to determine whether aspects of the NAVDAS-AR data selection and quality control procedure, especially the use of carefully averaged ("super-ob?) wind vectors and large volume of AMVs, explain the typically larger beneficial impact of these data in the Navy system as compared with most other forecast systems. Adjoint-based observation impact calculations are assessed and compared with traditional metrics such as forecast geopotential height anomaly correlations and observation-minus-forecast departures. Results so far indicate that that the greater number of NRL AMVs is primarily responsible for their larger impact, although superobing also appears to be beneficial. Map views show that the impact obtained from assimilation of the NRL AMVs is more uniformly beneficial, perhaps due to the averaging of individual observations in creating the super-obs. While the NRL AMVs have a much larger impact in GEOS-5 than do the control AMVs, their impact is still smaller than in the Navy forecast system, suggesting that the mix of observations may play an important role in modulating the impact of any one data type. At the same time, reducing the number of satellite radiances assimilated in

  3. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  4. An improved self-alignment method for strapdown inertial navigation system based on gravitational apparent motion and dual-vector.

    PubMed

    Liu, Xixiang; Zhao, Yu; Liu, Xianjun; Yang, Yan; Song, Qing; Liu, Zhipeng

    2014-12-01

    Analysis and simulation results indicate that two problems should be solved when the self-alignment method based on gravitational apparent motion and dual-vector can be used for Strapdown Inertial Navigation System. The first one is how to identify the apparent motion from accelerometer measurement containing random noise and the second is how to avoid the collinear problem between two vectors used in alignment solution. In this paper, a parameter identification and reconstruction algorithm is proposed to solve the first problem and simulation results indicate that proposed algorithm can identify apparent motion from accelerometer measurements effectively; and reconstruction algorithm based on current identified parameters for dual-vector is designed in detail to solve the second problem which can make full use of newest identification and avoid collinear problem completely. Simulation and turntable results show that the proposed alignment method can fulfill self-alignment in a swinging condition and the alignment accuracy can reach the theoretical values determined by the sensor precision.

  5. Hurricane Debby - An illustration of the complementary nature of VAS soundings and cloud and water vapor motion winds. [Visible Infrared Spin Scan Radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Le Marshall, J. F.; Smith, W. L.; Callan, G. M.

    1985-01-01

    The utility of VISSR Atmospheric Sounder (VAS) temperature and moisture soundings and cloud and water vapor motion winds in defining a storm and its surroundings at subsynoptic scales has been examined using a numerical analysis and prognosis system. It is shown that the VAS temperature and moisture data, which specify temperature and moisture well in cloud-free areas, are complemented by cloud and water vapor motion data generated in the cloudy areas. The cloud and water vapor 'winds' provide thermal gradient information for interpolating the soundings across cloudy regions. The loss of analysis integrity due to the reduction of VAS sounding density in the cloudy regions associated with synoptic activity is ameliorated by using cloud and water vapor motion winds. The improvement in numerical forecasts resulting from the addition of these data to the numerical analysis is recorded.

  6. First Gaia Local Group Dynamics: Magellanic Clouds Proper Motion and Rotation

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; Sahlmann, Johannes

    2016-12-01

    We use the Gaia data release 1 (DR1) to study the proper motion (PM) fields of the Large and Small Magellanic Clouds (LMC, SMC). This uses the Tycho-Gaia Astrometric Solution (TGAS) PMs for 29 Hipparcos stars in the LMC and 8 in the SMC. The LMC PM in the West and North directions is inferred to be ({μ }W,{μ }N) =(-1.872+/- 0.045,0.224+/- 0.054) {mas} {{yr}}-1 , and the SMC PM ({μ }W,{μ }N)=(-0.874+/- 0.066,-1.229 +/- 0.047) {mas} {{yr}}-1 . These results have similar accuracy and agree to within the uncertainties with existing Hubble Space Telescope (HST) PM measurements. Since TGAS uses different methods with different systematics, this provides an external validation of both data sets and their underlying approaches. Residual DR1 systematics may affect the TGAS results, but the HST agreement implies this must be below the random errors. Also in agreement with prior HST studies, the TGAS LMC PM field clearly shows the clockwise rotation of the disk, even though it takes the LMC disk in excess of 108 years to complete one revolution. The implied rotation curve amplitude for young LMC stars is consistent with that inferred from line of sight (LOS) velocity measurements. Comparison of the PM and LOS rotation curves implies a kinematic LMC distance modulus m-M=18.54+/- 0.39, consistent but not yet competitive with photometric methods. These first results from Gaia on the topic of Local Group dynamics provide an indication of how its future data releases will revolutionize this field.

  7. Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Ertel, S.; Booth, M.; Cuadra, J.; Simmonds, C.

    2017-02-01

    High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances with exterior planets on moderately eccentric (ep ≳ 0.1) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr time-scales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long time-scales. We combine analytical predictions and complementary numerical N-body simulations to study its characteristics. We show, using order of magnitude estimates, that via this mechanism, low-mass discs comparable to the Kuiper belt could sustain comet scattering at rates compatible with the presence of the exozodis which are detected around Solar-type stars, and on Gyr time-scales. We also find that the levels of dust detected around Vega could be sustained via our proposed mechanism if an eccentric Jupiter-like planet were present exterior to the system's cold debris disc.

  8. Normalized Implicit Radial Models for Scattered Point Cloud Data without Normal Vectors

    DTIC Science & Technology

    2009-03-23

    are introduced through various examples that illustrate the performance and efficiency of the new methods Key Words: Surface fitting, point clouds , implicit...NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Surface fitting, point ... clouds , implicit least squares, isosurfaces, noisy 3D data, scattered data approximation Gregory M. Nielson Arizona State University Office of Research

  9. Roll tracking effects of G-vector tilt and various types of motion washout

    NASA Technical Reports Server (NTRS)

    Jex, H. R.; Magdaleno, R. E.; Junker, A. M.

    1978-01-01

    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues.

  10. Thin cloud removal from remote sensing images using multidirectional dual tree complex wavelet transform and transfer least square support vector regression

    NASA Astrophysics Data System (ADS)

    Hu, Gensheng; Li, Xiaoyi; Liang, Dong

    2015-01-01

    The existence of clouds affects the interpretation and utilization of remote sensing images. A thin cloud removal algorithm for cloud-contaminated remote sensing images is proposed by combining a multidirectional dual tree complex wavelet transform (M-DTCWT) with domain adaptation transfer least square support vector regression (T-LSSVR). First, M-DTCWT is constructed by using the hourglass filter bank in combination with DTCWT, which is used to decompose remote sensing images into multiscale and multidirectional subbands. Then the low-frequency subband coefficients of the cloud-free regions on target images and source domain images are used as samples for a T-LSSVR model, which can be used to predict those of the cloud regions on cloud-contaminated images. Finally, by enhancing the high-frequency coefficients and replacing the low-frequency coefficients, the thin clouds on cloud-contaminated images are removed. Experimental results show that M-DTCWT contributes to keeping the details of the ground objects of cloud-contaminated images, and the T-LSSVR model can effectively learn the contour information from multisource and multitemporal images, therefore, the proposed method achieves a good effect of thin cloud removal.

  11. Primer vector theory applied to the linear relative-motion equations. [for N-impulse space trajectory optimization

    NASA Technical Reports Server (NTRS)

    Jezewski, D.

    1980-01-01

    Prime vector theory is used in analyzing a set of linear relative-motion equations - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and necessary conditions for an optimal N-impulse trajectory. The analysis develops the analytical criteria for improving a solution by: (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of: (1) fixed-end conditions, two impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized renezvous problem.

  12. The relationship between large-scale vertical motion, highly reflective cloud, and sea surface temperature in the tropical Pacific region

    NASA Technical Reports Server (NTRS)

    Zimmermann, Peter H.; Newell, Reginald E.; Selkirk, Henry B.

    1988-01-01

    Vertical motion fields at 850 mbar over the tropical Pacific region are calculated from the 1963-1973 mean wind fields for 4 months of the year and for October 1972, the peak month in the 1972-1973 El Nino event. These vertical motion fields are derived using the projective separation technique, which has the unique property of separating vertical motion into components due to meridional wind convergence and zonal wind convergence. This separation permits investigation of the response of the Hadley and Walker circulations to annual and interannual variation of the sea surface temperature in the tropical Pacific. The large-scale features of the computed vertical motion fields are in agreement with those of highly reflective clouds, which indicate the locations of deep convection. Examination of the annual cycle of the vertical motion and its components shows no strong variation of the Walker circulation with the east-west gradient of sea surface temperature. On the other hand, a strong correlation is found between meridional overturning in the eastern Pacific and the local equatorial sea surface temperature: during El Nino events, the eastern and central Pacific contribution to the Hadley circulation tends to increase.

  13. Influence of the cosmic repulsion on the MOND model of the Magellanic Cloud motion in the field of Milky Way

    SciTech Connect

    Schee, J.; Stuchlík, Z.; Petrásek, M. E-mail: zdenek.stuchlik@fpf.slu.cz

    2013-12-01

    It has been recently shown that the cosmic repulsion can have a highly significant influence on the motion of Magellanic Clouds (MC) in the gravitational field of Milky Way, treated in the framework of the Cold Dark Matter (CDM) halo model. However, there is an alternative to the CDM halo explanation of the rotation curves in the periphery of spiral galaxies, based on MOdified Newtonian Dynamics (MOND). Therefore, we study the role of the cosmic repulsion in the framework of the MOND theory applied to determine the MC motion. Our results demonstrate that in the MOND framework the influence of the cosmic repulsion on the motion of both Small and Large MC is also highly significant, but it is of a different character than in the framework of the CDM halo model. Moreover, we demonstrate that the MC motion in the framework of the CDM halo and MOND models is subtantially different and can serve as a test of these fundamentally different approaches to the explanation of the phenomena related to galaxies and the motion of satellite galaxies.

  14. Shortrange Forecasting through Extrapolation of Satellite Imagery Patterns. Part II. Testing Motion Vector Techniques.

    DTIC Science & Technology

    1979-12-10

    AFGL CDC 6600. The first technique was developed by SRI 3 in 1971 as a means to track individual cloud "clusters" (or groups of high video count) and a...occurrence of 19 April 1970 in the midwest, Mo. Wea Rev. 103:217-226. 21 ...... MIECi FI NG BLG BL K . LCr FliJ References 1. Austin, G. L., and Bellon, A

  15. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    SciTech Connect

    Williams, Christopher R.

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  16. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  17. Main Cause of the Poloidal Plasma Motion Inside a Magnetic Cloud Inferred from Multiple-Spacecraft Observations

    NASA Astrophysics Data System (ADS)

    Zhao, Ake; Wang, Yuming; Chi, Yutian; Liu, Jiajia; Shen, Chenglong; Liu, Rui

    2017-04-01

    Although the dynamical evolution of magnetic clouds (MCs) has been one of the foci of interplanetary physics for decades, only few studies focus on the internal properties of large-scale MCs. Recent work by Wang et al. ( J. Geophys. Res. 120, 1543, 2015) suggested the existence of the poloidal plasma motion in MCs. However, the main cause of this motion is not clear. In order to find it, we identify and reconstruct the MC observed by the Solar Terrestrial Relations Observatory (STEREO)-A, Wind, and STEREO-B spacecraft during 19 - 20 November 2007 with the aid of the velocity-modified cylindrical force-free flux-rope model. We analyze the plasma velocity in the plane perpendicular to the MC axis. It is found that there was evident poloidal motion at Wind and STEREO-B, but this was not clear at STEREO-A, which suggests a local cause rather than a global cause for the poloidal plasma motion inside the MC. The rotational directions of the solar wind and MC plasma at the two sides of the MC boundary are found to be consistent, and the values of the rotational speeds of the solar wind and MC plasma at the three spacecraft show a rough correlation. All of these results illustrate that the interaction with ambient solar wind through viscosity might be one of the local causes of the poloidal motion. Additionally, we propose another possible local cause: the existence of a pressure gradient in the MC. The significant difference in the total pressure at the three spacecraft suggests that this speculation is perhaps correct.

  18. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; Kallivayalil, Nitya

    2014-02-01

    We present the first detailed assessment of the large-scale rotation of any galaxy based on full three-dimensional velocity measurements. We do this for the LMC by combining our Hubble Space Telescope average proper motion (PM) measurements for stars in 22 fields, with existing line-of-sight (LOS) velocity measurements for 6790 individual stars. We interpret these data with a model of circular rotation in a flat disk. The PM and LOS data paint a consistent picture of the LMC rotation, and their combination yields several new insights. The PM data imply a stellar dynamical center that coincides with the H I dynamical center, and a rotation curve amplitude consistent with that inferred from LOS velocity studies. The implied disk viewing angles agree with the range of values found in the literature, but continue to indicate variations with stellar population and/or radius. Young (red supergiant) stars rotate faster than old (red and asymptotic giant branch) stars due to asymmetric drift. Outside the central region, the circular velocity is approximately flat at V circ = 91.7 ± 18.8 km s-1. This is consistent with the baryonic Tully-Fisher relation and implies an enclosed mass M(8.7 kpc) = (1.7 ± 0.7) × 1010 M ⊙. The virial mass is larger, depending on the full extent of the LMC's dark halo. The tidal radius is 22.3 ± 5.2 kpc (24.°0 ± 5.°6). Combination of the PM and LOS data yields kinematic distance estimates for the LMC, but these are not yet competitive with other methods.

  19. Third-epoch Magellanic Cloud proper motions. II. The large Magellanic Cloud rotation field in three dimensions

    SciTech Connect

    Van der Marel, Roeland P.; Kallivayalil, Nitya

    2014-02-01

    We present the first detailed assessment of the large-scale rotation of any galaxy based on full three-dimensional velocity measurements. We do this for the LMC by combining our Hubble Space Telescope average proper motion (PM) measurements for stars in 22 fields, with existing line-of-sight (LOS) velocity measurements for 6790 individual stars. We interpret these data with a model of circular rotation in a flat disk. The PM and LOS data paint a consistent picture of the LMC rotation, and their combination yields several new insights. The PM data imply a stellar dynamical center that coincides with the H I dynamical center, and a rotation curve amplitude consistent with that inferred from LOS velocity studies. The implied disk viewing angles agree with the range of values found in the literature, but continue to indicate variations with stellar population and/or radius. Young (red supergiant) stars rotate faster than old (red and asymptotic giant branch) stars due to asymmetric drift. Outside the central region, the circular velocity is approximately flat at V {sub circ} = 91.7 ± 18.8 km s{sup –1}. This is consistent with the baryonic Tully-Fisher relation and implies an enclosed mass M(8.7 kpc) = (1.7 ± 0.7) × 10{sup 10} M {sub ☉}. The virial mass is larger, depending on the full extent of the LMC's dark halo. The tidal radius is 22.3 ± 5.2 kpc (24.°0 ± 5.°6). Combination of the PM and LOS data yields kinematic distance estimates for the LMC, but these are not yet competitive with other methods.

  20. Vector constraints on western U.S. deformation from space geodesy, neotectonics, and plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. Bernard; Jordan, Thomas H.

    1987-01-01

    The rate-of-slip vector on the San Andreas fault in central California estimated from geodetic and Holocene geological data is inconsistent with the prediction of rigid plate models such as RM2. This well-known 'San Andreas discrepancy' is diagnostic of plate deformation distributed both east of the fault in the Basin and Range and west of the fault along the California continental margin. Constraints on the integrated deformation rates across these two regions consistent with: (1) the kinematical boundary conditions imposed by the rigid plate model; (2) neotectonic and paleoseismic estimates of deformation rates; (3) ground-based geodetic measurements; and (4) rates of change observed by very long baseline interferometry along seven baselines to western U.S. sites are constructed. The space-geodetic data on Basin and Range extension taken over a 4-year interval are compatible with geological observations averaged over the Holocene; the best estimate of its integrated deformation rate, provided by the joint inversion of both data types, is 9.7 + or - 2.1 mm/yr, N 56 deg W + or - 10 deg, too small and in the wrong direction to account entirely for the San Andreas discrepancy. The integral of this deformation, estimated by subtracting the Basin and Range contribution from the discrepancy vector, requires significant right-lateral shear parallel to the San Andreas (13 + or - 5 mm/yr) and some compression perpendicular to it (9 + or - 3 mm/yr).

  1. Jupiter cloud composition, stratification, convection, and wave motion: a view from new horizons.

    PubMed

    Reuter, D C; Simon-Miller, A A; Lunsford, A; Baines, K H; Cheng, A F; Jennings, D E; Olkin, C B; Spencer, J R; Stern, S A; Weaver, H A; Young, L A

    2007-10-12

    Several observations of Jupiter's atmosphere made by instruments on the New Horizons spacecraft have implications for the stability and dynamics of Jupiter's weather layer. Mesoscale waves, first seen by Voyager, have been observed at a spatial resolution of 11 to 45 kilometers. These waves have a 300-kilometer wavelength and phase velocities greater than the local zonal flow by 100 meters per second, much higher than predicted by models. Additionally, infrared spectral measurements over five successive Jupiter rotations at spatial resolutions of 200 to 140 kilometers have shown the development of transient ammonia ice clouds (lifetimes of 40 hours or less) in regions of strong atmospheric upwelling. Both of these phenomena serve as probes of atmospheric dynamics below the visible cloud tops.

  2. Transcoding method from H.264/AVC to high efficiency video coding based on similarity of intraprediction, interprediction, and motion vector

    NASA Astrophysics Data System (ADS)

    Liu, Mei-Feng; Zhong, Guo-Yun; He, Xiao-Hai; Qing, Lin-Bo

    2016-09-01

    Currently, most video resources on line are encoded in the H.264/AVC format. More fluent video transmission can be obtained if these resources are encoded in the newest international video coding standard: high efficiency video coding (HEVC). In order to improve the video transmission and storage on line, a transcoding method from H.264/AVC to HEVC is proposed. In this transcoding algorithm, the coding information of intraprediction, interprediction, and motion vector (MV) in H.264/AVC video stream are used to accelerate the coding in HEVC. It is found through experiments that the region of interprediction in HEVC overlaps that in H.264/AVC. Therefore, the intraprediction for the region in HEVC, which is interpredicted in H.264/AVC, can be skipped to reduce coding complexity. Several macroblocks in H.264/AVC are combined into one PU in HEVC when the MV difference between two of the macroblocks in H.264/AVC is lower than a threshold. This method selects only one coding unit depth and one prediction unit (PU) mode to reduce the coding complexity. An MV interpolation method of combined PU in HEVC is proposed according to the areas and distances between the center of one macroblock in H.264/AVC and that of the PU in HEVC. The predicted MV accelerates the motion estimation for HEVC coding. The simulation results show that our proposed algorithm achieves significant coding time reduction with a little loss in bitrates distortion rate, compared to the existing transcoding algorithms and normal HEVC coding.

  3. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  4. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  5. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    SciTech Connect

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  6. Motion of magnetospheric particle clouds in a time-dependent electric field model

    NASA Technical Reports Server (NTRS)

    Roederer, J. G.; Hones, E. H., Jr.

    1974-01-01

    A computer code has been developed to study quantitatively the drift motion of magnetospheric particles in a time-dependent electric field. These calculations were applied to the case of proton and electron injections from the plasma sheet during substorms; the model predictions were checked against observations on board the geosynchronous satellite ATS 5 by DeForest and McIlwain (1971). It was found that it is possible to simulate the observed proton spectrograms with an adequate choice of a time-dependent electric field model. The resulting kinematics is physically quite simple and in its gross features does not depend too strongly on the particular fine structure of the model.

  7. Computer Simulation of Strong Ground Motion near a Fault Using Dynamic Fault Rupture Modeling: Spatial Distribution of the Peak Ground Velocity Vectors

    NASA Astrophysics Data System (ADS)

    Miyatake, T.

    Computer simulation was used to study the nature of the strong ground motion near a strike-slip fault. The faulting process was modeled by stress release with fixed rupture velocity in a uniform elastic half-space or layered half-space. The fourth-order 3-D finite-difference method with staggered grids was employed to compute both ground motions and slip histories on the fault. The fault rupture was assumed to start from a point and propagate circularly with 0.8 times shear-wave velocity. In the present paper, we focused on the spatial pattern of ground velocity vectors, i.e., the direction of strong motions. In the case of bilateral rupture propagation, the strong fault parallel ground motion appeared near the center of the fault. The fault normal motions of ground velocity appeared near the edges of the fault. In the case of unilateral rupture, the fault parallel motion appeared near the starting point however, the amplitude was lower than that for the bilateral rupture case. The fault normal motion was predominant near the terminal point of the rupture. The results were applied to the earthquake damage data, especially the directions that simple bodies overturned and wooden houses collapsed, caused by the 1927 Tango, the 1930 Kita-Izu, and the 1948 Fukui earthquakes. The spatial distributions of the direction data were found to reflect the strong ground motions generated from the earthquake source process.

  8. Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Christensen, Matthew W.; Diner, David J.; Garay, Michael J.

    2015-04-01

    Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds for different cloud types and environmental conditions. By taking advantage of the high spatial resolution multiangle observations available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of the cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were utilized. Under open cell cloud structure the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+38%), cloud top height (+13%), and cloud albedo (+49%) for open cell clouds, whereas for closed cell clouds, little change in cloud properties was observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed was used to derive cloud top divergence. Statistically averaging the results from the identified plume segments to reduce random noise, we found evidence of cloud top divergence in the ship-polluted clouds, whereas the nearby unpolluted clouds showed cloud top convergence, providing observational evidence of a change in local mesoscale circulation associated with enhanced aerosols. Furthermore, open cell polluted clouds revealed stronger cloud top divergence as compared to closed cell clouds, consistent with different dynamical mechanisms driving their responses. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling

  9. Preliminary results of fluid dynamic model calculation of convective motion induced by solar heating at the Venus cloud top level.

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro

    The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.

  10. SU-E-T-428: Feasibility Study of 4D Image Reconstruction by Organ Motion Vector Extension Based On Portal Images

    SciTech Connect

    Yoon, J; Jung, J; Yeo, I; Kim, J; Yi, B

    2015-06-15

    Purpose: To develop and to test a method to generate a new 4D CT images of the treatment day from the old 4D CT and the portal images of the day when the motion extent exceeded from that represented by plan CTs. Methods: A motion vector of a moving tumor in a patient may be extended to reconstruct the tumor position when the motion extent exceeded from that represented by plan CTs. To test this, 1. a phantom that consists of a polystyrene cylinder (tumor) embedded in cork (lung) was placed on a moving platform with 4 sec/cycle and amplitudes of 1 cm and 2 cm, and was 4D-scanned. 2. A 6MV photon beam was irradiated on the moving phantoms and cineEPID images were obtained. 3. A motion vector of the tumor was acquired from 4D CT images of the phantom with 1 cm amplitude. 4. From cine EPID images of the phantom with the 2 cm amplitude, various motion extents (0.3 cm, 0.5 cm, etc) were acquired and programmed into the motion vector, producing CT images at each position. 5. The reconstructed CT images were then compared with pre-acquired “reference” 4D CT images at each position (i.e. phase). Results: The CT image was reconstructed and compared with the reference image, showing a slight mismatch in the transition direction limited by voxel size (slice thickness) in CT image. Due to the rigid nature of the phantom studied, the modeling the displacement of the center of object was sufficient. When deformable tumors are to be modeled, more complex scheme is necessary, which utilize cine EPID and 4D CT images. Conclusion: The new idea of CT image reconstruction was demonstrated. Deformable tumor movements need to be considered in the future.

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    SciTech Connect

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. Aerosol-Cloud Interactions in Ship Tracks Using Terra MODIS/MISR

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Christensen, M.; Diner, D. J.; Garay, M. J.; Nelson, D. L.

    2014-12-01

    Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds under different cloud types and environmental conditions. Taking advantage of the high spatial resolution multiangle observations uniquely available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine the cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were applied. Under open cell cloud structure, the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+27%), cloud top height (+11%), and cloud albedo (+40%) for open cell clouds, whereas under closed cell clouds, little changes in cloud properties were observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed has been used to derive cloud top divergence. Statistically averaging the results from many plume segments to reduce random noise, we have found that in ship-polluted clouds there is stronger cloud top divergence, and in nearby unpolluted clouds, convergence occurs and leads to downdrafts, providing observational evidence for cloud top entrainment feedback. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling studies to reduce uncertainties of aerosol indirect forcing. Reference: Chen, Y.-C. et al. Occurrence of lower cloud albedo in ship tracks, Atmos. Chem. Phys., 12, 8223-8235, doi:10.5194/acp-12

  13. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1995-01-01

    The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.

  14. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.

    1994-01-01

    The thrust of the proposed effort under this contract is aimed at improving techniques to track water vapor data in sequences of imagery from geostationary satellites. In regards to this task, significant testing, evaluation, and progress was accomplished during this period. Sets of winds derived from Meteosat data were routinely produced during Atlantic hurricane events in the 1993 season. These wind sets were delivered via Internet in real time to the Hurricane Research Division in Miami for their evaluation in a track forecast model. For eighteen cases in which 72-hour forecasts were produced, thirteen resulted in track forecast improvements (some quite significant). In addition, quality-controlled Meteosat water vapor winds produced by NESDIS were validated against rawinsondes, yielding an 8 m/s RMS. This figure is comparable to upper-level cloud drift wind accuracies. Given the complementary horizontal coverage in cloud-free areas, we believe that water vapor vectors can supplement cloud-drift wind information to provide good full-disk coverage of the upper tropospheric flow. The impact of these winds on numerical analysis and forecasts will be tested in the next reporting period.

  15. Predicting and validating the motion of an ash cloud during the 2006 eruption of Mount Augustine volcano

    USGS Publications Warehouse

    Collins, Richard L.; Fochesatto, Javier; Sassen, Kenneth; Webley, Peter W.; Atkinson, David E.; Dean, Kenneson G.; Cahill, Catherine F.; Mizutani, Kohei

    2007-01-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20- year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash (or aerosol) cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. Aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano consistent with the Puff predictions. Two lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the ash cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are

  16. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units.

    PubMed

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-02-12

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  17. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    PubMed Central

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-01-01

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684

  18. Venus Cloud Morphology and Motions from Ground-based Images at the Time of the Akatsuki Orbit Insertion

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Peralta, J.; Gomez-Forrellad, J. M.; Hueso, R.; Pérez-Hoyos, S.; Mendikoa, I.; Rojas, J. F.; Horinouchi, T.; Lee, Y. J.; Watanabe, S.

    2016-12-01

    We report Venus image observations around the two maximum elongations of the planet at 2015 June and October. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA’s Akatsuki mission on 2015 December 7. The majority of the images were acquired at ultraviolet wavelengths (380-410 nm) using small telescopes. The Venus dayside was also observed with narrowband filters at other wavelengths (890 nm, 725-950 nm, 1.435 μm CO2 band) using the instrument PlanetCam-UPV/EHU at the 2.2 m telescope in Calar Alto Observatory. In all cases, the lucky imaging methodology was used to improve the spatial resolution of the images over the atmospheric seeing. During the April-June period, the morphology of the upper cloud showed an irregular and chaotic texture with a well-developed equatorial dark belt (afternoon hemisphere), whereas during October-December the dynamical regime was dominated by planetary-scale waves (Y-horizontal, C-reversed, and ψ-horizontal features) formed by long streaks, and banding suggesting more stable conditions. Measurements of the zonal wind velocity with cloud tracking in the latitude range from 50°N to 50°S shows agreement with retrievals from previous works. Partially based on observations obtained at Centro Astronómico Hispano Alemán, Observatorio de Calar Alto MPIA-CSIC, Almería, Spain.

  19. MISR Level 2 TOA/Cloud Stereo parameters (MIL2TCST_V1)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The MISR Top-of-Atmosphere (TOA)/Cloud Stereo geophysical parameters include stereoscopically-derived cloud motion vectors (winds), cloud-top heights, and an accompanying cloud mask. The Stereo product geophysical parameters include a stereoscopically-derived cloud mask and cloud height on a 1.1 km grid. It also includes cloud motion vectors on a 70.4 km grid. The three types of stereo heights are: the BestWind heights are only calculated for those regions where the associated wind vectors passed the quality tests. Therefore, they have sparse coverage but since the wind correction is included, these contain our 'best guess' as to what the true heights are. The WithoutWind heights are calculated assuming a constant wind vector of zero. They have almost complete coverage and therefore form a nice 'pretty picture' of the relative cloud heights over small areas. The RawWind heights are a diagnostic product as they are calculated using all available wind vectors (even the bad ones). It is therefore recommended that one only use the Best and Without wind products. It is important to remember that the stereo matchers pick up the layer of maximum contrast, which is not necessarily the same as the highest cloud so all the stereo heights are keyed to this level of maximum contrast. Therefore, higher and thinner cirrus layers may not be detected by any of the height fields. [Location=GLOBAL] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Horizontal_Resolution_Range=1 km - < 10 km or approximately .01 degree - < .09 degree; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=Daily - < Weekly].

  20. MISR Level 2 TOA/Cloud Stereo parameters (MIL2TCST_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The MISR Top-of-Atmosphere (TOA)/Cloud Stereo geophysical parameters include stereoscopically-derived cloud motion vectors (winds), cloud-top heights, and an accompanying cloud mask. The Stereo product geophysical parameters include a stereoscopically-derived cloud mask and cloud height on a 1.1 km grid. It also includes cloud motion vectors on a 70.4 km grid. The three types of stereo heights are: the BestWind heights are only calculated for those regions where the associated wind vectors passed the quality tests. Therefore, they have sparse coverage but since the wind correction is included, these contain our 'best guess' as to what the true heights are. The WithoutWind heights are calculated assuming a constant wind vector of zero. They have almost complete coverage and therefore form a nice 'pretty picture' of the relative cloud heights over small areas. The RawWind heights are a diagnostic product as they are calculated using all available wind vectors (even the bad ones). It is therefore recommended that one only use the Best and Without wind products. It is important to remember that the stereo matchers pick up the layer of maximum contrast, which is not necessarily the same as the highest cloud so all the stereo heights are keyed to this level of maximum contrast. Therefore, higher and thinner cirrus layers may not be detected by any of the height fields. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].

  1. Low Cloud Type over the Ocean from Surface Observations. Part III: Relationship to Vertical Motion and the Regional Surface Synoptic Environment.

    NASA Astrophysics Data System (ADS)

    Norris, Joel R.; Klein, Stephen A.

    2000-01-01

    Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for

  2. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  3. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events ...

  4. On the accuracy of approximation of motion of a small celestial body by intermediate perturbed orbits calculated on the basis of three position vectors and three observations

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.; Shefer, O. V.

    2016-05-01

    Intermediate perturbed orbits, which were proposed earlier by the first author and are calculated based on three position vectors and three measurements of angular coordinates of a small celestial body, are examined. Provided that the reference time interval encompassing the measurements is short, these orbits are close in the accuracy of approximation of actual motion to an orbit with fourth-order tangency. The shorter the reference time interval is, the better is the approximation. The laws of variation of the errors of methods for constructing such intermediate orbits with the length of the reference time interval are formulated. According to these laws, the rate of convergence of the methods to an exact solution in the process of shortening of the reference time interval is, in general, three orders of magnitude higher than that of conventional methods relying on an unperturbed Keplerian orbit. The considered orbits are among the most accurate of their class that is defined by the order of tangency. The obtained theoretical results are verified by numerical experiments on determining the orbit of 99942 Apophis.

  5. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  6. Automatic cloud tracking applied to GOES and Meteosat observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1981-01-01

    An improved automatic processing method for the tracking of cloud motions as revealed by satellite imagery is presented and applications of the method to GOES observations of Hurricane Eloise and Meteosat water vapor and infrared data are presented. The method is shown to involve steps of picture smoothing, target selection and the calculation of cloud motion vectors by the matching of a group at a given time with its best likeness at a later time, or by a cross-correlation computation. Cloud motion computations can be made in as many as four separate layers simultaneously. For data of 4 and 8 km resolution in the eye of Hurricane Eloise, the automatic system is found to provide results comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System, with results obtained by the pattern recognition and cross correlation computations differing by only fractions of a pixel. For Meteosat water vapor data from the tropics and midlatitudes, the automatic motion computations are found to be reliable only in areas where the water vapor fields contained small-scale structure, although excellent results are obtained using Meteosat IR data in the same regions. The automatic method thus appears to be competitive in accuracy and coverage with motion determination by human analysts.

  7. The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. III: Air Motions and Precipitation Growth in a Warm-Frontal Rainband.

    NASA Astrophysics Data System (ADS)

    Houze, Robert A., Jr.; Rutledge, Steven A.; Matejka, Thomas J.; Hobbs, Peter V.

    1981-03-01

    Doppler radar data and airborne cloud microphysical measurements obtained in the CYCLES PROJECT indicate that a warm-frontal rainband in an extratropical cyclone was characterized by a precipitation process in which clouds at low levels were enhanced by a mesoscale updraft. Ice particles, apparently formed in shallow convective cells aloft and then drifted downward, undergoing aggregation just above the melting layer. This study demonstrates the crucial role of the low-level mesoscale updraft in condensing a sufficient amount of cloud water for particles to accrete as they fell through the lower portion of the frontal cloud.

  8. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  9. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Cloud and DNI nowcasting with MSG/SEVIRI for the optimized operation of concentrating solar power plants

    NASA Astrophysics Data System (ADS)

    Sirch, Tobias; Bugliaro, Luca; Zinner, Tobias; Möhrlein, Matthias; Vazquez-Navarro, Margarita

    2017-02-01

    A novel approach for the nowcasting of clouds and direct normal irradiance (DNI) based on the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented for a forecast horizon up to 120 min. The basis of the algorithm is an optical flow method to derive cloud motion vectors for all cloudy pixels. To facilitate forecasts over a relevant time period, a classification of clouds into objects and a weighted triangular interpolation of clear-sky regions are used. Low and high level clouds are forecasted separately because they show different velocities and motion directions. Additionally a distinction in advective and convective clouds together with an intensity correction for quickly thinning convective clouds is integrated. The DNI is calculated from the forecasted optical thickness of the low and high level clouds. In order to quantitatively assess the performance of the algorithm, a forecast validation against MSG/SEVIRI observations is performed for a period of 2 months. Error rates and Hanssen-Kuiper skill scores are derived for forecasted cloud masks. For a forecast of 5 min for most cloud situations more than 95 % of all pixels are predicted correctly cloudy or clear. This number decreases to 80-95 % for a forecast of 2 h depending on cloud type and vertical cloud level. Hanssen-Kuiper skill scores for cloud mask go down to 0.6-0.7 for a 2 h forecast. Compared to persistence an improvement of forecast horizon by a factor of 2 is reached for all forecasts up to 2 h. A comparison of forecasted optical thickness distributions and DNI against observations yields correlation coefficients larger than 0.9 for 15 min forecasts and around 0.65 for 2 h forecasts.

  11. Southern Clouds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03026 Southern Clouds

    This image shows a system of clouds just off the margin of the South Polar cap. Taken during the summer season, these clouds contain both water-ice and dust.

    Image information: VIS instrument. Latitude 80.2S, Longitude 57.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Search Cloud

    MedlinePlus

    ... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... chest pa and lateral Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  14. Ice cloud microphysical properties in tropical Pacific regions derived from CloudSat and CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Takahashi, Naoya; Hayasaka, Tadahiro; Okamoto, Hajime

    2017-02-01

    We revealed the difference in tropical ice cloud microphysical properties between the western Pacific (WP) and the eastern Pacific (EP), based on satellite retrievals. Vertical profile of effective particle radius of ice cloud (re) was estimated from active sensors on board CloudSat and CALIPSO satellites. In this study, we focused only on ice cloud which is defined as clouds with the cloud top temperature lower than 0°C. To investigate the relationship between cloud optical properties and cloud vertical structures, these ice clouds were classified into five types based on cloud optical thickness values. Compared the vertical profile of re in WP with that in the EP, re around the freezing level within convective cloud in EP slightly larger than that in WP. This analysis also shows that re of optically thick cloud is larger than that of optically thin cloud. The difference in re may be caused by differences in moisture convergence, upward motion, aerosols.

  15. A new perspective on the interstellar cloud surrounding the Sun from UV absorption line results

    NASA Astrophysics Data System (ADS)

    Gry, Cecile; Jenkins, Edward B.

    2015-01-01

    We offer a new, more inclusive, picture of the local interstellar medium, where it is composed of a single, monolithic cloud that surrounds the Sun in all directions. Our study of velocities based on Mg II and Fe II ultraviolet absorption lines indicates that the cloud has an average motion consistent with the velocity vector of gas impacting the heliosphere and does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like the squashing of a balloon. The outer boundary of the cloud is in average 10 pc away from us but is highly irregular, being only a few parsecs away in some directions, with possibly a few extensions up to 20 pc. Average H I volume densities vary between 0.03 and 0.1 cm3 over different sight lines. Metals appear to be significantly depleted onto grains, and there is a steady increase in this effect from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Additional, secondary velocity components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume holding the gas that we identify with the main cloud. Half of the sight lines exhibit a secondary component moving at about - 7.2 km/s with respect to the main component, which may be the signature of an implosive shock propagating toward the cloud's interior.

  16. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-11-04

      MISR Level 3 Albedo and Cloud Versioning Component Global Albedo Product (CGAL) and Component Global Cloud Product (CGCL) - Daily, ...  CLOUD - Wind Vectors, Height Histogram Stage 1:  ALBEDO - Expansive, Restrictive and Local Albedo (except over snow and ice) ...

  17. Distance Functions and Geodesics on Points Clouds

    DTIC Science & Technology

    2005-01-01

    An algorithm for computing intrinsic distance functions and geodesics on sub-manifolds vector r(sup d) given by point clouds is introduced in this...and geodesics on point clouds while skipping the manifold reconstruction step. The case of point clouds representing noisy samples of a sub-manifold of...boundaries, and obtain also for the case of intrinsic distance functions on sub-manifolds of vector r(sup d), a computationally optimal approach. For point

  18. Shape of fair weather clouds.

    PubMed

    Wang, Yong; Zocchi, Giovanni

    2010-03-19

    We introduce a model which accounts for the shape of cumulus clouds exclusively in terms of thermal plumes or thermals. The plumes are explicitly represented by a simple potential flow generated by singularities (sources and sinks) and are thus laminar, but with their motion create a field which supports the cloud. We compare this model with actual clouds by means of various shape descriptors including the fractal dimension, and find agreement.

  19. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    SciTech Connect

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A.

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  20. Cloud Interactions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration

  1. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Cloud track wind using synergism of backscatter lidar and sky digital picture

    NASA Astrophysics Data System (ADS)

    Khalesifard, Hamid R.; Abdi, Farhad; Flamant, Pierre H.

    2005-10-01

    Cloud altitude measurements by a 532nm backscatter Lidar and time lapsed digital photography are combined to monitor the cloud velocity profile. The cloud images are recorded in time steps of two seconds by a Nikon D100 digital camera through a 63° solid angle while the Lidar was measuring the cloud altitude. The images are recorded in 8 bits gray scale JPG format in an array of 2240×1488 pixels. To measure the angular displacement of different parts of the cloud, each image is meshed into an array of 44×29 cells, each cell contains 50×50 pixels. The grayscale density cross correlations between similar cells of successive images are computed using a MATLAB code developed by us for this application. The output products are the direction and the amount of displacement of each cell, in pixels. combining the results on cloud displacement with Lidar measurements enable to calculate the velocity vector in each cell. The resolution in velocity is about 1 ms-1 and 2° in direction. The calculation technique also is tested by simulating the cloud motion by moving the image pixels with a computer generated Gaussian velocity distribution.

  3. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model.

    PubMed

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-03-02

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable.

  4. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model

    PubMed Central

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-01-01

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable. PMID:28257122

  5. A vector-dyadic development of the equations of motion for N-coupled flexible bodies and point masses. [spacecraft trajectories

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1975-01-01

    The equations of motion for a system of coupled flexible bodies, rigid bodies, point masses, and symmetric wheels were derived. The equations were cast into a partitioned matrix form in which certain partitions became nontrivial when the effects of flexibility were treated. The equations are shown to contract to the coupled rigid body equations or expand to the coupled flexible body equations all within the same basic framework. Furthermore, the coefficient matrix always has the computationally desirable property of symmetry. Making use of the derived equations, a comparison was made between the equations which described a flexible body model and those which described a rigid body model of the same elastic appendage attached to an arbitrary coupled body system. From the comparison, equivalence relations were developed which defined how the two modeling approaches described identical dynamic effects.

  6. Martian Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure.

    Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  7. Aircraft measurements of high average charges on cloud drops in layer clouds

    NASA Astrophysics Data System (ADS)

    Beard, Kenneth V.; Ochs, Harry T.; Twohy, Cynthia H.

    2004-07-01

    The first reliable aircraft measurements of characteristic cloud drop charges were obtained by utilizing a counterflow virtual impactor to substantially increase charge sensitivity and eliminate spurious contact charging that contaminated previous aircraft measurements. We find average drop charges more than an order of magnitude larger than expected from mountain surface measurements in similar clouds. Our evaluation of the data indicates that the high average charges on cloud drops originate in charge layers at the cloud boundaries and are carried into the cloud layer by vertical motions. These initial aircraft results demonstrate that cloud drop charges in layer clouds may be high enough to influence microphysical processes that promote precipitation.

  8. Cloud Spirals and Outflow in Tropical Storm Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes.

    Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the

  9. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  10. Plasma Motions and Turbulent Magnetic Diffusivity of Active Region AR 12158 Using a Minimum Energy Functional and Non-Force-Free Reconstructions of Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Tremblay, Benoit; Vincent, Alain

    2017-01-01

    We present a generalization of the resistive minimum-energy fit (MEF-R: Tremblay and Vincent, Solar Phys. 290, 437, 2015) for non-force-free (NFF) magnetic fields. In MEF-R, an extremum principle is used to infer two-dimensional maps of plasma motions [boldsymbol{v}(x,y)] and magnetic eddy diffusivity [η _{eddy}(x,y)] at the photosphere. These reconstructions could be used as boundary conditions in data-driven simulations or in data assimilation. The algorithm is validated using the analytical model of a resistive expanding spheromak by Rakowski, Laming, and Lyutikov ( Astrophys. J. 730, 30, 2011). We study the flaring Active Region AR 12158 using a series of magnetograms and Dopplergrams provided by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The results are discussed for a non-force-free magnetic-field reconstruction [boldsymbol{B}_{NFF}] (Hu and Dasgupta in Solar Phys. 247, 87, 2008). We found that the vertical plasma velocities [vz(x,y)] inferred using MEF-R are very similar to the observed Doppler velocities [vr(x,y)]. Finally, we study the potential spatial correlation between microturbulent velocities and significant values of η_{eddy}(x,y).

  11. Interstellar molecular clouds

    NASA Astrophysics Data System (ADS)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  12. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    dimensions. HARLIE was used in a ground-based configuration in several recent field campaigns. Principal data products include aerosol backscatter profiles, boundary layer heights, entrainment zone thickness, cloud fraction as a function of altitude and horizontal wind vector profiles based on correlating the motions of clouds and aerosol structures across portions of the scan. Comparisons will be made between various cloud detecting instruments to develop a baseline performance metric.

  13. Ice Clouds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

  14. Reversible vector ratchets for skyrmion systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.

  15. Cloud Computing

    SciTech Connect

    Pete Beckman and Ian Foster

    2009-12-04

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  16. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; Wanzong, S. T.

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  17. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  18. An Inexpensive Mechanical Model for Projectile Motion

    ERIC Educational Resources Information Center

    Kagan, David

    2011-01-01

    As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…

  19. Mesoscale wake clouds in Skylab pictures.

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Tecson, J. J.

    1974-01-01

    The recognition of cloud patterns formed in the wake of orographic obstacles was investigated using pictures from Skylab, for the purpose of estimating atmospheric motions. The existence of ship-wake-type wave clouds in contrast to vortex sheets were revealed during examination of the pictures, and an attempt was made to characterize the pattern of waves as well as the transition between waves and vortices. Examples of mesoscale cloud patterns which were analyzed photogrammetrically and meteorologically are presented.

  20. Automated cloud-drift winds from GOES images

    NASA Astrophysics Data System (ADS)

    Kambhamettu, Chandra; Palaniappan, Kannappan; Hasler, A. Frederick

    1996-10-01

    Estimation of the atmospheric wind field based on cloud tracking using a time sequence of satellite imagery is an extremely challenging problem due to the complex dynamics of the imaging instruments and the underlying non-linear phenomena of cloud formation and weather. Cloud motion may involve both partial fluid motion and partial solid motion, which we model as semi-fluid motion. Motion algorithm with subpixel accuracy using differential geometry invariants of surfaces was developed to track clouds. The motion model is general enough to include both physical and geometrical constraints. Typically, a polynomial displacement function is used to model the local deformation behavior of a surface patch undergoing semi-fluid motion. The cloud tracking algorithm recovers local cloud surface deformations using a sequence of dense depth maps and corresponding intensity imagery, that captures the time evolution of cloud-top heights. Either intensity or depth information can be used by the semi-fluid motion analysis algorithm. A dense disparity or depth map that can be related to cloud-top heights is provided by the Goddard Automatic Stereo Analysis module for input to the motion analysis module. The results of the automatic cloud tracking algorithm are extremely promising with errors comparable to manually tracked winds. Experiments were performed on GOES images of Hurricanes Frederic, Gilbert and Luis, and a temporally dense 1.5 minute time interval thunderstorm sequence covering Florida region. Future work involves using multispectral information, incorporating robustness, cloud motion segmentation and adaptive searching for improving operational cloud-tracking performance.

  1. Simulations of Midlatitude Frontal Clouds by Single-Column and Cloud-Resolving Models during the Atmospheric Radiation Measurement March 2000 Cloud Intensive Operational Period

    SciTech Connect

    Xie, Shaocheng; Zhang, Minghua; Branson, Mark; Cederwall, Richard T.; Del Genio, Anthony D.; Eitzen, Zachary A.; Ghan, Steven J.; Iacobellis, Sam F.; Johnson, Karen L.; Khairoutdinov, Marat; Klein, Stephen A.; Krueger, Steven K.; Lin, Wuyin; Lohmann, Ulrike; Miller, Mark A.; Randall, David A.; Somerville, Richard C.; Sud, Yogesh C.; Walker, Gregory K.; Wolf, Audrey; Wu, Xiaoqing; Xu, Kuan-Man; Yio, J. John; Zhang, Guang J.; Zhang, Junhua

    2005-03-25

    This study quantitatively evaluates the overall performance of 9 single column models (SCMs) and 4 cloud resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the Spring 2000 Cloud Intensive Observational Period at the ARM Southern Great Plains site. The evaluation data are an analysis product of Constrained Variational Analysis of the ARM-Observations and the cloud data collected from the ARM ground active remote sensors (i.e., cloud radar, lidar, and laser ceilometers) and satellite retrievals. Both the selected SCMs and CRMs can typically capture the bulk characteristics of the frontal system and the frontal precipitation. However, there are significant differences in detailed structures of the frontal clouds. Both CRMs and SCMs overestimate high thin cirrus clouds before the main frontal passage. This is likely caused by the application of grid-scale upward motion in the upper troposphere when in reality only cloud streaks exist in narrow region s of upward sub-grid scale motion. During the passage of a front with strong upward motion, CRMs underestimate middle and low clouds while SCMs overestimate clouds at the levels above 765 hPa. The underestimation in the CRMs is presumably due to the lack of organized stratiform processes that are replaced by convections in the models under strong forcing. The overestimation in the SCMs is likely related to the uniform application of grid-averaged cooling and moistening associated with strong upward motion. All CRMs and some SCMs also underestimated the middle clouds after the frontal passage. This could be related to the lack of organized mesoscale cyclonic advection of hydrometeors behind the moving cyclone. Some of the SCMs simulated more middle clouds after frontal passage due to the long lifetime of cloud ice or prognostic cloud amount in the models. There are also large differences in the model simulations of cloud condensates due to differences in parameterizations, however

  2. Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.

    PubMed

    Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan

    2016-12-01

    The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.

  3. Cloud Computing

    DTIC Science & Technology

    2009-11-12

    Eucalyptus Systems • Provides an open-source application that can be used to implement a cloud computing environment on a datacenter • Trying to establish an...Summary Cloud Computing is in essence an economic model • It is a different way to acquire and manage IT resources There are multiple cloud providers...edgeplatform.html • Amazon Elastic Compute Cloud (EC2): http://aws.amazon.com/ec2/ • Amazon Simple Storage Solution (S3): http://aws.amazon.com/s3/ • Eucalyptus

  4. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect

    Piel, A.; Pilch, I.; Trottenberg, T.; Koepke, M. E.

    2008-09-07

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  5. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  6. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  7. Operational implications of a cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.

  8. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  9. Lower mass limit of an evolving interstellar cloud and chemistry in an evolving oscillatory cloud

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.

    1986-01-01

    Simultaneous solution of the equation of motion, equation of state and energy equation including heating and cooling processes for interstellar medium gives for a collapsing cloud a lower mass limit which is significantly smaller than the Jeans mass for the same initial density. The clouds with higher mass than this limiting mass collapse whereas clouds with smaller than critical mass pass through a maximum central density giving apparently similar clouds (i.e., same Av, size and central density) at two different phases of its evolution (i.e., with different life time). Preliminary results of chemistry in such an evolving oscillatory cloud show significant difference in abundances of some of the molecules in two physically similar clouds with different life times. The problems of depletion and short life time of evolving clouds appear to be less severe in such an oscillatory cloud.

  10. Algebraic Nonlinear Collective Motion

    NASA Astrophysics Data System (ADS)

    Troupe, J.; Rosensteel, G.

    1998-11-01

    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real numberΛ. TheΛ=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positiveΛ, the droplets have a neck that becomes more pronounced asΛincreases; for negativeΛ, the droplets contain a spherical bubble of radius |Λ|1/3. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0) and bubble and two-fluid nuclei (Λ<0).

  11. Cloud Control

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2012-01-01

    Your learning curriculum needs a new technological platform, but you don't have the expertise or IT equipment to pull it off in-house. The answer is a learning system that exists online, "in the cloud," where learners can access it anywhere, anytime. For trainers, cloud-based coursework often means greater ease of instruction resulting in greater…

  12. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds. The right-hand panel ...

  13. Cloud Control

    ERIC Educational Resources Information Center

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  14. Cloud Cover

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  15. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image Stratus clouds are common in the Arctic during the summer months, and are important modulators of ... from MISR's two most obliquely forward-viewing cameras. The cold, stable air causes the clouds to persist in stratified layers, and this ...

  16. A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Chen, C.; Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.

  17. Uranus - Discrete Cloud

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This false-color Voyager picture of Uranus shows a discrete cloud seen as a bright streak near the planet's limb. The picture is a highly processed composite of three images obtained Jan. 14, 1986, when the spacecraft was 12.9 million kilometers (8.0 million miles) from the planet. The cloud visible here is the most prominent feature seen in a series of Voyager images designed to track atmospheric motions. (The occasional donut-shaped features, including one at the bottom, are shadows cast by dust in the camera optics; the processing necessary to bring out the faint features on the planet also brings out these camera blemishes.) Three separate images were shuttered through violet, blue and orange filters. Each color image showed the cloud to a different degree; because they were not exposed at exactly the same time, the images were processed to provide a correction for a good spatial match. In a true-color image, the cloud would be barely discernible; the false color helps bring out additional details. The different colors imply variations in vertical structure, but as yet is not possible to be specific about such differences. One possibility is that the Uranian atmosphere contains smog-like constituents, in which case some color differences may represent differences in how these molecules are distributed. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  18. Zero-gravity cloud physics.

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.

    1972-01-01

    The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.

  19. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  20. Revealing a spiral-shaped molecular cloud in our galaxy: Cloud fragmentation under rotation and gravity

    NASA Astrophysics Data System (ADS)

    Li, Guang-Xing; Wyrowski, Friedrich; Menten, Karl

    2017-02-01

    The dynamical processes that control star formation in molecular clouds are not well understood, and in particular, it is unclear if rotation plays a major role in cloud evolution. We investigate the importance of rotation in cloud evolution by studying the kinematic structure of a spiral-shaped Galactic molecular cloud G052.24+00.74. The cloud belongs to a large filament, and is stretching over 100 pc above the Galactic disk midplane. The spiral-shaped morphology of the cloud suggests that the cloud is rotating. We have analysed the kinematic structure of the cloud, and study the fragmentation and star formation. We find that the cloud exhibits a regular velocity pattern along west-east direction - a velocity shift of 10km s-1 at a scale of 30 pc. The kinematic structure of the cloud can be reasonably explained by a model that assumes rotational support. Similarly to our Galaxy, the cloud rotates with a prograde motion. We use the formalism of Toomre (1964) to study the cloud's stability, and find that it is unstable and should fragment. The separation of clumps can be consistently reproduced assuming gravitational instability, suggesting that fragmentation is determined by the interplay between rotation and gravity. Star formation occurs in massive, gravitational bound clumps. Our analysis provides a first example in which the fragmentation of a cloud is regulated by the interplay between rotation and gravity.

  1. Ionization and expansion of barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Ma, T.-Z.; Schunk, R. W.

    1993-01-01

    A recently envelope 3D model is used here to study the motion of the barium clouds released in the ionosphere, including the ionization stage. The ionization and the expansion of the barium clouds and the interaction between the clouds and the background ions are investigated using three simulations: a cloud without a directional velocity, a cloud with an initial velocity of 5 km/s across the B field, and a cloud with initial velocity components of 2 km/s both along and across the B field.

  2. Death of an Arctic Mixed Phase Cloud: How Changes in the Arctic Environment Influence Cloud Properties and Cloud Radiative Feedbacks

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Posselt, D. J.

    2012-12-01

    Arctic mixed phase stratocumulus clouds exert an important influence on the radiative budget over the Arctic ocean and sea ice. Field programs and numerical experiments have shown the properties of these clouds to be sensitive to changes in the surface properties, thermodynamic environment, and aerosols. While it is clear that Arctic mixed-phase clouds respond to changes in the Arctic environment, uncertainty remains as to how climate warming will affect the cloud micro- and macrophysical properties. This is in no small part due to the fact that there are nonlinear interactions between changes in atmospheric and surface properties and changes in cloud characteristics. In this study, large-eddy simulations are performed of an arctic mixed phase cloud observed during the Indirect and Semi-Direct Aerosol Campaign. A parameter-space-filling uncertainty quantification technique is used to rigorously explore how simulated arctic mixed phase clouds respond to changes in the properties of the environment. Specifically, the cloud ice and aerosol concentration, surface sensible and latent heat fluxes, and large scale temperature, water vapor, and vertical motion are systematically changed, and the properties of the resulting clouds are examined. It is found that Arctic mixed phase clouds exhibit four characteristic behaviors: stability, growth, decay, and dissipation. Sets of environmental and surface properties that lead to the emergence of each type of behavior are presented, and the implications for the response of Arctic clouds to changes in climate are explored.

  3. Shapes of Bubbles and Drops in Motion.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)

  4. Vector carpets

    SciTech Connect

    Dovey, D.

    1995-03-22

    Previous papers have described a general method for visualizing vector fields that involves drawing many small ``glyphs`` to represent the field. This paper shows how to improve the speed of the algorithm by utilizing hardware support for line drawing and extends the technique from regular to unstructured grids. The new approach can be used to visualize vector fields at arbitrary surfaces within regular and unstructured grids. Applications of the algorithm include interactive visualization of transient electromagnetic fields and visualization of velocity fields in fluid flow problems.

  5. Coriolis effects and motion sickness modelling.

    PubMed

    Bles, W

    1998-11-15

    Coriolis effects are notorious in relation to disorientation and motion sickness in aircrew. A review is provided of experimental data on these Coriolis effects, including the modulatory effects of adding visual or somatosensory rotatory motion information. A vector analysis of the consequences of head movements during somatosensory, visual and/or vestibular rotatory motion stimulation revealed that the more the sensed angular velocity vector after the head movements is aligned with the gravitoinertial force vector, the less nauseating effects are experienced. It is demonstrated that this is a special case of the subjective vertical conflict theory on motion sickness that assumes that motion sickness may be provoked if a discrepancy is detected between the subjective vertical and the sensed vertical as determined on the basis of incoming sensory information.

  6. Cloud Formation

    NASA Astrophysics Data System (ADS)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  7. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  8. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  9. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Loehnert, U.; Maahn, M.

    2015-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  10. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.

    2014-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  11. Entrainment instability and vertical motion as causes of stratocumulus breakup

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  12. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  13. CLOUD CHEMISTRY.

    SciTech Connect

    SCHWARTZ,S.E.

    2001-03-01

    Clouds present substantial concentrations of liquid-phase water, which can potentially serve as a medium for dissolution and reaction of atmospheric gases. The important precursors of acid deposition, SO{sub 2} and nitrogen oxides NO and NO{sub 2} are only sparingly soluble in clouds without further oxidation to sulfuric and nitric acids. In the case of SO{sub 2} aqueous-phase reaction with hydrogen peroxide, and to lesser extent ozone, are identified as important processes leading to this oxidation, and methods have been described by which to evaluate the rates of these reactions. The limited solubility of the nitrogen oxides precludes significant aqueous-phase reaction of these species, but gas-phase reactions in clouds can be important especially at night.

  14. Neptune's clouds

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The bright cirrus-like clouds of Neptune change rapidly, often forming and dissipating over periods of several to tens of hours. In this sequence Voyager 2 observed cloud evolution in the region around the Great Dark Spot (GDS). The surprisingly rapid changes which occur separating each panel shows that in this region Neptune's weather is perhaps as dynamic and variable as that of the Earth. However, the scale is immense by our standards -- the Earth and the GDS are of similar size -- and in Neptune's frigid atmosphere, where temperatures are as low as 55 degrees Kelvin (-360 F), the cirrus clouds are composed of frozen methane rather than Earth's crystals of water ice. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications

  15. Our World: Cool Clouds

    NASA Video Gallery

    Learn how clouds are formed and watch an experiment to make a cloud using liquid nitrogen. Find out how scientists classify clouds according to their altitude and how clouds reflect and absorb ligh...

  16. Interaction of a neutral cloud moving through a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Lu, G.

    1990-01-01

    Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.

  17. Cloud classification using whole-sky imager data

    SciTech Connect

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R.

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  18. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  19. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... one of a new generation of instruments flying aboard the NASA Earth Observing System's Terra satellite, views Earth with nine cameras ... of thin cirrus minutes after MISR imaged the cloud from space. At the same time, another NASA high-altitude jet, the WB-57, flew right ...

  20. Development of a radiative cloud parameterization scheme of stratocumulus and stratus clouds which includes the impact of CCN on cloud albedo

    SciTech Connect

    Cotton, W.R.

    1994-01-18

    The objective of this research is to develop a parameterization scheme that is able to dispose or predict changes in stratocumulus cloud cover, atmospheric boundary layer (ABL) stability, liquid water paths (LWPs), and cloud albedo due to changes in sea-surface temperatures, large scale vertical motion and wind shear, and cloud condensation nuclei (CCN). The motivation for developing such a parameterization scheme is that it is hypothesized that anthropogenic sources of CCN can result in increased concentrations of cloud droplets. The higher concentrations of CCN result in higher concentrations of cloud droplets, thereby enhancing cloud albedo which in the absence of other effects will induce a climate forcing opposed to that associated with ``Greenhouse`` warming. As a result of the complicated interactions between cloud microstructure, cloud macrostructure, and cloud radiative transfer, only a limited range of clouds are susceptible to changes in CCN concentrations causing changes in cloud albedo. It is the intent of this research to determine the range of cloud types that are susceptible to albedo changes by anthropogenic CCN and incorporate that information into a cloud parameterization scheme.

  1. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  2. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  3. Particle Cloud Flames in Acoustic Fields

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.

    1990-01-01

    Results are presented on a study of flames supported by clouds of particles suspended in air, at pressures about 100 times lower than normal. In the experiment, an acoustic driver (4-in speaker) placed at one end of a closed tube, 0.75-m long and 0.05 m in diameter, disperses a cloud of lycopodium particles during a 0.5-sec powerful acoustic burst. Properties of the particle cloud and the flame were recorded by high-speed motion pictures and optical transmission detectors. Novel flame structures were observed, which owe their features to partial confinement, which encourages flame-acoustic interactions, segregation of particle clouds into laminae, and penetration of the flame's radiative flux density into the unburned particle-cloud regimes. Results of these experiments imply that, for particles in confined spaces, uncontrolled fire and explosion may be a threat even if the Phi(0) values are below some apparent lean limit.

  4. A global survey of cloud overlap based on CALIPSO and CloudSat measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H.

    2015-01-01

    actual cloud fractions for multilayered cloud types (e.g., As + St/Sc and Ac + St/Sc) over the Southern Ocean. The establishment of a statistical relationship between multilayered cloud types and the environmental conditions (e.g., atmospheric vertical motion, convective stability and wind shear) would be useful for parameterization design of cloud overlap in numerical models.

  5. Stellar Encounters with the Oort Cloud Based on Hipparcos Data

    NASA Technical Reports Server (NTRS)

    Garcia-Sanchez, J.; Preston, R. A.; Jones, D. L.; Weissman, P. R.; Lestrade, J. F.; Latham, D. W.; Stefanik, R. P.

    1998-01-01

    We have combined Hipparcos proper motion and parallax data for nearby stars with ground-based radial velocity measurements to find stars which may have passed (or will pass) close enough to the Sun to perturb the Oort cloud.

  6. Image transfer through cirrus clouds. II. Wave-front segmentation and imaging.

    PubMed

    Landesman, Barbara T; Matson, Charles L

    2002-12-20

    A hybrid technique to simulate the imaging of space-based objects through cirrus clouds is presented. The method makes use of standard Huygens-Fresnel propagation beyond the cloud boundary and a novel vector trace approach within the cloud. At the top of the cloud, the wave front is divided into an array of input gradient vectors, which are in turn transmitted through the cloud model by use of the Coherent Illumination Ray Trace and Imaging Software for Cirrus. At the bottom of the cloud, the output vector distribution is used to reconstruct a wave front that continues propagating to the ground receiver. Images of the object as seen through cirrus clouds with different optical depths are compared with a diffraction-limited image. Turbulence effects from the atmospheric propagation are not included.

  7. Topographic Structure from Motion

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.

    2011-12-01

    The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with

  8. The mean-square error optimal linear discriminant function and its application to incomplete data vectors

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1979-01-01

    In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.

  9. Torus-Shaped Dust Clouds in Magnetized Anodic Plasmas

    SciTech Connect

    Pilch, I.; Reichstein, T.; Greiner, F.; Piel, A.

    2008-09-07

    The generation of a torus-shaped dust cloud in an anodic plasma is decribed. The confined dust particles perfom a rotational motion around the torus major axis. The structure of the cloud in dependence of the external parameters are observed and the rotation velocity of the particles was measured and compared with a simple estimate.

  10. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  11. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  12. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  13. How Does the Global-Scale Atmosphere Circulation Produce Clouds?

    NASA Technical Reports Server (NTRS)

    Rossow, William B.

    1999-01-01

    Although clouds are produced by "micro-scale" processes, these processes operate as a response to global-scale atmospheric motions to produce the complex geographic distribution of clouds on Earth. One way to attack this larger-scale problem is to combine global-scale satellite observations of cloud property variations with global-scale determinations of the atmospheric circulation. Such a global data analysis can be used to describe the mean characteristics of clouds and their variations for comparison with global circulation models, to identify systematic relations among observed cloud properties and atmospheric motions, or to estimate, directly, the derivative relations of the processes at work using statistical life-cycle-composites of cloud system evolution. Another approach is to find what characteristics of the global atmospheric circulation are revealed in observed global-scale cloud variations. For the first time this type of analysis is possible with the advent of global, satellite-based cloud (ISCCP), precipitation (microwave-based), and water vapor (merged infrared and microwave) datasets, together with global wind datasets (ECMWF and NCEP re-analyses), all of which resolve features at least down to the upper end of the mesoscale and cover more than a decade. We report on some preliminary attempts to identify quantitative relationships between atmospheric motions and cloud properties that are relevant to cloud processes. Three examples are given: (1) cloud variations at the smallest scales and what they reveal about the nature of small-scale turbulence in the atmospheric boundary layer, (2) cloud variations at "moderate" weather-scales and what they reveal about meteorological storm systems, and (3) cloud variations at the largest scales and what they indicate about interannual variations of climate.

  14. A Flexible Turbulent Vector Field Generator

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Davis, A.

    2004-12-01

    Analysis and generation of turbulent vector fields is a necessity in many areas, such as Atmospheric Science. A candidate model of vector field must be flexible enough to tune some features, such as the spacial distribution of vortices, sinks and sources, according to physical measures. To achieve that goal, we propose a model that depends upon a given matricial function called "topolet" and a law of random vectors family. This model has a hierarchical structure. Its spinal column is a tree: the encoding tree of the domain where the vector field lives. The sets of vortices, sinks and sources are driven by some Bernouilli subtrees, directly giving their fractal dimension. At each node of the tree is attached a rate of energy loose giving the spectral slope. All those quantities are independantly identifiable on the base of mathematical proofs. A primitive version of this model have been proposed for generating clouds.

  15. Present-day plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1977-01-01

    A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

  16. Storm and Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Yesterday's storm front was moving westward, today's moves eastward. Note the thick cloud cover and beautifully delineated cloud tops.

    Image information: VIS instrument. Latitude 72.1, Longitude 308.3 East (51.7 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  18. Motion Sickness

    MedlinePlus

    ... but it is more common in children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling and cold sweats. It can then lead to dizziness and nausea and vomiting. Your brain senses movement by getting signals from your inner ears, eyes, ...

  19. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  20. Cloud-Top Entrainment in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  1. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  2. Deblurring for spatial and temporal varying motion with optical computing

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Xue, Dongfeng; Hui, Zhao

    2016-05-01

    A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.

  3. Automatic Cloud Bursting under FermiCloud

    SciTech Connect

    Wu, Hao; Shangping, Ren; Garzoglio, Gabriele; Timm, Steven; Bernabeu, Gerard; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin; Noh, Seo-Young

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  4. Influence of aircraft vortices on spray cloud behavior.

    PubMed

    Mickle, R E

    1996-06-01

    For small droplet spraying, the spray cloud is initially entrained into the wingtip vortices so that the ultimate fate of the spray is controlled by the motion of these vortices. In close to 100 aerial sprays, the emitted spray cloud has been mapped using a scanning laser system that displays diffusion and transport of the spray cloud. Results detailing the concentrations within the spray cloud in space and time are given for sprays in parallel and crosswinds. Wind direction is seen to potentially alter the vortex motion and hence the fate of the spray cloud. In crosswind spraying, the vortex behavior associated with the 2 wings is found to differ, which leads to enhanced deposition from the upwind wing and enhanced drift from the downwind wing.

  5. Atmospheric Motion in Jupiter's Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    2000-01-01

    True-color (left) and false-color (right) mosaics of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric motions are controlled by alternating eastward and westward bands of air between Jupiter's equator and polar regions. The direction and speed of these bands influences the color and texture of the clouds seen in this mosaic. The high and thin clouds are represented by light blue, deep clouds are reddish, and high and thick clouds are white. A high haze overlying a clear, deep atmosphere is represented by dark purple. This image was taken by NASA's Galileo spacecraft on April 3, 1997 at a distance of 1.4 million kilometers (.86 million miles).

  6. Identifying true satellites of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Sales, Laura V.; Navarro, Julio F.; Kallivayalil, Nitya; Frenk, Carlos S.

    2017-02-01

    The hierarchical nature of ΛCDM suggests that the Magellanic Clouds must have been surrounded by a number of satellites before their infall into the Milky Way halo. Many of those satellites should still be in close proximity to the Clouds, but some could have dispersed ahead/behind the Clouds along their Galactic orbit. Either way, prior association with the Clouds constrains the present-day positions and velocities of candidate Magellanic satellites: they must lie close to the nearly polar orbital plane of the Magellanic Stream, and their distances and radial velocities must follow the latitude dependence expected for a tidal stream with the Clouds near pericentre. We use a cosmological numerical simulation of the disruption of a massive sub-halo in a Milky Way-sized ΛCDM halo to test whether any of the 20 dwarfs recently discovered in the Dark Energy Survey, the Survey of the MAgellanic Stellar History, Pan-STARRS, and ATLAS surveys are truly associated with the Clouds. Of the six systems with kinematic data, only Hor 1 has distance and radial velocities consistent with a Magellanic origin. Of the remaining dwarfs, six (Hor 2, Eri 3, Ret 3, Tuc 4, Tuc 5, and Phx 2) have positions and distances consistent with a Magellanic origin, but kinematic data are needed to substantiate that possibility. Conclusive evidence for association would require proper motions to constrain the orbital angular momentum direction, which, for true Magellanic satellites, must be similar to that of the Clouds. We use this result to predict radial velocities and proper motions for all new dwarfs, assuming that they were Magellanic satellites. Our results are relatively insensitive to the assumption of first or second pericentre for the Clouds.

  7. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  8. Venus Cloud Patterns (colorized and filtered)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This picture of Venus was taken by the Galileo spacecrafts Solid State Imaging System on February 14, 1990, at a range of almost 1.7 million miles from the planet. A highpass spatial filter has been applied in order to emphasize the smaller scale cloud features, and the rendition has been colorized to a bluish hue in order to emphasize the subtle contrasts in the cloud markings and to indicate that it was taken through a violet filter. The sulfuric acid clouds indicate considerable convective activity, in the equatorial regions of the planet to the left and downwind of the subsolar point (afternoon on Venus). They are analogous to 'fair weather clouds' on Earth. The filamentary dark features visible in the colorized image are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth. These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13, 1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have

  9. Ice Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Clouds scoot across the Martian sky in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    This clip accelerates the motion. The camera took these 10 frames over a 10-minute period from 2:52 p.m. to 3:02 p.m. local solar time at the Phoenix site during Sol 94 (Aug. 29), the 94th Martian day since landing.

    Particles of water-ice make up these clouds, like ice-crystal cirrus clouds on Earth. Ice hazes have been common at the Phoenix site in recent days.

    The camera took these images as part of a campaign by the Phoenix team to see clouds and track winds. The view is toward slightly west of due south, so the clouds are moving westward or west-northwestward.

    The clouds are a dramatic visualization of the Martian water cycle. The water vapor comes off the north pole during the peak of summer. The northern-Mars summer has just passed its peak water-vapor abundance at the Phoenix site. The atmospheric water is available to form into clouds, fog and frost, such as the lander has been observing recently.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Method and system for non-linear motion estimation

    NASA Technical Reports Server (NTRS)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  11. Retrieving co-occurring cloud and precipitation properties of warm marine boundary layer clouds with A-Train data

    NASA Astrophysics Data System (ADS)

    Mace, Gerald G.; Avey, Stephanie; Cooper, Steven; Lebsock, Matthew; Tanelli, Simone; Dobrowalski, Greg

    2016-04-01

    In marine boundary layer (MBL) clouds the formation of precipitation from the cloud droplet distribution in the presence of variable aerosol plays a fundamental role in determining the coupling of these clouds to their environment and ultimately to the climate system. Here the degree to which A-Train satellite measurements can diagnose simultaneously occurring cloud and precipitation properties in MBL clouds is examined. Beginning with the measurements provided by CloudSat and Moderate Resolution Imaging Spectroradiometer (including a newly available microwave brightness temperature from CloudSat), and a climatology of MBL cloud properties from past field campaigns, an assumption is made that any hydrometeor volume could contain both cloud droplet and precipitation droplet modes. Bayesian optimal estimation is then used to derive atmospheric states by inverting a measurement vector carefully accounting for uncertainties due to instrument noise, forward model error, and assumptions. It is found that in many cases where significant precipitation coexists with cloud, due to forward model error driven by uncertainties in assumptions, the uncertainty in retrieved cloud properties is greater than the variance in the prior climatology. It is often necessary to average several thousand (hundred) precipitating (weakly precipitating) profiles to obtain meaningful information regarding the properties important to microphysical processes. Regardless, if such process level information is deemed necessary for better constraining predictive models of the climate system, measurement systems specifically designed to accomplish such retrievals must be considered for the future.

  12. The Advancement of Intraplate Tectonic Motion Detection by the Use of Atmospherically Corrected InSAR Time-series and its Decomposition into a 3D Field Vector in South-East Sicily, Italy.

    NASA Astrophysics Data System (ADS)

    Vollrath, A.; Bekaert, D. P.; Bonforte, A.; Guglielmino, F.; Hooper, A. J.; Stramondo, S.; Zucca, F.

    2014-12-01

    This study provides insights into the advancements gained by applying a tropospheric correction to a time-series InSAR small baseline network processed using the StaMPS software for the Hyblean Plateau in south-east Sicily, Italy. The contribution of the atmosphere is one of the major error sources in repeat-pass InSAR in general. For time-series analysis spatial and temporal "filtering" of the interferometric phase can be used to address atmospheric signals. This however might be at the cost of smoothing and removal of the "tectonic deformation". We applied a tropospheric correction to each interferogram based on estimates of the ERA-Interim weather model, provided by the European Center for Medium-Range Weather Forecast (ECMWF). This approach is part of the InSAR Atmospheric Correction Toolbox (Bekaert et al, in prep) and converts the tropospheric water vapor content into the phase-delay of the radar line-of-sight. For the analysis we used 49 descending and 58 ascending Envisat SAR images, which cover the time period from 2003 until 2010. In addition, we have processed 30 SAR images of RADARSAT-2 for the period between 2010-2012. Furthermore, we used the different viewing geometries and the integration of GPS data to decompose the single line-of-sight velocities into a 3-dimensional field vector by applying the SISTEM approach (Guglielmino et al. 2011). First results reveal that the atmospherically corrected data retain the deformation signal along geological structures like the Scicli-Ragusa fault whilst the standard filtering approach is canceling out these very slow deformation patterns. Simultaneously, the variability of the signal in space is diminished and thus gives more confidence on the deformation patterns observed by the SAR. Consequently, the decomposition of the line-of-sight velocities and the integration with the GPS data allows us to retrieve a more realistic deformation field.

  13. Jovian clouds and haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Baines, Kevin H.; Friedson, A. James; Banfield, Don; Ragent, Boris; Taylor, Fred W.

    Tropospheric clouds: thermochemical equilibrium theory and cloud microphysical theory, condensate cloud microphysics, tropospheric cloud and haze distribution - observations, results from the Galileo probe experiments, Galileo NIMS observations and results, Galileo SSE observations and results, recent analyses of ground-based and HST data; Tropospheric clouds and haze: optical and physical properties: partical composition, particle optical properties, size and shape, chromophores; Stratospheric haze: particle distribution, optical properties, size and shape, particle formation.

  14. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  15. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  16. Demonstrating the Direction of Angular Velocity in Circular Motion

    ERIC Educational Resources Information Center

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  17. Diffuse Reflection of Laser Light From Clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Davis, A.; McGill, M.

    1999-01-01

    Laser light reflected from an aqueous suspension of particles or "cloud" with known thickness and particle size distribution defines the "cloud radiative Green's function", G. G is sensitive to cloud thickness, allowing retrieval of that important quantity. We describe a laboratory simulation of G, useful in design of an offbeam Lidar instrument for remote sensing of cloud thickness. Clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The size distribution extends from 0.5 microns to 25 microns, roughly lognormal, similar to real clouds. Density of suspended spheres is adjusted so photon mean-free-path is about 10 cm, 1000 times smaller than in real clouds. The light source is a Nd:YAG laser at 530 nm. Detectors are flux and photon-counting PMTs, with a glass probe for precise positioning. A Labview 5 VI controls position and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider,and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns. Step size is selectable. Far from the beam, the rate of exponential increase in the beam direction scales as expected from diffusion theory, linearly with cloud thickness, and inversely as the square root of the reduced optical thickness, independent of particle size. Nearer the beam the signal increases faster than exponential and depends on particle size. Results verify 3D Monte Carlo simulations that demonstrate detectability of remotely sensed offbeam returns, without filters at night, with narrow bandpass filter in day.

  18. Cloud-Ground Interaction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 30 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image of the North Polar water-ice clouds shows how surface topography can affect the linear form. Notice that the crater at the bottom of the image is causing a deflection in the linear form.

    Image information: VIS instrument. Latitude 68.4, Longitude 100.7 East (259.3 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the

  19. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Nieman, Steven J.; Wanzong, Steven

    1994-01-01

    Water vapor imagery from geostationary satellites has been available for over a decade. These data are used extensively by operational analysts and forecasters, mainly in a qualitative mode (Weldon and Holmes 1991). In addition to qualitative applications, motions deduced in animated water vapor imagery can be used to infer wind fields in cloudless regimes, thereby augmenting the information provided by cloud-drift wind vectors. Early attempts at quantifying the data by tracking features in water vapor imagery met with modest success (Stewart et al. 1985; Hayden and Stewart 1987). More recently, automated techniques have been developed and refined, and have resulted in upper-level wind observations comparable in quality to current operational cloud-tracked winds (Laurent 1993). In a recent study by Velden et al. (1993) it was demonstrated that wind sets derived from Meteosat-3 (M-3) water vapor imagery can provide important environmental wind information in data void areas surrounding tropical cyclones, and can positively impact objective track forecasts. M-3 was repositioned to 75W by the European Space Agency in 1992 in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the current GOES-7 (G-7) satellite (positioned near 112W), the M-3 water vapor channel contains a superior horizontal resolution (5 km vs. 16 km ). In this paper, we examine wind sets derived using automated procedures from both GOES-7 and Meteosat-3 full disk water vapor imagery in order to assess this data as a potentially important source of large-scale wind information. As part of a product demonstration wind sets were produced twice a day at CIMSS during a six-week period in March and April (1994). These data sets are assessed in terms of geographic coverage, statistical accuracy, and meteorological impact through preliminary results of numerical model forecast studies.

  20. Bulldozing Your Way Through Projectile Motion.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1983-01-01

    Presents two models and two demonstrations targeted at student understanding of projectile motion as the sum of two independent, perpendicular vectors. Describes materials required, construction, and procedures used. Includes a discussion of teaching points appropriate to each demonstration or model. (JM)

  1. Light axial vector mesons

    NASA Astrophysics Data System (ADS)

    Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki

    2015-04-01

    Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.

  2. Limits to Cloud Susceptibility

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    2002-01-01

    1-kilometer AVHRR observations of ship tracks in low-level clouds off the west coast of the U S. were used to determine limits for the degree to which clouds might be altered by increases in anthropogenic aerosols. Hundreds of tracks were analyzed to determine whether the changes in droplet radii, visible optical depths, and cloud top altitudes that result from the influx of particles from underlying ships were consistent with expectations based on simple models for the indirect effect of aerosols. The models predict substantial increases in sunlight reflected by polluted clouds due to the increases in droplet numbers and cloud liquid water that result from the elevated particle concentrations. Contrary to the model predictions, the analysis of ship tracks revealed a 15-20% reduction in liquid water for the polluted clouds. Studies performed with a large-eddy cloud simulation model suggested that the shortfall in cloud liquid water found in the satellite observations might be attributed to the restriction that the 1-kilometer pixels be completely covered by either polluted or unpolluted cloud. The simulation model revealed that a substantial fraction of the indirect effect is caused by a horizontal redistribution of cloud water in the polluted clouds. Cloud-free gaps in polluted clouds fill in with cloud water while the cloud-free gaps in the surrounding unpolluted clouds remain cloud-free. By limiting the analysis to only overcast pixels, the current study failed to account for the gap-filling predicted by the simulation model. This finding and an analysis of the spatial variability of marine stratus suggest new ways to analyze ship tracks to determine the limit to which particle pollution will alter the amount of sunlight reflected by clouds.

  3. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-04-13

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  4. MGRA: Motion Gesture Recognition via Accelerometer

    PubMed Central

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  5. Solar angles revisited using a general vector approach

    SciTech Connect

    Parkin, Robert E.

    2010-06-15

    Rather than follow the standard technique using direction cosines or major axes vectors to define the angles of the sun, we develop the necessary formulae from a 3-tuple vector based analysis. The direction of the sun with respect to a Cartesian coordinate system is defined as a unit vector, as is the orthogonal to a surface intended to accept solar radiation. The vector formulation is powerful and universal. More importantly, the diagrams used to describe the relative motion of the sun with respect to the Earth are quite simple, leading to less confusion when translating the geometry to algebra. An interesting result on the change in solar angle with time follows. (author)

  6. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  7. SinoCor: motion correction in SPECT

    NASA Astrophysics Data System (ADS)

    Mitra, Debasis; Eiland, Daniel; Abdallah, Mahmoud; Bouthcko, Rostyslav; Gullberg, Grant T.; Schechtmann, Norberto

    2012-02-01

    Motion is a serious artifact in Cardiac nuclear imaging because the scanning operation takes a long time. Since reconstruction algorithms assume consistent or stationary data the quality of resulting image is affected by motion, sometimes significantly. Even after adoption of the gold standard MoCo(R) algorithm from Cedars-Sinai by most vendors, heart motion remains a significant challenge. Also, any serious study in quantitative analysis necessitates correction for motion artifacts. It is generally recognized that human eye is a very sensitive tool for detecting motion. However, two reasons prevent such manual correction: (1) it is costly in terms of specialist's time, and (2) no such tool for manual correction is available currently. Previously, at SPIE-MIC'11, we presented a simple tool (SinoCor) that allows sinograms to be corrected manually or automatically. SinoCor performs correction of sinograms containing inter-frame patient or respiratory motions using rigid-body dynamics. The software is capable of detecting the patient motion and estimating the body-motion vector using scanning geometry parameters. SinoCor applies appropriate geometrical correction to all the frames subsequent to the frame when the movement has occurred in a manual or automated mode. For respiratory motion, it is capable of automatically smoothing small oscillatory (frame-wise local) movements. Lower order image moments are used to represent a frame and the required rigid body movement compensation is computed accordingly. Our current focus is on enhancement of SinoCor with the capability to automatically detect and compensate for intra-frame motion that causes motion blur on the respective frame. Intra-frame movements are expected in both patient and respiratory motions. For a controlled study we also have developed a motion simulator. A stable version of SinoCor is available under license from Lawrence Berkeley National Laboratory.

  8. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  9. Sub-block motion derivation for merge mode in HEVC

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Jung; Chen, Ying; Chen, Jianle; Zhang, Li; Karczewicz, Marta; Li, Xiang

    2016-09-01

    The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. In this paper, two additional merge candidates, advanced temporal motion vector predictor and spatial-temporal motion vector predictor, are developed to improve motion information prediction scheme under the HEVC structure. The proposed method allows each Prediction Unit (PU) to fetch multiple sets of motion information from multiple blocks smaller than the current PU. By splitting a large PU into sub-PUs and filling motion information for all the sub-PUs of the large PU, signaling cost of motion information could be reduced. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. Simulation results show that 2.4% performance improvement over HEVC can be achieved.

  10. Auditory Motion Elicits a Visual Motion Aftereffect

    PubMed Central

    Berger, Christopher C.; Ehrsson, H. Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates. PMID:27994538

  11. Mesoscale Variability in Coastal Stratocumulus Clouds Observed During Uppef2012

    DTIC Science & Technology

    2014-03-01

    of MCC (from Agee 1987)........................................................18  Figure 4.  (a) Sea level pressure and (b) surface vector winds...during RF05. ..................21  Figure 5.  (a) Sea level pressure and (b) surface vector winds during RF10. ..................21  Figure 6.  Cloud...RF10 LL4 Co-spectrum of (a) w and ql (b) w and q (c) w and theta. .............58  xi LIST OF TABLES Table 1.  Twin Otter in-cloud level legs

  12. On the Exchange of Kinetic and Magnetic Energy between Clouds and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Jones, T. W.; Ryu, Dongsu

    1999-05-01

    We investigate, through two-dimensional MHD numerical simulations, the interaction of a uniform magnetic field oblique to a moving interstellar cloud. In particular we explore the transformation of cloud kinetic energy into magnetic energy as a result of field line stretching. Some previous simulations have emphasized the possible dynamical importance of a ``magnetic shield'' formed around clouds when the magnetic field is perpendicular to the cloud motion. It was not clear, however, how dependent those findings were on the assumed field configuration and cloud properties. To expand our understanding of this effect, we examine several new cases by varying the magnetic field orientation angle with respect to the cloud motion (θ), the cloud-background density contrast, and the cloud Mach number. We show that in two dimensions and with θ large enough, the magnetic field tension can become dominant in the dynamics of the motion of high density contrast, low Mach number clouds. In such a case, a significant fraction of the cloud's kinetic energy can be transformed into magnetic energy with the magnetic pressure at the cloud's nose exceeding the ram pressure of the impinging flow. We derive a characteristic timescale, τma, for this process of energy ``conversion.'' We find also that unless the cloud motion is highly aligned with the magnetic field, reconnection through tearing-mode instabilities in the cloud wake limits the formation of a strong flux-rope feature following the cloud. Finally we attempt to interpret some observed properties of the magnetic field in view of our results.

  13. Formation of Bidisperse Particle Clouds

    NASA Astrophysics Data System (ADS)

    Er, Jenn Wei; Zhao, Bing; Law, Adrian W. K.; Adams, E. Eric

    2014-11-01

    When a group of dense particles is released instantaneously into water, their motion has been conceptualized as a circulating particle thermal (Ruggerber 2000). However, Wen and Nacamuli (1996) observed the formation of particle clumps characterized by a narrow, fast moving core shedding particles into wakes. They observed the clump formation even for particles in the non-cohesive range as long as the source Rayleigh number was large (Ra > 1E3) or equivalently the source cloud number (Nc) was small (Nc < 3.2E2). This physical phenomenon has been investigated by Zhao et al. (2014) through physical experiments. They proposed the theoretical support for Nc dependence and categorized the formation processes into cloud formation, transitional regime and clump formation. Previous works focused mainly on the behavior of monodisperse particles. The present study further extends the experimental investigation to the formation process of bidisperse particles. Experiments are conducted in a glass tank with a water depth of 90 cm. Finite amounts of sediments with various weight proportions between coarser and finer particles are released from a cylindrical tube. The Nc being tested ranges from 6E-3 to 9.9E-2, which covers all the three formation regimes. The experimental results showed that the introduction of coarse particles promotes cloud formation and reduce the losses of finer particles into the wake. More quantitative descriptions of the effects of source conditions on the formation processes will be presented during the conference.

  14. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  15. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  16. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy.

  17. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  18. de Gennes Narrowing Describes the Relative Motion of Protein Domains

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Smolin, Nikolai; Smith, Jeremy C.

    2014-04-01

    The relative motion of structural domains is essential for the biological function of many proteins. Here, by analyzing neutron scattering data and performing molecular dynamics simulations, we find that interdomain motion in several proteins obeys the principle of de Gennes narrowing, in which the wave vector dependence of the interdomain diffusion coefficient is inversely proportional to the interdomain structure factor. Thus, the rate of interdomain motion is inversely proportional to the probability distribution of the spatial configurations of domains.

  19. Motion Information Inferring Scheme for Multi-View Video Coding

    NASA Astrophysics Data System (ADS)

    Koo, Han-Suh; Jeon, Yong-Joon; Jeon, Byeong-Moon

    This letter proposes a motion information inferring scheme for multi-view video coding motivated by the idea that the aspect of motion vector between the corresponding positions in the neighboring view pair is quite similar. The proposed method infers the motion information from the corresponding macroblock in the neighboring view after RD optimization with the existing prediction modes. This letter presents evaluation showing that the method significantly enhances the efficiency especially at high bit rates.

  20. Determination of Cloud Base Height, Wind Velocity, and Short-Range Cloud Structure Using Multiple Sky Imagers Field Campaign Report

    SciTech Connect

    Huang, Dong; Schwartz, Stephen E.; Yu, Dantong

    2016-07-01

    Clouds are a central focus of the U.S. Department of Energy (DOE)’s Atmospheric System Research (ASR) program and Atmospheric Radiation Measurement (ARM) Climate Research Facility, and more broadly are the subject of much investigation because of their important effects on atmospheric radiation and, through feedbacks, on climate sensitivity. Significant progress has been made by moving from a vertically pointing (“soda-straw”) to a three-dimensional (3D) view of clouds by investing in scanning cloud radars through the American Recovery and Reinvestment Act of 2009. Yet, because of the physical nature of radars, there are key gaps in ARM's cloud observational capabilities. For example, cloud radars often fail to detect small shallow cumulus and thin cirrus clouds that are nonetheless radiatively important. Furthermore, it takes five to twenty minutes for a cloud radar to complete a 3D volume scan and clouds can evolve substantially during this period. Ground-based stereo-imaging is a promising technique to complement existing ARM cloud observation capabilities. It enables the estimation of cloud coverage, height, horizontal motion, morphology, and spatial arrangement over an extended area of up to 30 by 30 km at refresh rates greater than 1 Hz (Peng et al. 2015). With fine spatial and temporal resolution of modern sky cameras, the stereo-imaging technique allows for the tracking of a small cumulus cloud or a thin cirrus cloud that cannot be detected by a cloud radar. With support from the DOE SunShot Initiative, the Principal Investigator (PI)’s team at Brookhaven National Laboratory (BNL) has developed some initial capability for cloud tracking using multiple distinctly located hemispheric cameras (Peng et al. 2015). To validate the ground-based cloud stereo-imaging technique, the cloud stereo-imaging field campaign was conducted at the ARM Facility’s Southern Great Plains (SGP) site in Oklahoma from July 15 to December 24. As shown in Figure 1, the cloud

  1. Tvashtar in Motion

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This five-frame sequence of New Horizons images captures the giant plume from Io's Tvashtar volcano. Snapped by the probe's Long Range Reconnaissance Imager (LORRI) as the spacecraft flew past Jupiter earlier this year, this first-ever 'movie' of an Io plume clearly shows motion in the cloud of volcanic debris, which extends 330 kilometers (200 miles) above the moon's surface. Only the upper part of the plume is visible from this vantage point -- the plume's source is 130 kilometers (80 miles) below the edge of Io's disk, on the far side of the moon.

    The appearance and motion of the plume is remarkably similar to an ornamental fountain on Earth, replicated on a gigantic scale. The knots and filaments that allow us to track the plume's motion are still mysterious, but this movie is likely to help scientists understand their origin, as well as provide unique information on the plume dynamics.

    Io's hyperactive nature is emphasized by the fact that two other volcanic plumes are also visible off the edge of Io's disk: Masubi at the 7 o'clock position, and a very faint plume, possibly from the volcano Zal, at the 10 o'clock position. Jupiter illuminates the night side of Io, and the most prominent feature visible on the disk is the dark horseshoe shape of the volcano Loki, likely an enormous lava lake. Boosaule Mons, which at 18 kilometers (11 miles) is the highest mountain on Io and one of the highest mountains in the solar system, pokes above the edge of the disk on the right side.

    The five images were obtained over an 8-minute span, with two minutes between frames, from 23:50 to 23:58 Universal Time on March 1, 2007. Io was 3.8 million kilometers (2.4 million miles) from New Horizons; the image is centered at Io coordinates 0 degrees north, 342 degrees west.

    The pictures were part of a sequence designed to look at Jupiter's rings, but planners included Io in the sequence because the moon was passing behind Jupiter's rings at the time.

  2. Airborne observations of electric fields around growing and decaying cumulus clouds

    NASA Technical Reports Server (NTRS)

    Giori, K. L.; Nanevicz, J. E.

    1991-01-01

    Airborne electric field data were gathered in an atmospheric electrification study near Cape Canaveral, FL. A Learjet 36A was instrumented with eight electric field meters (mills) and five different particle probes. The local electric field enhancements at each field mill site were determined under lab conditions and verified using in-flight data. The overdetermined system of eight equations (one for each field mill) was solved using a weighted least squares algorithm to compute the magnitude and direction of the ambient electric field. The signal processing system allowed the measured data to be expressed in terms of earth coordinates, regardless of the attitude of the aircraft. Thus, it was possible to take maximum advantage of the Learjet's speed and maneuverability in studying the electric field structure in the vicinity of the clouds. Data gathered while circling just outside the boundary of a growing cumulus cloud show a nonsymmetric pattern of electric field strength. Field intensity grew rapidly over a period of less than 10 minutes. The observed direction of the ambient electric field vector can be explained by an ascending motion of the charge centers of a classic tripole model of a thunderstorm.

  3. Noctilucent Cloud Sightings

    NASA Video Gallery

    Polar Mesospheric Clouds form during each polar region's summer months in the coldest place in the atmosphere, 50 miles above Earth's surface. Noctilucent Clouds were first observed in 1885 by an a...

  4. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  5. Computer animation of clouds

    SciTech Connect

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  6. Comparing Point Clouds

    DTIC Science & Technology

    2004-04-01

    Point clouds are one of the most primitive and fundamental surface representations. A popular source of point clouds are three dimensional shape...acquisition devices such as laser range scanners. Another important field where point clouds are found is in the representation of high-dimensional...framework for comparing manifolds given by point clouds is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading

  7. Cloud Computing Explained

    ERIC Educational Resources Information Center

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  8. Clouds in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice cyrstals suspended in the air. The study of clouds touches on many facets of armospheric science. The chemistry of clouds is tied to the chemistry of the surrounding atmosphere.

  9. Security in the cloud.

    PubMed

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  10. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  11. Study of Trade Wind Clouds Using Ground Based Stereo Cameras

    NASA Astrophysics Data System (ADS)

    Porter, J.

    2010-12-01

    We employ ground based stereo cameras to derive the three dimensional position of trade wind clouds features. The process employs both traditional and novel methods. The stereo cameras are calibrated for orientation using the sun as a geo-reference point at several times throughout the day. Spatial correlation is used to detect similar cloud features in both camera images and a simultaneous-differential equation is solved to get the best cloud position for the given rays from the cameras to the cloud feature. Once the positions of the clouds are known in three-dimensional space, then it is also possible to derive upper level wind speed and direction by tracking the position of clouds in space and time. The vector winds can be obtained at many locations and heights in a cone region over the surface site. The accuracy of the measurement depends on the camera separation with a trade-off occurring at different camera separations and cloud ranges. The system design and performance will be discussed along with field observations. This approach provides a new way to study clouds for climate change efforts. It also provides an inexpensive way to measure upper level wind fields in cloudy regions. Ground based stereo cameras are used to derive cloud position in space a time.

  12. Jovian Lightning and Moonlit Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jovian lightning and moonlit clouds. These two images, taken 75 minutes apart, show lightning storms on the night side of Jupiter along with clouds dimly lit by moonlight from Io, Jupiter's closest moon. The images were taken in visible light and are displayed in shades of red. The images used an exposure time of about one minute, and were taken when the spacecraft was on the opposite side of Jupiter from the Earth and Sun. Bright storms are present at two latitudes in the left image, and at three latitudes in the right image. Each storm was made visible by multiple lightning strikes during the exposure. Other Galileo images were deliberately scanned from east to west in order to separate individual flashes. The images show that Jovian and terrestrial lightning storms have similar flash rates, but that Jovian lightning strikes are a few orders of magnitude brighter in visible light.

    The moonlight from Io allows the lightning storms to be correlated with visible cloud features. The latitude bands where the storms are seen seem to coincide with the 'disturbed regions' in daylight images, where short-lived chaotic motions push clouds to high altitudes, much like thunderstorms on Earth. The storms in these images are roughly one to two thousand kilometers across, while individual flashes appear hundreds of kilometer across. The lightning probably originates from the deep water cloud layer and illuminates a large region of the visible ammonia cloud layer from 100 kilometers below it.

    There are several small light and dark patches that are artifacts of data compression. North is at the top of the picture. The images span approximately 50 degrees in latitude and longitude. The lower edges of the images are aligned with the equator. The images were taken on October 5th and 6th, 1997 at a range of 6.6 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for

  13. Optimum instantaneous impulsive orbital injection to attain a specified asymptotic velocity vector.

    NASA Technical Reports Server (NTRS)

    Bean, W. C.

    1971-01-01

    A nalysis of the necessary conditions of Battin for instantaneous orbital injection, with consideration of the uniqueness of his solution, and of the further problem which arises in the degenerate case when radius vector and asymptotic vector are separated by 180 deg. It is shown that when the angular separation between radius vector and asymptotic velocity vector satisfies theta not equal to 180 deg, there are precisely two insertion-velocity vectors which permit attainment of the target asymptotic velocity vector, one yielding posigrade, the other retrograde motion. When theta equals to 180 deg, there is a family of insertion-velocity vectors which permit attainment of a specified asymptotic velocity vector with a unique insertion-velocity vector for every arbitrary orientation of a target unit angular momentum vector.

  14. Cloud-Induced Uncertainty for Visual Navigation

    DTIC Science & Technology

    2014-12-26

    is then used on a sequence of motion-simulating images to create a dataset of cloudy aerial images . Matching features are then detected between the...42 viii Figure Page 15 Background aerial image used for analysis. The region within the white box...Using the algorithm, a database of cloudy aerial images is created by overlaying the cloud templates onto aerial images . Features are detected in the

  15. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  16. Proper motion measurements of HH 224

    NASA Astrophysics Data System (ADS)

    Perez Rivera, Erika F.; Ybarra, Jason E.; Barsony, Mary; Phelps, Randy L.; Román-Zuñíga, Carlos; Tapia, Mauricio; José Downes, Juan

    2015-01-01

    We measured the proper motion of the components of Herbig-Haro object HH 224 embedded in the rho Ophiuchi cloud core using two epochs of [S II] imaging with a 17-year baseline. Our analysis finds the direction of HH 224N to be consistent with the other components of HH 224S suggesting HH 224S and HH 224N are part of the same flow. We discuss possible driving sources. We acknowledge partial support from PAPPIT-IN101813.

  17. Gravity, turbulence and the scaling ``laws'' in molecular clouds

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier

    The so-called Larson (1981) scaling laws found empirically in molecular clouds have been generally interpreted as evidence that the clouds are turbulent and fractal. In the present contribution we discussed how recent observations and models of cloud formation suggest that: (a) these relations are the result of strong observational biases due to the cloud definition itself: since the filling factor of the dense structures is small, by thresholding the column density the computed mean density between clouds is nearly constant, and nearly the same as the threshold (Ballesteros-Paredes et al. 2012). (b) When accounting for column density variations, the velocity dispersion-size relation does not appears anymore. Instead, dense cores populate the upper-left corner of the δ v-R diagram (Ballesteros-Paredes et al. 2011a). (c) Instead of a δ v-R relation, a more appropriate relation seems to be δ v 2 / R = 2 GMΣ, which suggest that clouds are in collapse, rather than supported by turbulence (Ballesteros-Paredes et al. 2011a). (d) These results, along with the shapes of the star formation histories (Hartmann, Ballesteros-Paredes & Heitsch 2012), line profiles of collapsing clouds in numerical simulations (Heitsch, Ballesteros-Paredes & Hartmann 2009), core-to-core velocity dispersions (Heitsch, Ballesteros-Paredes & Hartmann 2009), time-evolution of the column density PDFs (Ballesteros-Paredes et al. 2011b), etc., strongly suggest that the actual source of the non-thermal motions is gravitational collapse of the clouds, so that the turbulent, chaotic component of the motions is only a by-product of the collapse, with no significant ``support" role for the clouds. This result calls into question if the scale-free nature of the motions has a turbulent, origin (Ballesteros-Paredes et al. 2011a; Ballesteros-Paredes et al. 2011b, Ballesteros-Paredes et al. 2012).

  18. Conference on Cloud Physics, Tucson, Ariz., October 21-24, 1974, Proceedings

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Condensation and ice nucleation processes are considered, taking into account measurements of cloud nuclei and aerosol size spectra in the semiarid Southwest, the formation of sulfates and the enhancement of cloud condensation nuclei in clouds, biogenic sources of atmospheric ice nuclei, and the experimental determination of the deposition coefficient of water vapor onto ice. Other topics discussed are related to precipitation growth processes, the role of ice in cloud systems, cloud modeling, measurements in Colorado hailstorms during the national hail research experiment, cloud measurements, and measurement techniques. Attention is also given to cloud electrification, zero-gravity experiments, and the control of cloud development by larger scale motions. Individual items are announced in this issue.

  19. A Diagnostic Study of Rapidly Developing Cyclones Using Surface-Based Q Vectors

    DTIC Science & Technology

    1991-06-01

    Scatter plot of -2V.Q (x10’ 6 m itg" s’) vs. the future 6 h pressure tendency (mb*10), linear regression line (dashed) and 95% confidence inteval (dotted...clouds over areas of Q vector convergence. Areas of strong Q vector convergence tdivergence) showed significant (95% confidence level) pressure falls...convergence. Areas of strong Q vector convergence (divergence) showed significant (95% confidence level) pressure falls (rises) 3 h and 6 h in the future

  20. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  1. Cloud microstructure studies

    NASA Technical Reports Server (NTRS)

    Blau, H. H., Jr.; Fowler, M. G.; Chang, D. T.; Ryan, R. T.

    1972-01-01

    Over two thousand individual cloud droplet size distributions were measured with an optical cloud particle spectrometer flown on the NASA Convair 990 aircraft. Representative droplet spectra and liquid water content, L (gm/cu m) were obtained for oceanic stratiform and cumuliform clouds. For non-precipitating clouds, values of L range from 0.1 gm/cu m to 0.5 gm/cu m; with precipitation, L is often greater than 1 gm/cu m. Measurements were also made in a newly formed contrail and in cirrus clouds.

  2. "Electrostructural Phase Changes" In Charged Particulate Clouds: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    There is empirical evidence that freely-suspended triboelectrostatically charged particulate clouds of dielectric materials undergo rapid conversion from (nominally) monodispersed "aerosols" to a system of well-defined grain aggregates after grain motion or fluid turbulence ceases within the cloud. In United States Microgravity Laboratory Space Shuttle experiments USML-1 and USML-2, it was found that ballistically-energized grain dispersions would rapidly convert into populations of filamentary aggregates after natural fluid (air) damping of grain motion. Unless continuously disrupted mechanically, it was impossible to maintain a non-aggregated state for the grain clouds of sand-size materials. Similarly, ground- based experiments with very fine dust-size material produced the same results: rapid, impulsive "collapse" of the dispersed grains into well-defined filamentary structures. In both ground-based and microgravity experiments, the chains or filaments were created by long-range dipole electrostatic forces and dipole-induced dielectric interactions, not by monopole interactions. Maintenance of the structures was assisted by short-range static boundary adhesion forces and van der Waals interactions. When the aggregate containers in the USML experiments were disturbed after aggregate formation, the quiescently disposed filaments would rearrange themselves into fractal bundles and tighter clusters as a result of enforced encounters with one another. The long-range dipole interactions that bring the grains together into aggregates are a product of randomly-distributed monopole charges on the grain surfaces. In computer simulations, it has been shown that when the force vectors of all the random charges (of both sign) on a grain are resolved mathematically by assuming Coulombic interaction between them, the net result is a dipole moment on individual grains, even though the grains are electrically neutral insofar as there is no predominance, on their surface, of one

  3. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  4. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  5. Fragmented molecular complexes: The role of the magnetic field in feeding internal supersonic motions

    NASA Technical Reports Server (NTRS)

    Falgarone, E.; Puget, J. L.; Perault, M.

    1986-01-01

    A hierarchical structure for molecular complexes in their cold phase i.e., preceeding the formation of massive stars, was derived from extensive large scale CO(13)(J=1=0) observations: the mass is found to be distributed into virialized clouds which fill only a very low fraction approx. 01 of the volume of the complex and are supported against gravity by internal supersonic motions. An efficient mechanism was found to transfer kinetic energy from the orbital motions of the clouds to their internal random motions. The large perturbations of the magnetic field induced at the cloud boundaries by their interactions with their neighbors generate systems of hydromagnetic waves trapped inside the clouds. The magnetic field lines being closely coupled to the gas at the densities which prevail in the bulk of the clouds volume, internal velocity dispersion is thus generated. Some conclusions derived from this data are given.

  6. Equatorial cloud level convection on Venus

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40-60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however

  7. The physical properties of the interstellar cloud around the heliosphere

    NASA Astrophysics Data System (ADS)

    Gry, C.

    2015-12-01

    A new interpretation of interstellar absorption lines in the spectra of nearby stars indicates that the medium surrounding the Sun can be regarded as a single, coherent cloud if we relax the assumption that a cloud behaves like a rigid body. This outlook permits us to construct a comprehensive picture of the local interstellar cloud and reveals that it departs from homogeneity in a number of aspects and physical properties: - This local cloud undergoes a deformation related to a compression in the direction of motion and an expansion in perpendicular directions, much like a squashed balloon. - The metal abundances decrease steadily from the rear to the head of the cloud, and this phenomenon does not appear to be related to ionization effects. - The cloud average HI density, estimated toward a number of nearby stars around which an astrophere is detected in Lyman alpha, varies from 0.03 to 0.1 cm-3. The cloud outer boundary inferred from the average density and column densities is very irregular with an average distance to the Sun of 9 +/- 7 pc. - The electron density and the cloud temperature can be derived from the combination of the ionization equilibrium of MgI and the excitation of CII in a restricted number of sightlines where column density is such that MgI and CII* features are strong enough to be detectable without saturating MgII. We present a few additional targets from which we examine the physical conditions inside the cloud.

  8. Mixed-phase cloud phase partitioning using millimeter wavelength cloud radar Doppler velocity spectra

    NASA Astrophysics Data System (ADS)

    Yu, G.; Verlinde, J.; Clothiaux, E. E.; Chen, Y.-S.

    2014-06-01

    Retrieving and quantifying cloud liquid drop contributions to radar returns from mixed-phase clouds remains a challenge because the radar signal is frequently dominated by the returns from the ice particles within the radar sample volume. We present a technique that extracts the weak cloud liquid drop contributions from the total radar returns in profiling cloud radar Doppler velocity spectra. Individual spectra are first decomposed using a continuous wavelet transform, the resulting coefficients of which are used to identify the region in the spectra where cloud liquid drops contribute. By assuming that the liquid contribution to each Doppler spectrum is Gaussian shaped and centered on an appropriate peak in the wavelet coefficients, the cloud liquid drop contribution may be estimated by fitting a Gaussian distribution centered on the velocity of this peak to the original Doppler spectrum. The cloud liquid drop contribution to reflectivity, the volume mean vertical air motion, subvolume vertical velocity variance, and ice particle mean fall speed can be estimated based on the separation of the liquid contribution to the radar Doppler spectrum. The algorithm is evaluated using synthetic spectra produced from output of a state-of-the-art large eddy simulation model study of an Arctic mixed-phase cloud. The retrievals of cloud liquid drop mode reflectivities were generally consistent with the original model values with errors less than a factor of 2. The retrieved volume mean vertical air velocities reproduced the updraft and downdraft structures, but with an overall bias of approximately -0.06 m s-1. Retrievals based on Ka-band Atmospheric Radiation Measurement Program Zenith Radar observations from Barrow, Alaska, during October 2011 are also presented.

  9. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2012-09-30

    and cloud observations in trade wind cumulus clouds using the CIRPAS aircraft with the cloud radar was designed and carried out. The observational...gradients in cloud properties off the coast. Further from the South Florida area of fair-weather cumulus clouds (Jan. 2008) where clouds with both...marine and continental characteristics were observed. This was followed by a set of observations made in 2010 of cumulus clouds in off of Barbados

  10. Motion recognition from contact force measurement.

    PubMed

    Yabuki, Takumi; Venture, Gentiane

    2013-01-01

    Optical motion capture systems, which are used in broad fields of research, are costly; they need large installation space and calibrations. We find difficulty in applying it in typical homes and care centers. Therefore we propose to use low cost contact force measurement systems to develop rehabilitation and healthcare monitoring tools. Here, we propose a novel algorithm for motion recognition using the feature vector from force data solely obtained during a daily exercise program. We recognized 7 types of movement (Radio Exercises) of two candidates (mean age 22, male). The results show that the recognition rate of each motion has high score (mean: 86.9%). The results also confirm that there is a clustering of each movement in personal exercises data, and a similarity of the clustering even for different candidates thus that motion recognition is possible using contact force data.

  11. Motion field and optical flow: Qualitative properties

    NASA Astrophysics Data System (ADS)

    Verri, Alessandro; Poggio, Tomaso

    1986-12-01

    The optical flow, a 2-D field that can be associated with the variation of the image brightness pattern, and the 2-D motion field, the projection on the image plane of the 3-D velocity field of a moving scene, are in general different, unless very special conditions are satisfied. The optical flow, therefore, is ill suited for computing structure from motion, and for reconstructing the 3-D velocity field, problems that require an accurate estimate of the 2-D motion field. A different use of the optical flow is suggested. Stable field and the 3-D structure of the scene, and they can usually be obtained from the optical flow. The smoothed optical flow and 2-D motion field, interpreted as vector fields tangent to flows of planar dynamical systems, may have the same qualitative properties from the point of view of the theory of structural stability of dynamical systems.

  12. Image-based motion estimation for cardiac CT via image registration

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Taguchi, K.

    2010-03-01

    Images reconstructed from tomographic projection data are subject to motion artifacts from organs that move during the duration of the scan. The effect can be reduced by taking the motion into account in the reconstruction algorithm if an estimate of the deformation exists. This paper presents the estimation of the three-dimensional cardiac motion by registering reconstructed images from cardiac quiet phases as a first step towards motion-compensated cardiac image reconstruction. The non-rigid deformations of the heart are parametrized on a coarse grid on the image volume and are interpolated with cubic b-splines. The optimization problem of finding b-spline coefficients that best describe the observed deformations is ill-posed due to the large number of parameters and the resulting motion vector field is sensitive to the choice of initial parameters. Particularly challenging is the task to capture the twisting motion of the heart. The motion vector field from a dynamic computer phantom of the human heart is used to initialize the transformation parameters for the optimization process with realistic starting values. The results are evaluated by comparing the registered images and the obtained motion vector field to the case when the registration is performed without using prior knowledge about the expected cardiac motion. We find that the registered images are similar for both approaches, but the motion vector field obtained from motion estimation initialized with the phantom describes the cardiac contraction and twisting motion more accurately.

  13. Second by second prediction of solar power generation based on cloud shadow behavior estimation near a power station

    NASA Astrophysics Data System (ADS)

    Nomura, Ryohei; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi

    2017-01-01

    Photovoltaic (PV) power generation has a particular problem for grid cooperation in that output can fluctuate due to the shadows created by clouds. If we can grasp the behavior of cloud shadows beforehand, then it may be possible to forecast output fluctuations. In this study, we want to prove if it is possible to calculate power output variation from the accumulated cloud shadow data. Cloud shadow behavior was measured from the ground by photodiodes (PDs) and the cloud shadow vector was calculated from the position and time difference. The time from the calculated cloud shadow vector to the arrival of the cloud shadow and the power generation output was calculated and compared with the actual solar power generation output. Thus, we confirmed that we can predict power generation output from a high correlation of two outputs. We found that prediction is possible, with high precision, at a short distance.

  14. Molecular neurosurgery: vectors and vector delivery strategies.

    PubMed

    White, Edward

    2012-12-01

    Molecular neurosurgery involves the use of vector-mediated gene therapy and gene knockdown to manipulate in vivo gene expression for the treatment of neurological diseases. These techniques have the potential to revolutionise the practice of neurosurgery. However, significant challenges remain to be overcome before these techniques enter routine clinical practice. These challenges have been the subject of intensive research in recent years and include the development of strategies to facilitate effective vector delivery to the brain and the development of both viral and non-viral vectors that are capable of efficient cell transduction without excessive toxicity. This review provides an update on the practice of molecular neurosurgery with particular focus on the practical neurosurgical aspects of vector delivery to the brain. In addition, an introduction to the key vectors employed in clinical trials and a brief overview of previous gene therapy clinical trials is provided. Finally, key areas for future research aimed at increasing the likelihood of the successful translation of gene therapy into clinical trials are highlighted.

  15. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  16. Movie of High Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jupiter's high-altitude clouds are seen in this brief movie made from seven frames taken by the narrow-angle camera of NASA's Cassini spacecraft. This is the first time a movie sequence of Jupiter has been made that illustrates the motions of the high-altitude clouds on a global scale.

    The images were taken at a wavelength that is absorbed by methane, one chemical in Jupiter's lower clouds. So, dark areas are relatively free of high clouds, and the camera sees through to the methane in a lower level. Bright areas are places with high, thick clouds that shield the methane below.

    Jupiter's equator and Great Red Spot are covered with high-altitude, hazy clouds.

    The movie covers the time period between Oct. 1 and Oct. 5, 2000, latitudes from 50 degrees north to 50 degrees south, and a 100-degree sweep of longitude. Those factors were the same for a Cassini movie of cloud motions previously released (PIA02829), but that movie used frames taken through a blue filter, which showed deeper cloud levels and sharper detail. Features in this methane-filter movie appear more diffuse.

    Among the nearly stationary features are the Red Spot and some bright ovals at mid-latitudes in both hemispheres. These are anticyclonic (counter-clockwise rotating) storms. They are bright in the methane band because of their high clouds associated with rising gas. They behave differently from terrestrial cyclones, which swirl in the opposite direction. The mechanism making the Red Spot and similar spots stable apparently has no similarity to the mechanism which feeds terrestrial cyclones.

    Some small-scale features are fascinating because of their brightness fluctuations. Such fluctuations observed in the methane band are probably caused by strong vertical motions, which form clouds rapidly, as in Earth's thunderstorms. Near the upper left corner in this movie, a number of smaller clouds appear to circulate counterclockwise around a dark spot, and these clouds fluctuate in

  17. A Hierarchical Modeling Study of the Interactions Among Turbulence, Cloud Microphysics, and Radiative Transfer in the Evolution of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Curry, Judith; Khvorostyanov, V. I.

    2005-01-01

    This project used a hierarchy of cloud resolving models to address the following science issues of relevance to CRYSTAL-FACE: What ice crystal nucleation mechanisms are active in the different types of cirrus clouds in the Florida area and how do these different nucleation processes influence the evolution of the cloud system and the upper tropospheric humidity? How does the feedback between supersaturation and nucleation impact the evolution of the cloud? What is the relative importance of the large-scale vertical motion and the turbulent motions in the evolution of the crystal size spectra? How does the size spectra impact the life-cycle of the cloud, stratospheric dehydration, and cloud radiative forcing? What is the nature of the turbulence and waves in the upper troposphere generated by precipitating deep convective cloud systems? How do cirrus microphysical and optical properties vary with the small-scale dynamics? How do turbulence and waves in the upper troposphere influence the cross-tropopause mixing and stratospheric and upper tropospheric humidity? The models used in this study were: 2-D hydrostatic model with explicit microphysics that can account for 30 size bins for both the droplet and crystal size spectra. Notably, a new ice crystal nucleation scheme has been incorporated into the model. Parcel model with explicit microphysics, for developing and evaluating microphysical parameterizations. Single column model for testing bulk microphysics parameterizations

  18. Electron Cloud Effect in the Linear Colliders

    SciTech Connect

    Pivi, M

    2004-09-13

    Beam induced multipacting, driven by the electric field of successive positively charged bunches, may arise from a resonant motion of electrons, generated by secondary emission, bouncing back and forth between opposite walls of the vacuum chamber. The electron-cloud effect (ECE) has been observed or is expected at many storage rings [1]. In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud is produced initially by ionization of the residual gas and photoelectrons from the synchrotron radiation. The cloud is then sustained by secondary electron emission. This electron cloud can reach equilibrium after the passage of only a few bunches. The electron-cloud effect may be responsible for collective effects as fast coupled-bunch and single-bunch instability, emittance blow-up or incoherent tune shift when the bunch current exceeds a certain threshold, accompanied by a large number of electrons in the vacuum chamber. The ECE was identified as one of the most important R&D topics in the International Linear Collider Report [2]. Systematic studies on the possible electron-cloud effect have been initiated at SLAC for the GLC/NLC and TESLA linear colliders, with particular attention to the effect in the positron main damping ring (MDR) and the positron Low Emittance Transport which includes the bunch compressor system (BCS), the main linac, and the beam delivery system (BDS). We present recent computer simulation results for the main features of the electron cloud generation in both machine designs. Thus, single and coupled-bunch instability thresholds are estimated for the GLC/NLC design.

  19. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    DTIC Science & Technology

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Description of Mixed-Phase Clouds in Weather Forecast and...Develop a process-level understanding on why so-called mixed-phase stratocumulus are so common, by far the most common type of clouds in the Arctic...all scales, ranging from long range transport to turbulent motions, and cloud micro-physics. APPROACH Developing new parameterizations is a

  20. Interpretation of MODIS Cloud Images by CloudSat/CALIPSO Cloud Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Wang, T.; Fetzer, E. J.; Wong, S.; Yue, Q.

    2015-12-01

    Clouds observed by passive remote-sensing imager (Aqua-MODIS) are collocated to cloud vertical profiles observed by active profiling sensors (CloudSat radar and CALIPSO lidar) at the pixel-scale. By comparing different layers of cloud types classified in the 2B-CLDCLASS-LIDAR product from CloudSat+CALIPSO to those cloud properties observed by MODIS, we evaluate the occurrence frequencies of cloud types and cloud-overlap in CloudSat+CALIPSO for each MODIS cloud regime defined by cloud optical depth (τ) and cloud-top pressure (P) histograms. We find that about 70% of MODIS clear sky agrees with the clear category in CloudSat+CALIPSO; whereas the remainder is either single layer (~25%) cirrus (Ci), low-level cumulus (Cu), stratocumulus (Sc), or multi-layer (<5%) clouds in CloudSat+CALIPSO. Under MODIS cloudy conditions, 60%, 28%, and 8% of the occurrences show single-, double-, and triple-layer clouds, respectively in CloudSat+CALIPSO. When MODIS identifies single-layer clouds, 50-60% of the MODIS low-level clouds are categorized as stratus (Sc) in CloudSat+CALIPSO. Over the tropics, ~70% of MODIS high and optically thin clouds (considered as cirrus in the histogram) is also identified as Ci in CloudSat+CALIPSO, and ~40% of MODIS high and optically thick clouds (considered as convective in the histogram) agrees with CloudSat+CALIPSO deep convections (DC). Over mid-latitudes these numbers drop to 45% and 10%, respectively. The best agreement occurs in tropical single-layer cloud regimes, where 90% of MODIS high-thin clouds are identified as Ci by CloudSat+CALIPSO and 60% of MODIS high-thick clouds are identified as DC. Worst agreement is found for multi-layer clouds, where cirrus on top of low- and mid-level clouds in MODIS are frequently categorized as high-thick clouds by passive imaging - among these only 5-12% are DC in CloudSat+CALIPSO. It is encouraging that both MODIS low-level clouds (regardless of optical thickness) and high-level thin clouds are consistently

  1. THE CALIFORNIA MOLECULAR CLOUD

    SciTech Connect

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F. E-mail: mlombard@eso.or

    2009-09-20

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 +- 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of {approx} 10{sup 5} M{sub sun}, rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A{sub K} > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H{sub 2}) {approx} a few x 10{sup 4} cm{sup -3}.

  2. Speed tuning of motion segmentation and discrimination

    NASA Technical Reports Server (NTRS)

    Masson, G. S.; Mestre, D. R.; Stone, L. S.

    1999-01-01

    Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.

  3. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  4. Automated detection of Martian water ice clouds: the Valles Marineris

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Munetomo, Takafumi; Hatanaka, Yuji; Okumura, Susumu

    2016-10-01

    We need to extract water ice clouds from the large number of Mars images in order to reveal spatial and temporal variations of water ice cloud occurrence and to meteorologically understand climatology of water ice clouds. However, visible images observed by Mars orbiters for several years are too many to visually inspect each of them even though the inspection was limited to one region. Therefore, an automated detection algorithm of Martian water ice clouds is necessary for collecting ice cloud images efficiently. In addition, it may visualize new aspects of spatial and temporal variations of water ice clouds that we have never been aware. We present a method for automatically evaluating the presence of Martian water ice clouds using difference images and cross-correlation distributions calculated from blue band images of the Valles Marineris obtained by the Mars Orbiter Camera onboard the Mars Global Surveyor (MGS/MOC). We derived one subtracted image and one cross-correlation distribution from two reflectance images. The difference between the maximum and the average, variance, kurtosis, and skewness of the subtracted image were calculated. Those of the cross-correlation distribution were also calculated. These eight statistics were used as feature vectors for training Support Vector Machine, and its generalization ability was tested using 10-fold cross-validation. F-measure and accuracy tended to be approximately 0.8 if the maximum in the normalized reflectance and the difference of the maximum and the average in the cross-correlation were chosen as features. In the process of the development of the detection algorithm, we found many cases where the Valles Marineris became clearly brighter than adjacent areas in the blue band. It is at present unclear whether the bright Valles Marineris means the occurrence of water ice clouds inside the Valles Marineris or not. Therefore, subtracted images showing the bright Valles Marineris were excluded from the detection of

  5. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the μ-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (Δλr,Mab ≈ 1 deg) is well matched by our simulations. The eccentricity variations (ΔeMab ≈10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (ρn,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/μ-ring system is undergoing re-accretion after a recent catastrophic disruption.

  6. Motion Camouflage in a Stochastic Setting

    DTIC Science & Technology

    2007-12-01

    constant-speed motion and no sensorimotor feedback delays. A. Trajectory and frame evolution To keep the discussion as self-contained as possible, we...maneuvers. (The lighter lines connecting the pursuer and evader at regular time intervals indicate the evolution of the baseline vector r. If the system (1...Srinivasan, “Motion camouflage in dragonflies ,” Nature, Vol. 423, p. 604, 2003. [12] J.H. Oh and I.J. Ha, “Capturability of the 3-dimensional pure PNG

  7. multi-dimensional Cloud-aERosol Exploratory Study using RPAS (mCERES): Bottom-up and top-down closure of aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin

    2016-04-01

    Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.

  8. Towards Bottom-up and Top-down Closures of Aerosol-cloud Interactions: multi-dimensional Cloud-aERosol Exploratory Study using RPAS

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Calmer, R.; Sanchez, K. J.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ansmann, A.; Sciare, J.; Ovadnevaite, J.; Bronz, M.; Hattenberger, G.; Preissler, J.; Buehl, J.; Ceburnis, D.; O'Dowd, C. D. D.

    2015-12-01

    Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters mesured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.

  9. What is a Cloud?

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Wu, W.

    2013-12-01

    There are multiple factors that cause disagreements between differing methods using differing instruments to infer cloud amounts. But along with these issues is a fundamental concern that has permeated all comparisons and supersedes such questions as what are the uncertainty estimates of a given retrieval. To wit: what is a cloud? How can uncertainty of a cloud amount measurement be determined when there is no absolute 'truth' on what defines a cloud, as opposed to cloud-free? Recent research comparing a decade of surface- and satellite-based retrievals of cloud amount for the ARM Southern Great Plains site shows significant disagreements. While Total Sky Imager 100-degree FOV, Shortwave (SW) Radiative Flux Analysis, GOES satellite and PATMOS-x satellite amounts agree relatively well, ISCCP satellite and ARSCL time-series cloud amounts are significantly greater, 15% (ISCCP) and 8% (ARSCL) larger in average diurnal variations. In both cases, it appears that optically thin high ice is counted as 'cloud' in ARSCL and ISCCP that is not categorized as cloud by all the others. Additionally, cloud amounts from three methods (ISCCP, ARSCL, and GOES) show an overall increase of 8%-10% in the annually averaged cloud fractions from 1998 to 2009, while those from the other three (TSI, SWFA, PATMOS-x) show little trend for this period. So one wonders: are cloud amounts increasing or not over this period? The SW Flux Analysis used sky imager retrievals as 'truth' in development of the methodology (Long et al, 2006a), where sky imagery itself used human observations as the model (Long et al., 2006b). Min et al. (2008) then used SW Flux Analysis retrievals as 'truth' to develop an MFRSR-based spectral SW retrieval method. Dupont et al. (2008) show that the SW-based retrievals allow up to a visible optical depth of 0.15 (95% of occurrences) under the 'clear-sky' category which primarily consists of sub-visual cirrus, which by ancestry applies to spectral SW, sky imager and human

  10. Inhomogeneous cirrus clouds during the AIRTOSS campaign

    NASA Astrophysics Data System (ADS)

    Voigt, Matthias; Spichtinger, Peter

    2015-04-01

    The aircraft campaign AIRTOSS-ICE in May and September 2013 provided measurement data of cirrus clouds over North Sea and Baltic Sea in various meteorological situations. The measurements were carried out with a Learjet and a towed sensor shuttle below the aircraft [2]. This configuration allows us to obtain almost horizontally collocated measurements at different vertical levels (inside and outside clouds). Microphysical properties of cirrus clouds, as ice water content, ice crystal number concentrations, diameter and shape of ice crystals were measured. In this study we concentrate on the comparison of in situ measurements with model simulations. For these case studies, the issue about the main formation mechanism (homogeneous vs. heterogeneous or both) will be addressed. In a first step the meteorological conditions leading to the cirrus formation are analyzed using meteorological analyses as obtained from the European Centre for Medium-Range Forecasts (ECMWF). The ECMWF wind fields are then used to calculate backward trajectories with the Lagrangian analysis tool LAGRANTO [4]. From these investigations the large-scale/mesoscale motions are derived and analyzed. Finally, the meteorological analyses and measurements (temperature, wind, humidity) are used as initial conditions for cirrus cloud simulations where the small scale motions are derived and analyzed. We used EULAG as LES model, including a state-of-the-art ice microphysics scheme [3] for 2D and 3D idealized and quasi-realistic simulations. In order to address the impact of dynamics vs. microphysics (i.e. heterogeneous nucleation [1]), we investigated different environmental conditions. The microphysical and macrophysical properties of the simulated cloud are finally compared to the measurements, in order to get some information about the most probable scenarios. References [1] D. J. Cziczo, K. D. Froyd, C. Hoose, E. J. Jensen, M. H. Diao, M. A. Zondlo, J. B. Smith, C. H. Twohy, and D. M. Murphy

  11. Stability of Horndeski vector-tensor interactions

    SciTech Connect

    Jiménez, Jose Beltrán; Durrer, Ruth; Heisenberg, Lavinia; Thorsrud, Mikjel E-mail: ruth.durrer@unige.ch E-mail: mikjel.thorsrud@astro.uio.no

    2013-10-01

    We study the Horndeski vector-tensor theory that leads to second order equations of motion and contains a non-minimally coupled abelian gauge vector field. This theory is remarkably simple and consists of only 2 terms for the vector field, namely: the standard Maxwell kinetic term and a coupling to the dual Riemann tensor. Furthermore, the vector sector respects the U(1) gauge symmetry and the theory contains only one free parameter, M{sup 2}, that controls the strength of the non-minimal coupling. We explore the theory in a de Sitter spacetime and study the presence of instabilities and show that it corresponds to an attractor solution in the presence of the vector field. We also investigate the cosmological evolution and stability of perturbations in a general FLRW spacetime. We find that a sufficient condition for the absence of ghosts is M{sup 2} > 0. Moreover, we study further constraints coming from imposing the absence of Laplacian instabilities. Finally, we study the stability of the theory in static and spherically symmetric backgrounds (in particular, Schwarzschild and Reissner-Nordström-de Sitter). We find that the theory, quite generally, do have ghosts or Laplacian instabilities in regions of spacetime where the non-minimal interaction dominates over the Maxwell term. We also calculate the propagation speed in these spacetimes and show that superluminality is a quite generic phenomenon in this theory.

  12. Labyrinthine lesions and motion sickness susceptibility.

    PubMed

    Dai, Mingjia; Raphan, Theodore; Cohen, Bernard

    2007-04-01

    The angular vestibulo-ocular reflex (aVOR) has a fast pathway, which mediates compensatory eye movements, and a slow (velocity storage) pathway, which determines its low frequency characteristics and orients eye velocity toward gravity. We have proposed that motion sickness is generated through velocity storage, when its orientation vector, which lies close to the gravitational vertical, is misaligned with eye velocity during head motion. The duration of the misalignment, determined by the dominant time constant of velocity storage, causes the buildup of motion sickness. To test this hypothesis, we studied bilateral labyrinthine-defective subjects with short vestibular time constants but normal aVOR gains for their motion sickness susceptibility. Time constants and gains were taken from rotational responses. Motion sickness was generated by rolling the head while rotating, and susceptibility was assessed by the number of head movements made before reaching intolerable levels of nausea. More head movements signified lower motion sickness susceptibility. Labyrinthine-defective subjects made more head movements on their first exposure to roll while rotating than normals (39.8 +/- 7.2 vs 13.7 +/- 5.5; P < 0.0001). Normals were tested eight times, which habituated their time constants and reduced their motion sickness susceptibility. Combining data from all subjects, there was a strong inverse relationship between time constants and number of head movements (r = 0.94), but none between motion sickness susceptibility and aVOR gains. This provides further evidence that motion sickness is generated through velocity storage, not the direct pathway, and suggests that motion sickness susceptibility can be reduced by reducing the aVOR time constant.

  13. Short-Range Structure of Clouds Studied by High Resolution Photography From the Surface

    NASA Astrophysics Data System (ADS)

    Schwartz, S. E.; Huang, D.; Vladutescu, D. V.

    2015-12-01

    Clouds exhibit structures at a wide range of length scales. Passive radiometry from satellite shows structure on scales of tens to thousands of kilometers, but there is much structure at short spatial scales not resolved by satellite imagery. Here we use a commercial camera having high spatial resolution (~20 μrad) and high dynamic range (16 bits in each of three color channels) in narrow field-of-view (20 mrad, 110 mrad), zenith-looking mode from the surface, to examine clouds at the scale of centimeters to a few hundred meters, focusing on non-precipitating single-layer clouds during daytime. Up-looking photography of clouds from the surface affords the further advantage, relative to satellite imagery, of black background (space) with contributions to radiance only from blue sky (Rayleigh scattering), aerosols, and clouds, permitting reconstruction of observed radiance by radiation transfer modeling. Contrast between cloudy and cloud-free sky is enhanced in Red/(Red + Blue), RRB, image Figure 1, but no unique value of RRB distinguishes a pixel as cloud vs. cloud-free. Short-range variability is characterized by the autocorrelation length scale, which is not uncommonly as short as a few meters; longer range variability, such as cloud characteristic size, separation distance, and cloud spatial organization, is also characterized. Scene reconstruction yields the 2D distribution of cloud optical depth; spatial inhomogeneity is attributed mainly to horizontal variation in vertical motion of the air and resultant condensation or evaporation associated with upward or downward motion, respectively. Alternative approaches to calculation of the radiative influence of such clouds from the autocorrelation structure of the cloud field are examined. Figure 1. RGB image of zenith sky at New York City, May 22, 2015, (field of view 21 mrad corresponding to 56 m at cloud altitude 2.6 km) showing broken single-layer cloud; corresponding RRB image; and autocorrelation of RRB image.

  14. Estimating tropical vertical motion profile shapes from satellite observations

    NASA Astrophysics Data System (ADS)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  15. A closed-form expression of the positional uncertainty for 3D point clouds.

    PubMed

    Bae, Kwang-Ho; Belton, David; Lichti, Derek D

    2009-04-01

    We present a novel closed-form expression of positional uncertainty measured by a near-monostatic and time-of-flight laser range finder with consideration of its measurement uncertainties. An explicit form of the angular variance of the estimated surface normal vector is also derived. This expression is useful for the precise estimation of the surface normal vector and the outlier detection for finding correspondence in order to register multiple three-dimensional point clouds. Two practical algorithms using these expressions are presented: a method for finding optimal local neighbourhood size which minimizes the variance of the estimated normal vector and a resampling method of point clouds.

  16. Cloud Forensics Issues

    DTIC Science & Technology

    2014-07-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S Cloud Forensics Issues William R. Simpson Coimbatore Chandersekaran 1 July 2014 IDA...252.227-7013 (a)(16) [Sep 2011]. Cloud Forensics Issues William R Simpson and Coimbatore Chandersekaran Abstract— Forensics is...offerings of cloud capabilities have not provided security, monitoring or attribution that would allow an effective forensics investigation. The high

  17. Cryptographic Cloud Storage

    NASA Astrophysics Data System (ADS)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  18. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  19. Viral Vector Production: Adenovirus.

    PubMed

    Kim, Julius W; Morshed, Ramin A; Kane, J Robert; Auffinger, Brenda; Qiao, Jian; Lesniak, Maciej S

    2016-01-01

    Adenoviral vectors have proven to be valuable resources in the development of novel therapies aimed at targeting pathological conditions of the central nervous system, including Alzheimer's disease and neoplastic brain lesions. Not only can some genetically engineered adenoviral vectors achieve remarkably efficient and specific gene delivery to target cells, but they also may act as anticancer agents by selectively replicating within cancer cells.Due to the great interest in using adenoviral vectors for various purposes, the need for a comprehensive protocol for viral vector production is especially apparent. Here, we describe the process of generating an adenoviral vector in its entirety, including the more complex process of adenoviral fiber modification to restrict viral tropism in order to achieve more efficient and specific gene delivery.

  20. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  1. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  2. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  3. Cloud Computing: An Overview

    NASA Astrophysics Data System (ADS)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  4. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  5. On the stability and causality of scalar-vector theories

    SciTech Connect

    Fleury, Pierre; Pitrou, Cyril; Uzan, Jean-Philippe; Almeida, Juan P. Beltrán E-mail: juanpbeltran@uan.edu.co E-mail: uzan@iap.fr

    2014-11-01

    Various extensions of standard inflationary models have been proposed recently by adding vector fields. Because they are generally motivated by large-scale anomalies, and the possibility of statistical anisotropy of primordial fluctuations, such models require to introduce non-standard couplings between vector fields on the one hand, and either gravity or scalar fields on the other hand. In this article, we study models involving a vector field coupled to a scalar field. We derive restrictive necessary conditions for these models to be both stable (Hamiltonian bounded by below) and causal (hyperbolic equations of motion)

  6. Fast Instability Caused by Electron Cloud in Combined Function Magnets

    SciTech Connect

    Antipov, S. A.; Adamson, P.; Burov, A.; Nagaitsev, S.; Yang, M. J.

    2016-12-12

    One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutions and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.

  7. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  8. A motion picture presentation of magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  9. HI clouds in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kim, S.

    We present HI and Halpha surveys of the Large Magellanic Cloud (LMC) with the Australia Telescope Compact Array, the Parkes multibeam receiver, and the 16 inch optical telescope at the Siding Spring Observatory (SSO). Using a Fourier-plane technique, we have merged both ATCA and Parkes observations, providing an accurate set of images of the LMC sensitive to structure on scales of 9 pc upward. The spatial dynamic range (2.8 orders of magnitude), velocity resolution (1.649 km/sec per channel) allow for studies of phenomena ranging from the galaxy-wide interaction of the LMC with its close neighbors to the small-scale injection of energy from supernovae and stellar associations into the ISM of the LMC. On the large scale, the HI disk appears to be remarkably symmetric and to have a well-organized and orderly, if somewhat complex, rotational field. The bulk of the HI resides in a disk of 7.3 kpc in diameter. The mass of disk component of the LMC is 2.5 x10^9 M[sun ]and the mass within a radius of 4 kpc is about 3.5 x 10^9 M[sun ]. The structure of the neutral atomic ISM in the LMC is dominated by HI filaments combined with numerous shell, holes, and HI clouds. 23 HI supergiant shells and 103 giant shells are catalogued. Supergiant shells are defined as those regions whose extent is much larger than the HI scale height. The size distribution of HI shells follows a crude power law, N(log R) =AR^-1.5 . The HI clouds have been identified by defining a cloud to be an object composed of all pixels in right ascension, declination, and velocity that are connected and that lie above the threshold brightness temperature. The size spectrum of HI clouds is similar to the typical size spectrum of holes and shells in the HI distribution. The relationship between the size and the velocity dispersion of HI cloud is found to have the power law relationship so called as Larson's scaling law. A slope of the power law varies from 1.2 to 1.6. The virial masses of HI clouds range from 10

  10. Lost in Cloud

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  11. Baculovirus Transfer Vectors.

    PubMed

    Possee, Robert D; King, Linda A

    2016-01-01

    The production of a recombinant baculovirus expression vector normally involves mixing infectious virus DNA with a plasmid-based transfer vector and then co-transfecting insect cells to initiate virus infection. The aim of this chapter is to provide an update on the range of baculovirus transfer vectors currently available. Some of the original transfer vectors developed are now difficult to obtain but generally have been replaced by superior reagents. We focus on those that are available commercially and should be easy to locate. These vectors permit the insertion of single or multiple genes for expression, or the production of proteins with specific peptide tags that aid subsequent protein purification. Others have signal peptide coding regions permitting protein secretion or plasma membrane localization. A table listing the transfer vectors also includes information on the parental virus that should be used with each one. Methods are described for the direct insertion of a recombinant gene into the virus genome without the requirement for a transfer vector. The information provided should enable new users of the system to choose those reagents most suitable for their purposes.

  12. Entrainment and detrainment in a simple cumulus cloud model

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Huffman, G. J.

    1982-01-01

    A cumulus cloud model, analogous to the mixed-layer models of the planetary boundary layer and the upper ocean, is developed using a single, unitary entrainment process in which the motion of the cloud boundary relative to the mean flow is permitted, produced, and controlled by turbulent processes. An alternate theory to the mixing-length theory of Asai and Kasahara (1967) is proposed which completely removes the strong scale-dependence of the Asai-Kasahara model. The model reintroduces scale-dependence by introducing including the pe5turbation pressure term of the equation of vertical motion. It is shown that the model predicts deeper clouds than the Asai-Kasahara model for a given sounding, due to the entrainment assumption and the effects of the perturbation pressure. Lateral entrainment dominates cloud-top entrainment, although finite-difference errors increase the cloud-top entrainment rate from zero to a positive value in actual situations. The fractional entrainment rate for updrafts is determined to vary only slightly with height and to decrease only slowly as the cloud radius increases, while the fractional detrainment rate for updrafts increases with height.

  13. Demonstrating the Direction of Angular Velocity in Circular Motion

    NASA Astrophysics Data System (ADS)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  14. Magnetic Clouds Modeled As Interacting Toroidal Configurations

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Osherovich, V. A.

    Multiple loops can be seen in the solar corona before the onset of a coronal mass ejection (CME), during the event and after the CME. We apply multi-toroidal con- figurations to model CMEs and their interplanetary counterparts U magnetic clouds. Such solutions found as MHD bounded states describe a single toroid (ground state) and multiple toroids (excited states), (Osherovich 1975; Osherovich and Lawrence 1982). We analyze noncircular cross section of such toroids and compare the compo- nents of the magnetic field vector with in situ observations in interplanetary magnetic clouds. The interaction of CMEs with the global coronal field will also be discussed. References Osherovich, V.A., Sooln Dann No 8, 1975. Osherovich, V.A. and J.K. Lawrence, Sol. Phys. 88, 117, 1983.

  15. Null Killing vectors

    NASA Astrophysics Data System (ADS)

    Lukács, B.; Perjés, Z.; Sebestyén, Á.

    1981-06-01

    Space-times admitting a null Killing vector are studied, using the Newman-Penrose spin coefficient formalism. The properties of the eigenrays (principal null curves of the Killing bivector) are shown to be related to the twist of the null Killing vector. Among the electrovacs, the ones containing a null Maxwell field turn out to belong to the twist-free class. An electrovac solution is obtained for which the null Killing vector is twisting and has geodesic and shear-free eigenrays. This solution is parameterless and appears to be the field of a zero-mass, spinning, and charged source.

  16. Learning in the Clouds?

    ERIC Educational Resources Information Center

    Butin, Dan W.

    2013-01-01

    Engaged learning--the type that happens outside textbooks and beyond the four walls of the classroom--moves beyond right and wrong answers to grappling with the uncertainties and contradictions of a complex world. iPhones back up to the "cloud." GoogleDocs is all about "cloud computing." Facebook is as ubiquitous as the sky.…

  17. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  18. On Cloud Nine

    ERIC Educational Resources Information Center

    McCrea, Bridget; Weil, Marty

    2011-01-01

    Across the U.S., innovative collaboration practices are happening in the cloud: Sixth-graders participate in literary salons. Fourth-graders mentor kindergarteners. And teachers use virtual Post-it notes to advise students as they create their own television shows. In other words, cloud computing is no longer just used to manage administrative…

  19. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  20. Clouds in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  1. Proper Motion Of Teh Magellanic Clouds Using SPM

    DTIC Science & Technology

    2013-01-01

    BV photometry for the Southern sky to a limiting magnitude of V ∼ 18. 2. THE SPM PROGRAM The SPM program (Girard et al. 2010) makes use of the Yale...Right ascension limits go from −13.74◦ < α < 118.20◦. The V photometry is derived from the visual fil- tered CCD camera reduced in a standard...fashion using aperture photometry with calibration into Ty- cho2 BV photometry (corrected to the Johnson sys- tem). When no CCD data were available, V

  2. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  3. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  4. Polarization of clouds

    NASA Astrophysics Data System (ADS)

    Goloub, Philippe; Herman, Maurice; Parol, Frederic

    1995-12-01

    This paper reports the main results concerning polarization by clouds derived from POLDER (polarization and directionality of earth's reflectances) airborne version. These results tend to confirm the high information content in the polarization (phase, altimetry). The preliminary results of EUCREX'94 (European Cloud Radiation Experiment) evidenced the drastically different polarized signatures for ice crystals and water droplets. Here we report systematic and statistically significative observations over the whole EUCREX data set. The results show that the cirrus exhibit their own signature. Preliminary observations performed during CLEOPATRA'91 (Cloud Experiment Ober Pfaffenhofen And Transport) and EUCREX'94 campaigns have shown the feasibility of cloud altimetry using spectral information (443 nm and 865 nm) of the polarized light over liquid water droplets clouds. Altimetry technique has been generalized on ASTEX-SOFIA'92 and EUCREX'94 data sets. All these results are presented and discussed in this paper.

  5. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  6. Cloud computing security.

    SciTech Connect

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  7. Clouds Over the North Pole

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 29 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    Like yesterday's image, the linear 'ripples' are water-ice clouds. As spring is deepening at the North Pole these clouds are becoming more prevalent.

    Image information: VIS instrument. Latitude 68.9, Longitude 135.5 East (224.5 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter

  8. On the Kinematics of Undulator Girder Motion

    SciTech Connect

    Welch, J; /SLAC

    2011-08-18

    The theory of rigid body kinematics is used to derive equations that govern the control and measurement of the position and orientation of undulator girders. The equations form the basis of the girder matlab software on the LCLS control system. The equations are linear for small motion and easily inverted as desired. For reference, some relevant girder geometrical data is also given. Equations 6-8 relate the linear potentiometer readings to the motion of the girder. Equations 9-11 relate the cam shaft angles to the motion of the girder. Both sets are easily inverted to either obtain the girder motion from the angles or readings, or, to find the angles and readings that would give a desired motion. The motion of any point on the girder can be calculated by applying either sets of equations to the two cam-planes and extrapolating in the z coordinate using equation 19. The formulation of the equations is quite general and easily coded via matrix and vector methods. They form the basis of the girder matlab software on the LCLS control system.

  9. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  10. Vector inflation and vortices

    SciTech Connect

    Lewis, C.M. )

    1991-09-15

    A vector field {ital A}{sub {mu}} is coupled to the Einstein equations with a linearly perturbed Friedmann-Robertson-Walker metric, constructed to generate first-order vector perturbations. A working classical chaotic vector inflation is demonstrated and then quantum fluctuations of the field are used to constrain the cosmological perturbations. In particular, the vector momentum flux {ital T}{sub 0{ital i}} is tracked to the epoch where radiation-dominated matter exists. Matching conditions using observational constraints of the cosmic microwave background radiation give rise to a peculiar cosmological velocity of the order of 10{sup {minus}100}{ital c}. Amplification of this number, e.g., by breaking the conformal invariance of the field, could be used to generate cosmic magnetic fields using a dynamo mechanism.

  11. The Vector Decomposition Problem

    NASA Astrophysics Data System (ADS)

    Yoshida, Maki; Mitsunari, Shigeo; Fujiwara, Toru

    This paper introduces a new computational problem on a two-dimensional vector space, called the vector decomposition problem (VDP), which is mainly defined for designing cryptosystems using pairings on elliptic curves. We first show a relation between the VDP and the computational Diffie-Hellman problem (CDH). Specifically, we present a sufficient condition for the VDP on a two-dimensional vector space to be at least as hard as the CDH on a one-dimensional subspace. We also present a sufficient condition for the VDP with a fixed basis to have a trapdoor. We then give an example of vector spaces which satisfy both sufficient conditions and on which the CDH is assumed to be hard in previous work. In this sense, the intractability of the VDP is a reasonable assumption as that of the CDH.

  12. The barberplaid illusion: plaid motion is biased by elongated apertures

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Mulligan, J. B.; Stone, L. S.

    1996-01-01

    The perceived direction of motion of plaids windowed by elongated spatial Gaussians is biased toward the window's long axis. The bias increases as the relative angle between the plaid motion and the long axis of the window increases, peaks at a relative angle of approximately 45 deg, and then decreases. The bias increases as the window is made narrower (at fixed height) and decreases as the component spatial frequency increases (at fixed aperture size). We examine several models of human motion processing (cross-correlation, motion-energy, intersection-of-constraints, and vector-sum), and show that none of these standard models can predict our data. We conclude that spatial integration of motion signals plays a crucial role in plaid motion perception and that current models must be explicitly expanded to include such spatial interactions.

  13. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-01-10

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  15. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  16. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  17. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  18. Formation and spread of aircraft-induced holes in clouds.

    PubMed

    Heymsfield, Andrew J; Thompson, Gregory; Morrison, Hugh; Bansemer, Aaron; Rasmussen, Roy M; Minnis, Patrick; Wang, Zhien; Zhang, Damao

    2011-07-01

    Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced.

  19. Spinning gas clouds: III. Solutions of minimal energy with precession

    NASA Astrophysics Data System (ADS)

    Gaffet, B.

    2003-05-01

    We consider the model of rotating and expanding gas cloud originally proposed by Ovsiannikov (1956 Dokl. Akad. Nauk SSSR 111 47) and Dyson (1968 J. Math. Mech. 18 91). Under the restricting assumptions of an adiabatic index gamma = 5/3 and of vorticity-free motion, this has been shown (Gaffet 2001 J. Phys. A: Math. Gen. 34 2097) to be a Liouville integrable Hamiltonian system. In the present work, we consider the precessing solutions where the cloud does not retain a fixed rotation axis. Choosing for definiteness a particular set of constants of motion (which corresponds to a minimum of the energy), we show that a separation of variables occurs, and that the equations of motion are reducible to the form of a Riccati equation, whose integration merely involves an elliptic integral.

  20. Deployment of the third-generation infrared cloud imager: A two-year study of Arctic clouds at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Nugent, Paul Winston

    Cloud cover is an important but poorly understood component of current climate models, and although climate change is most easily observed in the Arctic, cloud data in the Arctic is unreliable or simply unavailable. Ground-based infrared cloud imaging has the potential to fill this gap. This technique uses a thermal infrared camera to observe cloud amount, cloud optical depth, and cloud spatial distribution at a particular location. The Montana State University Optical Remote Sensor Laboratory has developed the ground-based Infrared Cloud Imager (ICI) instrument to measure spatial and temporal cloud data. To build an ICI for Arctic sites required the system to be engineered to overcome the challenges of this environment. Of particular challenge was keeping the system calibration and data processing accurate through the severe temperature changes. Another significant challenge was that weak emission from the cold, dry Arctic atmosphere pushed the camera used in the instrument to its operational limits. To gain an understanding of the operation of the ICI systems for the Arctic and to gather critical data on Arctic clouds, a prototype arctic ICI was deployed in Barrow, AK from July 2012 through July 2014. To understand the long-term operation of an ICI in the arctic, a study was conducted of the ICI system accuracy in relation to co-located active and passive sensors. Understanding the operation of this system in the Arctic environment required careful characterization of the full optical system, including the lens, filter, and detector. Alternative data processing techniques using decision trees and support vector machines were studied to improve data accuracy and reduce dependence on auxiliary instrument data and the resulting accuracy is reported here. The work described in this project was part of the effort to develop a fourth-generation ICI ready to be deployed in the Arctic. This system will serve a critical role in developing our understanding of cloud cover

  1. New techniques in 3D scalar and vector field visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  2. On the origin of the Orion and Monoceros molecular cloud complexes

    NASA Technical Reports Server (NTRS)

    Franco, J.; Tenorio-Tagle, G.; Bodenheimer, P.; Rozyczka, M.; Mirabel, I. F.

    1988-01-01

    A detailed model for the origin of the Orion and Monoceros cloud complexes is presented, showing that a single high-velocity H I cloud-galaxy collision can explain their main observed features. The collision generates massive shocked layers, and self-gravity can then provide the conditions for the transformation of these layers into molecular clouds. The clouds formed by the collision maintain the motion of their parental shocked gas and reach positions located far away from the plane. According to this model, both the Orion and Monoceros complexes were formed some 60 million yr ago, when the original shocked layer was fragmented by Galactic tidal forces.

  3. Precipitation growth in convective clouds. [hail

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.

    1981-01-01

    Analytical solutions to the equations of both the growth and motion of hailstones in updrafts and of cloud water contents which vary linearly with height were used to investigate hail growth in a model cloud. A strong correlation was found between the hail embyro starting position and its trajectory and final size. A simple model of the evolution of particle size distribution by coalescence and spontaneous and binary disintegrations was formulated. Solutions for the mean mass of the distribution and the equilibrium size distribution were obtained for the case of constant collection kernel and disintegration parameters. Azimuthal scans of Doppler velocity at a number of elevation angles were used to calculate high resolution vertical profiles of particle speed and horizontal divergence (the vertical air velocity) in a region of widespread precipitation trailing a mid-latitude squall line.

  4. Introductory labs on the vector nature of force and acceleration

    NASA Astrophysics Data System (ADS)

    Kanim, Stephen E.; Subero, Keron

    2010-05-01

    We discuss the use of long-exposure digital photography in introductory mechanics laboratories. Students at New Mexico State University use inexpensive digital cameras to record the motion of objects with attached blinking light emitting diodes. These photographs are used to make inferences about the velocity and acceleration of the moving object. We use the analysis of these photographs to promote student understanding of the vector nature of kinematics quantities. In subsequent laboratories we build on this understanding to help students relate the acceleration vector for a moving object to the net force vector for that object. We give details about the equipment we use and describe the sequence of activities that we have developed for a two-dimensional motion laboratory and for a laboratory on Newton's second law. Finally we present some pre- and post-test data on questions related to the concepts underlying these laboratories.

  5. A numerical model of electrodynamics of plasma within the contaminant gas cloud of the Space Shuttle Orbiter at low earth orbit

    NASA Technical Reports Server (NTRS)

    Eccles, J. Vincent; Raitt, W. John; Banks, Peter M.

    1989-01-01

    A two-dimensional cloud was used to study the plasma dynamics within the outgas cloud associated with the Orbiter. It is shown that the polarization field is not symmetric about the direction of motion of the outgas cloud. It rotates in a way that can be predicted in simple cases by the ratio of the Hall and Pederson currents within the outgas cloud. The polarization field magnitude produced in the model was not large.

  6. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  7. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  8. Community Cloud Computing

    NASA Astrophysics Data System (ADS)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  9. Aerosol-cloud closure study using RPAS measurements

    NASA Astrophysics Data System (ADS)

    Calmer, R.; Roberts, G.; Sanchez, K. J.; Nicoll, K.; Preissler, J.; Ovadnevaite, J.; Sciare, J.; Bronz, M.; Hattenberger, G.; Rosenfeld, D.; Lauda, S.; Hashimshoni, E.

    2015-12-01

    Enhancements in Remotely Piloted Aircraft Systems (RPAS) have increased their possible uses in many fields for the past two decades. For atmospheric research, ultra-light RPAS (< 2.5kg) are now able to fly at altitudes greater than 3 km and even in cloud, which opens new opportunities to understand aerosol-cloud interactions. We are deploying the RPAS as part of the European project BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). Field experiments in Cyprus and Ireland have already been conducted to study aerosol-cloud interactions in climatically different environments. The RPAS are being utilized in this study with the purpose of complementing ground-based observations of cloud condensation nuclei (CCN) to conduct aerosol-cloud closure studies Cloud microphysical properties such as cloud drop number concentration and size can be predicted directly from the measured CCN spectrum and the observed updraft, the vertical component of the wind vector [e.g., Conant et al, 2004]. On the RPAS, updraft measurements are obtained from a 5-hole probe synchronized with an Inertial Measurement Unit (IMU). The RPA (remotely piloted aircraft) are programmed to fly at a level leg just below cloud base to measure updraft measurements while a scanning CCN counter is stationed at ground level. Vertical profiles confirm that CCN measurements on the ground are representative to those at cloud base. An aerosol-cloud parcel model is implemented to model the cloud droplet spectra associated with measured updraft velocities. The model represents the particle size domain with internally mixed chemical components, using a fixed-sectional approach [L. M. Russell and Seinfeld, 1998]. The model employs a dual moment (number and mass) algorithm to calculate growth of particles from one section to the next for non-evaporating species. Temperature profiles, cloud base, updraft velocities and aerosol size and composition, all

  10. Effects on non-linearities on aircraft poststall motion

    SciTech Connect

    Rohacs, J.; Thomasson, P.; Mosehilde, E.

    1994-12-31

    The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.

  11. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2013-09-30

    understanding of the effects of aerosol-cloud interactions and drizzle and entrainment processes in boundary layer clouds for the purpose of developing...thickness, cloud turbulence intensity, and aerosols on precipitation production; 4) study the processing of aerosols by cloud processes ; 5) explore mass...drizzle processes to the artificial introduction of CCN and giant nuclei under differing aerosol backgrounds. In addition, a set of aerosol and cloud

  12. A New Approach to using a Cloud-Resolving Model to Study the Interactions between Clouds, Precipitation and Aerosols

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 kilometers, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. Over the past generation, voluminous datasets on atmospheric convection have been accumulated from radar, instrumented aircraft, satellites, and rawinsonde measurements in field campaigns, enabling the detailed evaluation of models. Improved numerical methods have resulted in more accurate and efficient dynamical cores in models. Improvements have been made in the parameterizations of microphysical processes, radiation, boundary-layer effects, and turbulence; however, microphysical parameterizations remain a major source of uncertainty in all classes of atmospheric models. In recent years, exponentially increasing computer power has extended cloud-resolving-model integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-kilometer scales are resolved in horizontal domains as large as 10,000 kilometers in two dimensions, and 1,000 x 1,000 square kilometers in three-dimensions. Cloud models now provide statistical information useful for developing more realistic physically-based parameterizations for climate models and numerical weather prediction models. A review of developments and applications of cloud models in the past, present and future will be presented in

  13. A New Approach to using a Cloud-Resolving Model to Study the Interactions between Clouds, Precipitation and Aerosols

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 km, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. Over the past generation, voluminous datasets on atmospheric convection have been accumulated from radar, instrumented aircraft, satellites, and rawinsonde measurements in field campaigns, enabling the detailed evaluation of models. Improved numerical methods have resulted in more accurate and efficient dynamical cores in models. Improvements have been made in the parameterizations of microphysical processes, radiation, boundary-layer effects, and turbulence; however, microphysical parameterizations remain a major source of uncertainty in all classes of atmospheric models. In recent years, exponentially increasing computer power has extended cloud-resolving-model integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 square kilometers in three-dimensions. Cloud models now provide statistical information useful for developing more realistic physically-based parameterizations for climate models and numerical weather prediction models. A review of developments and applications of cloud models in the past, present and future will be presented in this talk. In particular

  14. A New Approach to Using a Cloud-resolving Model to Study the Interactions Between Clouds, Precipitation and Aerosols

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 km, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. Over the past generation, voluminous datasets on atmospheric convection have been accumulated from radar, instrumented aircraft, satellites, and rawinsonde measurements in field campaigns, enabling the detailed evaluation of models. Improved numerical methods have resulted in more accurate and efficient dynamical cores in models. Improvements have been made in the parameterizations of microphysical processes, radiation, boundary-layer effects, and turbulence; however, microphysical parameterizations remain a major source of uncertainty in all classes of atmospheric models. In recent years, exponentially increasing computer power has extended cloud-resolving-model integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as l0,OOO km in two-dimensions, and 1,OOO x 1,OOO km2 in three-dimensions. Cloud models now provide statistical information useful for developing more realistic physically-based parameterizations for climate models and numerical weather prediction models. A review of developments and applications of cloud models in the past, present and future will be presented in this talk. In particular, a new

  15. Cloud computing basics for librarians.

    PubMed

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article.

  16. Vector and Axial Vector Pion Form Factors

    NASA Astrophysics Data System (ADS)

    Vitz, Michael; PEN Collaboration

    2015-04-01

    Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.

  17. Extended field observations of cirrus clouds using a ground-based cloud observing system

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  18. Bunyavirus-vector interactions.

    PubMed

    Beaty, B J; Bishop, D H

    1988-06-01

    Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in

  19. Nighttime Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    An angry looking sky is captured in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    The clip accelerates the motion. The images were take around 3 a.m. local solar time at the Phoenix site during Sol 95 (Aug. 30), the 95th Martian day since landing.

    The swirling clouds may be moving generally in a westward direction over the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Cloud Distribution Statistics from LITE

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1998-01-01

    The Lidar In-Space Technology Experiment (LITE) mission has demonstrated the utility of spaceborne lidar in observing multilayer clouds and has provided a dataset showing the distribution of tropospheric clouds and aerosols. These unambiguous observations of the vertical distribution of clouds will allow improved verification of current cloud climatologies and GCM cloud parameterizations. Although there is now great interest in cloud profiling radar, operating in the mm-wave region, for the spacebased observation of cloud heights the results of the LITE mission have shown that satellite lidars can also make significant contributions in this area.

  1. Alignment of the angular momentum vectors of planetary nebulae in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Rees, B.; Zijlstra, A. A.

    2013-10-01

    We use high-resolution Hα images of 130 planetary nebulae (PNe) to investigate whether there is a preferred orientation for PNe within the Galactic Bulge. The orientations of the full sample have a uniform distribution. However, at a significance level of 0.01, there is evidence for a non-uniform distribution for those PNe with evident bipolar morphology. If we assume that the bipolar PNe have a unimodal distribution of the polar axis in Galactic coordinates, the mean Galactic position angle is consistent with 90°, i.e. along the Galactic Plane, and the significance level is better than 0.001 (the equivalent of a 3.7σ significance level for a Gaussian distribution). The shapes of PNe are related to angular momentum of the original star or stellar system, where the long axis of the nebula measures the angular momentum vector. In old, low-mass stars, the angular momentum is largely in binary orbital motion. Consequently, the alignment of bipolar nebulae that we have found indicates that the orbital planes of the binary systems are oriented perpendicular to the Galactic Plane. We propose that strong magnetic fields aligned along the Galactic Plane acted during the original star formation process to slow the contraction of the star-forming cloud in the direction perpendicular to the Plane. This would have produced a propensity for wider binaries with higher angular momentum with orbital axes parallel to the Galactic Plane. Our findings provide the first indication of a strong, organized magnetic field along the Galactic Plane that impacted on the angular momentum vectors of the resulting stellar population.

  2. Molecular clouds toward the super star cluster NGC 3603; possible evidence for a cloud-cloud collision in triggering the cluster formation

    SciTech Connect

    Fukui, Y.; Ohama, A.; Hanaoka, N.; Furukawa, N.; Torii, K.; Hasegawa, K.; Fukuda, T.; Soga, S.; Moribe, N.; Kuroda, Y.; Hayakawa, T.; Kuwahara, T.; Yamamoto, H.; Okuda, T.; Dawson, J. R.; Mizuno, N.; Kawamura, A.; Onishi, T.; Maezawa, H.; Mizuno, A.

    2014-01-01

    We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC 3603 in the transitions {sup 12}CO(J = 2-1, J = 1-0) and {sup 13}CO(J = 2-1, J = 1-0). We suggest that two molecular clouds at 13 km s{sup –1} and 28 km s{sup –1} are associated with NGC 3603 as evidenced by higher temperatures toward the H II region, as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ∼20 km s{sup –1}. We suggest that the two clouds collided with each other 1 Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster, which is as young as 1 Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along with Westerlund 2 where formation may have been triggered by a cloud-cloud collision.

  3. My NASA Data Clouds

    NASA Video Gallery

    This lesson has two activities that help students develop a basic understanding of the relationship between cloud type and the form of precipitation and the relationship between the amount of water...

  4. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  5. GEOS-5 Modeled Clouds

    NASA Video Gallery

    This visualization shows clouds from a simulation using the Goddard Earth Observing System Model, Verison 5 (GEOS-5). The global atmospheric simulation covers a period from Feb 3, 2010 through Feb ...

  6. Cloud Types and Services

    NASA Astrophysics Data System (ADS)

    Jin, Hai; Ibrahim, Shadi; Bell, Tim; Gao, Wei; Huang, Dachuan; Wu, Song

    The increasing popularity of Internet services such as the Amazon Web Services, Google App Engine and Microsoft Azure have drawn a lot of attention to the Cloud Computing paradigm. Although the term "Cloud Computing" is new, the technology is an extension of the remarkable achievements of grid, virtualization, Web 2.0 and Service Oriented Architecture (SOA) technologies, and the convergence of these technologies. Moreover, interest in Cloud Computing has been motivated by many factors such as the prevalence of multi-core processors and the low cost of system hardware, as well as the increasing cost of the energy needed to operate them. As a result, Cloud Computing, in just three years, has risen to the top of the IT revolutionary technologies, and has been announced as the top technology to watch in the year 2010.

  7. Electromagnetic scattering in clouds

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard

    1992-01-01

    Techniques used to explain the nature of the optical effects of clouds on the light produced by lightning include a Monte Carlo simulation, an equivalent medium approach, and methods based on Boltzmann transport theory. A cuboidal cloud has been considered using transform methods and a diffusion approximation. Many simplifying assumptions have been used by authors to make this problem tractable. In this report, the cloud will have a spherical shape and its interior will consist of a uniform distribution of identical spherical water droplets. The source will be modeled as a Hertz dipole, electric or magnetic, inside or outside the cloud. An impulsive source is used. Superposition may be employed to obtain a sinusoid within an envelope which describes a lightning event. The problem is investigated by transforming to the frequency domain, obtaining Green's functions, and then using the Cagniard-DeHoop method to symbolically recover the time domain solution.

  8. Reconfigurable Martian Data Cloud

    NASA Astrophysics Data System (ADS)

    Sheldon, D. J.; Moeller, R. C.; Pingree, P.; Lay, N.; Reeves, G.

    2012-06-01

    The objective is to develop a constellation of small satellites in orbit around Mars that would provide a highly scalable and dynamically allocatable high performance computing resource. Key is use of Field Programmable Gate Arrays for the cloud.

  9. Marine Cloud Brightening

    SciTech Connect

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  10. Marine cloud brightening.

    PubMed

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  11. Cloud Inhomogeneity from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cahalan, Robert F.

    2004-01-01

    Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of cloud optical thickness and water path at global scales. Various options to derive cloud variability parameters are discussed. The climatology of cloud inhomogeneity is built by first calculating daily parameter values at spatial scales of l degree x 1 degree, and then at zonal and global scales, followed by averaging over monthly time scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for the two cloud phases, and separately over land and ocean. We find that cloud inhomogeneity is weaker in summer than in winter, weaker over land than ocean for liquid clouds, weaker for local morning than local afternoon, about the same for liquid and ice clouds on a global scale, but with wider probability distribution functions (PDFs) and larger latitudinal variations for ice, and relatively insensitive to whether water path or optical thickness products are used. Typical mean values at hemispheric and global scales of the inhomogeneity parameter nu (roughly the mean over the standard deviation of water path or optical thickness), range from approximately 2.5 to 3, while for the inhomogeneity parameter chi (the ratio of the logarithmic to linear mean) from approximately 0.7 to 0.8. Values of chi for zonal averages can occasionally fall below 0.6 and for individual gridpoints below 0.5. Our results demonstrate that MODIS is capable of revealing significant fluctuations in cloud horizontal inhomogenity and stress the need to model their global radiative effect in future studies.

  12. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  13. The Morphological Composite Product of Cloud Properties for Alaska

    NASA Astrophysics Data System (ADS)

    Wimmers, A. J.; Heidinger, A. K.

    2014-12-01

    Here we will present a new technique of satellite image compositing, supported by NOAA for producing and visualizing cloud products in the Alaska region. This technique, dubbed morphological compositing, is applied to a set of polar and geostationary satellite cloud products (CLAVR-x and GSIP) to create natural, real-time, high temporal resolution animations at the high latitudes. Other existing approaches for compositing satellite imagery from multiple sources produce imagery that, first and foremost, present the latest observations where available. The normal consequence of these approaches is a set of images with suboptimal temporal continuity (where continuity means natural motion, consistent resolution and correct location at the image time). Until recently this was understood to be inevitable at the high latitudes. However, the high sampling rate of cloud characteristics poleward of 70 degrees latitude (from four NOAA AVHRR sensors and two Metop AVHRR sensors) provides enough information for a more advanced compositing approach. The technique presented here uses an "optical flow" algorithm to estimate the object motion of clouds in between polar satellite observations and produce accurate, full-resolution imagery at 30-minute resolution. The resulting product can be interpreted just like geostationary imagery, and is in fact seamlessly combined with GOES-West cloud products in the final compositing stage. In addition, we will discuss the operational plans for the product starting in early 2015, as well as the possibilities for other related applications.

  14. Photonic equation of motion with application to the Lamb shift

    SciTech Connect

    Ritchie, A B

    2006-12-21

    A photonic equation of motion is proposed which is the scalar product of four-vectors and therefore a Lorentz invariant. A photonic equation of motion, which has not been heretofore established in quantum electrodynamics (QED), would capture the quantum nature of light but yet not have the standard field-operator form, thereby making practical calculations easier to perform. The equation of motion proposed here is applied to the Lamb shift. No divergences exist, and the result agrees with the observed Lamb shift for the 1S{sub 1/2} state of hydrogen within experimental error.

  15. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; Gerber, H.; Fairall, C. W.; Garrett, T. J.; Hudson, J.; Intrieri, J. M.; Jakob, C.; Jensen, T.; Lawson, P.; Marcotte, D.; Nguyen, L.

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  16. Absorption in Extended Inhomogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick

    2008-01-01

    The launch of several different sensors, including CloudSat, into the A-train constellation of satellites allows us for the first time to compute absorption that can occur in realistic vertically inhomogeneous clouds including multiple cloud decks. CloudSat data show that these situations are common. Therefore, understanding vertically inhomogeneous clouds is important from both climate and satellite atmospheric composition remote sensing perspectives. Satellite passive sensors that operate from the near IR to the UV often rely on radiative cloud pressures derived from absorption in oxygen bands (A, B, gamma, or O2-O2 bands) or from rotational-Raman scattering in order to retrieve information about atmospheric trace gases. The radiative cloud pressure is distinct from the physical cloud top derived from thermal infrared measurements. Therefore, the combination of information from different passive sensors yields some information about the cloud vertical profile. When either or both the clouds or atmospheric absorbers (trace gases and aerosols) are vertically inhomogeneous, the use of an effective cloud pressure derived from these approaches may lead to errors. Here, we focus on several scenarios (deep convective clouds and distinct two layer clouds) based on realistic cloud optical depth vertical profiles derived from the CloudSatfMODIS combination. We focus on implications for trace-gas column amount retrievals (specifically ozone and NO2) and derived surface UV irradiance from the Ozone Monitoring Instrument (OMI) on the Atrain Aura platform.

  17. Motion coherence affects human perception and pursuit similarly

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    2000-01-01

    Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion

  18. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  19. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  20. Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus

    DTIC Science & Technology

    2011-03-01

    of the third- body j Fourier series vector summation index J2 Earth’s second dynamic form factor (oblateness) xiv M 1) mean anomaly; 2) mass of central...reference torus state r position vector r position vector magnitude r0 reference postion vector magnitude R3 potential function due to third- body dynamics ...Motivation Somewhere in the transition from predicting the motion of heavenly bodies to the placement of artificial satellites in low-earth orbit, it became

  1. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    SciTech Connect

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A.; Beckman, J. E-mail: leonel@astro.unam.mx E-mail: jal@astro.unam.mx

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  2. Human action recognition using motion energy template

    NASA Astrophysics Data System (ADS)

    Shao, Yanhua; Guo, Yongcai; Gao, Chao

    2015-06-01

    Human action recognition is an active and interesting research topic in computer vision and pattern recognition field that is widely used in the real world. We proposed an approach for human activity analysis based on motion energy template (MET), a new high-level representation of video. The main idea for the MET model is that human actions could be expressed as the composition of motion energy acquired in a three-dimensional (3-D) space-time volume by using a filter bank. The motion energies were directly computed from raw video sequences, thus some problems, such as object location and segmentation, etc., are definitely avoided. Another important competitive merit of this MET method is its insensitivity to gender, hair, and clothing. We extract MET features by using the Bhattacharyya coefficient to measure the motion energy similarity between the action template video and the tested video, and then the 3-D max-pooling. Using these features as input to the support vector machine, extensive experiments on two benchmark datasets, Weizmann and KTH, were carried out. Compared with other state-of-the-art approaches, such as variation energy image, dynamic templates and local motion pattern descriptors, the experimental results demonstrate that our MET model is competitive and promising.

  3. FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION

    SciTech Connect

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-10

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  4. Cloud Structure Anomalies Over the Tropical Pacific During the 1997/98 El Nino

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Zhang, Minghua; Wang, Pi-Huan; Wielicki, Bruce A.

    2001-01-01

    Satellite measurements of both cloud vertical structure and cloud-radiative forcing have been used to show that during the strong 1997/98 El Nino there was a substantial change in cloud vertical structure over the tropical Pacific Ocean. Relative to normal years, cloud altitudes were lower in the western portion of the Pacific and higher in the eastern portion. The reason for these redistributions was a collapse of the Walker circulation and enhanced large-scale upward motion over the eastern Pacific, both caused by the lack of a zonal sea surface temperature gradient during El Nino. It is proposed that these cloud structure changes, which significantly impact satellite measurements of the tropical Pacific's radiation budget, would serve as one useful means of testing cloud-climate interactions in climate models.

  5. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  6. Motion through syntactic frames.

    PubMed

    Feist, Michele I

    2010-04-01

    The introduction of Talmy's (1985, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the fact of motion in motion verbs, while a second class, S-languages, tends to encode manner. In the experimental literature, it was reasoned that speakers may be expected to extend novel verbs in accordance with the lexicalization patterns of their native languages. However, the results regarding this prediction are mixed. In this paper, I examine the interplay between the meaning encoded in the motion verb itself and the meaning encoded in the motion description construction, offering a Gricean explanation for co-occurrence patterns and, by extension, for the mixed results. I then explore the implications of this argument for research on possible language effects on thought in this domain.

  7. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  8. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2006-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  9. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovar, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2004-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. During his six month stay on the ISS, astronaut Donald R Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and the container was secured in place for several hours while motion of the bubbles were recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System. Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on Shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  10. The role of induced entrainment in past stratiform cloud seeding experiments

    NASA Astrophysics Data System (ADS)

    Walcek, C. J.

    2010-12-01

    In the late 1940s, probably the most effective and visually-obvious cloud seeding demonstrations showed that supercooled stratiform clouds could be cleared by seeding with dry ice, dropped from aircraft flying above a cloud deck. Numerous well-documents photos show areas 1-2 miles wide cleared along a flight track. The accepted mechanism of cloud clearing assumed that dry ice induced ice formation in the supercooled liquid cloud, followed by growth of ice at the expense of water, with the larger ice particles ultimately falling as snow. The mechanism was amplified by dynamic feedbacks induced by latent heat release (warming) as liquid water froze, thus propagating the dynamic and freezing/precipitation cycle laterally away from the flight track. Here we show that probably a more important effect is the entrainment and EVAPORATION of cloud water induced by turbulent mixing in the aircraft wake. Under many conditions, evaporation induced by turbulence can generate mixtures of air that are COLDER than the cloudy air or the air above the cloud, thus initiating unstable DOWNWARD (negatively-buoyant) motions, which will self-propagate laterally away from a turbulent flight track. We present here the range of environmental conditions where entrainment/evaporation would be most likely to occur in terms of the temperature difference between cloudy air and air just above cloud top, and the relative humidity of air above cloud top at different temperatures and altitudes in the atmosphere. It is suggested here that past cloud seeding experiments had little to do with glaciation, and more likely resulted from induced entrainment followed by evaporation and downward motions of negatively buoyant air resulting from cloud-top entrainment instability. Buoyancy and condensed water content of mixtures of cloudy air and cloud-free air immediately above cloud top vs. the mixing proportions. A supercooled cloud containing 0.1 g/kg liquid water at 600 mb, -20 degrees C is mixed with air

  11. Morphable Word Clouds for Time-Varying Text Data Visualization.

    PubMed

    Chi, Ming-Te; Lin, Shih-Syun; Chen, Shiang-Yi; Lin, Chao-Hung; Lee, Tong-Yee

    2015-12-01

    A word cloud is a visual representation of a collection of text documents that uses various font sizes, colors, and spaces to arrange and depict significant words. The majority of previous studies on time-varying word clouds focuses on layout optimization and temporal trend visualization. However, they do not fully consider the spatial shapes and temporal motions of word clouds, which are important factors for attracting people's attention and are also important cues for human visual systems in capturing information from time-varying text data. This paper presents a novel method that uses rigid body dynamics to arrange multi-temporal word-tags in a specific shape sequence under various constraints. Each word-tag is regarded as a rigid body in dynamics. With the aid of geometric, aesthetic, and temporal coherence constraints, the proposed method can generate a temporally morphable word cloud that not only arranges word-tags in their corresponding shapes but also smoothly transforms the shapes of word clouds over time, thus yielding a pleasing time-varying visualization. Using the proposed frame-by-frame and morphable word clouds, people can observe the overall story of a time-varying text data from the shape transition, and people can also observe the details from the word clouds in frames. Experimental results on various data demonstrate the feasibility and flexibility of the proposed method in morphable word cloud generation. In addition, an application that uses the proposed word clouds in a simulated exhibition demonstrates the usefulness of the proposed method.

  12. Cloud detection in all-sky images via multi-scale neighborhood features and multiple supervised learning techniques

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Lin, Chih-Lung

    2017-01-01

    Cloud detection is important for providing necessary information such as cloud cover in many applications. Existing cloud detection methods include red-to-blue ratio thresholding and other classification-based techniques. In this paper, we propose to perform cloud detection using supervised learning techniques with multi-resolution features. One of the major contributions of this work is that the features are extracted from local image patches with different sizes to include local structure and multi-resolution information. The cloud models are learned through the training process. We consider classifiers including random forest, support vector machine, and Bayesian classifier. To take advantage of the clues provided by multiple classifiers and various levels of patch sizes, we employ a voting scheme to combine the results to further increase the detection accuracy. In the experiments, we have shown that the proposed method can distinguish cloud and non-cloud pixels more accurately compared with existing works.

  13. HUBBLE TRACKS CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color. The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring. Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites. Credits: Erich Karkoschka (University of Arizona), and NASA.

  14. Hubble Tracks Clouds on Uranus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    almost as large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color.

    The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring.

    Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  15. Rigid Body Motion in Stereo 3D Simulation

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  16. Images from Galileo of the Venus cloud deck

    USGS Publications Warehouse

    Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, James B.; Rages, K.A.; Ingersoll, A.P.; Klaasen, K.P.; Veverka, J.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Greeley, R.; Greenberg, R.; Head, J. W.; Morrison, D.; Neukum, G.; Pilcher, C.B.

    1991-01-01

    Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  17. Images from Galileo of the Venus cloud deck

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Gierasch, Peter J.; Smith, Michael D.; Helfenstein, Paul; Schinder, Paul J.; Pollack, James B.; Rages, Kathy A.; Morrison, David; Klaasen, Kenneth P.; Pilcher, Carl B.

    1991-01-01

    Images of Venus taken at 418 and 986 nm show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flowfield shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  18. Ignition temperature of magnesium powder clouds: a theoretical model.

    PubMed

    Chunmiao, Yuan; Chang, Li; Gang, Li; Peihong, Zhang

    2012-11-15

    Minimum ignition temperature of dust clouds (MIT-DC) is an important consideration when adopting explosion prevention measures. This paper presents a model for determining minimum ignition temperature for a magnesium powder cloud under conditions simulating a Godbert-Greenwald (GG) furnace. The model is based on heterogeneous oxidation of metal particles and Newton's law of motion, while correlating particle size, dust concentration, and dust dispersion pressure with MIT-DC. The model predicted values in close agreement with experimental data and is especially useful in predicting temperature and velocity change as particles pass through the furnace tube.

  19. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  20. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  1. Measurement of visual motion

    SciTech Connect

    Hildreth, E.C.

    1984-01-01

    This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.

  2. Vertical Air Motion Estimates from W-band Radar Doppler Spectra Observed during DYNAMO

    NASA Astrophysics Data System (ADS)

    Williams, C. R.; Gibson, J. S.; Fairall, C. W.

    2014-12-01

    During the DYNAMO field campaign, a vertically pointing NOAA W-band (94 GHz) radar was mounted on the R/V Revelle to sample a wide range of clouds from shallow warm clouds to high cirrus clouds. The Doppler velocity spectra often contained multiple peak structures. In warm clouds, multiple peaks were due to cloud droplets and drizzle droplets in the same radar pulse volume. And in rainfall beneath well-defined reflectivity dim-bands near the melting layer, the multiple peaks were due to Mie scattering signatures from raindrops larger than 1.6 mm. This presentation will describe a method of identifying multiple peaks in Doppler spectra and then determining if the multiple peaks were due to cloud and drizzle droplets or due to large raindrops exciting a Mie scattering signature. In both cases, the multiple peak structure provides a signature to estimate vertical air motion. For spectra containing cloud droplets, the symmetric peak is a tracer used to estimate the air motion. For spectra with asymmetric shapes and large downward Doppler velocities, the Mie scattering notch is used to estimate the air motion. Examples of the retrieval procedure will be provided at the conference.

  3. Arctic Cloud-driven Mixed Layers and Surface Coupling State

    NASA Astrophysics Data System (ADS)

    Shupe, M.; Persson, O. P.; Solomon, A.; de Boer, G.

    2013-12-01

    Arctic low-level clouds interact with the atmosphere and underlying surface via many inter-related processes. The balance of cloud radiative warming and cooling effects imparts a strong control on the net surface energy budget. Cloud-driven atmospheric circulations can impact surface turbulent heat fluxes and influence the vertical mixing of atmospheric state parameters and aerosols. Large-scale advection of heat and moisture provides the background context within which these local interactions unfold. Importantly, these radiative, dynamical, and advective processes also contribute to a complex web of self-sustaining cloud processes that can promote cloud maintenance over long periods of time. We examine many of these processes, with a specific focus on the dynamical linkages between Arctic clouds and the surface that influence low-level atmospheric structure and mixing. Comprehensive, ground-based observations from meteorological towers, remote-sensors, and radiosondes are used to simultaneously characterize surface fluxes, atmospheric structure, cloud properties, in-cloud motions, and the depth of the cloud-driven mixed layer in multiple Arctic environments. Relationships among these parameters are explored to elucidate the properties of the system that determine the degree of vertical atmospheric mixing and the coupling state between cloud and surface. The influence of temperature and moisture inversions on this system is also explored. Transitions in the coupling state are utilized to illustrate the relative roles of different processes. Cases from a coastal Arctic site at Barrow, Alaska and a station embedded in the Arctic sea-ice pack are used to contrast conditional influences related to season and surface type. It is found that over sea-ice, where surface turbulent fluxes are weak, the coupling of cloud-level processes to the surface layer is largely due to proximity of the cloud-driven mixed layer to the surface, which appears to be primarily influenced by

  4. Designing plasmid vectors.

    PubMed

    Tolmachov, Oleg

    2009-01-01

    Nonviral gene therapy vectors are commonly based on recombinant bacterial plasmids or their derivatives. The plasmids are propagated in bacteria, so, in addition to their therapeutic cargo, they necessarily contain a bacterial replication origin and a selection marker, usually a gene conferring antibiotic resistance. Structural and maintenance plasmid stability in bacteria is required for the plasmid DNA production and can be achieved by carefully choosing a combination of the therapeutic DNA sequences, replication origin, selection marker, and bacterial strain. The use of appropriate promoters, other regulatory elements, and mammalian maintenance devices ensures that the therapeutic gene or genes are adequately expressed in target human cells. Optimal immune response to the plasmid vectors can be modulated via inclusion or exclusion of DNA sequences containing immunostimulatory CpG sequence motifs. DNA fragments facilitating construction of plasmid vectors should also be considered for inclusion in the design of plasmid vectors. Techniques relying on site-specific or homologous recombination are preferred for construction of large plasmids (>15 kb), while digestion of DNA by restriction enzymes with subsequent ligation of the resulting DNA fragments continues to be the mainstream approach for generation of small- and medium-size plasmids. Rapid selection of a desired recombinant plasmid against a background of other plasmids continues to be a challenge. In this chapter, the emphasis is placed on efficient and flexible versions of DNA cloning protocols using selection of recombinant plasmids by restriction endonucleases directly in the ligation mixture.

  5. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  6. Vectors Point Toward Pisa

    ERIC Educational Resources Information Center

    Dean, Richard A.

    1971-01-01

    The author shows that the set of all sequences in which each term is the sum of the two previous terms forms a vector space of dimension two. He uses this result to obtain the formula for the Fibonacci sequence and applies the same technique to other linear recursive relations. (MM)

  7. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  8. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  9. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  10. Vector potential methods

    NASA Technical Reports Server (NTRS)

    Hafez, M.

    1989-01-01

    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.

  11. GEWEX Cloud Systems Study (GCSS)

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitch

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.

  12. Lidar cirrus cloud retrieval - methodology and applications

    NASA Astrophysics Data System (ADS)

    Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume

    2016-04-01

    In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to

  13. Marine cloud brightening

    PubMed Central

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  14. Stratocumulus cloud evolution

    SciTech Connect

    Yang, X.; Rogers, D.P.; Norris, P.M.; Johnson, D.W.; Martin, G.M.

    1994-12-31

    The structure and evolution of the extra-tropical marine atmospheric boundary layer (MABL) depends largely on the variability of stratus and stratocumulus clouds. The typical boundary-layer is capped by a temperature inversion that limits exchange with the free atmosphere. Cloud-top is usually coincident with the base of the inversion. Stratus clouds are generally associated with a well-mixed MABL, whereas daytime observations of stratocumulus-topped boundary-layers indicate that the cloud and subcloud layers are often decoupled due to shortwave radiative heating of the cloud layer. In this case the surface-based mixed layer is separated from the base of the stratocumulus (Sc) by a layer that is stable to dry turbulent mixing. This is sometimes referred to as the transition layer. Often cumulus clouds (Cu) develop in the transition layer. The cumulus tops may remain below the Sc base or they may penetrate into the Sc layer and occasionally through the capping temperature inversion. While this cloud structure is characteristic of the daytime MABL, it may persist at night also. The Cu play an important role in connecting the mixed layer to the Sc layer. If the Cu are active they transport water vapor from the sea surface that maintains the Sc against the dissipating effects of shortwave heating. The Cu, however, are very sensitive to small changes in the heat and moisture in the boundary-layer and are transient features. Here the authors discuss the effect of these small Cu on the turbulent structure of the MABL.

  15. Research and implementation of group animation based on normal cloud model

    NASA Astrophysics Data System (ADS)

    Li, Min; Wei, Bin; Peng, Bao

    2011-12-01

    Group Animation is a difficult technology problem which always has not been solved in computer Animation technology, All current methods have their limitations. This paper put forward a method: the Motion Coordinate and Motion Speed of true fish group was collected as sample data, reverse cloud generator was designed and run, expectation, entropy and super entropy are gotten. Which are quantitative value of qualitative concept. These parameters are used as basis, forward cloud generator was designed and run, Motion Coordinate and Motion Speed of two-dimensional fish group animation are produced, And two spirit state variable about fish group : the feeling of hunger, the feeling of fear are designed. Experiment is used to simulated the motion state of fish Group Animation which is affected by internal cause and external cause above, The experiment shows that the Group Animation which is designed by this method has strong Realistic.

  16. Biview Learning for Human Posture Segmentation from 3D Points Cloud

    PubMed Central

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation. PMID:24465721

  17. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation.

  18. The collective gyration of a heavy ion cloud in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.

    1990-01-01

    In both the ionospheric barium injection experiments CRIT 1 and CRIT 2, a long duration oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of about one second. A model for the phenomena which was proposed for the CRIT 1 experiment is compared to the results from CRIT 2 which made a much more complete set of measurements. The model follows the motion of a low Beta ion cloud through a larger ambient plasma. The internal field of the model is close to antiparallel to the injection direction v sub i but slightly tilted towards the self polarization direction E sub p = -V sub i by B. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents give a perturbation of the magnetic field related to the electric field perturbation by Delta E/Delta B approximately equal to V sub A. The model predictions agree quite well with the observed vector directions, field strengths, and decay times of the electric and magnetic fields in CRIT 2. The possibility to extend the model to the active region, where the ions are produces in this type of self-ionizing injection experiments, is discussed.

  19. Probabilistic seismic demand analysis using advanced ground motion intensity measures

    USGS Publications Warehouse

    Tothong, P.; Luco, N.

    2007-01-01

    One of the objectives in performance-based earthquake engineering is to quantify the seismic reliability of a structure at a site. For that purpose, probabilistic seismic demand analysis (PSDA) is used as a tool to estimate the mean annual frequency of exceeding a specified value of a structural demand parameter (e.g. interstorey drift). This paper compares and contrasts the use, in PSDA, of certain advanced scalar versus vector and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a well-chosen IM is that more accurate evaluations of seismic performance are achieved without the need to perform detailed ground motion record selection for the nonlinear dynamic structural analyses involved in PSDA (e.g. record selection with respect to seismic parameters such as earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural demands that are dominated by a first mode of vibration, using inelastic spectral displacement (Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and the vector IM consisting of Sa and epsilon (??). This paper demonstrates that this is true for ordinary and for near-source pulse-like earthquake records. The latter ground motions cannot be adequately characterized by either Sa alone or the vector of Sa and ??. For structural demands with significant higher-mode contributions (under either of the two types of ground motions), even Sdi (alone) is not sufficient, so an advanced scalar IM that additionally incorporates higher modes is used.

  20. Detection of Slope Movement by Comparing Point Clouds Created by SFM Software

    NASA Astrophysics Data System (ADS)

    Oda, Kazuo; Hattori, Satoko; Takayama, Toko

    2016-06-01

    This paper proposes movement detection method between point clouds created by SFM software, without setting any onsite georeferenced points. SfM software, like Smart3DCaputure, PhotoScan, and Pix4D, are convenient for non-professional operator of photogrammetry, because these systems require simply specification of sequence of photos and output point clouds with colour index which corresponds to the colour of original image pixel where the point is projected. SfM software can execute aerial triangulation and create dense point clouds fully automatically. This is useful when monitoring motion of unstable slopes, or loos rocks in slopes along roads or railroads. Most of existing method, however, uses mesh-based DSM for comparing point clouds before/after movement and it cannot be applied in such cases that part of slopes forms overhangs. And in some cases movement is smaller than precision of ground control points and registering two point clouds with GCP is not appropriate. Change detection method in this paper adopts CCICP (Classification and Combined ICP) algorithm for registering point clouds before / after movement. The CCICP algorithm is a type of ICP (Iterative Closest Points) which minimizes point-to-plane, and point-to-point distances, simultaneously, and also reject incorrect correspondences based on point classification by PCA (Principle Component Analysis). Precision test shows that CCICP method can register two point clouds up to the 1 pixel size order in original images. Ground control points set in site are useful for initial setting of two point clouds. If there are no GCPs in site of slopes, initial setting is achieved by measuring feature points as ground control points in the point clouds before movement, and creating point clouds after movement with these ground control points. When the motion is rigid transformation, in case that a loose Rock is moving in slope, motion including rotation can be analysed by executing CCICP for a loose rock and

  1. Activity recognition using a mixture of vector fields.

    PubMed

    Nascimento, Jacinto C; Figueiredo, Mário A T; Marques, Jorge S

    2013-05-01

    The analysis of moving objects in image sequences (video) has been one of the major themes in computer vision. In this paper, we focus on video-surveillance tasks; more specifically, we consider pedestrian trajectories and propose modeling them through a small set of motion/vector fields together with a space-varying switching mechanism. Despite the diversity of motion patterns that can occur in a given scene, we show that it is often possible to find a relatively small number of typical behaviors, and model each of these behaviors by a "simple" motion field. We increase the expressiveness of the formulation by allowing the trajectories to switch from one motion field to another, in a space-dependent manner. We present an expectation-maximization algorithm to learn all the parameters of the model, and apply it to trajectory classification tasks. Experiments with both synthetic and real data support the claims about the performance of the proposed approach.

  2. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  3. Breathing motion compensated reconstruction for C-arm cone beam CT imaging: initial experience based on animal data

    NASA Astrophysics Data System (ADS)

    Schäfer, D.; Lin, M.; Rao, P. P.; Loffroy, R.; Liapi, E.; Noordhoek, N.; Eshuis, P.; Radaelli, A.; Grass, M.; Geschwind, J.-F. H.

    2012-03-01

    C-arm based tomographic 3D imaging is applied in an increasing number of minimal invasive procedures. Due to the limited acquisition speed for a complete projection data set required for tomographic reconstruction, breathing motion is a potential source of artifacts. This is the case for patients who cannot comply breathing commands (e.g. due to anesthesia). Intra-scan motion estimation and compensation is required. Here, a scheme for projection based local breathing motion estimation is combined with an anatomy adapted interpolation strategy and subsequent motion compensated filtered back projection. The breathing motion vector is measured as a displacement vector on the projections of a tomographic short scan acquisition using the diaphragm as a landmark. Scaling of the displacement to the acquisition iso-center and anatomy adapted volumetric motion vector field interpolation delivers a 3D motion vector per voxel. Motion compensated filtered back projection incorporates this motion vector field in the image reconstruction process. This approach is applied in animal experiments on a flat panel C-arm system delivering improved image quality (lower artifact levels, improved tumor delineation) in 3D liver tumor imaging.

  4. A Flexible Cloud Generator

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Deguy, S.; Szczap, F.

    2001-05-01

    In this work we propose a flexible cloud generating model as well as a software. This model depends upon 5 quantities: -the cloud fractional coverage -the spectral slope -the mean value -the variance -the internal heterogeneity (intermittency). All these quantities are independantly identifiable on the base of mathematical proofs. This model also depends on a given function, called "morphlet", and on the law of a random variables family. In order to get a positive water contain inside the cloud,we ask the morphlet and the random variables to be positives. The structure of the model is hierarchycal. The vertebral column of this model is a tree: the basic encoding tree of the space where the cloud lives. At each edge of the tree is attached: -a Bernoulli random variable,this for tuning the fractional cover and the intermittency, -a rate of energy loose,giving the spectral slope, -a dilated morphlet. The word flexible is justified by the fact that we can choose to modify some objets on the basic tree in order to adjust the caracteristics of the desired cloud.

  5. Microphysics of Pyrocumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  6. The Connection between Inertial Forces and the Vector Potential

    NASA Astrophysics Data System (ADS)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2007-01-01

    The inertia property of matter is discussed in terms of a type of induction law related to the extended charged particle's own vector potential. Our approach is based on the Lagrangian formalism of canonical momentum writing Newton's second law in terms of the vector potential and a development in terms of obtaining retarded potentials, that allow an intuitive physical interpretation of its main terms. This framework provides a clear physical insight on the physics of inertia. It is shown that the electron mass has a complete electromagnetic origin and the covariant equation obtained solves the "4/3 mass paradox". This provides a deeper insight into the significance of the main terms of the equation of motion. In particular a force term is obtained from the approach based on the continuity equation for momentum that represents a drag force the charged particle feels when in motion relatively to its own vector potential field lines. Thus, the time derivative of the particle's vector potential leads to the acceleration inertia reaction force and is equivalent to the Schott term responsible for the source of the radiation field. We also show that the velocity dependent term of the particle's vector potential is connected with the relativistic increase of mass with velocity and generates a stress force that is the source of electric field lines deformation. This understanding broadens the possibility to manipulate inertial mass and potentially suggests some mechanisms for possible applications to electromagnetic propulsion and the development of advanced space propulsion physics.

  7. Hierarchical motion estimation with smoothness constraints and postprocessing

    NASA Astrophysics Data System (ADS)

    Xie, Kan; Van Eycken, Luc; Oosterlinck, Andre J.

    1996-01-01

    How to acquire accurate and reliable motion parameters from an image sequence is a knotty problem for many applications in image processing, image recognition, and video coding, especially when scenes involve moving objects with various shapes and sizes as well as very fast and complicated motion. In this paper, an improved pel-based motion estimation (ME) algorithm with smoothness constraints is presented, which is based on the investigation and the comparison of different existing pel-based ME (or optical flow) algorithms. Then, in order to cope with various moving objects and their complex motion, a hierarchical ME algorithm with smoothness constraints and postprocessing is proposed. The experimental results show that the motion parameters obtained by the hierarchical ME algorithm are quite creditable and seem to be close to the real physical motion fields if the luminance intensity changes are due to the motion of objects. The hierarchical ME algorithm still provides approximate and smooth vector fields even for scenes that involve some motion-irrelevant intensity changes or blurring caused by violent motion.

  8. Special perturbations employing osculating reference states. [for satellite motion

    NASA Technical Reports Server (NTRS)

    Born, G. H.; Christensen, E. J.; Seversike, L. K.

    1974-01-01

    The concept of employing osculating reference position and velocity vectors in the numerical integration of the equations of motion of a satellite is examined. The choice of the reference point is shown to have a significant effect upon numerical efficiency and the class of trajectories described by the differential equations of motion. For example, when the position and velocity vectors on the osculating orbit at a fixed reference time are chosen, a universal formulation is yielded. For elliptical orbits, however, this formulation is unattractive for numerical integration purposes due to Poisson terms (mixed secular) appearing in the equations of motion. Other choices for the reference point eliminate this problem but usually at the expense of universality. A number of these formulations, including a universal one, are considered here. Comparisons of the numerical characteristics of these techniques with those of the Encke method are presented.

  9. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  10. Teaching Projectile Motion

    ERIC Educational Resources Information Center

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  11. Making Sense of Motion

    ERIC Educational Resources Information Center

    King, Kenneth

    2005-01-01

    When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…

  12. Aristotle, Motion, and Rhetoric.

    ERIC Educational Resources Information Center

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  13. Body Motion and Graphing.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy

    1998-01-01

    Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…

  14. Naive Conceptions of Motion.

    ERIC Educational Resources Information Center

    McCloskey, Michael

    Two experiments were conducted to characterize the system of beliefs that make up the naive impetus theory of motion and to determine what effects physics instruction has on students' conceptions of motion. Thirteen college students were asked to solve several quantitative problems and were interviewed about their answers in the first experiment.…

  15. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  16. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  17. Cloud top entrainment instability and cloud top distributions

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Spinhirne, James D.

    1990-01-01

    Classical cloud-top entrainment instability condition formulation is discussed. A saturation point diagram is used to investigate the details of mixing in cases where the cloud-top entrainment instability criterion is satisfied.

  18. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  19. Gravitational Infall in Molecular Cloud Cores

    NASA Astrophysics Data System (ADS)

    Ziegler, Mareike

    The detection and quantification of gravitational infall in molecular cloud cores is an important task for developing a self-consistent theory of star formation. First steps towards a quantification of the collapse have been performed by Larson (1981), who examined the line width-size relation of several molecular clouds and determined from their velocity dispersion the deviations from virial equilibrium. Soon after that, observational improvements made it possible to study this relation not only for molecular clouds but also in particular for its cores. Nowadays, increased observational performance allows to resolve the core region in detail (Barranco et al, 1998). Line-of-sight velocity profiles can therefore be analyzed dependend on their radial distance from the core's center. Myers et al. (1996) pointed out that observations of optically thick tracer profiles can be used to derive the strength of collapse motions. On the basis of our semi-analytical model we suggest here a further method how to determine the gravitational infall from the radial velocity gradients of optically thin tracers inside a core. Moreover, we discuss other impacts on the line-of-sight profile due to additional effects inside the core, like for instance rotation.

  20. Response of Tropical Clouds to the Interannual Variation of Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Fu, Rong; Liu, W. Timothy; Dickinson, Robert E.

    1996-01-01

    Connections between the large-scale interannual variations of clouds, deep convection, atmospheric winds. vertical thermodynamic structure, and SSTs over global tropical oceans are examined over the period July 1983 - December 1990. The SST warming associated with El Nino had a significant impact on the global tropical cloud field, although the warming itself was confined to the equatorial central and eastern Pacific. Extensive variations of the total cloud field occurred in the northeastern Indian, western and central Pacific, and western Atlantic Oceans. The changes of high and middle clouds dominated the total cloud variation in these regions. Total cloud variation was relatively weak in the eastern Pacific and the Atlantic because of the cancellation between the changes of high and low clouds. The variation of low clouds dominated the total cloud change in those areas. The destabilization of the lapse rate between 900 and 750 mb was more important for enhancing convective instability than was the change of local SSTs in the equatorial central Pacific during the 1997 El Nino. This destabilization is associated with anomalous rising motion in that region. As a result. convection and high and middle clouds increased in the equatorial central Pacific, In the subtropical Pacific, both the change of lapse rate between 900 and 750 mb associated A,ith anomalous subsidence and the decrease of boundary-layer buoyancy due to a decrease of temperature and moisture played an important role in enhancing convective stability. Consequently, convection, as well its high and middle clouds, decreased in these areas. The change ot'low clouds in the equatorial and southeastern Atlantic was correlated to both local SSTs and the SST changes in the equatorial eastern Pacific. In this area. the increase of low clouds was consistent with the sharper inversion during the 1987 El Nino, The strengthening of the inversion was not caused by a local SST change. although the local SST change

  1. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  2. Automated cloud classification with a fuzzy logic expert system

    NASA Technical Reports Server (NTRS)

    Tovinkere, Vasanth; Baum, Bryan A.

    1993-01-01

    An unresolved problem in current cloud retrieval algorithms concerns the analysis of scenes containing overlapping cloud layers. Cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget. Most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. One promising method uses fuzzy logic to determine whether mixed cloud and/or surface types exist within a group of pixels, such as cirrus, land, and water, or cirrus and stratus. When two or more class types are present, fuzzy logic uses membership values to assign the group of pixels partially to the different class types. The strength of fuzzy logic lies in its ability to work with patterns that may include more than one class, facilitating greater information extraction from satellite radiometric data. The development of the fuzzy logic rule-based expert system involves training the fuzzy classifier with spectral and textural features calculated from accurately labeled 32x32 regions of Advanced Very High Resolution Radiometer (AVHRR) 1.1-km data. The spectral data consists of AVHRR channels 1 (0.55-0.68 mu m), 2 (0.725-1.1 mu m), 3 (3.55-3.93 mu m), 4 (10.5-11.5 mu m), and 5 (11.5-12.5 mu m), which include visible, near-infrared, and infrared window regions. The textural features are based on the gray level difference vector (GLDV) method. A sophisticated new interactive visual image Classification System (IVICS) is used to label samples chosen from scenes collected during the FIRE IFO II. The training samples are chosen from predefined classes, chosen to be ocean, land, unbroken stratiform, broken stratiform, and cirrus. The November 28, 1991 NOAA overpasses contain complex multilevel cloud situations ideal for training and validating the fuzzy logic expert system.

  3. Methods for abdominal respiratory motion tracking.

    PubMed

    Spinczyk, Dominik; Karwan, Adam; Copik, Marcin

    2014-01-01

    Non-invasive surface registration methods have been developed to register and track breathing motions in a patient's abdomen and thorax. We evaluated several different registration methods, including marker tracking using a stereo camera, chessboard image projection, and abdominal point clouds. Our point cloud approach was based on a time-of-flight (ToF) sensor that tracked the abdominal surface. We tested different respiratory phases using additional markers as landmarks for the extension of the non-rigid Iterative Closest Point (ICP) algorithm to improve the matching of irregular meshes. Four variants for retrieving the correspondence data were implemented and compared. Our evaluation involved 9 healthy individuals (3 females and 6 males) with point clouds captured in opposite breathing phases (i.e., inhalation and exhalation). We measured three factors: surface distance, correspondence distance, and marker error. To evaluate different methods for computing the correspondence measurements, we defined the number of correspondences for every target point and the average correspondence assignment error of the points nearest the markers.

  4. Reconstruction of cloud geometry using a scanning cloud radar

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Winkler, C.; Zinner, T.

    2015-06-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three-dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground-based remote sensing of cloud properties at high spatial resolution could be crucially improved with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of model clouds based on a large eddy simulation (LES), the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality, a trade-off between scan resolution and scan duration has to be found as clouds change quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  5. Lifted transformations on the tangent bundle, and symmetries of particle motion

    SciTech Connect

    Maartens, R.; Taylor, D.R. )

    1993-01-01

    We define affine transport lifts on the tangent bundle by associating a transport rule for tangent vectors with a vector field on the base manifold. Our aim is to develop tools for the study of kinetic/dynamic symmetries in particle motion. The new lift unifies and generalizes all the various existing lifted vector fields, with clear geometric interpretations. In particular, this includes the important but little-known matter symmetries of relativistic kinetic theory. We find the affine dynamical symmetries of general relativistic charged particle motion, and we compare this to previous results and to the alternative concept of matter symmetry.

  6. NEW APPROACHES: What do centripetal acceleration, simple harmonic motion and the Larmor precession have in common?

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    1998-03-01

    This paper proves a general theorem which states that any vector Q of constant length rotating at constant angular velocity undergoes a rate of change equal to . The vector is itself perpendicular to Q. The theorem allows the calculation of the rate of change of Q (which is its derivative, since the magnitude of Q is constant) without resorting to calculus. In addition, a geometric argument allows calculation of the direction of the rate of change without using unit vectors. Therefore even beginning students can use it readily. Its generality permits us to apply it to a large number of seemingly unrelated topics including centripetal acceleration, various simple harmonic motions and precessional motions.

  7. Kustaanheimo-Stiefel transformation with an arbitrary defining vector

    NASA Astrophysics Data System (ADS)

    Breiter, Slawomir; Langner, Krzysztof

    2017-02-01

    Kustaanheimo-Stiefel (KS) transformation depends on the choice of some preferred direction in the Cartesian 3D space. This choice, seldom explicitly mentioned, amounts typically to the direction of the first or the third coordinate axis in Celestial Mechanics and atomic physics, respectively. The present work develops a canonical KS transformation with an arbitrary preferred direction, indicated by what we call a defining vector. Using a mix of vector and quaternion algebra, we formulate the transformation in a reference frame independent manner. The link between the oscillator and Keplerian first integrals is given. As an example of the present formulation, the Keplerian motion in a rotating frame is re-investigated.

  8. Making clouds in Spacelab

    NASA Technical Reports Server (NTRS)

    Duncan, C.

    1978-01-01

    Improvements in the accuracy of weather predictions and possibilities for changing the weather might depend on a better understanding of the microphysical processes which take place within clouds. A study of these processes on the surface of the earth is difficult in connection with gravitational disturbances. An Atmospheric Cloud Physics Laboratory (ACPL), which is currently being developed, is to be carried into space in the Spacelab in the early 1980's. This facility will provide scientists, for the first time, with the opportunity to study cloud physics without the disturbing gravitational effects. In the ACPL facility, a microscopic element can be suspended without support. The processes of freezing, thawing, collision, electric charging, and temperature changes can be observed and photographed as many times and for as long as necessary.

  9. Winter Clouds Over Mie

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 March 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image shows late winter clouds over the 104 km (65 mi) diameter crater, Mie. Cellular clouds occur in the lower martian atmosphere, surrounding Mie Crater. Their cloudtops are at an altitude that is below the crater rim. Higher than the crater rim occurs a series of lee wave clouds, indicating air circulation moving from west/northwest (left) toward the east/southeast (right). Mie Crater is located in Utopia Planitia, not too far from the Viking 2 landing site, near 48.5 N, 220.4 W. Sunlight illuminates this January 2004 scene from the lower left.

  10. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  11. MISR Level 2 Cloud Product Versioning

    Atmospheric Science Data Center

    2016-11-04

      MISR Level 2 Cloud Product Versioning MISR Level 2 Cloud Product Processing Status ESDT Product File ... Quality Designations MIL2TCSP MISR_AM1_TC_CLOUD Stage 3 Validated:  Cloud Top Heights (Without Wind ...

  12. Real World: Global Cloud Observation Day

    NASA Video Gallery

    Learn about precipitation and how clouds are formed. Find out why scientists study clouds and how you can help NASA collect cloud observation data as part of the Students' Cloud Observation OnLine,...

  13. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  14. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  15. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  16. Vector fields in cosmology

    NASA Astrophysics Data System (ADS)

    Davydov, E. A.

    2012-06-01

    Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant FμνF~μν, one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the `electric' and `magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.

  17. Automatic cloud cover mapping.

    NASA Technical Reports Server (NTRS)

    Strong, J. P., III; Rosenfeld, A.

    1971-01-01

    A method of converting a picture into a 'cartoon' or 'map' whose regions correspond to differently textured regions is described. Texture edges in the picture are detected, and solid regions surrounded by these (usually broken) edges are 'colored in' using a propagation process. The resulting map is cleaned by comparing the region colors with the textures of the corresponding regions in the picture, and also by merging some regions with others according to criteria based on topology and size. The method has been applied to the construction of cloud cover maps from cloud cover pictures obtained by satellites.

  18. The Oort cloud

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.

    1990-04-01

    Although the outermost planet, Pluto, is 6 x 10 to the 9th km from the sun, the sun's gravitational sphere of influence extends much further, out to about 2 x 10 to the 13th km. This space is occupied by the Oort cloud, comprising 10 to the 12th-10 to the 13th cometary nuclei, formed in the primordial solar nebula. Observations and computer modeling have contributed to a detailed understanding of the structure and dynamics of the cloud, which is thought to be the source of the long-period comets and possibly comet showers.

  19. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Wessman, Paul R.

    1990-01-01

    Although the outermost planet, Pluto, is 6 x 10 to the 9th km from the sun, the sun's gravitational sphere of influence extends much further, out to about 2 x 10 to the 13th km. This space is occupied by the Oort cloud, comprising 10 to the 12th-10 to the 13th cometary nuclei, formed in the primordial solar nebula. Observations and computer modeling have contributed to a detailed understanding of the structure and dynamics of the cloud, which is thought to be the source of the long-period comets and possibly comet showers.

  20. Opaque cloud detection

    DOEpatents

    Roskovensky, John K.

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.