NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee
2007-01-01
An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.
Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses
NASA Technical Reports Server (NTRS)
Molnar, Gyula I.; Susskind, Joel
2005-01-01
The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.
Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.
Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.
2014-12-01
Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various datasets available, the methods employed to utilize them in the cloud property retrieval validation process, and the results and how they aid future development of the retrieval algorithms. Future needs are also discussed.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
Outcome of the third cloud retrieval evaluation workshop
NASA Astrophysics Data System (ADS)
Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi
2013-05-01
Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.
Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung
2007-01-01
A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.
Outcome of the Third Cloud Retrieval Evaluation Workshop
NASA Astrophysics Data System (ADS)
Roebeling, R.; Baum, B.; Bennartz, R.; Hamann, U.; Heidinger, A.; Thoss, A.; Walther, A.
2012-04-01
Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and inter-annual variations are needed to improve the understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics need to be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), which was held from 15-18 November 2011 in Madison, Wisconsin, USA, is to enhance our knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimising these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods that are used to prepare daily and monthly cloud parameter climatologies. An important component of the workshop is the discussion on the results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we will summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on the reasons for the observed differences. More in depth discussions were held on retrieval principles and validation, and the utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement; cloud physical properties, and cloud climatologies. We will present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize the actions defined to tailor the CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention will be given to increase the traceability and uniformity of different long-term and homogeneous records of cloud parameters.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme
2009-01-01
In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.
Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai
2015-05-01
A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.
Retrieval of cloud cover parameters from multispectral satellite images
NASA Technical Reports Server (NTRS)
Arking, A.; Childs, J. D.
1985-01-01
A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.
Cloud, Aerosol, and Volcanic Ash Retrievals Using ASTR and SLSTR with ORAC
NASA Astrophysics Data System (ADS)
McGarragh, Gregory; Poulsen, Caroline; Povey, Adam; Thomas, Gareth; Christensen, Matt; Sus, Oliver; Schlundt, Cornelia; Stapelberg, Stefan; Stengel, Martin; Grainger, Don
2015-12-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that retrieves cloud, aerosol and volcanic ash parameters using satellite imager measurements in the visible to infrared. Use of the same algorithm for different sensors and parameters leads to consistency that facilitates inter-comparison and interaction studies. ORAC currently supports ATSR, AVHRR, MODIS and SEVIRI. In this proceeding we discuss the ORAC retrieval algorithm applied to ATSR data including the retrieval methodology, the forward model, uncertainty characterization and discrimination/classification techniques. Application of ORAC to SLSTR data is discussed including the additional features that SLSTR provides relative to the ATSR heritage. The ORAC level 2 and level 3 results are discussed and an application of level 3 results to the study of cloud/aerosol interactions is presented.
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.
2012-01-01
The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Gatebe, Charles K.
2018-07-01
Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.
NASA Astrophysics Data System (ADS)
Fisher, Daniel; Poulsen, Caroline A.; Thomas, Gareth E.; Muller, Jan-Peter
2016-03-01
In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).
NASA Astrophysics Data System (ADS)
Barkhatov, N. A.; Revunov, S. E.; Vorobjev, V. G.; Yagodkina, O. I.
2018-03-01
The cause-and-effect relations of the dynamics of high-latitude geomagnetic activity (in terms of the AL index) and the type of the magnetic cloud of the solar wind are studied with the use of artificial neural networks. A recurrent neural network model has been created based on the search for the optimal physically coupled input and output parameters characterizing the action of a plasma flux belonging to a certain magnetic cloud type on the magnetosphere. It has been shown that, with IMF components as input parameters of neural networks with allowance for a 90-min prehistory, it is possible to retrieve the AL sequence with an accuracy to 80%. The successful retrieval of the AL dynamics by the used data indicates the presence of a close nonlinear connection of the AL index with cloud parameters. The created neural network models can be applied with high efficiency to retrieve the AL index, both in periods of isolated magnetospheric substorms and in periods of the interaction between the Earth's magnetosphere and magnetic clouds of different types. The developed model of AL index retrieval can be used to detect magnetic clouds.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.
2009-03-01
A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.
Retrieval of effective cloud field parameters from radiometric data
NASA Astrophysics Data System (ADS)
Paulescu, Marius; Badescu, Viorel; Brabec, Marek
2017-06-01
Clouds play a key role in establishing the Earth's climate. Real cloud fields are very different and very complex in both morphological and microphysical senses. Consequently, the numerical description of the cloud field is a critical task for accurate climate modeling. This study explores the feasibility of retrieving the effective cloud field parameters (namely the cloud aspect ratio and cloud factor) from systematic radiometric measurements at high frequency (measurement is taken every 15 s). Two different procedures are proposed, evaluated, and discussed with respect to both physical and numerical restrictions. None of the procedures is classified as best; therefore, the specific advantages and weaknesses are discussed. It is shown that the relationship between the cloud shade and point cloudiness computed using the estimated cloud field parameters recovers the typical relationship derived from measurements.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2000-01-01
This paper presents a simple approach to estimate the uncertainties that arise in satellite retrievals of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of uncertainties that three-dimensional effects can introduce into retrievals of this important product of the MODIS instrument. The probability distribution of resulting retrieval errors is examined through theoretical simulations of shortwave cloud reflection for a wide variety of cloud fields. The results are used to illustrate how retrieval uncertainties change with observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier study, clouds appearing thicker for oblique sun, is indeed caused by three-dimensional radiative effects.
Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR
NASA Astrophysics Data System (ADS)
Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.
2012-08-01
Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.
NASA Astrophysics Data System (ADS)
McKague, Darren Shawn
2001-12-01
The statistical properties of clouds and precipitation on a global scale are important to our understanding of climate. Inversion methods exist to retrieve the needed cloud and precipitation properties from satellite data pixel-by-pixel that can then be summarized over large data sets to obtain the desired statistics. These methods can be quite computationally expensive, and typically don't provide errors on the statistics. A new method is developed to directly retrieve probability distributions of parameters from the distribution of measured radiances. The method also provides estimates of the errors on the retrieved distributions. The method can retrieve joint distributions of parameters that allows for the study of the connection between parameters. A forward radiative transfer model creates a mapping from retrieval parameter space to radiance space. A Monte Carlo procedure uses the mapping to transform probability density from the observed radiance histogram to a two- dimensional retrieval property probability distribution function (PDF). An estimate of the uncertainty in the retrieved PDF is calculated from random realizations of the radiance to retrieval parameter PDF transformation given the uncertainty of the observed radiances, the radiance PDF, the forward radiative transfer, the finite number of prior state vectors, and the non-unique mapping to retrieval parameter space. The retrieval method is also applied to the remote sensing of precipitation from SSM/I microwave data. A method of stochastically generating hydrometeor fields based on the fields from a numerical cloud model is used to create the precipitation parameter radiance space transformation. The impact of vertical and horizontal variability within the hydrometeor fields has a significant impact on algorithm performance. Beamfilling factors are computed from the simulated hydrometeor fields. The beamfilling factors vary quite a bit depending upon the horizontal structure of the rain. The algorithm is applied to SSM/I images from the eastern tropical Pacific and is compared to PDFs of rain rate computed using pixel-by-pixel retrievals from Wilheit and from Liu and Curry. Differences exist between the three methods, but good general agreement is seen between the PDF retrieval algorithm and the algorithm of Liu and Curry. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.
2008-01-01
Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.
Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data
NASA Technical Reports Server (NTRS)
Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.
2007-01-01
Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for constraining the use of the passive retrieval data in models and for improving the accuracy of the retrievals.
On the remote sensing of cloud properties from satellite infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H. Y. M.
1984-01-01
A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.
Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.
NASA Astrophysics Data System (ADS)
Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo
2017-03-01
The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been used to perform the retrieval. In most cases, the retrieved humidity and temperature profiles show a good agreement with the radiosoundings, demonstrating that the simultaneous retrieval of the atmospheric state is not biased by the presence of cirrus clouds. Finally, the retrieved cloud parameters allow us to study the relationships between cloud temperature and optical depth and between effective particle diameter and ice water content. These relationships are similar to the statistical correlations measured on the Antarctic coast at Dumont d'Urville and in the Arctic region.
The CREW intercomparison of SEVIRI cloud retrievals
NASA Astrophysics Data System (ADS)
Hamann, U.; Walther, A.; Bennartz, R.; Thoss, A.; Meirink, J. M.; Roebeling, R.
2012-12-01
About 70% of the earth's surface is covered with clouds. They strongly influence the radiation balance and the water cycle of the earth. Hence the detailed monitoring of cloud properties - such as cloud fraction, cloud top temperature, cloud particle size, and cloud water path - is important to understand the role of clouds in the weather and the climate system. The remote sensing with passive sensors is an essential mean for the global observation of the cloud parameters, but is nevertheless challenging. This presentation focuses on the inter-comparison and validation of cloud physical properties retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard METEOSAT. For this study we use retrievals from 12 state-of-art algorithms (Eumetsat, KNMI, NASA Langley, NASA Goddard, University Madison/Wisconsin, DWD, DLR, Meteo-France, KMI, FU Berlin, UK MetOffice) that are made available through the common database of the CREW (Cloud Retrieval Evaluation Working) group. Cloud detection, cloud top phase, height, and temperature, as well as optical properties and water path are validated with CLOUDSAT, CALIPSO, MISR, and AMSR-E measurements. Special emphasis is given to challenging retrieval conditions. Semi-transparent clouds over the earth's surface or another cloud layer modify the measured brightness temperature and increase the retrieval uncertainty. The consideration of the three-dimensional radiative effects is especially important for large viewing angles and broken cloud fields. Aerosols might be misclassified as cloud and may increase the retrieval uncertainty, too. Due to the availability of the high number of sophisticated retrieval datasets, the advantages of different retrieval approaches can be examined and suggestions for future retrieval developments can be made. We like to thank Eumetsat for sponsoring the CREW project including this work.nstitutes that participate in the CREW project.
Multi-sensor measurements of mixed-phase clouds above Greenland
NASA Astrophysics Data System (ADS)
Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.
2018-04-01
Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.
NASA Astrophysics Data System (ADS)
Khatri, Pradeep; Hayasaka, Tadahiro; Iwabuchi, Hironobu; Takamura, Tamio; Irie, Hitoshi; Nakajima, Takashi Y.; Letu, Husi; Kai, Qin
2017-04-01
Clouds are known to have profound impacts on atmospheric radiation and water budget, climate change, atmosphere-surface interaction, and so on. Cloud optical thickness (COT) and effective radius (Re) are two fundamental cloud parameters required to study clouds from climatological and hydrological point of view. Large spatial-temporal coverages of those cloud parameters from space observation have proved to be very useful for cloud research; however, validation of space-based products is still a challenging task due to lack of reliable data. Ground-based remote sensing instruments, such as sky radiometers distributed around the world through international observation networks of SKYNET (http://atmos2.cr.chiba-u.jp/skynet/) and AERONET (https://aeronet.gsfc.nasa.gov/) have a great potential to produce ground-truth cloud parameters at different parts of the globe to validate satellite products. Focusing to the sky radiometers of SKYNET and AERONET, a few cloud retrieval methods exists, but those methods have some difficulties to address the problem when cloud is optically thin. It is because the observed transmittances at two wavelengths can be originated from more than one set of COD and Re, and the choice of the most plausible set is difficult. At the same time, calibration issue, especially for the wavelength of near infrared (NIR) region, which is important to retrieve Re, is also a difficult task at present. As a result, instruments need to be calibrated at a high mountain or calibration terms need to be transferred from a standard instrument. Taking those points on account, we developed a new retrieval method emphasizing to overcome above-mentioned difficulties. We used observed transmittances of multiple wavelengths to overcome the first problem. We further proposed a method to obtain calibration constant of NIR wavelength channel using observation data. Our cloud retrieval method is found to produce relatively accurate COD and Re when validated them using data of a narrow field of view radiometer of collocated observation in one SKYNET site. Though the method is developed for the sky radiometer of SKYNET, it can be still used for the sky radiometer of AERONET and other instruments observing spectral zenith transmittances. The proposed retrieval method is then applied to retrieve cloud parameters at key sites of SKYNET within Japan, which are then used to validate cloud products obtained from space observations by MODIS sensors onboard TERRA/AQUA satellites and Himawari 8, a Japanese geostationary satellite. Our analyses suggest the underestimation (overestimation) of COD (Re) from space observations.
NASA Technical Reports Server (NTRS)
Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard
2006-01-01
We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.
NASA Astrophysics Data System (ADS)
Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei
2016-03-01
Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2 W m-2 (or 19.1 %) and 22.1 W m-2 (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.
NASA Astrophysics Data System (ADS)
Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X.
2015-12-01
Cloud parameters (cloud mask, effective particle radius and liquid/ice water path) are the important inputs in determining surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT) geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on) are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (5.4 %); the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m-2 (19.1 %) and 22.1 W m-2 (12.3 %), respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.
The GRAPE aerosol retrieval algorithm
NASA Astrophysics Data System (ADS)
Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.
2009-11-01
The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.
The GRAPE aerosol retrieval algorithm
NASA Astrophysics Data System (ADS)
Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.
2009-04-01
The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.
Retrieval of nonprecipitating liquid water cloud parameters from microwave data - A simulation study
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Diak, George R.
1992-01-01
A new microwave algorithm, analogous to the IR 'radiance-ratioing' method of Eyre and Menzel (1989) is developed to retrieve the height and 'effective' fraction (defined as the product of the emissivity times the actual physical fractional coverage) of nonprecipitating water clouds using various pairs of the 20 microwave channels planned for the Advanced Microwave Sounding Unit (AMSU), an instrument slated to fly on polar-orbiting satellites beginning in 1994. The results of a simulation study are presented to provide some insights into the potentials of this technique using different AMSU channel combinations. This study suggests that the use of the oxygen channels 3 and 5 and water vapor channels 19 and 20 will produce the most accurate retrievals of liquid water cloud parameters and the highest percentage of good-quality retrievals over a range of meteorological and cloud conditions.
The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor
NASA Astrophysics Data System (ADS)
Loyola, Diego G.; Gimeno García, Sebastián; Lutz, Ronny; Argyrouli, Athina; Romahn, Fabian; Spurr, Robert J. D.; Pedergnana, Mattia; Doicu, Adrian; Molina García, Víctor; Schüssler, Olena
2018-01-01
This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.
Yu, Chao; Di Girolamo, Larry; Chen, Liangfu; Zhang, Xueying; Liu, Yang
2015-01-01
The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter <2.5 μm in aerodynamic diameter) are increasingly being studied from satellite aerosol remote sensing data. However, cloud cover severely limits the coverage of satellite-driven PM2.5 models, and little research has been conducted on the association between cloud properties and PM2.5 levels. In this study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000-2010. We found that both satellite-retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.
NASA Technical Reports Server (NTRS)
Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.;
2016-01-01
Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.
Retrieval with Infrared Atmospheric Sounding Interferometer and Validation during JAIVEx
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
A state-of-the-art IR-only retrieval algorithm has been developed with an all-season-global EOF Physical Regression and followed by 1-D Var. Physical Iterative Retrieval for IASI, AIRS, and NAST-I. The benefits of this retrieval are to produce atmospheric structure with a single FOV horizontal resolution (approx. 15 km for IASI and AIRS), accurate profiles above the cloud (at least) or down to the surface, surface parameters, and/or cloud microphysical parameters. Initial case study and validation indicates that surface, cloud, and atmospheric structure (include TBL) are well captured by IASI and AIRS measurements. Coincident dropsondes during the IASI and AIRS overpasses are used to validate atmospheric conditions, and accurate retrievals are obtained with an expected vertical resolution. JAIVEx has provided the data needed to validate the retrieval algorithm and its products which allows us to assess the instrument ability and/or performance. Retrievals with global coverage are under investigation for detailed retrieval assessment. It is greatly desired that these products be used for testing the impact on Atmospheric Data Assimilation and/or Numerical Weather Prediction.
NASA Astrophysics Data System (ADS)
Prigent, Catherine; Wang, Die; Aires, Filipe; Jimenez, Carlos
2017-04-01
The meteorological observations from satellites in the microwave domain are currently limited to below 190 GHz. However, the next generation of European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation-EPS-SG will carry an instrument, the Ice Cloud Imager (ICI), with frequencies up to 664 GHz, to improve the characterization of the cloud frozen phase. In this paper, a statistical retrieval of cloud parameters for ICI is developed, trained on a synthetic database derived from the coupling of a mesoscale cloud model and radiative transfer calculations. The hydrometeor profiles simulated with the Weather Research and Forecasting model (WRF) for twelve diverse European mid-latitude situations are used to simulate the brightness temperatures with the Atmospheric Radiative Transfer Simulator (ARTS) to prepare the retrieval database. The WRF+ARTS simulations have been compared to the Special Sensor Microwave Imager/Sounder (SSMIS) observations up to 190 GHz: this successful evaluation gives us confidence in the simulations at the ICI channels from 183 to 664 GHz. Statistical analyses have been performed on this simulated retrieval database, showing that it is not only physically realistic but also statistically satisfactory for retrieval purposes. A first Neural Network (NN) classifier is used to detect the cloud presence. A second NN is developed to retrieve the liquid and ice integrated cloud quantities over sea and land separately. The detection and retrieval of the hydrometeor quantities (i.e., ice, snow, graupel, rain, and liquid cloud) are performed with ICI-only, and with ICI combined with observations from the MicroWave Imager (MWI, with frequencies from 19 to 190 GHz, also on board MetOp-SG). The ICI channels have been optimized for the detection and quantification of the cloud frozen phases: adding the MWI channels improves the performance of the vertically integrated hydrometeor contents, especially for the cloud liquid phases. The relative error for the retrieved integrated frozen water content (FWP, i.e., ice+snow+graupel) is below 40% for 0.1kg/m2 < FWP < 0.5kg/m2 and below 20% for FWP > 0.5 kg/m2.
NASA Technical Reports Server (NTRS)
Koren, Ilan; Feingold, Graham; Remer, Lorraine A.
2010-01-01
Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.
Optical property retrievals of subvisual cirrus clouds from OSIRIS limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2012-08-01
We present a technique for retrieving the optical properties of subvisual cirrus clouds detected by OSIRIS, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Optical properties from an in-situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is demonstrated that the retrieved extinction profile models accurately the measured in-cloud radiances from OSIRIS. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
NASA Astrophysics Data System (ADS)
Pelon, J.; Flamant, C.; Trouillet, V.; Flamant, P. H.
Cloud parameters derived from measurements performed with the airborne backscatter lidar LEANDRE 1 during mission 206 of the EUCREX '94 campaign are reported. A new method has been developed to retrieve the extinction coefficient at the top of the dense stratocumulus deck under scrutiny during this mission. The largest extinction values are found to be related to the highest cloud top altitude revealing the small-scale structure of vertical motions within the stratocumulus field. Cloud optical depth (COD) is estimated from extinction retrievals, as well as cloud top and cloud base altitude using nadir and zenith lidar observations, respectively. Lidar-derived CODs are compared with CODs deduced from radiometric measurements made onboard the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT/F27). A fair agreement is obtained (within 20%) for COD's larger than 10. Our results show the potential of lidar measurements to analyze cloud properties at optical depths larger than 5.
Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover
NASA Technical Reports Server (NTRS)
Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa
2005-01-01
AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.
NASA Technical Reports Server (NTRS)
Hodges, D. B.
1976-01-01
An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.
AMF3 CloudSat Overpasses Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matrosov, Sergey; Hardin, Joseph; De Boer, Gijs
Synergy between ground-based and satellite radar observations of clouds and precipitation is important for refining the algorithms to retrieve hydrometeor microphysical parameters, improvements in the retrieval accuracy, and better understanding the advantages and limitations of different retrieval approaches. The new dual-frequency (Ka- and W-band, 35 GHz and 94 GHz) fully polarimetric scanning U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility cloud radars (SACRs-2) are advanced sensors aimed to significantly enhance remote sensing capabilities (Kollias et al. 2016). One of these radars was deployed as part of the third ARM Mobile Facility (AMF3) at Oliktok Point, Alaska (70.495omore » N, 149.886oW). The National Aeronautics and Space Administration (NASA) CloudSat satellite, which is part of the polar-orbiting A-train satellite constellation, passes over the vicinity of the AMF3 location (typically within 0-7 km depending on a particular overpass) on a descending orbit every 16 days at approximately 13:21 UTC. The nadir pointing W-band CloudSat cloud profiling radar (CPR) provides vertical profiles of reflectivity that are then used for retrievals of hydrometeor parameters (Tanelli et al. 2008). The main objective of the AMF3 CloudSat overpasses intensive operating period (IOP) campaign was to collect approximately collocated in space and time radar data from the SACR-2 and the CloudSat CPR measurements for subsequent joint analysis of radar variables and microphysical retrievals of cloud and precipitation parameters. Providing the reference for the SACR-2 absolute calibration from the well-calibrated CloudSat CPR was another objective of this IOP. The IOP objectives were achieved by conducting seven special SACR-2 scans during the 10.5-min period centered at the exact time of the CloudSat overpass over the AMF3 (~1321 UTC) on six dates of the CloudSat overpasses during the three-month period allocated to this IOP. These six days were March 5 and 21, April 6 and 22, and May 8 and 24.« less
Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky;
2015-01-01
The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.
Profiling of Atmospheric Water Vapor from the SSM/T-2 Radiometric Measurements
NASA Technical Reports Server (NTRS)
Wang, J. R.
2000-01-01
An advantage of using the millimeter-wave measurements for water vapor profiling is the ability to probe beyond a moderate cloud cover. Such a capability has been demonstrated from an airborne MIR (Millimeter-wave Imaging Radiometer) flight over the Pacific Ocean during an intense observation period of TOGA/COARE (Tropical Ocean Global Atmosphere/ Couple Ocean Atmospheric Response Experiment) in early 1993. A Cloud Lidar System (CLS) and MODIS Airborne Simulator (MAS) were on board the same aircraft to identify the presence of clouds and cloud type. The retrieval algorithm not only provides output of a water vapor profile, but also the cloud liquid water and approximate cloud altitude required to satisfy convergence of the retrieval. The validity of these cloud parameters has not been verified previously. In this document, these cloud parameters are compared with those derived from concurrent measurements from the CLS and AMPR (Advanced Microwave Precipitation Radiometer).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
NASA Astrophysics Data System (ADS)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.
2017-06-01
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...
2017-06-09
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
NASA Astrophysics Data System (ADS)
Zhang, Z.; Cho, H. M.; Platnick, S. E.; Meyer, K.; Lebsock, M. D.
2014-12-01
The cloud optical thickness (τ) and droplet effective radius (re) are two key cloud parameters retrieved by MODIS (Moderate Resolution Imaging Spectroradiometer). These MODIS cloud products are widely used in a broad range of earth system science applications. In this paper, we present a comprehensive analysis of the failed cloud τ and/or re retrievals for liquid-phase clouds over ocean in the Collection 6 MODIS cloud product. The main findings from this study are summarized as follows: MODIS retrieval failure rates for marine boundary layer (MBL) clouds have a strong dependence on the spectral combination used for retrieval (e.g., 0.86 + 2.1 µm vs. 0.8 + 3.7 µm) and the cloud morphology (i.e., "good" pixels vs. partly cloudy (PCL) pixels). Combining all clear-sky-restoral (CSR) categories (CSR=0,1 and 3), the 0.86 + 2.1 µm and 0.86 + 3.7 µm spectral combinations have an overall failure rate of about 20% and 12%, respectively (See figure below). The PCL pixels (CSR=1 & 3) have significantly higher failure rates and contribute more to the total failure population than the "good" (CSR=0) pixels. The majority of the failed retrievals are caused by the re too large failure, which explains about 85% and 70% of the failed 0.86 + 2.1 µm and 0.86 + 3.7 µm retrievals, respectively. The remaining failures are either due to the re too small failure or τ retrieval failure. The geographical distribution of failure rates has a significant dependence on cloud regime, lower over the coastal stratocumulus cloud regime and higher over the broken trade-wind cumulus cloud regime over open oceans. Enhanced retrieval failure rates are found when MBL clouds have high sub-pixel inhomogeneity , or are located at special Sun-satellite viewing geometries, such as sunglint, large viewing or solar zenith angle, or cloudbow and glory angles, or subject to cloud masking, cloud overlapping and/or cloud phase retrieval issues. About 80% of the failure retrievals can be attributed to at least one or more potential reasons mentioned above. Collocated radar reflectivity observations from CloudSat suggest that the remaining 20% are unlikely to be retrieval artifacts, but reflection of true cloud microphysics, i.e., the true is either truly very small or very large.
Remote sensing of cirrus cloud vertical size profile using MODIS data
NASA Astrophysics Data System (ADS)
Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.
2009-05-01
This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.
A New Methodology for Simultaneous Multi-layer Retrievals of Ice and Liquid Water Cloud Properties
NASA Astrophysics Data System (ADS)
Sourdeval, O.; Labonnote, L.; Baran, A. J.; Brogniez, G.
2014-12-01
It is widely recognized that the study of clouds has nowadays become one of the major concern of the climate research community. Consequently, a multitude of retrieval methodologies have been developed during the last decades in order to obtain accurate retrievals of cloud properties that can be supplied to climate models. Most of the current methodologies have proven to be satisfactory for separately retrieving ice or liquid cloud properties, but very few of them have attempted simultaneous retrievals of these two cloud types. Recent studies nevertheless show that the omission of one of these layers can have strong consequences on the retrievals and their accuracy. In this study, a new methodology that simultaneously retrieves the properties of ice and liquid clouds is presented. The optical thickness and the effective radius of up to two liquid cloud layers and the ice water path of one ice cloud layer are simultaneously retrieved, along with an accurate estimation of their uncertainties. Radiometric measurements ranging from the visible to the thermal infrared are used for performing the retrievals. In order to quantify the capabilities and limitations of our methodology, the results of a theoretical information content analysis are first presented. This analysis allows obtaining an a priori understanding of how much information should be expected on each of the retrieval parameters in different atmospheric conditions, and which set of channels is likely to provide this information. After such theoretical considerations, global retrievals corresponding to several months of A-Train data are presented. Comparisons of our retrievals with operational products from active and passive instruments are effectuated and show good global agreements. These comparisons are useful for validating our retrievals but also for testing how operational products can be influenced by multi-layer configurations.
Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover
NASA Technical Reports Server (NTRS)
Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa
2006-01-01
AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.
NASA Astrophysics Data System (ADS)
Weisz, Elisabeth; Smith, William L.; Smith, Nadia
2013-06-01
The dual-regression (DR) method retrieves information about the Earth surface and vertical atmospheric conditions from measurements made by any high-spectral resolution infrared sounder in space. The retrieved information includes temperature and atmospheric gases (such as water vapor, ozone, and carbon species) as well as surface and cloud top parameters. The algorithm was designed to produce a high-quality product with low latency and has been demonstrated to yield accurate results in real-time environments. The speed of the retrieval is achieved through linear regression, while accuracy is achieved through a series of classification schemes and decision-making steps. These steps are necessary to account for the nonlinearity of hyperspectral retrievals. In this work, we detail the key steps that have been developed in the DR method to advance accuracy in the retrieval of nonlinear parameters, specifically cloud top pressure. The steps and their impact on retrieval results are discussed in-depth and illustrated through relevant case studies. In addition to discussing and demonstrating advances made in addressing nonlinearity in a linear geophysical retrieval method, advances toward multi-instrument geophysical analysis by applying the DR to three different operational sounders in polar orbit are also noted. For any area on the globe, the DR method achieves consistent accuracy and precision, making it potentially very valuable to both the meteorological and environmental user communities.
Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.
2003-01-01
Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.
NASA Astrophysics Data System (ADS)
Shang, H.; Chen, L.; Bréon, F.-M.; Letu, H.; Li, S.; Wang, Z.; Su, L.
2015-07-01
The principles of the Polarization and Directionality of the Earth's Reflectance (POLDER) cloud droplet size retrieval requires that clouds are horizontally homogeneous. Nevertheless, the retrieval is applied by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using the POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval, and then analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-scale variability in droplet effective radius (CDR) can mislead both the CDR and effective variance (EV) retrievals. Nevertheless, the sub-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval is accurate using limited observations and is largely independent of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, the measurements in the primary rainbow region (137-145°) are used to ensure accurate large droplet (> 15 μm) retrievals and reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data for June 2008, the new CDR results are compared with the operational CDRs. The comparison show that the operational CDRs tend to be underestimated for large droplets. The reason is that the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Lastly, a sub-scale retrieval case is analyzed, illustrating that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size parameters from POLDER measurements.
NASA Astrophysics Data System (ADS)
Bell, A.; Tang, G.; Yang, P.; Wu, D.
2017-12-01
Due to their high spatial and temporal coverage, cirrus clouds have a profound role in regulating the Earth's energy budget. Variability of their radiative, geometric, and microphysical properties can pose significant uncertainties in global climate model simulations if not adequately constrained. Thus, the development of retrieval methodologies able to accurately retrieve ice cloud properties and present associated uncertainties is essential. The effectiveness of cirrus cloud retrievals relies on accurate a priori understanding of ice radiative properties, as well as the current state of the atmosphere. Current studies have implemented information content theory analyses prior to retrievals to quantify the amount of information that should be expected on parameters to be retrieved, as well as the relative contribution of information provided by certain measurement channels. Through this analysis, retrieval algorithms can be designed in a way to maximize the information in measurements, and therefore ensure enough information is present to retrieve ice cloud properties. In this study, we present such an information content analysis to quantify the amount of information to be expected in retrievals of cirrus ice water path and particle effective diameter using sub-millimeter and thermal infrared radiometry. Preliminary results show these bands to be sensitive to changes in ice water path and effective diameter, and thus lend confidence their ability to simultaneously retrieve these parameters. Further quantification of sensitivity and the information provided from these bands can then be used to design and optimal retrieval scheme. While this information content analysis is employed on a theoretical retrieval combining simulated radiance measurements, the methodology could in general be applicable to any instrument or retrieval approach.
NASA Astrophysics Data System (ADS)
Jinya, John; Bipasha, Paul S.
2016-05-01
Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in
Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2013-01-01
We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
NASA Astrophysics Data System (ADS)
Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens
2018-03-01
An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.
Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan;
2015-01-01
We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.
Comparison of global cloud liquid water path derived from microwave measurements with CERES-MODIS
NASA Astrophysics Data System (ADS)
Yi, Y.; Minnis, P.; Huang, J.; Lin, B.; Ayers, K.; Sun-Mack, S.; Fan, A.
Cloud liquid water path LWP is a crucial parameter for climate studies due to the link that it provides between the atmospheric hydrological and radiative budgets Satellite-based visible infrared techniques such as the Visible Infrared Solar Split-Window Technique VISST can retrieve LWP for water clouds assumes single-layer over a variety of surfaces If the water clouds are overlapped by ice clouds the LWP of the underlying clouds can not be retrieved by such techniques However microwave techniques may be used to retrieve the LWP underneath ice clouds due to the microwave s insensitivity to cloud ice particles LWP is typically retrieved from satellite-observed microwave radiances only over ocean due to variations of land surface temperature and emissivity Recently Deeter and Vivekanandan 2006 developed a new technique for retrieving LWP over land In order to overcome the sensitivity to land surface temperature and emissivity their technique is based on a parameterization of microwave polarization-difference signals In this study a similar regression-based technique for retrieving LWP over land and ocean using Advanced Microwave Scanning Radiometer - EOS AMSR-E measurements is developed Furthermore the microwave surface emissivities are also derived using clear-sky fields of view based on the Clouds and Earth s Radiant Energy System Moderate-resolution Imaging Spectroradiometer CERES-MODIS cloud mask These emissivities are used in an alternate form of the technique The results are evaluated using independent measurements such
Improving Pixel Level Cloud Optical Property Retrieval using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Marshak, Alexander; Cahalan, Robert F.
1999-01-01
The accurate pixel-by-pixel retrieval of cloud optical properties from space is influenced by radiative smoothing due to high order photon scattering and radiative roughening due to low order scattering events. Both are caused by cloud heterogeneity and the three-dimensional nature of radiative transfer and can be studied with the aid of computer simulations. We use Monte Carlo simulations on variable 1-D and 2-D model cloud fields to seek for dependencies of smoothing and roughening phenomena on single scattering albedo, solar zenith angle, and cloud characteristics. The results are discussed in the context of high resolution satellite (such as Landsat) retrieval applications. The current work extends the investigation on the inverse NIPA (Non-local Independent Pixel Approximation) as a tool for removing smoothing and improving retrievals of cloud optical depth. This is accomplished by: (1) Delineating the limits of NIPA applicability; (2) Exploring NIPA parameter dependences on cloud macrostructural features, such as mean cloud optical depth and geometrical thickness, degree of extinction and cloud top height variability. We also compare parameter values from empirical and theoretical considerations; (3) Examining the differences between applying NIPA on radiation quantities vs direct application on optical properties; (4) Studying the radiation budget importance of the NIPA corrections as a function of scale. Finally, we discuss fundamental adjustments that need to be considered for successful radiance inversion at non-conservative wavelengths and oblique Sun angles. These adjustments are necessary to remove roughening signatures which become more prominent with increasing absorption and solar zenith angle.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Loehnert, U.; Maahn, M.
2015-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.
2014-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
NASA Astrophysics Data System (ADS)
Nelson, R. R.; O'Dell, C.
2017-12-01
The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with high accuracy. This is only possible for measurements of scenes nearly free of optically thick clouds and aerosols. As some cloud or aerosol contamination will always be present, the OCO-2 retrieval algorithm includes clouds and aerosols as retrieved properties in its state vector. Information content analyses demonstrate that there are only 2-6 pieces of information about aerosols in the OCO-2 radiances. However, the upcoming OCO-2 algorithm (B8) attempts to retrieve 9 aerosol parameters; this over-fitting can hinder convergence and produce multiple solutions. In this work, we develop a simplified cloud and aerosol parameterization that intelligently reduces the number of retrieved parameters to 5 by only retrieving information about two aerosol layers: a lower tropospheric layer and an upper tropospheric / stratospheric layer. We retrieve the optical depth of each layer and the height of the lower tropospheric layer. Each of these layers contains a mixture of fine and coarse mode aerosol. In comparisons between OCO-2 XCO2 estimates and validation sources including TCCON, this scheme performs about as well as the more complicated OCO-2 retrieval algorithm, but has the potential benefits of more interpretable aerosol results, faster convergence, less nonlinearity, and greater throughput. We also investigate the dependence of our results on the optical properties of the fine and coarse mode aerosol types, such as their effective radii and the environmental relative humidity.
Retrieval of ammonia abundances and cloud opacities on Jupiter from Voyager IRIS spectra
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Gierasch, P. J.
1986-01-01
Gaseous ammonia abundances and cloud opacities are retrieved from Voyager IRIS 5- and 45-micron data on the basis of a simplified atmospheric model and a two-stream radiative transfer approximation, assuming a single cloud layer with 680-mbar base pressure and 0.14 gas scale height. Brightness temperature measurements obtained as a function of emission angle from selected planetary locations are used to verify the model and constrain a number of its parameters.
NASA Technical Reports Server (NTRS)
Orepoulos, Lazaros; Cahalan, Robert; Marshak, Alexander; Wen, Guoyong
1999-01-01
We suggest a new approach to cloud retrieval, using a normalized difference of nadir reflectivities (NDNR) constructed from a non-absorbing and absorbing (with respect to liquid water) wavelength. Using Monte Carlo simulations we show that this quantity has the potential of removing first order scattering effects caused by cloud side illumination and shadowing at oblique Sun angles. Application of the technique to TM (Thematic Mapper) radiance observations from Landsat-5 over the Southern Great Plains site of the ARM (Atmospheric Radiation Measurement) program gives very similar regional statistics and histograms, but significant differences at the pixel level. NDNR can be also combined with the inverse NIPA (Nonlocal Independent Pixel Approximation) of Marshak (1998) which is applied for the first time on overcast Landsat scene subscenes. We demonstrate the sensitivity of the NIPA-retrieved cloud fields on the parameters of the method and discuss practical issues related to the optimal choice of these parameters.
A self-consistency approach to improve microwave rainfall rate estimation from space
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Mack, Robert A.; Hakkarinen, Ida M.
1989-01-01
A multichannel statistical approach is used to retrieve rainfall rates from the brightness temperature T(B) observed by passive microwave radiometers flown on a high-altitude NASA aircraft. T(B) statistics are based upon data generated by a cloud radiative model. This model simulates variabilities in the underlying geophysical parameters of interest, and computes their associated T(B) in each of the available channels. By further imposing the requirement that the observed T(B) agree with the T(B) values corresponding to the retrieved parameters through the cloud radiative transfer model, the results can be made to agree quite well with coincident radar-derived rainfall rates. Some information regarding the cloud vertical structure is also obtained by such an added requirement. The applicability of this technique to satellite retrievals is also investigated. Data which might be observed by satellite-borne radiometers, including the effects of nonuniformly filled footprints, are simulated by the cloud radiative model for this purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun Sunny; Riihimaki, Laura; Comstock, Jennifer M.
A new cloud-droplet number concentration (NDROP) value added product (VAP) has been produced at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site for the 13 years from January 1998 to January 2011. The retrieval is based on surface radiometer measurements of cloud optical depth from the multi-filter rotating shadow-band radiometer (MFRSR) and liquid water path from the microwave radiometer (MWR). It is only applicable for single-layered warm clouds. Validation with in situ aircraft measurements during the extended-term aircraft field campaign, Routine ARM Aerial Facility (AAF) CLOWD Optical Radiative Observations (RACORO), shows that the NDROP VAP robustly reproduces themore » primary mode of the in situ measured probability density function (PDF), but produces a too wide distribution, primarily caused by frequent high cloud-droplet number concentration. Our analysis shows that the error in the MWR retrievals at low liquid water paths is one possible reason for this deficiency. Modification through the diagnosed liquid water path from the coordinate solution improves not only the PDF of the NDROP VAP but also the relationship between the cloud-droplet number concentration and cloud-droplet effective radius. Consideration of entrainment effects rather than assuming an adiabatic cloud improves the values of the NDROP retrieval by reducing the magnitude of cloud-droplet number concentration. Aircraft measurements and retrieval comparisons suggest that retrieving the vertical distribution of cloud-droplet number concentration and effective radius is feasible with an improvement of the parameter representing the mixing effects between environment and clouds and with a better understanding of the effect of mixing degree on cloud properties.« less
NASA Astrophysics Data System (ADS)
Ham, S. H.; Kato, S.; Rose, F. G.
2016-12-01
In the retrieval of ice clouds from Radar and Lidar Measurements, mass-Dimension (m-D) and Area-Dimension (A-D) relationships are often used to describe nonspherical ice particle shapes. This study analytically investigates how the assumption of m-D and A-D relationships affects retrieval of ice effective radius. We use gamma and lognormal particle distributions and integrate optical parameters over the size distribution. The effective radius is expressed as a function of radar reflectivity factor, visible extinction coefficient, and parameters describing m-D and A-D relationships. The analytic expressions are used for converting effective radius retrieved from one set of m-D and A-D relationships into that with another set of m-D and A-D, including plates, solid columns, bullets, and mixture of different habits. The conversion method can be used for consistent radiative transfer simulation with cloud retrieval algorithms. In addition, when we want to merge cloud effective radii retrieved from different m-D and A-D, the conversion method can be efficiently used to remove undesired biases caused by m-D and A-D assumptions. Furthermore, the sensitivity of the effective radius to m-D and A-D relationships can be quantified by taking the first derivative of the effective radius with respect to parameters expressing the m-D and A-D relationships.
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
NASA Technical Reports Server (NTRS)
Kuo, K. S.; Weger, R. C.; Welch, R. M.
1997-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
NASA Technical Reports Server (NTRS)
Kuo, K.-S.; Weger, R. C.; Welch, R. M.
1997-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.
Toward Global Harmonization of Derived Cloud Products
NASA Technical Reports Server (NTRS)
Wu, Dong L.; Baum, Bryan A.; Choi, Yong-Sang; Foster, Michael J.; Karlsson, Karl-Goeran; Heidinger, Andrew; Poulsen, Caroline; Pavolonis, Michael; Riedi, Jerome; Roebeling, Robert
2017-01-01
Formerly known as the Cloud Retrieval Evaluation Workshop (CREW; see the list of acronyms used in this paper below) group (Roebeling et al. 2013, 2015), the International Cloud Working Group (ICWG) was created and endorsed during the 42nd Meeting of CGMS. The CGMS-ICWG provides a forum for space agencies to seek coherent progress in science and applications and also to act as a bridge between space agencies and the cloud remote sensing and applications community. The ICWG plans to serve as a forum to exchange and enhance knowledge on state-of-the-art cloud parameter retrievals algorithms, to stimulate support for training in the use of cloud parameters, and to encourage space agencies and the cloud remote sensing community to share knowledge. The ICWG plans to prepare recommendations to guide the direction of future research-for example, on observing severe weather events or on process studies-and to influence relevant programs of the WMO, WCRP, GCOS, and the space agencies.
The cloud radiation impact from optics simulation and airborne observation
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles
2017-02-01
The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.
NASA Astrophysics Data System (ADS)
Shang, H.; Chen, L.; Bréon, F. M.; Letu, H.; Li, S.; Wang, Z.; Su, L.
2015-11-01
The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR (~ 1.5 μm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (> 15 μm) and to reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data from June 2008, and the new CDR results are compared with the operational CDRs. The comparison shows that the operational CDRs tend to be underestimated for large droplets because the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Finally, a sub-grid-scale retrieval case demonstrates that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size distribution parameters from POLDER measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, L.; McFarlane, S.; Sivaraman, C.
The ndrop_mfrsr value-added product (VAP) provides an estimate of the cloud droplet number concentration of overcast water clouds retrieved from cloud optical depth from the multi-filter rotating shadowband radiometer (MFRSR) instrument and liquid water path (LWP) retrieved from the microwave radiometer (MWR). When cloud layer information is available from vertically pointing lidar and radars in the Active Remote Sensing of Clouds (ARSCL) product, the VAP also provides estimates of the adiabatic LWP and an adiabatic parameter (beta) that indicates how divergent the LWP is from the adiabatic case. quality control (QC) flags (qc_drop_number_conc), an uncertainty estimate (drop_number_conc_toterr), and a cloudmore » layer type flag (cloud_base_type) are useful indicators of the quality and accuracy of any given value of the retrieval. Examples of these major input and output variables are given in sample plots in section 6.0.« less
NASA Astrophysics Data System (ADS)
Xu, F.; van Harten, G.; Diner, D. J.; Rheingans, B. E.; Tosca, M.; Seidel, F. C.; Bull, M. A.; Tkatcheva, I. N.; McDuffie, J. L.; Garay, M. J.; Davis, A. B.; Jovanovic, V. M.; Brian, C.; Alexandrov, M. D.; Hostetler, C. A.; Ferrare, R. A.; Burton, S. P.
2017-12-01
The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (*denotes polarimetric bands). In sweep mode, georectified images cover an area of 80-100 km (along track) by 10-25 km (across track) between ±66° off nadir, with a map-projected spatial resolution of 25 meters. An efficient and flexible retrieval algorithm has been developed using AirMSPI polarimetric bands for simultaneous retrieval of cloud and above-cloud aerosol microphysical properties. We design a three-step retrieval approach, namely 1) estimating effective droplet size distribution using polarimetric cloudbow observations and using it as initial guess for Step 2; 2) combining water cloud and aerosol above cloud retrieval by fitting polarimetric signals at all scattering angles (e.g. from 80° to 180°); and 3) constructing a lookup table of radiance for a set of cloud optical depth grids using aerosol and cloud information retrieved from Step 2 and then estimating pixel-scale cloud optical depth based on 1D radiative transfer (RT) theory by fitting the AirMSPI radiance. Retrieval uncertainty is formulated by accounting for instrumental errors and constraints imposed on spectral variations of aerosol and cloud droplet optical properties. As the forward RT model, a hybrid approach is developed to combine the computational strengths of Markov-chain and adding-doubling methods to model polarized RT in a coupled aerosol, Rayleigh and cloud system. Our retrieval approach is tested using 134 AirMSPI datasets acquired during NASA ORACLES field campaign in 09/2016, with low to high aerosol loadings. For validation, the retrieved aerosol optical depths and cloud-top heights are compared to coincident High Spectral Resolution Lidar-2 (HSRL-2) data, and the droplet size parameters including effective radius and effective variance and cloud optical thickness are compared to coincident Research Scanning Polarimeter (RSP) data.
NASA Astrophysics Data System (ADS)
Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred
2017-09-01
The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff, C, and reff, S show a continuous transition of cloud properties across snow-covered sea ice and open water and are consistent with estimates based on satellite data. It is shown that the uncertainties of the trispectral retrieval increase for high values of τ, and low reff, S but nevertheless allow the effective snow grain size in cloud-covered areas to be estimated.
Retrieval of Venus' cloud parameters from VIRTIS nightside spectra in the latitude band 25°-55°N
NASA Astrophysics Data System (ADS)
Magurno, Davide; Maestri, Tiziano; Grassi, Davide; Piccioni, Giuseppe; Sindoni, Giuseppe
2017-09-01
Two years of data from the M-channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS), on board the European Space Agency mission Venus Express operating around the planet Venus, are analysed. Nocturnal data from a nadir viewpoint in the latitude band 25°N-55°N are selected for their configuration advantages and maximisation of the scene homogeneity. A reference model, and radiance spectrum, is defined based on average accepted values of the Venus main atmospheric and cloud parameters found in the literature. Extensive radiative transfer simulations are performed to provide a synthetic database of more than 10 000 VIRTIS radiances representing the natural variability of the system parameters (atmospheric temperature profile, cloud H2Osbnd H2SO4 solution concentration and vertical distribution, particle size distribution density and modal radius). A simulated-observed fitting algorithm of spectral radiances in window channels, based on a weighting procedure accounting for the latitudinal observed radiance variations, is used to derive the best atmosphere-cloud configuration for each observation. Results show that the reference Venus model does not adequately reproduce the observed VIRTIS spectra. In particular, the model accounting for a constant sulphuric acid concentration along the vertical extent of the clouds is never selected as a best fit. The 75%/96% and 84%/96% concentrations (the first values refer to the upper cloud layers and the second values to the lower ones) are the most commonly retrieved models representing more than 85% of the retrieved cases for any latitudinal band considered. It is shown that the assumption of stratified concentration of aqueous sulphuric acid allows to adequately fit the observed radiance, in particular the peak at 1.74 μm and around 4 μm. The analysis of the results concerning the microphysics suggests larger radii for the upper cloud layers in conjunction with a large reduction of their number density with respect to the reference standard. Considerable variation of the particle concentration in the Venus' atmosphere is retrieved for altitudes between 60 and 70 km. The retrieved models also suggest that lower cloud layers have smaller particle radii and larger number density than expected from the reference model. Latitudinal variations of microphysical and chemical parameters are also analysed.
Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano; ...
2017-08-11
Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano
Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less
Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita
2003-11-01
A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.
Retrievals with the Infrared Atmospheric Sounding Interferometer
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.
2007-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.
The first observed cloud echoes and microphysical parameter retrievals by China's 94-GHz cloud radar
NASA Astrophysics Data System (ADS)
Wu, Juxiu; Wei, Ming; Hang, Xin; Zhou, Jie; Zhang, Peichang; Li, Nan
2014-06-01
By using the cloud echoes first successfully observed by China's indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar reflectivity factor is larger (over -10 dBZ). (3) The radar's sensitivity is comparatively higher because the minimum radar reflectivity factor is about -35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle effective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar reflectivity factor.
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail Dmitrievic; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; vanDiedenhove, Bastiaan
2012-01-01
We present an algorithm for the retrieval of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was on-board of the NASA Glory satellite. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths ranging from 410 to 2260 nm. The cloud droplet size retrievals use the polarized reflectance in the scattering angle range between 135deg and 165deg, where they exhibit the sharply defined structure known as the rain- or cloud-bow. The shape of the rainbow is determined mainly by the single scattering properties of cloud particles. This significantly simplifies both forward modeling and inversions, while also substantially reducing uncertainties caused by the aerosol loading and possible presence of undetected clouds nearby. In this study we present the accuracy evaluation of our algorithm based on the results of sensitivity tests performed using realistic simulated cloud radiation fields.
Ultraspectral sounding retrieval error budget and estimation
NASA Astrophysics Data System (ADS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larrabee L.; Yang, Ping
2011-11-01
The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI).
Ultraspectral Sounding Retrieval Error Budget and Estimation
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2011-01-01
The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..
NASA Technical Reports Server (NTRS)
Olson, William S.; Raymond, William H.
1990-01-01
The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.
NASA Technical Reports Server (NTRS)
Olson, William S.
1990-01-01
A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2017-04-01
Our study analyses climatologies of cloud fraction, cloud type and cloud radiative effect depending on different parameters at two stations in Switzerland. The calculations have been performed for shortwave (0.3 - 3 μm) and longwave (3 - 100 μm) radiation separately. Information about fractional cloud coverage and cloud type is automatically retrieved from images taken by visible all-sky cameras at the two stations Payerne (490 m asl) and Davos (1594 m asl) using a cloud detection algorithm developed by PMOD/WRC (Wacker et al., 2015). Radiation data are retrieved from pyranometers and pyrgeometers, the cloud base height from a ceilometer and IWV data from GPS measurements. Interestingly, Davos and Payerne show different trends in terms of cloud coverage and cloud fraction regarding seasonal variations. The absolute longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 octas has a median value between 61 and 72 Wm-2. It is shown that the fractional cloud coverage, the cloud base height (CBH) and integrated water vapour (IWV) all have an influence on the magnitude of the LCE and will be illustrated with key examples. The relative values of the shortwave cloud radiative effect (SCE) for low-level clouds and a cloud coverage of 8 octas are between -88 to -62 %. The SCE is also influenced by the latter parameters, but also if the sun is covered or not by clouds. At both stations situations of shortwave radiation cloud enhancements have been observed and will be discussed. Wacker S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikas, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, J. Geophys. Res. Atmos, 120, 695-707.
NASA Technical Reports Server (NTRS)
Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.
2004-01-01
Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin G.; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.;
2016-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties(optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations.The C6 algorithm changes collectively can result in significant changes relative to C5,though the magnitude depends on the dataset and the pixels retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud opticalproperty datasets, other MODIS cloud datasets are discussed when relevant.
Platnick, Steven; Meyer, Kerry G; King, Michael D; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G Thomas; Zhang, Zhibo; Hubanks, Paul A; Holz, Robert E; Yang, Ping; Ridgway, William L; Riedi, Jérôme
2017-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases-daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel's retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant.
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.; Yang, Ping; Ridgway, William L.; Riedi, Jérôme
2018-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases–daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel’s retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant. PMID:29657349
Neural-Network Approach to Hyperspectral Data Analysis for Volcanic Ash Clouds Monitoring
NASA Astrophysics Data System (ADS)
Piscini, Alessandro; Ventress, Lucy; Carboni, Elisa; Grainger, Roy Gordon; Del Frate, Fabio
2015-11-01
In this study three artificial neural networks (ANN) were implemented in order to emulate a retrieval model and to estimate the ash Aerosol optical Depth (AOD), particle effective radius (reff) and cloud height from volcanic eruption using hyperspectral remotely sensed data. ANNs were trained using a selection of Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding ash parameters retrieved obtained using the Oxford retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajo ̈kull volcano (Iceland) occurred in 2010. The results of validation provided root mean square error (RMSE) values between neural network outputs and targets lower than standard deviation (STD) of corresponding target outputs, therefore demonstrating the feasibility to estimate volcanic ash parameters using an ANN approach, and its importance in near real time monitoring activities, owing to its fast application. A high accuracy has been achieved for reff and cloud height estimation, while a decreasing in accuracy was obtained when applying the NN approach for AOD estimation, in particular for those values not well characterized during NN training phase.
NASA Astrophysics Data System (ADS)
Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.
2016-12-01
The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloud retrievals from ORACLES, compared with standard RSP low-level cloud retrieval method that has been validated against in situ observations.
NASA Astrophysics Data System (ADS)
Buczkowski, S.; Martins, J.; Fernandez-Borda, R.; Cieslak, D.; Hall, J.
2013-12-01
The UMBC Rainbow Polarimetric Imager is a small form factor VIS imaging polarimeter suitable for use on a number of platforms. An optical system based on a Phillips prism with three Bayer filter color detectors, each detecting a separate polarization state, allows simultaneous detection of polarization and spectral information. A Mueller matrix-like calibration scheme corrects for polarization artifacts in the optical train and allows retrieval of the polarization state of incoming light to better than 0.5%. Coupled with wide field of view optics (~90°), RPI can capture images of cloudbows over a wide range of aircraft headings and solar zenith angles for retrieval of cloud droplet size distribution (DSD) parameters. In May-June 2012, RPI was flown in a nadir port on the NASA DC-8 during the DC3 field campaign. We will show examples of cloudbow DSD parameter retrievals from the campaign to demonstrate the efficacy of such a system to terrestrial atmospheric remote sensing. RPI image from DC3 06/15/2012 flight. Left panel is raw image from the RPI 90° camera. Middle panel is Stokes 'q' parameter retrieved from full three camera dataset. Right panel is a horizontal cut in 'q' through the glory. Both middle and right panels clearly show cloudbow features which can be fit to infer cloud DSD parameters.
How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2010-01-01
Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.
Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra
NASA Astrophysics Data System (ADS)
Willame, Y.; Vandaele, A. C.; Depiesse, C.; Lefèvre, F.; Letocart, V.; Gillotay, D.; Montmessin, F.
2017-08-01
We present the retrieval algorithm developed to analyse nadir spectra from SPICAM/UV aboard Mars-Express. The purpose is to retrieve simultaneously several parameters of the Martian atmosphere and surface: the dust optical depth, the ozone total column, the cloud opacity and the surface albedo. The retrieval code couples the use of an existing complete radiative transfer code, an inversion method and a cloud detection algorithm. We describe the working principle of our algorithm and the parametrisation used to model the required absorption, scattering and reflection processes of the solar UV radiation that occur in the Martian atmosphere and at its surface. The retrieval method has been applied on 4 Martian years of SPICAM/UV data to obtain climatologies of the different quantities under investigation. An overview of the climatology is given for each species showing their seasonal and spatial distributions. The results show a good qualitative agreement with previous observations. Quantitative comparisons of the retrieved dust optical depths indicate generally larger values than previous studies. Possible shortcomings in the dust modelling (altitude profile) have been identified and may be part of the reason for this difference. The ozone results are found to be influenced by the presence of clouds. Preliminary quantitative comparisons show that our retrieved ozone columns are consistent with other results when no ice clouds are present, and are larger for the cases with clouds at high latitude. Sensitivity tests have also been performed showing that the use of other a priori assumptions such as the altitude distribution or some scattering properties can have an important impact on the retrieval.
NASA Astrophysics Data System (ADS)
Blanchard, Yann
An important goal, within the context of improving climate change modelling, is to enhance our understanding of aerosols and their radiative effects (notably their indirect impact as cloud condensation nuclei). The cloud optical depth (COD) and average ice particle size of thin ice clouds (TICs) are two key parameters whose variations could strongly influence radiative effects and climate in the Arctic environment. Our objective was to assess the potential of using multi-band thermal radiance measurements of zenith sky radiance for retrieving COD and effective particle diameter (Deff) of TICs in the Arctic. We analyzed and quantified the sensitivity of thermal radiance on many parameters, such as COD, Deff, water vapor content, cloud bottom altitude and thickness, size distribution and shape. Using the sensitivity of IRT to COD and Deff, the developed retrieval technique is validated in comparison with retrievals from LIDAR and RADAR. Retrievals were applied to ground-based thermal infrared data acquired for 100 TICs at the high-Arctic PEARL observatory in Eureka, Nunavut, Canada and were validated using AHSRL LIDAR and MMCR RADAR data. The results of the retrieval method were used to successfully extract COD up to values of 3 and to separate TICs into two types : TIC1 characterized by small crystals (Deff < 30 mum) and TIC2 by large ice crystals (Deff > 30 mum, up to 300 mum). Inversions were performed across two polar winters. At the end of this research, we proposed different alternatives to apply our methodology in the Arctic. Keywords : Remote sensing ; ice clouds ; thermal infrared multi-band radiometry ; Arctic.
NASA Astrophysics Data System (ADS)
Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.
2016-08-01
A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.
Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results
NASA Astrophysics Data System (ADS)
Eichmann, Kai-Uwe; Lelli, Luca; von Savigny, Christian; Sembhi, Harjinder; Burrows, John P.
2016-03-01
Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV-visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land-sea contrast, as seen in nadir cloud occurrence frequency distributions, is not observed in limb geometry. Co-located cloud top height measurements of the limb-viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT are compared for the period from January 2008 to March 2012. The global CTH agreement of about 1 km is observed, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfere with the cloud retrieval and inhibit the detection of tropospheric clouds. The aerosol impact on cloud retrievals was studied for the volcanoes Kasatochi (August 2008), Sarychev Peak (June 2009), and Nabro (June 2011). Long-lasting aerosol scattering is detected after these events in the Northern Hemisphere for heights above 12.5 km in tropical and polar latitudes. Aerosol top heights up to about 22 km are found in 2009 and the enhanced lower stratospheric aerosol layer persisted for about 7 months. In August 2009 about 82 % of the lower stratosphere between 30 and 70° N was filled with scattering particles and nearly 50 % in October 2008.
NASA Astrophysics Data System (ADS)
Arunachalam, M. S.; Puli, Anil; Anuradha, B.
2016-07-01
In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth
Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign
NASA Technical Reports Server (NTRS)
Knobelspiesse, K.; Cairns, B.; Redemann, J.; Bergstrom, R. W.; Stohl, A.
2011-01-01
Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of (0.555 m).
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, L. Peter; Strow, Larrybee; Mango, Stephen A.
2008-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated to benefit future NPOESS operation.
Automated Detection of Clouds in Satellite Imagery
NASA Technical Reports Server (NTRS)
Jedlovec, Gary
2010-01-01
Many different approaches have been used to automatically detect clouds in satellite imagery. Most approaches are deterministic and provide a binary cloud - no cloud product used in a variety of applications. Some of these applications require the identification of cloudy pixels for cloud parameter retrieval, while others require only an ability to mask out clouds for the retrieval of surface or atmospheric parameters in the absence of clouds. A few approaches estimate a probability of the presence of a cloud at each point in an image. These probabilities allow a user to select cloud information based on the tolerance of the application to uncertainty in the estimate. Many automated cloud detection techniques develop sophisticated tests using a combination of visible and infrared channels to determine the presence of clouds in both day and night imagery. Visible channels are quite effective in detecting clouds during the day, as long as test thresholds properly account for variations in surface features and atmospheric scattering. Cloud detection at night is more challenging, since only courser resolution infrared measurements are available. A few schemes use just two infrared channels for day and night cloud detection. The most influential factor in the success of a particular technique is the determination of the thresholds for each cloud test. The techniques which perform the best usually have thresholds that are varied based on the geographic region, time of year, time of day and solar angle.
The application of time series models to cloud field morphology analysis
NASA Technical Reports Server (NTRS)
Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.
1987-01-01
A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.
2016-01-01
The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.
Improved Soundings and Error Estimates using AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2006-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.
Atmospheric Soundings from AIRS/AMSU/HSB
NASA Technical Reports Server (NTRS)
Susskind, Joel; Atlas, Robert
2004-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and 1 km tropospheric layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved effective fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correlation coefficients and the prediction of location and intensity of cyclones.
Current results from AlRS/AMSU/HSB
NASA Technical Reports Server (NTRS)
Susskind, Joel; Atlas, Robert; Barnet, Christopher; Blaisdell, Jon; Iredell, Lena; Bri, Genia; Jusem, Juan Carlos; Keita, Fricky; Kouvaris, Louis; Molnar, Gyula
2004-01-01
AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correction coefficients and the prediction of location and intensity of cyclones.
Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.
2018-01-01
Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nm. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (~300 μm) among the three, West Antarctica is the second (~220 μm) and East Antarctica is the smallest (~190 μm). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations. PMID:29636591
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.
2016-01-01
Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nanometers. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (approximately 300 microns) among the three, West Antarctica is the second (220 microns) and East Antarctica is the smallest (190 microns). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations.
NASA Astrophysics Data System (ADS)
Pugnaghi, Sergio; Guerrieri, Lorenzo; Corradini, Stefano; Merucci, Luca
2016-07-01
Volcanic plume removal (VPR) is a procedure developed to retrieve the ash optical depth, effective radius and mass, and sulfur dioxide mass contained in a volcanic cloud from the thermal radiance at 8.7, 11, and 12 µm. It is based on an estimation of a virtual image representing what the sensor would have seen in a multispectral thermal image if the volcanic cloud were not present. Ash and sulfur dioxide were retrieved by the first version of the VPR using a very simple atmospheric model that ignored the layer above the volcanic cloud. This new version takes into account the layer of atmosphere above the cloud as well as thermal radiance scattering along the line of sight of the sensor. In addition to improved results, the new version also offers an easier and faster preliminary preparation and includes other types of volcanic particles (andesite, obsidian, pumice, ice crystals, and water droplets). As in the previous version, a set of parameters regarding the volcanic area, particle types, and sensor is required to run the procedure. However, in the new version, only the mean plume temperature is required as input data. In this work, a set of parameters to compute the volcanic cloud transmittance in the three quoted bands, for all the aforementioned particles, for both Mt. Etna (Italy) and Eyjafjallajökull (Iceland) volcanoes, and for the Terra and Aqua MODIS instruments is presented. Three types of tests are carried out to verify the results of the improved VPR. The first uses all the radiative transfer simulations performed to estimate the above mentioned parameters. The second one makes use of two synthetic images, one for Mt. Etna and one for Eyjafjallajökull volcanoes. The third one compares VPR and Look-Up Table (LUT) retrievals analyzing the true image of Eyjafjallajökull volcano acquired by MODIS aboard the Aqua satellite on 11 May 2010 at 14:05 GMT.
NASA Technical Reports Server (NTRS)
Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.
2013-01-01
In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.
NASA Technical Reports Server (NTRS)
Fisher, Brad; Joiner, Joanna; Vasilkov, Alexander; Veefkind, Pepijn; Platnick, Steven; Wind, Galina
2014-01-01
Clouds cover approximately 60% of the earth's surface. When obscuring the satellite's field of view (FOV), clouds complicate the retrieval of ozone, trace gases and aerosols from data collected by earth observing satellites. Cloud properties associated with optical thickness, cloud pressure, water phase, drop size distribution (DSD), cloud fraction, vertical and areal extent can also change significantly over short spatio-temporal scales. The radiative transfer models used to retrieve column estimates of atmospheric constituents typically do not account for all these properties and their variations. The OMI science team is preparing to release a new data product, OMMYDCLD, which combines the cloud information from sensors on board two earth observing satellites in the NASA A-Train: Aura/OMI and Aqua/MODIS. OMMYDCLD co-locates high resolution cloud and radiance information from MODIS onto the much larger OMI pixel and combines it with parameters derived from the two other OMI cloud products: OMCLDRR and OMCLDO2. The product includes histograms for MODIS scientific data sets (SDS) provided at 1 km resolution. The statistics of key data fields - such as effective particle radius, cloud optical thickness and cloud water path - are further separated into liquid and ice categories using the optical and IR phase information. OMMYDCLD offers users of OMI data cloud information that will be useful for carrying out OMI calibration work, multi-year studies of cloud vertical structure and in the identification and classification of multi-layer clouds.
Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2010-01-01
Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.
Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast
NASA Astrophysics Data System (ADS)
Masselink, Thomas; Schluessel, P.
1995-12-01
Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.
Remote sensing of cloud radiation and microphysical parameters
NASA Technical Reports Server (NTRS)
Wu, M.-L. C.; Curran, R. J.
1983-01-01
Multispectral cloud radiometer (MCR) data, retrieved from a radiometer installed in a nadir viewing position on a high-altitude aircraft flying at 200 m/s and at an altitude of 60,000 ft above the mean sea level, are analyzed. The data discussed were obtained in the 0.754, 0.7609, 0.7634, 1.626, 2.125, and 11.38-micron channels, and are compared to lidar-derived profiles. Among the cloud parameters under consideration are the cloud scaled optical thickness, cloudtop altitude, scaled volume scattering coefficient, particle thermodynamic phase, mean particle size, and cloudtop temperature.
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.
2017-12-01
In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, A. J.; Adelberg, L. K.; Kunkee, D. B.; Jackson, D. M.
1993-01-01
Progress by investigators at the Georgia Institute of Technology in the development of techniques for passive microwave retrieval of water vapor, cloud, and precipitation parameters using millimeter- and sub-millimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, and retrieval of water vapor profiles. During the period from 1 Jan. 1993 through 30 Jun. 1993 the Millimeter-wave Imaging Radiometer (MIR) completed data flights during a two-month long deployment in conjunction with TOGA/COARE. Coincident data was collected from several other ground-based, airborne, and satellite sensors, including the NASA/MSFC AMPR, MIT MTS, DMSP SSM/T-2 satellite, collocated radiosondes, ground- and aircraft-based radiometers and cloud lidars, airborne infrared imagers, solar flux probes, and airborne cloud particle sampling probes.
Linearized radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements
NASA Astrophysics Data System (ADS)
Molina García, Víctor; Sasi, Sruthy; Efremenko, Dmitry S.; Doicu, Adrian; Loyola, Diego
2018-07-01
In this paper, we describe several linearized radiative transfer models which can be used for the retrieval of cloud parameters from EPIC (Earth Polychromatic Imaging Camera) measurements. The approaches under examination are (1) the linearized forward approach, represented in this paper by the linearized discrete ordinate and matrix operator methods with matrix exponential, and (2) the forward-adjoint approach based on the discrete ordinate method with matrix exponential. To enhance the performance of the radiative transfer computations, the correlated k-distribution method and the Principal Component Analysis (PCA) technique are used. We provide a compact description of the proposed methods, as well as a numerical analysis of their accuracy and efficiency when simulating EPIC measurements in the oxygen A-band channel at 764 nm. We found that the computation time of the forward-adjoint approach using the correlated k-distribution method in conjunction with PCA is approximately 13 s for simultaneously computing the derivatives with respect to cloud optical thickness and cloud top height.
Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms
NASA Technical Reports Server (NTRS)
Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.;
2014-01-01
The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The average CTHs derived by the SEVIRI algorithms are closer to the CPR measurements than to CALIOP measurements. The biases between SEVIRI and CPR retrievals range from -0.8 kilometers to 0.6 kilometers. The correlation coefficients of CPR and SEVIRI observations vary between 0.82 and 0.89. To discuss the origin of the CTH deviation, we investigate three cloud categories: optically thin and thick single layer as well as multi-layer clouds. For optically thick clouds the correlation coefficients between the SEVIRI and the reference data sets are usually above 0.95. For optically thin single layer clouds the correlation coefficients are still above 0.92. For this cloud category the SEVIRI algorithms yield CTHs that are lower than CALIOP and similar to CPR observations. Most challenging are the multi-layer clouds, where the correlation coefficients are for most algorithms between 0.6 and 0.8. Finally, we evaluate the performance of the SEVIRI retrievals for boundary layer clouds. While the CTH retrieval for this cloud type is relatively accurate, there are still considerable differences between the algorithms. These are related to the uncertainties and limited vertical resolution of the assumed temperature profiles in combination with the presence of temperature inversions, which lead to ambiguities in the CTH retrieval. Alternative approaches for the CTH retrieval of low clouds are discussed.
NASA Technical Reports Server (NTRS)
Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.
2013-01-01
We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6 km.
NASA Astrophysics Data System (ADS)
Lupu, R.; Marley, M. S.; Lewis, N. K.
2015-12-01
We have assembled an atmospheric retrieval package for the reflected light spectra of gas- and ice- giants in order to inform the design and estimate the scientific return of future space-based coronagraph instruments. Such instruments will have a working bandpass of ~0.4-1 μm and a resolving power R~70, and will enable the characterization of tens of exoplanets in the Solar neighborhood. The targets will be chosen form known RV giants, with estimated effective temperatures of ~100-600 K and masses between 0.3 and 20 MJupiter. In this regime, both methane and clouds will have the largest effects on the observed spectra. Our retrieval code is the first to include cloud properties in the core set of parameters, along with methane abundance and surface gravity. We consider three possible cloud structure scenarios, with 0, 1 or 2 cloud layers, respectively. The best-fit parameters for a given model are determined using a Monte Carlo Markov Chain ensemble sampler, and the most favored cloud structure is chosen by calculating the Bayes factors between different models. We present the performance of our retrieval technique applied to a set of representative model spectra, covering a SNR range form 5 to 20 and including possible noise correlations over a 25 or 100 nanometer scale. Further, we apply the technique to more realistic cases, namely simulated observations of Jupiter, Saturn, Uranus, and the gas-giant HD99492c. In each case, we determine the confidence levels associated with the methane and cloud detections, as a function of SNR and noise properties.
NASA Astrophysics Data System (ADS)
Chimot, Julien; Vlemmix, Tim; Veefkind, Pepijn; Levelt, Pieternel
2016-04-01
Numerous studies have drawn attention to the complexities related to the retrievals of tropospheric NO2 columns derived from satellite UltraViolet-Visible (UV-Vis) measurements in the presence of aerosols. Correction for aerosol effects will remain a challenge for the next generation of air quality satellite instruments such as TROPOMI on Sentinel-5 Precursor, Sentinel-4 and Sentinel-5. The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO2 for more than a decade. However, aerosols are not explicitly taken into account in the current operational OMI tropospheric NO2 retrieval chain (DOMINO v2 [Boersma et al., 2011]). Our study analyses 2 approaches for an operational aerosol correction, based on the use of the O2-O2 477 nm band. The 1st approach is the cloud-model based aerosol correction, also named "implicit aerosol correction", and already used in the operational chain. The OMI O2-O2 cloud retrieval algorithm, based on the Differential Optical Absorption Spectroscopy (DOAS) approach, is applied both to cloudy and to cloud-free scenes with aerosols present. Perturbation of the OMI cloud retrievals over scenes dominated by aerosols has been observed in recent studies led by [Castellanos et al., 2015; Lin et al., 2015; Lin et al., 2014]. We investigated the causes of these perturbations by: (1) confronting the OMI tropospheric NO2, clouds and MODIS AQUA aerosol products; (2) characterizing the key drivers of the aerosol net effects, compared to a signal from clouds, in the UV-Vis spectra. This study has focused on large industrialised areas like East-China, over cloud-free scenes. One of the key findings is the limitation due to the coarse sampling of the employed cloud Look-Up Table (LUT) to convert the results of the applied DOAS fit into effective cloud fraction and pressure. This leads to an underestimation of tropospheric NO2 amount in cases of particles located at elevated altitude. A higher sampling of the variation of O2-O2 SCD and continuum reflectance as a function of effective cloud parameters in case of low effective cloud fraction values is requested for applying an aerosol correction. The updates of the OMI O2-O2 cloud algorithm, based on the scheduled new OMI cloud LUT, will be presented in terms of impacts of the effective cloud retrievals and reduced biases of tropospheric NO2 columns over cloud-free scenes dominated by aerosols in China. A 2nd approach is investigated, assuming a more explicit aerosol correction. Previous analyses pointed out that the O2-O2 spectra contain information about aerosols: the continuum reflectance is primarily constrained by the Aerosol Optical thickness (AOT) while the O2-O2 Slant Column Density (SCD) mostly results from the combination of AOT and aerosols altitude. We have developed a first prototype algorithm allowing to retrieve information about AOT and aerosol altitude from the O2-O2 DOAS fit. We will discuss preliminary sensitivities and the potential accuracy of the associated explicit aerosol correction, without the use of effective cloud parameters.
A General Uncertainty Quantification Methodology for Cloud Microphysical Property Retrievals
NASA Astrophysics Data System (ADS)
Tang, Q.; Xie, S.; Chen, X.; Zhao, C.
2014-12-01
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program provides long-term (~20 years) ground-based cloud remote sensing observations. However, there are large uncertainties in the retrieval products of cloud microphysical properties based on the active and/or passive remote-sensing measurements. To address this uncertainty issue, a DOE Atmospheric System Research scientific focus study, Quantification of Uncertainties in Cloud Retrievals (QUICR), has been formed. In addition to an overview of recent progress of QUICR, we will demonstrate the capacity of an observation-based general uncertainty quantification (UQ) methodology via the ARM Climate Research Facility baseline cloud microphysical properties (MICROBASE) product. This UQ method utilizes the Karhunen-Loéve expansion (KLE) and Central Limit Theorems (CLT) to quantify the retrieval uncertainties from observations and algorithm parameters. The input perturbations are imposed on major modes to take into account the cross correlations between input data, which greatly reduces the dimension of random variables (up to a factor of 50) and quantifies vertically resolved full probability distribution functions of retrieved quantities. Moreover, this KLE/CLT approach has the capability of attributing the uncertainties in the retrieval output to individual uncertainty source and thus sheds light on improving the retrieval algorithm and observations. We will present the results of a case study for the ice water content at the Southern Great Plains during an intensive observing period on March 9, 2000. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.
2012-04-01
The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.
A Comparison of Aerosol Measurements from OCO-2 and MODIS
NASA Astrophysics Data System (ADS)
Nelson, R. R.; O'Dell, C.
2016-12-01
The goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve carbon dioxide with high accuracy and precision. This is only possible, however, if the light-path modification effects caused by clouds and aerosols are properly quantified. Even tiny amounts of clouds or aerosols can induce sufficient light-path modifications to lead to large errors in the estimated CO2 column-mean (XCO2). Therefore, it is imperative to evaluate the accuracy of the OCO-2 retrieved aerosol parameters. In this study, we compare OCO-2 retrieved aerosol parameters to Aqua-MODIS observations co-located in time and space. We find that there are significant disagreements between the aerosol information derived from MODIS and the retrieved aerosol parameters from OCO-2. These results are unsurprising, as previous comparisons to AERONET have also been poor. However, the tight co-location between Aqua and OCO-2 in the Afternoon Constellation allows us to examine the potential synergistic use of OCO-2 and MODIS measurements to more accurately constrain aerosol properties, potentially leading to a more accurate CO2 measurement. Specifically, we used select MODIS aerosol properties as the a priori for the OCO-2 retrievals and present the results here. Future studies include investigating the possibility of ingesting the MODIS radiances directly into the OCO-2 retrieval algorithm to further improve OCO-2's aerosol scheme and the resulting measurements.
XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation
NASA Astrophysics Data System (ADS)
Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.; Richter, Andreas
2018-02-01
A cloud identification algorithm used for cloud masking, which is based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths, has been developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance, as observed from space, is very different from that of aerosols. Clouds show a high spatial variability in the scale of a hundred metres to a few kilometres, whereas aerosols in general are homogeneous. The concept of spatial variability of reflectances at the top of the atmosphere is mainly applicable over the ocean, where the surface background is sufficiently homogeneous for the separation between aerosols and clouds. Aerosol retrievals require a sufficiently accurate cloud identification to be able to mask these ground scenes. However, a conservative mask will exclude strong aerosol episodes and a less conservative mask could introduce cloud contamination that biases the retrieved aerosol optical properties (e.g. aerosol optical depth and effective radii). A detailed study on the effect of cloud contamination on aerosol retrievals has been performed and parameters are established determining the threshold value for the MODIS aerosol cloud mask (3×3-STD) over the ocean. The 3×3-STD algorithm discussed in this paper is the operational cloud mask used for MODIS aerosol retrievals over the ocean.A prolonged pollution haze event occurred in the northeast part of China during the period 16-21 December 2016. To assess the impact of such events, the amounts and distribution of aerosol particles, formed in such events, need to be quantified. The newly launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3 is the successor of the MEdium Resolution Imaging Spectrometer (MERIS). It provides measurements of the radiance and reflectance at the top of the atmosphere, which can be used to retrieve the aerosol optical thickness (AOT) from synoptic to global scales. In this study, the recently developed AOT retrieval algorithm eXtensible Bremen AErosol Retrieval (XBAER) has been applied to data from the OLCI instrument for the first time to illustrate the feasibility of applying XBAER to the data from this new instrument. The first global retrieval results show similar patterns of aerosol optical thickness, AOT, to those from MODIS and MISR aerosol products. The AOT retrieved from OLCI is validated by comparison with AERONET observations and a correlation coefficient of 0.819 and bias (root mean square) of 0.115 is obtained. The haze episode is well captured by the OLCI-derived AOT product. XBAER is shown to retrieve AOT well from the observations of MERIS and OLCI.
Global Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Riedi, Jerome C.; Baum, Bryan A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.
Satellite Sounder-Based OLR-, Cloud- and Atmospheric Temperature Climatologies for Climate Analyses
NASA Technical Reports Server (NTRS)
Molnar, Gyula I.; Susskind, Joel
2006-01-01
Global energy balance of the Earth-atmosphere system may change due to natural and man-made climate variations. For example, changes in the outgoing longwave radiation (OLR) can be regarded as a crucial indicator of climate variations. Clouds play an important role -still insufficiently assessed in the global energy balance on all spatial and temporal scales, and satellites provide an ideal platform to measure cloud and large-scale atmospheric variables simultaneously. The TOVS series of satellites were the first to provide this type of information since 1979. OLR [Mehta and Susskind], cloud cover and cloud top pressure [Susskind et al] are among the key climatic parameters computed by the TOVS Pathfinder Path-A algorithm using mainly the retrieved temperature and moisture profiles. AIRS, regarded as the new and improved TOVS , has a much higher spectral resolution and greater S/N ratio, retrieving climatic parameters with higher accuracy. First we present encouraging agreements between MODIS and AIRS cloud top pressure (C(sub tp) and effective (A(sub eff), a product of infrared emissivity at 11 microns and physical cloud cover or A(sub c)) cloud fraction seasonal and interannual variabilities for selected months. Next we present validation efforts and preliminary trend analyses of TOVS-retrieved C(sub tp) and A(sub eff). For example, decadal global trends of the TOVS Path-A and ISCCP-D2 P(sub c), and A(sub eff)/A(sub c), values are similar. Furthermore, the TOVS Path-A and ISCCP-AVHRR [available since 19831 cloud fractions correlate even more strongly, including regional trends. We also present TOVS and AIRS OLR validation effort results and (for the longer-term TOVS Pathfinder Path-A dataset) trend analyses. OLR interannual spatial variabilities from the available state-of-the-art CERES measurements and both from the AIRS [Susskind et al] and TOVS OLR computations are in remarkably good agreement. Global monthly mean CERES and TOVS OLR time series show very good agreement in absolute values also. Finally, we will assess correlations among long-term trends of selected parameters, derived simultaneously from the TOVS Pathfinder Path-A datase
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Harrison, Edwin F.; Gibson, Gary G.
1987-01-01
A set of visible and IR data obtained with GOES from July 17-31, 1983 is analyzed using a modified version of the hybrid bispectral threshold method developed by Minnis and Harrison (1984). This methodology can be divided into a set of procedures or optional techniques to determine the proper contaminate clear-sky temperature or IR threshold. The various optional techniques are described; the options are: standard, low-temperature limit, high-reflectance limit, low-reflectance limit, coldest pixel and thermal adjustment limit, IR-only low-cloud temperature limit, IR clear-sky limit, and IR overcast limit. Variations in the cloud parameters and the characteristics and diurnal cycles of trade cumulus and stratocumulus clouds over the eastern equatorial Pacific are examined. It is noted that the new method produces substantial changes in about one third of the cloud amount retrieval; and low cloud retrievals are affected most by the new constraints.
NASA Astrophysics Data System (ADS)
Li, J.; Menzel, W.; Sun, F.; Schmit, T.
2003-12-01
The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.
Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander
An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.
2007-01-01
3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.
Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs
NASA Astrophysics Data System (ADS)
Garland, Ryan; Irwin, Patrick
2017-10-01
A significant number of ultracool (<600K) extrasolar objects have been discovered in the past decade thanks to wide-field surveys such as WISE. These objects present a perfect testbed for examining the evolution of atmospheric structure as we transition from typically hot extrasolar temperatures to the temperatures found within our Solar System.By examining these types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a gray cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zhang, Zhibo
2011-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product provides three separate 1 km resolution retrievals of cloud particle effective radii (r (sub e)), derived from 1.6, 2.1 and 3.7 micron band observations. In this study, differences among the three size retrievals for maritime water clouds (designated as r (sub e), 1.6 r (sub e), 2.1 and r (sub e),3.7) were systematically investigated through a series of case studies and global analyses. Substantial differences are found between r (sub e),3.7 and r (sub e),2.1 retrievals (delta r (sub e),3.7-2.l), with a strong dependence on cloud regime. The differences are typically small, within +/- 2 micron, over relatively spatially homogeneous coastal stratocumulus cloud regions. However, for trade wind cumulus regimes, r (sub e),3.7 was found to be substantially smaller than r (sub e),2.1, sometimes by more than 10 micron. The correlation of delta r(sub e),3.7-2.1 with key cloud parameters, including the cloud optical thickness (tau), r (sub e) and a cloud horizontal heterogeneity index (H-sigma) derived from 250 m resolution MODIS 0.86 micron band observations, were investigated using one month of MODIS Terra data. It was found that differences among the three r (sub e) retrievals for optically thin clouds (tau <5) are highly variable, ranging from - 15 micron to 10 micron, likely due to the large MODIS retrieval uncertainties when the cloud is thin. The delta r (sub e),3.7-2.1 exhibited a threshold-like dependence on both r (sub e),2.l and H-sigma. The re,3.7 is found to agree reasonably well with re,2.! when re,2.l is smaller than about 15J-Lm, but becomes increasingly smaller than re,2.1 once re,2.! exceeds this size. All three re retrievals showed little dependence when H-sigma < 0.3 (defined as standard deviation divided by the mean for the 250 m pixels within a 1 km pixel retrieval). However, for H-=sigma >0.3, both r (sub e),1.6 and r (sub e),2.1 were seen to increase quickly with H-sigma. On the other hand, r (sub e),3.7 statistics showed little dependence on H-sigma and remained relatively stable over the whole range of H-sigma values. Potential contributing causes to the substantial r (sub e),3.7 and r (sub e),2.1 differences are discussed. In particular, based on both 1-D and 3-D radiative transfer simulations, we have elucidated mechanisms by which cloud heterogeneity and 3-D radiative effects can cause large differences between r (sub e),3.7 and r (sub e),2.l retrievals for highly inhomogeneous clouds. Our results suggest that the contrast in observed delta r (sub e)3.7-2.1 between cloud regimes is correlated with increases in both cloud r (sub e) and H-sigma. We also speculate that in some highly inhomogeneous drizzling clouds, vertical structure induced by drizzle and 3-D radiative effects might operate together to cause dramatic differences between r (sub e),3.7 and r (sub e),2.1 retrievals.
Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.
2007-01-01
Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.
NASA Technical Reports Server (NTRS)
Pittman, Jasna; Robertson, Franklin; Blankenship, Clay
2008-01-01
Accurate measurement of the physical and radiative properties of clouds and their representation in climate models continues to be a challe nge. Model parameterizations are still subject to a large number of t unable parameters; furthermore, accurate and representative in situ o bservations are very sparse, and satellite observations historically have significant quantitative uncertainties, particularly with respect to particle size distribution (PSD) and cloud phase. Ice Water Path (IWP), or amount of ice present in a cloud column, is an important cl oud property to accurately quantify, because it is an integral measur e of the microphysical properties of clouds and the cloud feedback pr ocesses in the climate system. This paper investigates near co-incident retrievals of IWP over tropical oceans using three diverse measurem ent systems: radar from CloudSat, Vis/IR from Aqua/MODIS, and microwa ve from NOAA-18IMHS. CloudSat 94 GHz radar measurements provide high resolution vertical and along-orbit structure of cloud reflectivity a nd enable IWP (and IWC) retrievals. Overlapping MODIS measurements of cloud optical thickness and phase allow estimates of IWP when cloud tops are identified as being ice. Periodically, NOAA18 becomes co-inci dent in space I time to enable comparison of A-Train measurements to IWP inferred from the 157 and 89 GHz channel radiances. This latter m easurement is effective only for thick convective anvil systems. We s tratify these co-incident data (less than 4 minutes separation) into cirrus only, cirrus overlying liquid water clouds, and precipitating d eep convective clouds. Substantial biases in IWP and ice effective ra dius are found. Systematic differences in these retrievals are consid ered in light of the uncertainties in a priori assumptions ofPSDs, sp ectral sensitivity and algorithm strategies, which have a direct impact on the IWP product.
A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO
NASA Astrophysics Data System (ADS)
Pan, Honglin; Bu, Lingbing; Kumar, K. Raghavendra; Gao, Haiyang; Huang, Xingyou; Zhang, Wentao
2017-08-01
The CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are the members of satellite observation system of A-train to achieve the quasi-synchronization observation on the same orbit. With the help of active (CALIOP and CPR) and passive payloads from these two satellites, respectively, unprecedented detailed information of microphysical properties of ice cloud can be retrieved. The ice water content (IWC) is regarded as one of the most important microphysical characteristics of cirrus for its prominent role in cloud radiative forcing. In this paper, we proposed a new joint (Combination) retrieval method using the full advantages of different well established retrieval methods, namely the LIDAR method (for the region Lidar-only), the MWCR method (for the region Radar-only), and Wang method (for the region Lidar-Radar) proposed by Wang et al. (2002). In retrieval of cirrus IWC, empirical formulas of the exponential type were used for both thinner cirrus (detected by Lidar-only), thicker cirrus (detected by radar-only), and the part of cirrus detected by both, respectively. In the present study, the comparison of various methods verified that our proposed new joint method is more comprehensive, rational and reliable. Further, the retrieval information of cirrus is complete and accurate for the region that Lidar cannot penetrate and Radar is insensitive. On the whole, the retrieval results of IWC showed certain differences retrieved from the joint method, Ca&Cl, and ICARE which can be interpreted from the different hypothesis of microphysical characteristics and parameters used in the retrieval method. In addition, our joint method only uses the extinction coefficient and the radar reflectivity factor to calculate the IWC, which is simpler and reduces to some extent the accumulative error. In future studies, we will not only compare the value of IWC but also explore the detailed macrophysical and microphysical characteristics of cirrus.
Comparative exoplanetology with consistent retrieval methods
NASA Astrophysics Data System (ADS)
Barstow, Joanna Katy; Aigrain, Suzanne; Irwin, Patrick Gerard Joseph; Sing, David
2016-10-01
The number of hot Jupiters with broad wavelength spectroscopic data has finally become large enough to make comparative planetology a reasonable proposition. New results presented by Sing et al. (2016) showcase ten hot Jupiters with spectra from the Hubble Space Telescope and photometry from Spitzer, providing insights into the presence of clouds and hazes.Spectral retrieval methods allow interpretation of exoplanet spectra using simple models, with minimal prior assumptions. This is particularly useful for exotic exoplanets, for which we may not yet fully understand the physical processes responsible for their atmospheric characteristics. Consistent spectral retrieval of a range of exoplanets can allow robust comparisons of their derived atmospheric properties.I will present a retrieval analysis using the NEMESIS code (Irwin et al. 2008) of the ten hot Jupiter spectra presented by Sing et al. (2016). The only distinctive aspects of the model for each planet are the mass and radius, and the temperature range explored. All other a priori model parameters are common to all ten objects. We test a range of cloud and haze scenarios, which include: Rayleigh-dominated and grey clouds; different cloud top pressures; and both vertically extended and vertically confined clouds.All ten planets, with the exception of WASP-39b, can be well represented by models with at least some haze or cloud. Our analysis of cloud properties has uncovered trends in cloud top pressure, vertical extent and particle size with planet equilibrium temperature. Taken together, we suggest that these trends indicate condensation and sedimentation of at least two different cloud species across planets of different temperatures, with condensates forming higher up in hotter atmospheres and moving progressively further down in cooler planets.Sing, D. et al. (2016), Nature, 529, 59Irwin, P. G. J. et al. (2008), JQSRT, 109, 1136
Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands
NASA Technical Reports Server (NTRS)
Kuze, Akihiko; Chance, Kelly V.
1994-01-01
Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.
NASA Technical Reports Server (NTRS)
Aires, F.; Prigent, C.; Rossow, W. B.; Rothstein, M.; Hansen, James E. (Technical Monitor)
2000-01-01
The analysis of microwave observations over land to determine atmospheric and surface parameters is still limited due to the complexity of the inverse problem. Neural network techniques have already proved successful as the basis of efficient retrieval methods for non-linear cases, however, first-guess estimates, which are used in variational methods to avoid problems of solution non-uniqueness or other forms of solution irregularity, have up to now not been used with neural network methods. In this study, a neural network approach is developed that uses a first-guess. Conceptual bridges are established between the neural network and variational methods. The new neural method retrieves the surface skin temperature, the integrated water vapor content, the cloud liquid water path and the microwave surface emissivities between 19 and 85 GHz over land from SSM/I observations. The retrieval, in parallel, of all these quantities improves the results for consistency reasons. A data base to train the neural network is calculated with a radiative transfer model and a a global collection of coincident surface and atmospheric parameters extracted from the National Center for Environmental Prediction reanalysis, from the International Satellite Cloud Climatology Project data and from microwave emissivity atlases previously calculated. The results of the neural network inversion are very encouraging. The r.m.s. error of the surface temperature retrieval over the globe is 1.3 K in clear sky conditions and 1.6 K in cloudy scenes. Water vapor is retrieved with a r.m.s. error of 3.8 kg/sq m in clear conditions and 4.9 kg/sq m in cloudy situations. The r.m.s. error in cloud liquid water path is 0.08 kg/sq m . The surface emissivities are retrieved with an accuracy of better than 0.008 in clear conditions and 0.010 in cloudy conditions. Microwave land surface temperature retrieval presents a very attractive complement to the infrared estimates in cloudy areas: time record of land surface temperature will be produced.
Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Wang, Z.; Demoz, B.
2004-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.
NASA Astrophysics Data System (ADS)
Miller, D. J.; Zhang, Z.; Ackerman, A. S.; Platnick, S. E.; Cornet, C.
2016-12-01
A remote sensing cloud retrieval simulator, created by coupling an LES cloud model with vector radiative transfer (RT) models is the ideal framework for assessing cloud remote sensing techniques. This simulator serves as a tool for understanding bi-spectral and polarimetric retrievals by comparing them directly to LES cloud properties (retrieval closure comparison) and for comparing the retrieval techniques to one another. Our simulator utilizes the DHARMA LES [Ackerman et al., 2004] with cloud properties based on marine boundary layer (MBL) clouds observed during the DYCOMS-II and ATEX field campaigns. The cloud reflectances are produced by the vectorized RT models based on polarized doubling adding and monte carlo techniques (PDA, MCPOL). Retrievals are performed utilizing techniques as similar as possible to those implemented on their corresponding well known instruments; polarimetric retrievals are based on techniques implemented for polarimeters (POLDER, AirMSPI, and RSP) and bi-spectral retrievals are performed using the Nakajima-King LUT method utilized on a number of spectral instruments (MODIS and VIIRS). Retrieval comparisons focus on cloud droplet effective radius (re), effective variance (ve), and cloud optical thickness (τ). This work explores the sensitivities of these two retrieval techniques to various observation limitations, such as spatial resolution/cloud inhomogeneity, impact of 3D radiative effects, and angular resolution requirements. With future remote sensing missions like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important to understand how these retrieval techniques compare to one another. The cloud retrieval simulator we've developed allows us to probe these important questions in a realistically relevant test bed.
NASA Astrophysics Data System (ADS)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally
2017-03-01
Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.
NASA Astrophysics Data System (ADS)
Merlin, G.; Riedi, J.; Labonnote, L. C.; Cornet, C.; Davis, A. B.; Dubuisson, P.; Desmons, M.; Ferlay, N.; Parol, F.
2015-12-01
The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere-surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1-2 km.
Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei
2017-01-01
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838
NASA Technical Reports Server (NTRS)
Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang
2017-01-01
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.
Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang
2017-10-18
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.
Near-Global Survey of Cloud Column Susceptibilities Using ISCCP Data
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.; Hansen, James E. (Technical Monitor)
2000-01-01
A new parameter, cloud column susceptibility, is introduced to study the aerosol indirect effect. There are several advantages of this new parameter in comparison with the traditional cloud susceptibility. First, no assumptions about constant liquid water content and cloud layer thickness are required in calculations so that errors caused by these assumptions can be avoided. Second, no a priori knowledge of liquid water content is necessary in remote sensing, which makes global survey by satellite data possible even though liquid water content may change significantly. Third, this new parameter can deal with variations of cloud geometrical thickness during cloud-aerosol interactions, which are evidenced by Without assuming how cloud droplet size will respond to changes of number concentration, this new parameter describes the aerosol indirect effect more directly. It addresses the question of how cloud albedo changes with increasing column number concentrations of cloud droplets, which is resulted from cloud-aerosol interactions. In this study, two approaches are used to retrieve cloud column susceptibility by satellite data. The results of both approaches show a striking contrast of cloud column susceptibilities between continental and maritime. Between the two approaches, the one that uses no assumption of constant liquid water content leads to smaller, some times even negative, cloud column susceptibilities. This finding suggests that the aerosol indirect effect may be overestimated if the assumption of constant liquid water content is used in model studies.
NASA Astrophysics Data System (ADS)
Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.
2013-12-01
A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.
Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs
NASA Astrophysics Data System (ADS)
Garland, Ryan; Irwin, Patrick
2018-01-01
A significant number of ultracool (<600K) extrasolar objects have been unearthed in the past decade thanks to wide-field surveys such as WISE. These objects present a perfect testbed for examining the evolution of atmospheric structure as we transition from typically hot extrasolar temperatures to the temperatures found within our Solar System.By examining these types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a self-consistent Mie scattering cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.
Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.
NASA Astrophysics Data System (ADS)
Baum, Bryan A.; Wielicki, Bruce A.
1994-01-01
In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.
A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager
NASA Technical Reports Server (NTRS)
Wentz, Frank J.
1997-01-01
I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Platnick, Steven; Zhang, Zhibo
2015-06-01
The regional haze over the southeast (SE) Atlantic Ocean induced by biomass burning in southern Africa can be problematic for passive imager-based retrievals of the underlying quasi-permanent marine boundary layer (MBL) clouds and for estimates of top-of-atmosphere (TOA) aerosol direct radiative effect (DRE). Here an algorithm is introduced to simultaneously retrieve above-cloud aerosol optical thickness (AOT), the cloud optical thickness (COT), and cloud effective particle radius (CER) of the underlying MBL clouds while also providing pixel-level estimates of retrieval uncertainty. This approach utilizes reflectance measurements at six Moderate Resolution Imaging Spectroradiometer (MODIS) channels from the visible to the shortwave infrared. Retrievals are run under two aerosol model assumptions on 8 years (2006-2013) of June-October Aqua MODIS data over the SE Atlantic, from which a regional cloud and above-cloud aerosol climatology is produced. The cloud retrieval methodology is shown to yield COT and CER consistent with those from the MODIS operational cloud product (MOD06) when forcing AOT to zero, while the full COT-CER-AOT retrievals that account for the above-cloud aerosol attenuation increase regional monthly mean COT and CER by up to 9% and 2%, respectively. Retrieved AOT is roughly 3 to 5 times larger than the collocated 532 nm Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals, though closer agreement is observed with the CALIOP 1064 nm retrievals, a result consistent with previous case study analyses. Regional cloudy-sky above-cloud aerosol DRE calculations are also performed that illustrate the importance of the aerosol model assumption and underlying cloud retrievals.
A Bispectral Composite Threshold Approach for Automatic Cloud Detection in VIIRS Imagery
NASA Technical Reports Server (NTRS)
LaFontaine Frank J.; Jedlovec, Gary J.
2015-01-01
The detection of clouds in satellite imagery has a number of important applications in weather and climate studies. The presence of clouds can alter the energy budget of the Earth-atmosphere system through scattering and absorption of shortwave radiation and the absorption and re-emission of infrared radiation at longer wavelengths. The scattering and absorption characteristics of clouds vary with the microphysical properties of clouds, hence the cloud type. Thus, detecting the presence of clouds over a region in satellite imagery is important in order to derive atmospheric or surface parameters that give insight into weather and climate processes. For many applications however, clouds are a contaminant whose presence interferes with retrieving atmosphere or surface information. In these cases, is important to isolate cloud-free pixels, used to retrieve atmospheric thermodynamic information or surface geophysical parameters, from cloudy ones. This abstract describes an application of a two-channel bispectral composite threshold (BCT) approach applied to VIIRS imagery. The simplified BCT approach uses only the 10.76 and 3.75 micrometer spectral channels from VIIRS in two spectral tests; a straight-forward infrared threshold test with the longwave channel and a shortwave - longwave channel difference test. The key to the success of this approach as demonstrated in past applications to GOES and MODIS data is the generation of temporally and spatially dependent thresholds used in the tests from a previous number of days at similar observations to the current data. The paper and subsequent presentation will present an overview of the approach and intercomparison results with other satellites, methods, and against verification data.
Validation of Cloud Properties From Multiple Satellites Using CALIOP Data
NASA Technical Reports Server (NTRS)
Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing
2016-01-01
The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.
Reconciling biases and uncertainties of AIRS and MODIS ice cloud properties
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Gettelman, A.
2015-12-01
We will discuss comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (COT), effective radius (CER), and cloud thermodynamic phase retrievals. The ice cloud comparisons are stratified by retrieval uncertainty estimates, horizontal inhomogeneity at the pixel-scale, vertical cloud structure, and other key parameters. Although an estimated 27% globally of all AIRS pixels contain ice cloud, only 7% of them are spatially uniform ice according to MODIS. We find that the correlations of COT and CER between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure. The best correlations are found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans with biases and scatter that increase with scene complexity. While the COT comparisons are unbiased in homogeneous ice clouds, a bias of 5-10 microns remains in CER within the most homogeneous scenes identified. This behavior is entirely consistent with known sensitivity differences in the visible and infrared bands. We will use AIRS and MODIS ice cloud properties to evaluate ice hydrometeor output from climate model output, such as the CAM5, with comparisons sorted into different dynamical regimes. The results of the regime-dependent comparisons will be described and implications for model evaluation and future satellite observational needs will be discussed.
Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission
NASA Technical Reports Server (NTRS)
Knobelspiesse, Kirk; Redemann, Jens
2014-01-01
The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.
NASA Technical Reports Server (NTRS)
Knobelspiesse, Kirk; Redemann, Jens
2014-01-01
The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu
2016-01-01
Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).
NASA Technical Reports Server (NTRS)
Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew
2014-01-01
The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.
Consistency of aerosols above clouds characterization from A-Train active and passive measurements
NASA Astrophysics Data System (ADS)
Deaconu, Lucia T.; Waquet, Fabien; Josset, Damien; Ferlay, Nicolas; Peers, Fanny; Thieuleux, François; Ducos, Fabrice; Pascal, Nicolas; Tanré, Didier; Pelon, Jacques; Goloub, Philippe
2017-09-01
This study presents a comparison between the retrieval of optical properties of aerosol above clouds (AAC) from different techniques developed for the A-Train sensors CALIOP/CALIPSO and POLDER/PARASOL. The main objective is to analyse the consistency between the results derived from the active and the passive measurements. We compare the aerosol optical thickness (AOT) above optically thick clouds (cloud optical thickness (COT) larger than 3) and their Ångström exponent (AE). These parameters are retrieved with the CALIOP operational method, the POLDER operational polarization method and the CALIOP-based depolarization ratio method (DRM) - for which we also propose a calibrated version (denominated DRMSODA, where SODA is the Synergized Optical Depth of Aerosols). We analyse 6 months of data over three distinctive regions characterized by different types of aerosols and clouds. Additionally, for these regions, we select three case studies: a biomass-burning event over the South Atlantic Ocean, a Saharan dust case over the North Atlantic Ocean and a Siberian biomass-burning event over the North Pacific Ocean. Four and a half years of data are studied over the entire globe for distinct situations where aerosol and cloud layers are in contact or vertically separated. Overall, the regional analysis shows a good correlation between the POLDER and the DRMSODA AOTs when the microphysics of aerosols is dominated by fine-mode particles of biomass-burning aerosols from southern Africa (correlation coefficient (R2) of 0.83) or coarse-mode aerosols of Saharan dust (R2 of 0.82). A good correlation between these methods (R2 of 0.68) is also observed in the global treatment, when the aerosol and cloud layers are separated well. The analysis of detached layers also shows a mean difference in AOT of 0.07 at 532 nm between POLDER and DRMSODA at a global scale. The correlation between the retrievals decreases when a complex mixture of aerosols is expected (R2 of 0.37) - as in the East Asia region - and when the aerosol-cloud layers are in contact (R2 of 0.36). The correlation coefficient between the CALIOP operational method and POLDER is found to be low, as the CALIOP method largely underestimates the aerosol loading above clouds by a factor that ranges from 2 to 4. Potential biases on the retrieved AOT as a function of cloud properties are also investigated. For different types of scenes, the retrieval of above-cloud AOT from POLDER and from DRM are compared for different underlying cloud properties (droplet effective radius (reff) and COT retrieved with MODIS). The results reveal that DRM AOT vary with reff. When accounting for reff in the DRM algorithm, the consistency between the methods increases. The sensitivity study shows that an additional polarized signal coming from aerosols located within the cloud could affect the polarization method, which leads to an overestimation of the AOT retrieved with POLDER algorithm. In addition, the aerosols attached to or within the cloud can potentially impact the DRM retrievals through the modification of the cloud droplet chemical composition and its ability to backscatter light. The next step of this work is to combine POLDER and CALIOP to investigate the impacts of aerosols on clouds and climate when these particles are transported above or within clouds.
A multi-sensor approach to the retrieval and model validation of global cloudiness
NASA Astrophysics Data System (ADS)
Miller, Steven D.
2000-11-01
The ephemeral clouds have represented a daunting challenge to the atmospheric modeling community from the very beginning. Our inability to resolve them by means of traditional passive sensors to the level of detail required for characterizing their complicated role in the climate feedback system has lead us to explore other resources at our disposal. This research seeks to illustrate and, where applicable, quantify the ways in which active (e.g., radar and lidar) remote sensing devices on existing and proposed platforms can serve to improve our current understanding of cloud and cloud processes in terms of (1)their role in the improvement of cloud property retrievals and (2)their application to the validation/development of clouds in numerical weather prediction models. A new retrieval technique which employs active sensors to constrain cloud boundaries in the vertical is shown to decrease the parameter uncertainties with respect to traditional passive methods in excess of 20% for effective particle radius, and 10-20% for optical depth when considering night-time retrievals of cirrus. These results are brought together with detailed cloud profile sampling from the Lidar In-space Technology Experiment (LITE) to conduct the first global-scale active sensor validation of ECMWF short-range forecasts. The comparisons display remarkable agreement in cloud spatial distribution. A weighted statistical analysis yields hit rates between 75-90%, threat scores 45-75%, probabilities of detection ~80%, and false alarm rates 10-45%. The results suggest that, given the level of realism displayed currently by the ECMWF prognostic cloud scheme forecasts, the reanalysis data may be considered as a new resource for global cloud information. A practical application of these findings has been outlined in the context of defining Cloud-Sat instrument requirements based on virtual orbital observations created from ECMWF global cloud distributions of liquid and ice water contents. This research gives cause for new hope in capturing the complex radiative, convective, and dynamical feedback mechanisms associated with clouds in the climate feedback system. Further, it appeals to the need for an improved collaborative rapport between the now largely disjoint modeling and measurement communities.
NASA Technical Reports Server (NTRS)
Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.
2010-01-01
Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupu, Roxana E.; Marley, Mark S.; Zahnle, Kevin
Upcoming space-based coronagraphic instruments in the next decade will perform reflected light spectroscopy and photometry of cool directly imaged extrasolar giant planets. We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler ( emcee ) and a multimodal nested sampling algorithm ( MultiNest ) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model andmore » highlights possible discrepancies in the likelihood maps. As a proof of concept, our current atmospheric model contains one or two cloud layers, methane as a major absorber, and a H{sub 2}–He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise ratio in the presence of spectral noise correlations. After internal validation, the method is applied to realistic spectra of Jupiter, Saturn, and HD 99492c, a model observing target. We find that the presence or absence of clouds and methane can be determined with high confidence, while parameter uncertainties are model dependent and correlated. Such general methods will also be applicable to the interpretation of direct imaging spectra of cloudy terrestrial planets.« less
NASA Technical Reports Server (NTRS)
Lupu, R. E.; Marley, M. S.; Lewis, N.; Line, M.; Traub, W.; Zahnle, K.
2016-01-01
Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are expected to be performed in the next decade by space-based telescopes equipped with optical wavelength coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope (WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs an albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmospheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise, in the presence of spectral noise correlations. After internal validation, the method is applied to realistic reflected-light spectra of Jupiter, Saturn, and HD 99492 c, a likely observing target. We find that the presence or absence of clouds and methane can be determined with high accuracy, while parameters uncertainties are model-dependent.
Radiative Transfer Model for Operational Retrieval of Cloud Parameters from DSCOVR-EPIC Measurements
NASA Astrophysics Data System (ADS)
Yang, Y.; Molina Garcia, V.; Doicu, A.; Loyola, D. G.
2016-12-01
The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) measures the radiance in the backscattering region. To make sure that all details in the backward glory are covered, a large number of streams is required by a standard radiative transfer model based on the discrete ordinates method. Even the use of the delta-M scaling and the TMS correction do not substantially reduce the number of streams. The aim of this work is to analyze the capability of a fast radiative transfer model to retrieve operationally cloud parameters from EPIC measurements. The radiative transfer model combines the discrete ordinates method with matrix exponential for the computation of radiances and the matrix operator method for the calculation of the reflection and transmission matrices. Standard acceleration techniques as, for instance, the use of the normalized right and left eigenvectors, telescoping technique, Pade approximation and successive-order-of-scattering approximation are implemented. In addition, the model may compute the reflection matrix of the cloud by means of the asymptotic theory, and may use the equivalent Lambertian cloud model. The various approximations are analyzed from the point of view of efficiency and accuracy.
Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening
NASA Astrophysics Data System (ADS)
Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.
2017-12-01
Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.
NASA Technical Reports Server (NTRS)
Torres, O.; Jethva, H.; Bhartia, P. K.
2012-01-01
A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.
NASA Technical Reports Server (NTRS)
Holz, Robert E.; Ackerman, Steve; Antonelli, Paolo; Nagle, Fred; McGill, Matthew; Hlavka, Dennis L.; Hart, William D.
2005-01-01
This paper presents a comparison of cloud-top altitude retrieval methods applied to S-HIS (Scanning High Resolution Interferometer Sounder) measurements. Included in this comparison is an improvement to the traditional CO2 Slicing method. The new method, CO2 Sorting, determines optimal channel pairs to apply the CO2 Slicing. Measurements from collocated samples of the Cloud Physics Lidar (CPL) and Modis Airborne Simulator (MAS) instruments assist in the comparison. For optically thick clouds good correlation between the S-HIS and lidar cloud-top retrievals are found. For tenuous ice clouds there can be large differences between lidar (CPL) and S-HIS retrieved cloud-tops. It is found that CO2 Sorting significantly reduces the cloud height biases for the optically thin cloud (total optical depths less then 1.0). For geometrically thick but optically thin cirrus clouds large differences between the S-HIS infrared cloud top retrievals and the CPL detected cloud top where found. For these cases the cloud height retrieved by the S-HIS cloud retrievals correlated closely with the level the CPL integrated cloud optical depth was approximately 1.0.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.; Lacis, Andrew A.
1999-01-01
This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.
The Community Cloud retrieval for CLimate (CC4CL) - Part 2: The optimal estimation approach
NASA Astrophysics Data System (ADS)
McGarragh, Gregory R.; Poulsen, Caroline A.; Thomas, Gareth E.; Povey, Adam C.; Sus, Oliver; Stapelberg, Stefan; Schlundt, Cornelia; Proud, Simon; Christensen, Matthew W.; Stengel, Martin; Hollmann, Rainer; Grainger, Roy G.
2018-06-01
The Community Cloud retrieval for Climate (CC4CL) is a cloud property retrieval system for satellite-based multispectral imagers and is an important component of the Cloud Climate Change Initiative (Cloud_cci) project. In this paper we discuss the optimal estimation retrieval of cloud optical thickness, effective radius and cloud top pressure based on the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm. Key to this method is the forward model, which includes the clear-sky model, the liquid water and ice cloud models, the surface model including a bidirectional reflectance distribution function (BRDF), and the "fast" radiative transfer solution (which includes a multiple scattering treatment). All of these components and their assumptions and limitations will be discussed in detail. The forward model provides the accuracy appropriate for our retrieval method. The errors are comparable to the instrument noise for cloud optical thicknesses greater than 10. At optical thicknesses less than 10 modeling errors become more significant. The retrieval method is then presented describing optimal estimation in general, the nonlinear inversion method employed, measurement and a priori inputs, the propagation of input uncertainties and the calculation of subsidiary quantities that are derived from the retrieval results. An evaluation of the retrieval was performed using measurements simulated with noise levels appropriate for the MODIS instrument. Results show errors less than 10 % for cloud optical thicknesses greater than 10. Results for clouds of optical thicknesses less than 10 have errors up to 20 %.
A novel technique for evaluating the volcanic cloud top altitude using GPS Radio Occultation data
NASA Astrophysics Data System (ADS)
Biondi, Riccardo; Corradini, Stefano; Guerrieri, Lorenzo; Merucci, Luca; Stelitano, Dario; Pugnaghi, Sergio
2017-04-01
Volcanic ash and sulfuric gases are a major hazards to aviation since they damage the aircraft engines also at large distance from the eruption. Many challenges given by volcanic explosive eruptions are still discussed and several issues are far from being solved. The cloud top altitude can be detected with different techniques, but the accuracy is still quite coarse. This parameter is important for the air traffic to know what altitude can be ash free, and it assumes a key role for the contribution of the eruption to the climate change. Moreover, the cloud top altitude is also strictly related to the mass ejected by the eruption and represent a key parameter for the ash and SO2 retrievals by using several techniques. The Global Positioning System (GPS) Radio Occultation (RO) technique enables real time measurement of atmospheric density structure in any meteorological condition, in remote areas and during extreme atmospheric events with high vertical resolution and accuracy and this makes the RO an interesting tool for this kind of studies. In this study we have tracked the Eyjafjöll 2010 eruption by using MODIS satellite measurements and retrieved the volcanic cloud top altitudes by using two different procedures exploiting the thermal infrared CO2 absorption bands around 13.4 micrometers. The first approach is a modification of the standard CO2 slicing method while the second is based on look up tables computations. We have then selected all the RO profiles co-located with the volcanic cloud and implemented an algorithm based on the variation of the bending angle for detecting the cloud top altitude with high accuracy. The results of the comparison between the MODIS and RO volcanic height retrievals are encouraging and suggesting that, due to their independence from weather conditions and due to their high vertical resolution, the RO observations can contribute to improved detection and monitoring of volcanic clouds and to support warning systems.
Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)
NASA Technical Reports Server (NTRS)
Platnick, Steven
2004-01-01
MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.
NASA Technical Reports Server (NTRS)
Susskind, J.
1984-01-01
At the Goddard Laboratory for Atmospheric Sciences (GLAS) a physically based satellite temperature sounding retrieval system, involving the simultaneous analysis of HIRS2 and MSU sounding data, was developed for determining atmospheric and surface conditions which are consistent with the observed radiances. In addition to determining accurate atmospheric temperature profiles even in the presence of cloud contamination, the system provides global estimates of day and night sea or land surface temperatures, snow and ice cover, and parameters related to cloud cover. Details of the system are described elsewhere. A brief overview of the system is presented, as well as recent improvements and previously unpublished results, relating to the sea-surface intercomparison workshop, the diurnal variation of ground temperatures, and forecast impact tests.
Cloud Property Retrieval Products for Graciosa Island, Azores
Dong, Xiquan
2014-05-05
The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.
NASA Astrophysics Data System (ADS)
Alexandrov, M. D.; Cairns, B.; Sinclair, K.
2013-12-01
We present the retrievals of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements made during NASA's POlarimeter Definition EXperiment (PODEX), which was based in Palmdale, California in January - February 2013. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was built for the NASA Glory Mission project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The RSP is a push broom scanner making samples at 0.8 degree intervals within 60 degrees from nadir in both forward and backward directions. The data from actual RSP scans is aggregated into "virtual" scans, each consisting of all reflectances (at a variety of scattering angles) from a single point on the ground or at the cloud top. In the case of water clouds the rainbow is observed in the polarized reflectances in the scattering angle range between 135 and 170 degrees. It has a unique signature that is being used to accurately determine the droplet size and is not affected by cloud morphology. Simple parametric fitting algorithm applied to these polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows to retrieve the droplet size distribution a parametric model. Of particular interest is the information contained in droplet size distribution width, which is indicative of cloud life cycle. The absorbing band method is also applied to RSP total reflectance observations. The difference in the retrieved droplet size between polarized and absorbing band techniques is expected to reflect the strength of the vertical gradient in cloud liquid water content. In addition to established retrieval techniques, we will use the campaign data to evaluate a new theoretical concept allowing to estimate cloud physical thickness and droplet number concentration using both polarized and total reflectances. During the PODEX campaign the RSP was onboard the NASA's long-range high-altitude ER-2 aircraft together with an array of other remote sensing instrumentation. Correlative sampling measurements from another aircraft were also available. The data obtained during the campaign provides a good opportunity to study cloud properties and to test retrieval algorithms in a variety of locations and atmospheric conditions.
Cloud Motion in the GOCI COMS Ocean Colour Data
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.; Franz, Bryan A.; Mannino, Antonio; Ahn, Jae-Hyun
2016-01-01
The Geostationary Ocean Colour Imager (GOCI) instrument, on Koreas Communications, Oceans, and Meteorological Satellite (COMS), can produce a spectral artefact arising from the motion of clouds the cloud is spatially shifted and the amount of shift varies by spectral band. The length of time it takes to acquire all eight GOCI bands for a given slot (portion of a scene) is sucient to require that cloud motion be taken into account to fully mask or correct the eects of clouds in all bands. Inter-band correlations can be used to measure the amount of cloud shift, which can then be used to adjust the cloud mask so that the union of all shifted masks can act as a mask for all bands. This approach reduces the amount of masking required versus a simple expansion of the mask in all directions away from clouds. Cloud motion can also aect regions with unidentied clouds thin or fractional clouds that evade the cloud identication process yielding degraded quality in retrieved ocean colour parameters. Areas with moving and unidentied clouds require more elaborate masking algo-rithms to remove these degraded retrievals. Correction for the eects of moving fractional clouds may also be possible. The cloud shift information can be used to determine cloud motion and thus wind at the cloud levels on sub-minute timescales. The benecial and negative eects of moving clouds should be con-sidered for any ocean colour instrument design and associated data processing plans.
Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S; Di Girolamo, Larry; C-Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E
2015-05-16
Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius ( r e ) and optical thickness ( τ ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the " r e too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the " r e too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.
Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.
2015-01-01
Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study. PMID:27656330
HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water
NASA Astrophysics Data System (ADS)
MacDonald, Ryan J.; Madhusudhan, Nikku
2017-08-01
Interpretations of exoplanetary transmission spectra have been undermined by apparent obscuration due to clouds/hazes. Debate rages on whether weak H2O features seen in exoplanet spectra are due to clouds or inherently depleted oxygen. Assertions of solar H2O abundances have relied on making a priori model assumptions, for example, chemical/radiative equilibrium. In this work, we attempt to address this problem with a new retrieval paradigm for transmission spectra. We introduce poseidon, a two-dimensional atmospheric retrieval algorithm including generalized inhomogeneous clouds. We demonstrate that this prescription allows one to break vital degeneracies between clouds and prominent molecular abundances. We apply poseidon to the best transmission spectrum presently available, for the hot Jupiter HD 209458b, uncovering new insights into its atmosphere at the day-night terminator. We extensively explore the parameter space with an unprecedented 108 models, spanning the continuum from fully cloudy to cloud-free atmospheres, in a fully Bayesian retrieval framework. We report the first detection of nitrogen chemistry (NH3 and/or HCN) in an exoplanet atmosphere at 3.7-7.7σ confidence, non-uniform cloud coverage at 4.5-5.4σ, high-altitude hazes at >3σ and sub-solar H2O at ≳3-5σ, depending on the assumed cloud distribution. We detect NH3 at 3.3σ, and 4.9σ for fully cloudy and cloud-free scenarios, respectively. For the model with the highest Bayesian evidence, we constrain H2O at 5-15 ppm (0.01-0.03) × solar and NH3 at 0.01-2.7 ppm, strongly suggesting disequilibrium chemistry and cautioning against equilibrium assumptions. Our results herald a new promise for retrieving cloudy atmospheres using high-precision Hubble Space Telescope and James Webb Space Telescope spectra.
Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project
NASA Astrophysics Data System (ADS)
Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.
2016-09-01
The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.
NASA Astrophysics Data System (ADS)
Toledo, D.; Arruego, I.; Apéstigue, V.; Jiménez, J. J.; Gómez, L.; Yela, M.; Rannou, P.; Pommereau, J.-P.
2017-04-01
The solar irradiance sensor (SIS) was included in the DREAMS package onboard the ExoMars 2016 Entry Descent and Landing Demonstrator Module, and has been selected in the METEO meteorological station onboard the ExoMars 2020 Lander. This instrument is designed to measure at different time intervals the scattered flux or the sum of direct flux and scattered flux in UVA (315-400 nm) and NIR (700-1100 nm) bands. For SIS'16, these measurements are performed by a total of 3 sensors per band placed at the faces of a truncated tetrahedron with face inclination angles of 60°. The principal goal of SIS'16 design is to perform measurements of the dust opacity in UVA and NIR wavelengths ranges, crucial parameters in the understanding of the Martian dust cycle. The retrieval procedure is based on the use of radiative transfer simulations to reproduce SIS observations acquired during daytime as a function of dust opacity. Based on different sensitivity analysis, the retrieval procedure also requires to include as free parameters (1) the dust effective radius; (2) the dust effective variance; and (3) the imaginary part of the refractive index of dust particles in UVA band. We found that the imaginary part of the refractive index of dust particles does not have a big impact on NIR signal, and hence we can kept constant this parameter in the retrieval of dust opacity at this channel. In addition to dust opacity measurements, this instrument is also capable to detect and characterize clouds by looking at the time variation of the color index (CI), defined as the ratio between the observations in NIR and UVA channels, during daytime or twilight. By simulating CI signals with a radiative transfer model, the cloud opacity and cloud altitude (only during twilight) can be retrieved. Here the different retrieval procedures that are used to analyze SIS measurements, as well as the results obtained in different sensitivity analysis, are presented and discussed.
NASA Astrophysics Data System (ADS)
Chen, W. A.; Woods, C. P.; Li, J. F.; Waliser, D. E.; Chern, J.; Tao, W.; Jiang, J. H.; Tompkins, A. M.
2010-12-01
CloudSat provides important estimates of vertically resolved ice water content (IWC) on a global scale based on radar reflectivity. These estimates of IWC have proven beneficial in evaluating the representations of ice clouds in global models. An issue when performing model-data comparisons of IWC particularly germane to this investigation, is the question of which component(s) of the frozen water mass are represented by retrieval estimates and how they relate to what is represented in models. The present study developed and applied a new technique to partition CloudSat total IWC into small and large ice hydrometeors, based on the CloudSat-retrieved ice particle size distribution (PSD) parameters. The new method allows one to make relevant model-data comparisons and provides new insights into the model’s representation of atmospheric IWC. The partitioned CloudSat IWC suggests that the small ice particles contribute to 20-30% of the total IWC in the upper troposphere when a threshold size of 100 μm is used. Sensitivity measures with respect to the threshold size, the PSD parameters, and the retrieval algorithms are presented. The new dataset is compared to model estimates, pointing to areas for model improvement. Cloud ice analyses from the European Centre for Medium-Range Weather Forecasts model agree well with the small IWC from CloudSat. The finite-volume multi-scale modeling framework model underestimates total IWC at 147 and 215 hPa, while overestimating the fractional contribution from the small ice species. These results are discussed in terms of their applications to, and implications for, the evaluation of global atmospheric models, providing constraints on the representations of cloud feedback and precipitation in global models, which in turn can help reduce uncertainties associated with climate change projections. Figure 1. A sample lognormal ice number distribution (red curve), and the corresponding mass distribution (black curve). The dotted line represents the cutoff size for IWC partitioning (Dc = 100 µm as an example). The partial integrals of the mass distribution for particles smaller and larger than Dc correspond to IWC<100 (green area) and IWC>100 (blue area), respectively.
Remote measurement of cloud microphysics and its influence in predicting high impact weather events
NASA Astrophysics Data System (ADS)
Bipasha, Paul S.; Jinya, John
2016-05-01
Understanding the cloud microphysical processes and precise retrieval of parameters governing the same are crucial for weather and climate prediction. Advanced remote sensing sensors and techniques offer an opportunity for monitoring micro-level developments in cloud structure. . Using the observations from a visible and near-infrared lidar onboard CALIPSO satellite (part of A-train) , the spatial variation of cloud structure has been studied over the Tropical monsoon region . It is found that there is large variability in the cloud microphysical parameters manifesting in distinct precipitation regimes. In particular, the severe storms over this region are driven by processes which range from the synoptic to the microphysical scale. Using INSAT-3D data, retrieval of cloud microphysical parameters like effective radius (CER) and optical depth (COD) were carried out for tropical cyclone Phailine. It was observed that there is a general increase of CER in a top-down direction, characterizing the progressively increasing number and size of precipitation hydrometeors while approaching the cloud base. The distribution of CER relative to cloud top temperature for growing convective clouds has been investigated to reveal the evolution of the particles composing the clouds. It is seen that the relatively high concentration of large particles in the downdraft zone is closely related to the precipitation efficiency of the system. Similar study was also carried using MODIS observations for cyclones over Indian Ocean (2010-2013), in which we find that that the mean effective radius is 24 microns with standard deviation 4.56, mean optical depth is 21 with standard deviation 13.98, mean cloud fraction is 0.92 with standard deviation 0.13 and mainly ice phase is dominant. Thus the remote observations of microstructure of convective storms provide very crucial information about the maintenance and potential devastation likely to be associated with it. With the synergistic observations from A-Train , geostationary and futuristic imaging spectroscopic sensors, a multi-dimensional, and multi-scalar exploration of cloud systems is anticipated leading to accurate prediction of high impact weather events.
OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B
NASA Astrophysics Data System (ADS)
Lutz, R.; Loyola, D.; Gimeno García, S.; Romahn, F.
2015-12-01
This paper describes an approach for cloud parameter retrieval (radiometric cloud fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) and to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud top height (CTH), cloud top pressure (CTP), cloud top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than six years of GOME-2A data (February 2007-June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing angle dependent and latitude dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with co-located AVHRR geometrical cloud fractions shows a general good agreement with a mean difference of -0.15±0.20. From operational point of view, an advantage of the OCRA algorithm is its extremely fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud fraction estimation for GOME-2 can be achieved with OCRA by using the polarization measurement devices (PMDs).
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.
2016-05-01
Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.
OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B
NASA Astrophysics Data System (ADS)
Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian
2016-05-01
This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).
NASA Astrophysics Data System (ADS)
Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.
2017-12-01
Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.
Ground-based remote sensing of thin clouds in the Arctic
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Zhao, C.
2012-11-01
This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" where absorption by water vapor is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in two micro-windows, constrained by the transmission through clouds of stratospheric ozone emission. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius, visible optical depth, number concentration, and water path are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement program (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with ground-based microwave radiometer measurements of liquid water path. Compared to other retrieval methods, advantages of this technique include its ability to characterize thin clouds year round, that water vapor is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies.
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.
2008-12-01
Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.
NASA Astrophysics Data System (ADS)
Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.
2016-12-01
In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP <100 g/m2), which makes accurate retrieval information of the cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.
Advances in Volcanic Ash Cloud Photogrammetry from Space
NASA Astrophysics Data System (ADS)
Zaksek, K.; von der Lieth, J.; Merucci, L.; Hort, M. K.; Gerst, A.; Carboni, E.; Corradini, S.
2015-12-01
The quality of ash dispersion prediction is limited by the lack of high quality information on eruption source parameters. One of the most important one is the ash cloud top height (ACTH). Because of well-known uncertainties of currently operational methods, photogrammetric methods can be used to improve height estimates. Some satellites have on board multiangular instruments that can be used for photogrammetrical observations. Volcanic ash clouds, however, can move with velocities over several m/s making these instruments inappropriate for accurate ACTH estimation. Thus we propose here two novel methods tested on different case studies (Etna 2013/11/23, Zhupanovsky 2014/09/10). The first method is based on NASA program Crew Earth observations from International Space Station (ISS). ISS has a lower orbit than most operational satellites, resulting in a shorter minimal time between two images required to produce a suitable parallax. In addition, images made by the ISS crew are taken by a full frame sensor and not a line scanner that most operational satellites use. Such data make possible to observe also short time evolution of clouds. The second method is based on the parallax between data retrieved from two geostationary instruments. We implemented a combination of MSG SEVIRI (HRV band; 1000 m nadir spatial resolution, 5 min temporal resolution) and METEOSAT7 MVIRI (VIS band, 2500 m nadir spatial resolution, 30 min temporal resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously. However, MVIRI does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MVIRI retrieval) and interpolate the cloud position from SEVIRI data to the time of MVIRI retrieval.
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.
2014-12-01
We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.
NASA Technical Reports Server (NTRS)
Petty, Grant W.
1990-01-01
A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.
Towards a true aerosol-and-cloud retrieval scheme
NASA Astrophysics Data System (ADS)
Thomas, Gareth; Poulsen, Caroline; Povey, Adam; McGarragh, Greg; Jerg, Matthias; Siddans, Richard; Grainger, Don
2014-05-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) - formally the Oxford-RAL Aerosol and Cloud retrieval - offers a framework that can provide consistent and well characterised properties of both aerosols and clouds from a range of imaging satellite instruments. Several practical issues stand in the way of achieving the potential of this combined scheme however; in particular the sometimes conflicting priorities and requirements of aerosol and cloud retrieval problems, and the question of the unambiguous identification of aerosol and cloud pixels. This presentation will present recent developments made to the ORAC scheme for both aerosol and cloud, and detail how these are being integrated into a single retrieval framework. The implementation of a probabilistic method for pixel identification will also be presented, for both cloud detection and aerosol/cloud type selection. The method is based on Bayesian methods applied the optimal estimation retrieval output of ORAC and is particularly aimed at providing additional information in the so-called "twilight zone", where pixels can't be unambiguously identified as either aerosol or cloud and traditional cloud or aerosol products do not provide results.
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip T.; Cronk, Heather Q.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert Y.; Fisher, Brenden; Osterman, Gregory B.; Pollock, Randy H.; Crisp, David; Eldering, Annmarie; Gunson, Michael R.
2016-03-01
The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O2 A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 µm (weak CO2 band) and 2.06 µm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set.To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of ≃ 20-25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations.No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander; Lau, William K. M. (Technical Monitor)
2001-01-01
This paper examines three-dimensional (3D) radiative effects, which arise from horizontal radiative interactions between areas that have different cloud properties. Earlier studies have argued that these effects can cause significant uncertainties in current satellite retrievals of cloud properties, because the retrievals rely on one-dimensional (1D) theory and do not consider the effects of horizontal changes in cloud properties. This study addresses two questions: which retrieved cloud properties are influenced by 3D radiative effects, and where 3D effects tend to occur? The influence of 3D effects is detected from the wayside illumination and shadowing make clouds appear asymmetric: Areas appear brighter if the cloud top surface is tilted toward, rather than away from, the Sun. The analysis of 30 images by the Moderate Resolution Imaging Spectroradiometer (MODIS) reveals that retrievals of cloud optical thickness and cloud water content are most influenced by 3D effects, whereas retrievals of cloud particle size are much less affected. The results also indicate that while 3D effects are strongest at cloud edges, cloud top variability in cloud interiors, even in overcast regions, also produces considerable 3D effects. Finally, significant 3D effects are found in a wide variety of situations, ranging from thin clouds to thick ones and from low clouds to high ones.
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.
2017-01-01
Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If t(1v) and t(1vg) are conserved where t is optical thickness, v the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1wg)factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1w)(1(exp. 1/2)wg)]12, also tend to be similar.
Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals
NASA Astrophysics Data System (ADS)
Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.
2014-12-01
Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent
2012-01-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
NASA Technical Reports Server (NTRS)
Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.;
2012-01-01
Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.
NASA Technical Reports Server (NTRS)
Gong, J.; Wu, D. L.
2014-01-01
Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.
Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean
NASA Astrophysics Data System (ADS)
Yin, Mengtao; Liu, Guosheng
2017-12-01
A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.
NASA Astrophysics Data System (ADS)
Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.
2018-03-01
It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.
Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A
2016-04-27
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.
Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.
2018-01-01
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042
Improvements for retrieval of cloud droplet size by the POLDER instrument
NASA Astrophysics Data System (ADS)
Shang, H.; Husi, L.; Bréon, F. M.; Ma, R.; Chen, L.; Wang, Z.
2017-12-01
The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR ( 1.5µm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (>15 µm) and to reduce the uncertainties caused by cloud heterogeneity. A premium resoltion of 0.8° is determined by considering successful retrievals and cloud horizontal homogeneity. The improved algorithm is applied to measurements of POLDER in 2008, and we further compared our retrievals with cloud effective radii estimations of Moderate Resolution Imaging Spectroradiometer (MODIS). The results indicate that in global scale, the cloud effective radii and effective variance is larger in the central ocean than inland and coast areas. Over heavy polluted regions, the cloud droplets has small effective radii and narraw distribution due to the influence of aerosol particles.
NASA Astrophysics Data System (ADS)
Xie, S.; Protat, A.; Zhao, C.
2013-12-01
One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.
Global statistics of microphysical properties of cloud-top ice crystals
NASA Astrophysics Data System (ADS)
van Diedenhoven, B.; Fridlind, A. M.; Cairns, B.; Ackerman, A. S.; Riedi, J.
2017-12-01
Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to "habit". We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.
Global Statistics of Microphysical Properties of Cloud-Top Ice Crystals
NASA Technical Reports Server (NTRS)
Van Diedenhoven, Bastiaan; Fridlind, Ann; Cairns, Brian; Ackerman, Andrew; Riedl, Jerome
2017-01-01
Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.
NASA Technical Reports Server (NTRS)
Liu, Xu; Larar, Allen M.; Zhou, Daniel K.; Kizer, Susan H.; Wu, Wan; Barnet, Christopher; Divakarla, Murty; Guo, Guang; Blackwell, Bill; Smith, William L.;
2011-01-01
Different methods for retrieving atmospheric profiles in the presence of clouds from hyperspectral satellite remote sensing data will be described. We will present results from the JPSS cloud-clearing algorithm and NASA Langley cloud retrieval algorithm.
Evaluation of AIRS cloud properties using MPACE data
NASA Astrophysics Data System (ADS)
Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry
2005-12-01
Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.
Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds
NASA Technical Reports Server (NTRS)
Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven
2016-01-01
The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.
Estimation of Snow Parameters from Dual-Wavelength Airborne Radar
NASA Technical Reports Server (NTRS)
Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew
1997-01-01
Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-02-16
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m −2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m −2.« less
Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS
NASA Astrophysics Data System (ADS)
Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing
2018-02-01
Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.
Toward the Characterization of Mixed-Phase Clouds Using Remote Sensing
NASA Astrophysics Data System (ADS)
Andronache, C.
2015-12-01
Mixed-phase clouds consist of a mixture of ice particles and liquid droplets at temperatures below 0 deg C. They are present in all seasons in many regions of the world, account for about 30% of the global cloud coverage, and are linked to cloud electrification and aircraft icing. The mix of ice particles, liquid droplets, and water vapor is unstable, and such clouds are thought to have a short lifetime. A characteristic parameter is the phase composition of mixed-phase clouds. It affects the cloud life cycle and the rate of precipitation. This parameter is important for cloud parameters retrievals by radar, lidar, and satellite and is relevant for climate modeling. The phase transformation includes the remarkable Wegener-Bergeron-Findeisen (WBF) process. The direction and the rate of the phase transformations depend on the local thermodynamic and microphysical properties. Cloud condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and the dynamic response of clouds to aerosols. The complexity of dynamics and microphysics involved in mixed-phase clouds requires a set of observational and modeling tools that continue to be refined. Among these techniques, the remote sensing methods provide an increasing number of parameters, covering large regions of the world. Thus, a series of studies were dedicated to stratiform mixed-phase clouds revealing longer lifetime than previously thought. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water often occurs in vigorous continental convective storms. In this study, we use cases of convective clouds to discuss the feasibility of mixed-phase clouds characterization and potential advantages of remote sensing.
NASA Astrophysics Data System (ADS)
Cochrane, S.; Schmidt, S.; Massie, S. T.; Iwabuchi, H.; Chen, H.
2017-12-01
Analysis of multiple partially cloudy scenes as observed by OCO-2 in nadir and target mode (published previously and reviewed here) revealed that XCO2 retrievals are systematically biased in presence of scattered clouds. The bias can only partially be removed by applying more stringent filtering, and it depends on the degree of scene inhomogeneity as quantified with collocated MODIS/Aqua imagery. The physical reason behind this effect was so far not well understood because in contrast to cloud-mediated biases in imagery-derived aerosol retrievals, passive gas absorption spectroscopy products do not depend on the absolute radiance level and should therefore be less sensitive to 3D cloud effects and surface albedo variability. However, preliminary evidence from 3D radiative transfer calculations suggested that clouds in the vicinity of an OCO-2 footprint not only offset the reflected radiance spectrum, but introduce a spectrally dependent perturbation that affects absorbing channels disproportionately, and therefore bias the spectroscopy products. To understand the nature of this effect for a variety of scenes, we developed the OCO-2 radiance simulator, which uses the available information on a scene (e.g., MODIS-derived surface albedo, cloud distribution, and other parameters) as the basis for 3D radiative transfer calculations that can predict the radiances observed by OCO-2. We present this new tool and show examples of its utility for a few specific scenes. More importantly, we draw conclusions about the physical mechanism behind this 3D cloud effect on radiances and ultimately OCO-2 retrievals, which involves not only the clouds themselves but also the surface. Harnessed with this understanding, we can now detect cloud vicinity effects in the OCO-2 spectra directly, without actually running the 3D radiance simulator. Potentially, it is even possible to mitigate these effects and thus increase data harvest in regions with ubiquitous cloud cover such as the Amazon. We will discuss some of the hurdles one faces when using only OCO-2 spectra to accomplish this goal, but also that scene context from the other A-Train instruments and the new radiance simulator tool can help overcome some of them.
Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals
NASA Technical Reports Server (NTRS)
Wang, Meng-Hua; King, Michael D.
1997-01-01
We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.
A CERES-like Cloud Property Climatology Using AVHRR Data
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.
2015-12-01
Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.
The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness
NASA Technical Reports Server (NTRS)
Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.
1992-01-01
High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarquhar, Greg
We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign,more » over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.« less
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (less than 2 percent) due to the particle- size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 percent, although for thin clouds (COT less than 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2018-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-04-01
This paper presents an investigation of the expected uncertainties of a single-channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC Sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single-channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single-channel COT retrieval is feasible for EPIC. For ice clouds, single-channel retrieval errors are minimal (< 2 %) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 %, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
NASA Astrophysics Data System (ADS)
Martin, William G. K.; Hasekamp, Otto P.
2018-01-01
In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote sensing problems.
Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii
NASA Technical Reports Server (NTRS)
Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.
2007-01-01
Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.
Ground-based remote sensing of thin clouds in the Arctic
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Zhao, C.
2013-05-01
This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" at 862.5 cm-1, 935.8 cm-1, and 988.4 cm-1 where absorption by water vapour is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in the first two of these micro-windows, constrained by the transmission through clouds of primarily stratospheric ozone emission at 1040 cm-1. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius re, visible optical depth τ, number concentration N, and water path WP are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement programme (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with both ground-based microwave radiometer measurements of liquid water path and a method that uses combined shortwave and microwave measurements to retrieve re, τ and N. Compared to other retrieval methods, advantages of this technique include its ability to characterise thin clouds year round, that water vapour is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies and that it relies on a fairly comprehensive suite of ground based measurements.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Galina; Yang, Ping
2016-01-01
An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (tau) and effective radius (r(sub eff)) retrievals perform best for ice clouds having 0.5 < tau< 7 and r(sub eff) < 50microns. For global ice clouds, the averaged retrieval uncertainties of tau and r(sub eff) are 19% and 33%, respectively. For optically thick ice clouds with tau larger than 10, however, the tau and r(sub eff) retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48km. Relatively large h uncertainty (e.g., > 1km) occurs for tau < 0.5. Analysis of 1month of the OE-IR retrievals shows large tau and r(sub eff) uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent tau and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 r(sub eff) are found.
Inter-comparison between AIRS and IASI through Retrieved Parameters
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve
2008-01-01
A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.
Ground truth spectrometry and imagery of eruption clouds to maximize utility of satellite imagery
NASA Technical Reports Server (NTRS)
Rose, William I.
1993-01-01
Field experiments with thermal imaging infrared radiometers were performed and a laboratory system was designed for controlled study of simulated ash clouds. Using AVHRR (Advanced Very High Resolution Radiometer) thermal infrared bands 4 and 5, a radiative transfer method was developed to retrieve particle sizes, optical depth and particle mass involcanic clouds. A model was developed for measuring the same parameters using TIMS (Thermal Infrared Multispectral Scanner), MODIS (Moderate Resolution Imaging Spectrometer), and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). Related publications are attached.
NASA Astrophysics Data System (ADS)
Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.
2012-12-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
Multilayered Clouds Identification and Retrieval for CERES Using MODIS
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Yi, Yuhong; Huang, Jainping; Lin, Bin; Fan, Alice; Gibson, Sharon; Chang, Fu-Lung
2006-01-01
Traditionally, analyses of satellite data have been limited to interpreting the radiances in terms of single layer clouds. Generally, this results in significant errors in the retrieved properties for multilayered cloud systems. Two techniques for detecting overlapped clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. The first technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other method uses microwave (MWR) data. The use of BTD, the 11-12 micrometer brightness temperature difference, in conjunction with tau, the retrieved visible optical depth, was suggested by Kawamoto et al. (2001) and used by Pavlonis et al. (2004) as a means to detect multilayered clouds. Combining visible (VIS; 0.65 micrometer) and infrared (IR) retrievals of cloud properties with microwave (MW) retrievals of cloud water temperature Tw and liquid water path LWP retrieved from satellite microwave imagers appears to be a fruitful approach for detecting and retrieving overlapped clouds (Lin et al., 1998, Ho et al., 2003, Huang et al., 2005). The BTD method is limited to optically thin cirrus over low clouds, while the MWR method is limited to ocean areas only. With the availability of VIS and IR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and MW data from the Advanced Microwave Scanning Radiometer EOS (AMSR-E), both on Aqua, it is now possible to examine both approaches simultaneously. This paper explores the use of the BTD method as applied to MODIS and AMSR-E data taken from the Aqua satellite over non-polar ocean surfaces.
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Harshvardhan; Platnick, Steven
2009-01-01
Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.
Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets
NASA Astrophysics Data System (ADS)
Rossi, L.; Stam, D. M.
2017-11-01
Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.
MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison
NASA Astrophysics Data System (ADS)
Corradini, S.; Merucci, L.; Folch, A.
2010-12-01
Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the modeled volcanic cloud area is systematically wider than the retrieved area, the ash total mass is comparable and varies between 35 and 60 kt and between 20 and 42 kt for FALL3D and MODIS respectively. The mean AOD values are in good agreement and approximately equal to 0.8. When the whole volcanic clouds are considered the ash areas and the total ash masses, computed by FALL3D model are significantly greater than the same parameters retrieved from the MODIS data, while the mean AOD values remain in a very good agreement and equal to about 0.6. The volcanic cloud direction in its distal part is not coincident for the 29 and 30 October 2002 images due to the difference between the real and the modeled local wind fields. Finally the MODIS maps show regions of high mass and AOD due to volcanic puffs not modeled by FALL3D.
Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data
NASA Technical Reports Server (NTRS)
Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil
2004-01-01
Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1993-01-01
A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.
Retrieval of cloud properties from POLDER-3 data using the neural network approach
NASA Astrophysics Data System (ADS)
Di Noia, A.; Hasekamp, O. P.
2017-12-01
Satellite multi-angle spectroplarimetry is a useful technique for observing the microphysical properties of clouds and aerosols. Most of the algorithms for the retrieval of cloud and aerosol properties from satellite measurements require multiple calls to radiative transfer models, which make the retrieval computationally expensive. A traditional alternative to these schemes is represented by lookup-tables (LUTs), where the retrieval is performed by choosing, within a predefined database of combinations of clouds or aerosol properties, the combination that best fits the measurements. LUT retrievals are quicker than full-physics, iterative retrievals, but their accuracy is limited by the number of entries stored in the LUT. Another retrieval method capable of producing very quick retrievals without a big sacrifice in accuracy is the neural network method. Neural network methods are routinely applied to several types of satellite measurements, but their application to multi-angle spectropolarimetric data is still in its early stage, because of the difficulty of accounting for the angular variability of the measurements in the training process. We have recently developed a neural network scheme for the retrieval of cloud properties from POLDER-3 data. The neural network retrieval is trained using synthetic measurements performed for realistic combinations of cloud properties and measurement angles, and is able to process an entire orbit in about 20 seconds. Comparisons of the retrieved cloud properties with Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products during one year show encouraging retrieval performance for cloud optical thickness and effective radius. A discussion of the setup of the neural network and of the validation results will be the main topic of our presentation.
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick
2008-01-01
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
NASA Technical Reports Server (NTRS)
Mcdougal, David S. (Editor)
1990-01-01
FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation research program formed in 1984 to increase the basic understanding of cirrus and marine stratocumulus cloud systems, to develop realistic parameterizations for these systems, and to validate and improve ISCCP cloud product retrievals. Presentations of results culminating the first 5 years of FIRE research activities were highlighted. The 1986 Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, the Extended Time Observations (ETO), and modeling activities are described. Collaborative efforts involving the comparison of multiple data sets, incorporation of data measurements into modeling activities, validation of ISCCP cloud parameters, and development of parameterization schemes for General Circulation Models (GCMs) are described.
Development of GK-2A cloud optical and microphysical properties retrieval algorithm
NASA Astrophysics Data System (ADS)
Yang, Y.; Yum, S. S.; Um, J.
2017-12-01
Cloud and aerosol radiative forcing is known to be one of the the largest uncertainties in climate change prediction. To reduce this uncertainty, remote sensing observation of cloud radiative and microphysical properties have been used since 1970s and the corresponding remote sensing techniques and instruments have been developed. As a part of such effort, Geo-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) will be launched in 2018. On the GK-2A, the Advanced Meteorological Imager (AMI) is primary instrument which have 3 visible, 3 near-infrared, and 10 infrared channels. To retrieve optical and microphysical properties of clouds using AMI measurements, the preliminary version of new cloud retrieval algorithm for GK-2A was developed and several validation tests were conducted. This algorithm retrieves cloud optical thickness (COT), cloud effective radius (CER), liquid water path (LWP), and ice water path (IWP), so we named this algorithm as Daytime Cloud Optical thickness, Effective radius and liquid and ice Water path (DCOEW). The DCOEW uses cloud reflectance at visible and near-infrared channels as input data. An optimal estimation (OE) approach that requires appropriate a-priori values and measurement error information is used to retrieve COT and CER. LWP and IWP are calculated using empirical relationships between COT/CER and cloud water path that were determined previously. To validate retrieved cloud properties, we compared DCOEW output data with other operational satellite data. For COT and CER validation, we used two different data sets. To compare algorithms that use cloud reflectance at visible and near-IR channels as input data, MODIS MYD06 cloud product was selected. For the validation with cloud products that are based on microwave measurements, COT(2B-TAU)/CER(2C-ICE) data retrieved from CloudSat cloud profiling radar (W-band, 94 GHz) was used. For cloud water path validation, AMSR-2 Level-3 Cloud liquid water data was used. Detailed results will be shown at the conference.
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-02-01
From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.
Development of a Global Multilayered Cloud Retrieval System
NASA Technical Reports Server (NTRS)
Huang, J.; Minnis, P.; Lin, B.; Yi, Y.; Ayers, J. K.; Khaiyer, M. M.; Arduini, R.; Fan, T.-F
2004-01-01
A more rigorous multilayered cloud retrieval system has been developed to improve the determination of high cloud properties in multilayered clouds. The MCRS attempts a more realistic interpretation of the radiance field than earlier methods because it explicitly resolves the radiative transfer that would produce the observed radiances. A two-layer cloud model was used to simulate multilayered cloud radiative characteristics. Despite the use of a simplified two-layer cloud reflectance parameterization, the MCRS clearly produced a more accurate retrieval of ice water path than simple differencing techniques used in the past. More satellite data and ground observation have to be used to test the MCRS. The MCRS methods are quite appropriate for interpreting the radiances when the high cloud has a relatively large optical depth (tau(sub I) greater than 2). For thinner ice clouds, a more accurate retrieval might be possible using infrared methods. Selection of an ice cloud retrieval and a variety of other issues must be explored before a complete global application of this technique can be implemented. Nevertheless, the initial results look promising.
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Zhang, Z.
2013-12-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into the standard MODIS cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 μm (effective particle size retrievals are derived from the short and mid-wave IR channels at 1.6, 2.1, and 3.7 μm). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple MODIS spectral channels in the visible and near- and shortwave-infrared. Preliminary retrieval results are shown, as are comparisons with other A-Train sensors.
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Zhang, Z.
2014-12-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into imager-based cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced for cloud optical thickness retrievals, which are typically derived from the visible or near-IR wavelength channels (effective particle size retrievals are derived from short and mid-wave IR channels that are less affected by aerosol absorption). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple spectral channels in the visible and near- and shortwave-IR. The technique has been applied to MODIS, and retrieval results and statistics, as well as comparisons with other A-Train sensors, are shown.
NASA Astrophysics Data System (ADS)
Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang
2017-07-01
We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Platnick, Steven
2012-01-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.
Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals
NASA Astrophysics Data System (ADS)
Holz, R. E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.; Nagle, F.; Wang, C.
2015-10-01
Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of two bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ~ 0.75 in the mid-visible spectrum, 5-15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.
Resolving Ice Cloud Optical Thickness Biases Between CALIOP and MODIS Using Infrared Retrievals
NASA Technical Reports Server (NTRS)
Holz, R. E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.;
2015-01-01
Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of two bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g approx. = 0.75 in the mid-visible spectrum, 5-15% smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products.This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28%), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.
Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals
NASA Astrophysics Data System (ADS)
Holz, Robert E.; Platnick, Steven; Meyer, Kerry; Vaughan, Mark; Heidinger, Andrew; Yang, Ping; Wind, Gala; Dutcher, Steven; Ackerman, Steven; Amarasinghe, Nandana; Nagle, Fredrick; Wang, Chenxi
2016-04-01
Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of 2 bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ≈ 0.75 in the mid-visible spectrum, 5-15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single-habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.
Volcanic Ash Retrievals Using ORAC and Satellite Measurements in the Visible and IR
NASA Astrophysics Data System (ADS)
Mcgarragh, Gregory R.; Thomas, Gareth E.; Povey, Adam C.; Poulsen, Caroline A.; Grainger, Roy G.
2015-11-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that uses visible to infrared measurements from a wide range of instruments including AATSR, AVHRR, MODIS and SEVIRI. Recently, support to retrieve volcanic ash has been added for which it retrieves optical thickness, effective radius and cloud top pressure. In this proceeding we discuss the implementation of the volcanic ash retrieval in ORAC including the retrieval methodology, forward model, sources of uncertainty and the discrimination of ash from aerosol and cloud. Results are presented that are consistent with a well know eruption from both AATSR and MODIS while results of a full SEVIRI retrieval of ash, aerosol and cloud properties relative to the ash is are discussed.
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
NASA Astrophysics Data System (ADS)
Richardson, Mark; Stephens, Graeme L.
2018-03-01
Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5-764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
View angle dependence of cloud optical thicknesses retrieved by MODIS
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Varnai, Tamas
2005-01-01
This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-01-01
From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.
Cloud characterization and clear-sky correction from Landsat-7
Cahalan, Robert F.; Oreopoulos, L.; Wen, G.; Marshak, S.; Tsay, S. -C.; DeFelice, Tom
2001-01-01
Landsat, with its wide swath and high resolution, fills an important mesoscale gap between atmospheric variations seen on a few kilometer scale by local surface instrumentation and the global view of coarser resolution satellites such as MODIS. In this important scale range, Landsat reveals radiative effects on the few hundred-meter scale of common photon mean-free-paths, typical of scattering in clouds at conservative (visible) wavelengths, and even shorter mean-free-paths of absorptive (near-infrared) wavelengths. Landsat also reveals shadowing effects caused by both cloud and vegetation that impact both cloudy and clear-sky radiances. As a result, Landsat has been useful in development of new cloud retrieval methods and new aerosol and surface retrievals that account for photon diffusion and shadowing effects. This paper discusses two new cloud retrieval methods: the nonlocal independent pixel approximation (NIPA) and the normalized difference nadir radiance method (NDNR). We illustrate the improvements in cloud property retrieval enabled by the new low gain settings of Landsat-7 and difficulties found at high gains. Then, we review the recently developed “path radiance” method of aerosol retrieval and clear-sky correction using data from the Department of Energy Atmospheric Radiation Measurement (ARM) site in Oklahoma. Nearby clouds change the solar radiation incident on the surface and atmosphere due to indirect illumination from cloud sides. As a result, if clouds are nearby, this extra side-illumination causes clear pixels to appear brighter, which can be mistaken for extra aerosol or higher surface albedo. Thus, cloud properties must be known in order to derive accurate aerosol and surface properties. A three-dimensional (3D) Monte Carlo (MC) radiative transfer simulation illustrates this point and suggests a method to subtract the cloud effect from aerosol and surface retrievals. The main conclusion is that cloud, aerosol, and surface retrievals are linked and must be treated as a combined system. Landsat provides the range of scales necessary to observe the 3D cloud radiative effects that influence joint surface-atmospheric retrievals.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2017-02-01
The so-called bi-spectral method retrieves cloud optical thickness (τ) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved τ and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the τ and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the τ and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.
NASA Technical Reports Server (NTRS)
Zhang, Z; Werner, F.; Cho, H. -M.; Wind, Galina; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2017-01-01
The so-called bi-spectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the t and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.
Ozone profiles retrieval from SCIAMACHY Chappuis-Wulf limb scattered spectra using MART
NASA Astrophysics Data System (ADS)
Wang, ZiJun; Chen, ShengBo; Jin, LiHua; Yang, ChunYan
2011-02-01
The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY (SCIAMACHY) instrument, launched on the Envisat satellite in March 2002, measures the earthshine radiance, simultaneously from the ultraviolet (UV) to the near infrared (NIR), in the three viewing geometries: nadir, limb, and occultation. These measurements are used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents. In this paper, stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIAMACHY limb scattered radiance in the Chappuis-Wulf band. The study employs a new multiplicative algebraic reconstruction technique (MART) coupled with the radiative transfer model SCIATRAN. This technique is outstanding in that more than one measurement vector element can be used to retrieve the ozone density at any altitude. Furthermore, it is straightforward to understand, easy to implement and likely to produce stable results. Radiance normalization and wavelength pairing is applied to radiance as an intermediate step, using the wavelengths 525 nm, 600 nm and 675 nm. The sensitivity of ozone retrieval by this method to tangent altitude pointing, surface albedo, aerosol and cloud parameters is studied, and the results show that the retrieval impact due to tangent altitude pointing bias is the biggest up to 75% with 1 km shift, and the impact of albedo is limited within 5%. The effect of boundary visibility and cloud parameters can be ignored since their impact is too small. The effectiveness of the retrieval is demonstrated using a set of coincident SCIAMACHY products at Hefei that shows a mean bias of less than 12% between 15 and 40 km, and with a better accuracy of 5% from 16 to 36 km.
Cloud-top height retrieval from polarizing remote sensor POLDER
NASA Astrophysics Data System (ADS)
He, Xianqiang; Pan, Delu; Yan, Bai; Mao, Zhihua
2006-10-01
A new cloud-top height retrieval method is proposed by using polarizing remote sensing. In cloudy conditions, it shows that, in purple and blue bands, linear polarizing radiance at the top-of-atmosphere (TOA) is mainly contributed by Rayleigh scattering of the atmosphere's molecules above cloud, and the contribution by cloud reflection and aerosol scattering can be neglected. With such characteristics, the basis principle and method of cloud-top height retrieval using polarizing remote sensing are presented in detail, and tested by the polarizing remote sensing data of POLDER. The satellite-derived cloud-top height product can not only show the distribution of global cloud-top height, but also obtain the cloud-top height distribution of moderate-scale meteorological phenomena like hurricanes and typhoons. This new method is promising to become the operational algorithm for cloud-top height retrieval for POLDER and the future polarizing remote sensing satellites.
NASA Technical Reports Server (NTRS)
Platnick, S.; Wind, G.
2004-01-01
In order to perform satellite retrievals of cloud properties, it is important to account for the effect of the above-cloud atmosphere on the observations. The solar bands used in the operational MODIS Terra and Aqua cloud optical and microphysical algorithms (visible, NIR, and SWIR spectral windows) are primarily affected by water vapor, and to a lesser extent by well-mixed gases. For water vapor, the above-cloud column amount, or precipitable water, provides adequate information for an atmospheric correction; details of the vertical vapor distribution are not typically necessary for the level of correction required. Cloud-top pressure has a secondary effect due to pressure broadening influences. For well- mixed gases, cloud-top pressure is also required for estimates of above-cloud abundances. We present a method for obtaining above-cloud precipitable water over dark Ocean surfaces using the MODIS 0.94 pm vapor absorption band. The retrieval includes an iterative procedure for establishing cloud-top temperature and pressure, and is useful for both single layer water and ice clouds. Knowledge of cloud thermodynamic phase is fundamental in retrieving cloud optical and microphysical properties. However, in cases of optically thin cirrus overlapping lower water clouds, the concept of a single unique phase is ill- defined and depends, at least, on the spectral region of interest. We will present a method for multi-layer and multi-phase cloud detection which uses above-cloud precipitable water retrievals along with several existing MODIS operational cloud products (cloud-top pressure derived from a C02 slicing algorithm, IR and SWIR phase retrievals). Results are catagorized by whether the radiative signature in the MODIS solar bands is primarily that of a water cloud with ice cloud contamination, or visa-versa. Examples in polar and mid-latitude regions will be shown.
Water ice cloud property retrievals at Mars with OMEGA:Spatial distribution and column mass
NASA Astrophysics Data System (ADS)
Olsen, Kevin S.; Madeleine, Jean-Baptiste; Szantai, Andre; Audouard, Joachim; Geminale, Anna; Altieri, Francesca; Bellucci, Giancarlo; Montabone, Luca; Wolff, Michael J.; Forget, Francois
2017-04-01
Spectral images of Mars recorded by OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) on Mars Express can be used to deduce the mean effective radius (r_eff) and optical depth (τ_i) of water ice particles in clouds. Using new data sets for a priori surface temperature, vertical profiles of atmospheric temperature, dust opacity, and multi-spectral surface albedo, we have analyzed over 40 OMEGA image cubes over the Tharsis, Arabia, and Syrtis Major quadrangles, and mapped the spatial distribution of r_eff, τ_i, and water ice column mass. We also explored the parameter space of r_eff and τ_i, which are inversely proportional, and the ice cloud index (ICI), which is the ratio of the reflectance at 3.4 and 3.52 μm, and indicates the thickness of water ice clouds. We found that the ICI, trivial to calculate for OMEGA image cubes, can be a proxy for column mass, which is very expensive to compute, requiring accurate retrievals of surface albedo, r_eff, and τ_i. Observing the spatial distribution, we find that within each cloud system, r_eff varies about a mean of 2.1 μm, that τi is closely related to r_eff, and that the values allowed for τ_i, given r_eff, are related to the ICI. We also observe areas where our retrieval detects very thin clouds made of very large particles (mean of 12.5 μm), which are still under investigation.
Clouds on the hot Jupiter HD189733b: Constraints from the reflection spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barstow, J. K.; Aigrain, S.; Irwin, P. G. J.
2014-05-10
The hot Jupiter HD 189733b is probably the best studied of the known extrasolar planets, with published transit and eclipse spectra covering the near UV to mid-IR range. Recent work on the transmission spectrum has shown clear evidence for the presence of clouds in its atmosphere, which significantly increases the model atmosphere parameter space that must be explored in order to fully characterize this planet. In this work, we apply the NEMESIS atmospheric retrieval code to the recently published HST/STIS reflection spectrum, and also to the dayside thermal emission spectrum in light of new Spitzer/IRAC measurements, as well as ourmore » own re-analysis of the HST/NICMOS data. We first use the STIS data to place some constraints on the nature of clouds on HD 189733b and explore solution degeneracy between different cloud properties and the abundance of Na in the atmosphere; as already noted in previous work, absorption due to Na plays a significant role in determining the shape of the reflection spectrum. We then perform a new retrieval of the temperature profile and abundances of H{sub 2}O, CO{sub 2}, CO, and CH{sub 4} from the dayside thermal emission spectrum. Finally, we investigate the effect of including cloud in the model on this retrieval process. We find that the current quality of data does not warrant the extra complexity introduced by including cloud in the model; however, future data are likely to be of sufficient resolution and signal-to-noise that a more complete model, including scattering particles, will be required.« less
Clouds on the Hot Jupiter HD189733b: Constraints from the Reflection Spectrum
NASA Astrophysics Data System (ADS)
Barstow, J. K.; Aigrain, S.; Irwin, P. G. J.; Hackler, T.; Fletcher, L. N.; Lee, J. M.; Gibson, N. P.
2014-05-01
The hot Jupiter HD 189733b is probably the best studied of the known extrasolar planets, with published transit and eclipse spectra covering the near UV to mid-IR range. Recent work on the transmission spectrum has shown clear evidence for the presence of clouds in its atmosphere, which significantly increases the model atmosphere parameter space that must be explored in order to fully characterize this planet. In this work, we apply the NEMESIS atmospheric retrieval code to the recently published HST/STIS reflection spectrum, and also to the dayside thermal emission spectrum in light of new Spitzer/IRAC measurements, as well as our own re-analysis of the HST/NICMOS data. We first use the STIS data to place some constraints on the nature of clouds on HD 189733b and explore solution degeneracy between different cloud properties and the abundance of Na in the atmosphere; as already noted in previous work, absorption due to Na plays a significant role in determining the shape of the reflection spectrum. We then perform a new retrieval of the temperature profile and abundances of H2O, CO2, CO, and CH4 from the dayside thermal emission spectrum. Finally, we investigate the effect of including cloud in the model on this retrieval process. We find that the current quality of data does not warrant the extra complexity introduced by including cloud in the model; however, future data are likely to be of sufficient resolution and signal-to-noise that a more complete model, including scattering particles, will be required.
The Validation of Cloud Retrieval Algorithms Using Synthetic Datasets
NASA Astrophysics Data System (ADS)
Kokhanovsky, Alexander; Fischer, Jurgen; Linstrot, Rasmus; Meirink, Jan Fokke; Poulsen, Caroline; Preusker, Rene; Siddans, Richard; Thomas, Gareth; Arnold, Chris; Grainger, Roy; Lilli, Luca; Rozanov, Vladimir
2012-11-01
We have performed the inter-comparison study of cloud property retrievals using algorithms initially developed for AATSR (ORAC, RAL-Oxford University), AVHRR and SEVIRI (CPP, KNMI), SCIAMACHY/GOME (SACURA, University of Bremen), and MERIS (ANNA, Free University of Berlin). The accuracy of retrievals of cloud optical thickness (COT), effective radius (ER) of droplets, and cloud top height (CTH) is discussed.
NASA Astrophysics Data System (ADS)
Nagao, T. M.; Murakami, H.; Nakajima, T. Y.
2017-12-01
This study proposes an algorithm to estimate vertical profiles of cloud droplet effective radius (CDER-VP) for water clouds from shortwave infrared (SWIR) measurements of Himawari-8/AHI via a statistical model of CDER-VP derived from CloudSat observation. Several similar algorithms in previous studies utilize a spectral radiance matching on the assumption of simultaneous observations of CloudSat and Aqua/MODIS. However, our algorithm does not assume simultaneous observations with CloudSat. First, in advance, a database (DB) of CDER-VP is prepared by the following procedure: TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI are simulated using CDER-VP and cloud optical depth vertical profile (COD-VP) contained in the CloudSat 2B-CWC-RVOD and 2B-TAU products. Cloud optical thickness (COT), Column-CDER and cloud top height (CTH) are retrieved from the simulated radiances using a traditional retrieval algorithm with vertically homogeneous cloud model (1-SWIR VHC method). The CDER-VP is added to the DB by using the COT and Column-CDER retrievals as a key of the DB. Then by using principal component (PC) analysis, up to three PC vectors of the CDER-VPs in the DB are extracted. Next, the algorithm retrieves CDER-VP from actual AHI measurements by the following procedure: First, COT, Column-CDER and CTH are retrieved from TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI using by 1-SWIR VHC method. Then, the PC vectors of CDER-VP is fetched from the DB using the COT and Column-CDER retrievals as the key of the DB. Finally, using coefficients of the PC vectors of CDER-VP as variables for retrieval, CDER-VP, COT and CTH are retrieved from TOA radiances at 0.65, 1.6, 2.3, 3.9 and 10.4-μm bands of the AHI based on optimal estimation method with iterative radiative transfer calculation. The simulation result showed the CDER-VP retrieval errors were almost smaller than 3 - 4 μm. The CDER retrieval errors at the cloud base were almost larger than the others (e.g. CDER at cloud top), especially when COT and CDER was large. The tendency can be explained by less sensitivities of SWIRs to CDER at cloud base. Additionally, as a case study, this study will attempt to apply the algorithm to the AHI's high-frequency observations, and to interpret the time series of the CDER-VP retrievals in terms of temporal evolution of water clouds.
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert
2011-01-01
We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.
NASA Astrophysics Data System (ADS)
Xu, Zhuocan; Mace, Jay; Avalone, Linnea; Wang, Zhien
2015-04-01
The extreme variability of ice particle habits in precipitating clouds affects our understanding of these cloud systems in every aspect (i.e. radiation transfer, dynamics, precipitation rate, etc) and largely contributes to the uncertainties in the model representation of related processes. Ice particle mass-dimensional power law relationships, M=a*(D ^ b), are commonly assumed in models and retrieval algorithms, while very little knowledge exists regarding the uncertainties of these M-D parameters in real-world situations. In this study, we apply Optimal Estimation (OE) methodology to infer ice particle mass-dimensional relationship from ice particle size distributions and bulk water contents independently measured on board the University of Wyoming King Air during the Colorado Airborne Multi-Phase Cloud Study (CAMPS). We also utilize W-band radar reflectivity obtained on the same platform (King Air) offering a further constraint to this ill-posed problem (Heymsfield et al. 2010). In addition to the values of retrieved M-D parameters, the associated uncertainties are conveniently acquired in the OE framework, within the limitations of assumed Gaussian statistics. We find, given the constraints provided by the bulk water measurement and in situ radar reflectivity, that the relative uncertainty of mass-dimensional power law prefactor (a) is approximately 80% and the relative uncertainty of exponent (b) is 10-15%. With this level of uncertainty, the forward model uncertainty in radar reflectivity would be on the order of 4 dB or a factor of approximately 2.5 in ice water content. The implications of this finding are that inferences of bulk water from either remote or in situ measurements of particle spectra cannot be more certain than this when the mass-dimensional relationships are not known a priori which is almost never the case.
NASA Technical Reports Server (NTRS)
Greenwald, Thomas J.; Christopher, Sundar A.; Chou, Joyce
1997-01-01
Satellite observations of the cloud liquid water path (LWP) are compared from special sensor microwave imager (SSM/I) measurements and GOES 8 imager solar reflectance (SR) measurements to ascertain the impact of sub-field-of-view (FOV) cloud effects on SSM/I 37 GHz retrievals. The SR retrievals also incorporate estimates of the cloud droplet effective radius derived from the GOES 8 3.9-micron channel. The comparisons consist of simultaneous collocated and full-resolution measurements and are limited to nonprecipitating marine stratocumulus in the eastern Pacific for two days in October 1995. The retrievals from these independent methods are consistent for overcast SSM/I FOVS, with RMS differences as low as 0.030 kg/sq m, although biases exist for clouds with more open spatial structure, where the RMS differences increase to 0.039 kg/sq m. For broken cloudiness within the SSM/I FOV the average beam-filling error (BFE) in the microwave retrievals is found to be about 22% (average cloud amount of 73%). This systematic error is comparable with the average random errors in the microwave retrievals. However, even larger BFEs can be expected for individual FOVs and for regions with less cloudiness. By scaling the microwave retrievals by the cloud amount within the FOV, the systematic BFE can be significantly reduced but with increased RMS differences of O.046-0.058 kg/sq m when compared to the SR retrievals. The beam-filling effects reported here are significant and are expected to impact directly upon studies that use instantaneous SSM/I measurements of cloud LWP, such as cloud classification studies and validation studies involving surface-based or in situ data.
Determination of cloud parameters from infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H.-Y. M.
1984-01-01
The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.
NASA Astrophysics Data System (ADS)
Cadeddu, M. P.; Marchand, R.; Orlandi, E.; Turner, D. D.; Mech, M.
2016-12-01
The retrieval of liquid water path (LWP) during drizzle and rain from ground-based microwave radiometers presents several challenges that have not been entirely solved. Ground-based microwave radiometers have been traditionally used to retrieve cloud LWP assuming non-precipitating conditions. Yet retrieval of liquid water path under light rain and possibly the partition of total liquid water path among cloud and rain are very important to study cloud properties because the presence of drizzle affects for example the cloud's lifetime. Improving the LWP retrieval during drizzle and possibly partitioning cloud and rain LWP is therefore highly desirable. In precipitating clouds the raindrop's size is of the same order of magnitude of the wavelength sampled by the instrument and the effects of hydrometeor's scattering can't be neglected. In this paper we model the effect of scattering hydrometeors on radiometric brightness temperatures commonly used in LWP retrievals and develop a physical retrieval to derive precipitable water vapor (PWV), total LWP, and the fraction of cloud and rain liquid water (Cf) from microwave brightness temperatures at three commonly used frequencies. The retrieval is first applied to a set of synthetic measurements and is then used to retrieve PWV, LWP, and Cf in two drizzling cases at the Atmospheric Radiation Measurement (ARM) Program Eastern North Atlantic (ENA) site. Results show that there is useful information in the microwave brightness temperatures that can be used to reduce LWP retrieval uncertainty during light rain and can open the path for a better integration of active and passive sensors. The effect of raindrops on the radiometer's lens is examined with the help of a digital camera and experimental data. A possible way to account for raindrop deposition on the instrument's lens is suggested.
Using Ground-Based Measurements and Retrievals to Validate Satellite Data
NASA Technical Reports Server (NTRS)
Dong, Xiquan
2002-01-01
The proposed research is to use the DOE ARM ground-based measurements and retrievals as the ground-truth references for validating satellite cloud results and retrieving algorithms. This validation effort includes four different ways: (1) cloud properties on different satellites, therefore different sensors, TRMM VIRS and TERRA MODIS; (2) cloud properties at different climatic regions, such as DOE ARM SGP, NSA, and TWP sites; (3) different cloud types, low and high level cloud properties; and (4) day and night retrieving algorithms. Validation of satellite-retrieved cloud properties is very difficult and a long-term effort because of significant spatial and temporal differences between the surface and satellite observing platforms. The ground-based measurements and retrievals, only carefully analyzed and validated, can provide a baseline for estimating errors in the satellite products. Even though the validation effort is so difficult, a significant progress has been made during the proposed study period, and the major accomplishments are summarized in the follow.
NASA Technical Reports Server (NTRS)
Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.
1999-01-01
Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.
NASA Astrophysics Data System (ADS)
Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer
2017-11-01
New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
Cloud Properties and Radiative Heating Rates for TWP
Comstock, Jennifer
2013-11-07
A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.
NASA Astrophysics Data System (ADS)
Peers, F.; Haywood, J. M.; Francis, P. N.; Meyer, K.; Platnick, S. E.
2017-12-01
Over the South East Atlantic Ocean, biomass burning aerosols from Southern Africa are frequently observed above clouds during fire season. However, the quantification of their interactions with both radiations and clouds remains uncertain because of a lack of information on aerosol properties and on their interaction process. In the last decade, methods have been developed to retrieve aerosol optical properties above clouds from satellite measurements, especially over the South East Atlantic Ocean. Most of these methods have been applied to polar orbiting instruments which prevent the analysis of aerosols and clouds at a sub-daily scale. With its wide spatial coverage and its high temporal resolution, the geostationary instrument SEVIRI, on board the MSG platform, offers a unique opportunity to monitor aerosols in this region and to evaluate their impact on clouds and their radiative effects. In this study, we will investigate the possibility of retrieving simultaneously aerosol and cloud properties (i.e. aerosol and cloud optical thicknesses and cloud droplet effective radius) when aerosols are located above clouds. The retrieved properties will then be compared with the ones obtained from MODIS [Meyer et al., 2015] as well as observations from the CLARIFY-2017 field campaign.
Effects of Cloud Properties on PM2.5 Levels in the Southeastern United States
NASA Astrophysics Data System (ADS)
Yu, C.; Zhang, X.; Liu, Y.
2012-12-01
The spatial and temporal characteristics of fine particulate matter (PM2.5) are increasingly being derived from satellite aerosol remote sensing data. A major concern of satellite-derived PM2.5 information is cloud cover, i.e., PM2.5 mass concentrations cannot be estimated from satellite observations under cloudy conditions. There has been little research on the effects of cloud properties on PM2.5 levels. In this study, we performed a statistical analysis of relationships between various cloud parameters and PM2.5 concentrations. We used 2005-2010 PM2.5 observations from 8 sites in the Southeastern Aerosol Research and Characterization (SEARCH) Network, and cloud parameters from MODIS cloud product retrievals from Terra and Aqua satellites. We find that cloud fraction (CF) is generally negatively correlated with the mean value of PM2.5 mass concentration. However, the largest mean value occurs when the cloud fraction is between 10% and 30% instead of lower cloud cover (CF < 10%). The mean value of PM2.5 decreased from 14.3μg/m3 during 10%~30% cloud fraction to 9.3μg/m3 in cloudy days (CF=100%), and the negative correlation is more significant during the summer and fall than spring and winter. In addition, Cloud top pressure (CTP) and cloud optical thickness (COT) also influence PM2.5 mass concentration, with CTP being positively correlated with PM2.5 while COT being negatively correlated. These results suggest that cloud parameters may be used as predictor variables in satellite models of PM2.5.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, K.
2016-06-01
The bispectral method retrieves cloud optical thickness (τ) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VIS/NIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring subpixel variations of cloud reflectances can lead to a significant bias in the retrieved τ and re. In the literature, the retrievals of τ and re are often assumed to be independent and considered separately when investigating the impact of subpixel cloud reflectance variations on the bispectral method. As a result, the impact on τ is contributed only by the subpixel variation of VIS/NIR band reflectance and the impact on re only by the subpixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of subpixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the τ and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how subpixel cloud reflectance variations impact the τ and re retrievals based on the bispectral method. In particular, our framework provides a mathematical explanation of how the subpixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used to estimate the retrieval uncertainty from subpixel reflectance variations in operational satellite cloud products and to help understand the differences in τ and re retrievals between two instruments.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Werner, F.; Cho, H. -M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2016-01-01
The bi-spectral method retrieves cloud optical thickness and cloud droplet effective radius simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VISNIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved and re. In the literature, the retrievals of and re are often assumed to be independent and considered separately when investigating the impact of sub-pixel cloud reflectance variations on the bi-spectral method. As a result, the impact on is contributed only by the sub-pixel variation of VISNIR band reflectance and the impact on re only by the sub-pixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VISNIR and SWIR cloud reflectances and their covariance on the and re retrievals. This framework takes into account the fact that the retrievals are determined by both VISNIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VISNIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used to estimate the retrieval uncertainty from sub-pixel reflectance variations in operational satellite cloud products and to help understand the differences in and re retrievals between two instruments.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, K.
2016-01-01
The bispectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VIS/NIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring subpixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In the literature, the retrievals of t and re are often assumed to be independent and considered separately when investigating the impact of subpixel cloud reflectance variations on the bispectral method. As a result, the impact on t is contributed only by the subpixel variation of VIS/NIR band reflectance and the impact on re only by the subpixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of subpixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how subpixel cloud reflectance variations impact the t and re retrievals based on the bispectral method. In particular, our framework provides a mathematical explanation of how the subpixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used to estimate the retrieval uncertainty from subpixel reflectance variations in operational satellite cloud products and to help understand the differences in t and re retrievals between two instruments.
Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven
2017-01-01
Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm -3 ) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to -2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm -3 related to a +2.5 to -1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.
Radiation Transfer in the Atmosphere: Scattering
NASA Technical Reports Server (NTRS)
Mishchenko, M.; Travis, L.; Lacis, Andrew A.
2014-01-01
Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.
NASA Astrophysics Data System (ADS)
Jourdan, Olivier; Mioche, Guillaume; Garrett, Timothy J.; SchwarzenböCk, Alfons; Vidot, JéRôMe; Xie, Yu; Shcherbakov, Valery; Yang, Ping; Gayet, Jean-FrançOis
2010-12-01
Airborne measurements in an Arctic mixed-phase nimbostratus cloud were conducted in Spitsbergen on 21 May 2004 during the international Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign. The in situ instrument suite aboard the Alfred Wegener Institute Polar 2 aircraft included a polar nephelometer (PN), a cloud particle imager (CPI), a Nevzorov probe, and a standard PMS 2DC probe to measure the cloud particle single-scattering properties (at a wavelength of 0.8 μm), and the particle morphology and size, as well as the in-cloud partitioning of ice/water content. The main objective of this work is to present a technique based on principal component analysis and light-scattering modeling to link the microphysical properties of cloud particles to their optical characteristics. The technique is applied to the data collected during the 21 May case study where a wide variety of ice crystal shapes and liquid water fractions were observed at temperatures ranging from -1°C to -12°C. CPI measurements highlight the presence of large supercooled water droplets with diameters close to 500 μm. Although the majority of ice particles were found to have irregular shapes, columns and needles were the prevailing regular habits between -3°C and -6°C while stellars and plates were observed at temperatures below -8°C. The implementation of the principal component analysis of the PN scattering phase function measurements revealed representative optical patterns that were consistent with the particle habit classification derived from the CPI. This indicates that the synergy between the CPI and the PN can be exploited to link the microphysical and shape properties of cloud particles to their single-scattering characteristics. Using light-scattering modeling, we have established equivalent microphysical models based on a limited set of free parameters (roughness, mixture of idealized particle habits, and aspect ratio of ice crystals) that reproduce the main optical features assessed for cloud regions with different particle geometries and liquid water fractions. However, the retrieved bulk microphysical parameters can substantially differ from the measurements (by several times for the effective size and up to 3 orders of magnitude for the number concentration). Several possible explanations for these discrepancies are discussed. The retrievals show that the optical contribution of small particles with sizes lower than 50 μm (droplets and ice crystals) is significant, always exceeding 50% of the total scattering signal, and thus needs to be more accurately quantified. The shattering of large ice crystals on the shrouded inlet of the PN could also strongly affect the retrieved microphysical parameters.
NASA Astrophysics Data System (ADS)
corradini, stefano; merucci, luca; guerrieri, lorenzo; pugnaghi, sergio; mcgarragh, greg; carboni, elisa; ventress, lucy; grainger, roy; scollo, simona; pardini, federica; zaksek, klemen; langmann, baerbel; bancalá, severin; stelitano, dario
2016-04-01
The volcanic ash cloud altitude is one of the most important parameter needed for the volcanic ash cloud estimations (mass, effective radius and optical depth). It is essential by modelers to initialize the ash cloud transportation models, and by volcanologists to give insights into eruption dynamics. Moreover, it is extremely important in order to reduce the disruption to flights as a result of volcanic activity whilst still ensuring safe travel. In this work, the volcanic ash cloud altitude is computed from remote sensing passive satellite data (SEVIRI, MODIS, IASI and MISR) by using the most of the existing retrieval techniques. A novel approach, based on the CO2 slicing procedure, is also shown. The comparisons among different techniques are presented and advantages and drawbacks emphasized. As test cases Etna eruptions in the period between 03 and 09 December 2015 are considered. During this time four lava fountain events occurred at the Voragine crater, forming eruption columns higher than 12 km asl and producing copious tephra fallout on volcano flanks. These events, among the biggest of the last 20 years, produced emissions that reached the stratosphere and produced a circum-global transport throughout the northern hemisphere.
W-band spaceborne radar observations of atmospheric river events
NASA Astrophysics Data System (ADS)
Matrosov, S. Y.
2010-12-01
While the main objective of the world first W-band radar aboard the CloudSat satellite is to provide vertically resolved information on clouds, it proved to be a valuable tool for observing precipitation. The CloudSat radar is generally able to resolve precipitating cloud systems in their vertical entirety. Although measurements from the liquid hydrometer layer containing rainfall are strongly attenuated, special retrieval approaches can be used to estimate rainfall parameters. These approaches are based on vertical gradients of observed radar reflectivity factor rather than on absolute estimates of reflectivity. Concurrent independent estimations of ice cloud parameters in the same vertical column allow characterization of precipitating systems and provide information on coupling between clouds and rainfall they produce. The potential of CloudSat for observations atmospheric river events affecting the West Coast of North America is evaluated. It is shown that spaceborne radar measurements can provide high resolution information on the height of the freezing level thus separating areas of rainfall and snowfall. CloudSat precipitation rate estimates complement information from the surface-based radars. Observations of atmospheric rivers at different locations above the ocean and during landfall help to understand evolutions of atmospheric rivers and their structures.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana
2016-05-01
In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.
NASA Astrophysics Data System (ADS)
Duncan, D.; Kummerow, C. D.; Meier, W.
2016-12-01
Over the lifetime of AMSR-E, operational retrieval algorithms were developed and run for precipitation, ocean suite (SST, wind speed, cloud liquid water path, and column water vapor over ocean), sea ice, snow water equivalent, and soil moisture. With a separate algorithm for each group, the retrievals were never interactive or integrated in any way despite many co-sensitivities. AMSR2, the follow-on mission to AMSR-E, retrieves the same parameters at a slightly higher spatial resolution. We have combined the operational algorithms for AMSR2 in a way that facilitates sharing information between the retrievals. Difficulties that arose were mainly related to calibration, spatial resolution, coastlines, and order of processing. The integration of all algorithms for AMSR2 has numerous benefits, including better detection of light precipitation and sea ice, fewer screened out pixels, and better quality flags. Integrating the algorithms opens up avenues for investigating the limits of detectability for precipitation from a passive microwave radiometer and the impact of spatial resolution on sea ice edge detection; these are investigated using CloudSat and MODIS coincident observations from the A-Train constellation.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John; Iredell, Lena
2014-01-01
The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.
Evaluating cloud retrieval algorithms with the ARM BBHRP framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlawer,E.; Dunn,M.; Mlawer, E.
2008-03-10
Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analysesmore » has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.« less
NASA Technical Reports Server (NTRS)
Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.
2016-01-01
Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi
2016-04-01
Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.
Measurement of Aerosol and Cloud Particles with PACS and HARP Hyperangular Imaging Polarimeters
NASA Astrophysics Data System (ADS)
Martins, J.; Fernandez-Borda, R.; Remer, L. A.; Sparr, L.; Buczkowski, S.; Munchak, L. A.
2013-12-01
PACS is new hyper-angular imaging polarimeter for aeorosol and cloud measurerents designed to meet the requirements of the proposed ACE decadal survey mission. The full PACS system consists of three wide field of view (110deg cross track) telescopes covering the UV, VNIR, and SWIR spectral ranges with angular coverage between +55 deg forward to -55deg backwards. The angular density can be selected to cover up to 100 different viewing angles at selected wavelengths. PACS_VNIR is a prototype airborne instrument designed to demonstrate PACS capability by deploying just one of the three wavelength modules of the full PACS. With wavelengths at 470, 550, 675, 760 and 875nm, PACS_VNIR flew for the first time during the PODEX experiment in January/February 2013 aboard the NASA ER-2 aircraft. PACS SWIR (1.64, 1.88, 2.1, and 2.25um) is currently under construction and should be operational in the lab by Fall/2013. PACS_ UV has been fully designed, but is not yet under construction. During the PODEX flights PACS_VNIR collected data for aerosol and clouds over variable surface types including, water, vegetation, urban areas, and snow. The data is currently being calibrated, geolocated and prepared for the inversion of geophysical parameters including water cloud size distribution and aerosol microphysical parameters. The large density of angles in PACS allows for the characterization of cloudbow features in relatively high spatial resolution in a pixel to pixel basis. This avoids the need for assumptions of cloud homogeneity over any distance. The hyperangle capability also allows detailed observation of cloud ice particles, surface characterization, and optimum selection of the number of angles desired for aerosol retrievals. The aerosol and cloud retrieval algorithms under development for the retrieval of particle microphysical properties from the PACS data will be discussed in this presentation. As an extension of the PACS concept we are currently developing the HARP (Hyper-Angular Rainbow Polarimeter) Cubesat satellite funded by the NASA/ESTO/InVEST program. HARP will demonstrate the PACS concept from space and will allow for high resolution angular measurements of polarized radiances over different aerosol and cloud scenarios. The HARP concept and strategy will be presented and discussed as part of the general PACS measurement strategy.
Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record
NASA Astrophysics Data System (ADS)
Lattanzio, A.; Fell, F.; Bennartz, R.; Trigo, I. F.; Schulz, J.
2015-10-01
Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982-2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.
2006-01-01
Retrieving surface longwave radiation from space has been a difficult task since the surface downwelling longwave radiation (SDLW) are integrations from radiation emitted by the entire atmosphere, while those emitted from the upper atmosphere are absorbed before reaching the surface. It is particularly problematic when thick clouds are present since thick clouds will virtually block all the longwave radiation from above, while satellites observe atmosphere emissions mostly from above the clouds. Zhou and Cess developed an algorithm for retrieving SDLW based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for areas that were covered with ice clouds. An improved version of the algorithm was developed that prevents the large errors in the SDLW at low water vapor amounts. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths measured from the Cloud and the Earth's Radiant Energy System (CERES) satellites to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for the Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing. It will be incorporated in the CERES project as one of the empirical surface radiation algorithms.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-07-02
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m -2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m -2.« less
Optical properties of aerosol contaminated cloud derived from MODIS instrument
NASA Astrophysics Data System (ADS)
Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.
2016-04-01
The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.
Cloud-property retrieval using merged HIRS and AVHRR data
NASA Technical Reports Server (NTRS)
Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay
1992-01-01
A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.
NASA Technical Reports Server (NTRS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-01-01
To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).
Supervised machine learning for analysing spectra of exoplanetary atmospheres
NASA Astrophysics Data System (ADS)
Márquez-Neila, Pablo; Fisher, Chloe; Sznitman, Raphael; Heng, Kevin
2018-06-01
The use of machine learning is becoming ubiquitous in astronomy1-3, but remains rare in the study of the atmospheres of exoplanets. Given the spectrum of an exoplanetary atmosphere, a multi-parameter space is swept through in real time to find the best-fit model4-6. Known as atmospheric retrieval, this technique originates in the Earth and planetary sciences7. Such methods are very time-consuming, and by necessity there is a compromise between physical and chemical realism and computational feasibility. Machine learning has previously been used to determine which molecules to include in the model, but the retrieval itself was still performed using standard methods8. Here, we report an adaptation of the `random forest' method of supervised machine learning9,10, trained on a precomputed grid of atmospheric models, which retrieves full posterior distributions of the abundances of molecules and the cloud opacity. The use of a precomputed grid allows a large part of the computational burden to be shifted offline. We demonstrate our technique on a transmission spectrum of the hot gas-giant exoplanet WASP-12b using a five-parameter model (temperature, a constant cloud opacity and the volume mixing ratios or relative abundances of molecules of water, ammonia and hydrogen cyanide)11. We obtain results consistent with the standard nested-sampling retrieval method. We also estimate the sensitivity of the measured spectrum to the model parameters, and we are able to quantify the information content of the spectrum. Our method can be straightforwardly applied using more sophisticated atmospheric models to interpret an ensemble of spectra without having to retrain the random forest.
NASA Astrophysics Data System (ADS)
Havemann, S.; Thelen, J. C.; Harlow, R. C.
2016-12-01
Full scattering radiative transfer simulations for hyperspectral infrared and shortwave sounders are essential in order to be able to extract the maximal information content from these instruments for cloudy scenes and those with significant aerosol loading, but have been rarely done because of the high computational demands. The Havemann-Taylor Fast Radiative Transfer Code works in Principal Component space, reducing the computational demand by orders of magnitude thereby making fast simultaneous retrievals of vertical profiles of temperature and humidity, surface temperature and emissivity as well as cloud and aerosol properties feasible. Results of successful retrievals using IASI sounder data as well as data taken during flights of the Airborne Research Interferometer Evaluation System (ARIES) on board the FAAM Bae 146 aircraft will be presented. These will demonstrate that the use of all the instrument channels in PC space can provide valuable information both on temperature and humidity profiles relevant for NWP and on the cirrus cloud properties at the same time. There is very significant information on the humidity profile below semi-transparent cirrus to be gained from IR sounder data. The retrieved ice water content is in good agreement with airborne in-situ measurements during Lagrangian spiral descents. In addition to the full scattering calculations, the HT-FRTC has also been trained with a fast approximation to the scattering problem which reduces it to a clear-sky calculation but with a modified extinction (Chou scaling). Chou scaling is a reasonable approximation in the infrared but is very poor where the solar contribution becomes significant. The comparison of the retrieval performance with the full scattering solution and the Chou scaling solution in the forward model operator for infrared sounders shows that temperature and humidity profiles are only marginally degraded by the use of the Chou scaling approximation. Retrievals of the specific cloud parameters (ice water content, cirrus cloud thickness and cirrus cloud horizontal fraction) are however strongly negatively affected under the Chou scaling approximation. The aim is also to use HT-FRTC to run clear and cloudy simulations for the atmospheric state test set which has been prepared by the NASA/JPL/AIRS project.
Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks
NASA Astrophysics Data System (ADS)
Strandgren, Johan; Bugliaro, Luca; Sehnke, Frank; Schröder, Leon
2017-09-01
Cirrus clouds play an important role in climate as they tend to warm the Earth-atmosphere system. Nevertheless their physical properties remain one of the largest sources of uncertainty in atmospheric research. To better understand the physical processes of cirrus clouds and their climate impact, enhanced satellite observations are necessary. In this paper we present a new algorithm, CiPS (Cirrus Properties from SEVIRI), that detects cirrus clouds and retrieves the corresponding cloud top height, ice optical thickness and ice water path using the SEVIRI imager aboard the geostationary Meteosat Second Generation satellites. CiPS utilises a set of artificial neural networks trained with SEVIRI thermal observations, CALIOP backscatter products, the ECMWF surface temperature and auxiliary data. CiPS detects 71 and 95 % of all cirrus clouds with an optical thickness of 0.1 and 1.0, respectively, that are retrieved by CALIOP. Among the cirrus-free pixels, CiPS classifies 96 % correctly. With respect to CALIOP, the cloud top height retrieved by CiPS has a mean absolute percentage error of 10 % or less for cirrus clouds with a top height greater than 8 km. For the ice optical thickness, CiPS has a mean absolute percentage error of 50 % or less for cirrus clouds with an optical thickness between 0.35 and 1.8 and of 100 % or less for cirrus clouds with an optical thickness down to 0.07 with respect to the optical thickness retrieved by CALIOP. The ice water path retrieved by CiPS shows a similar performance, with mean absolute percentage errors of 100 % or less for cirrus clouds with an ice water path down to 1.7 g m-2. Since the training reference data from CALIOP only include ice water path and optical thickness for comparably thin clouds, CiPS also retrieves an opacity flag, which tells us whether a retrieved cirrus is likely to be too thick for CiPS to accurately derive the ice water path and optical thickness. By retrieving CALIOP-like cirrus properties with the large spatial coverage and high temporal resolution of SEVIRI during both day and night, CiPS is a powerful tool for analysing the temporal evolution of cirrus clouds including their optical and physical properties. To demonstrate this, the life cycle of a thin cirrus cloud is analysed.
NASA Technical Reports Server (NTRS)
Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.
2012-01-01
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Ultraviolet Satellite Measurements of Volcanic Ash. Chapter 12
NASA Technical Reports Server (NTRS)
Carn, S. A.; Krotkov, N. A.
2016-01-01
Ultraviolet (UV) remote sensing of volcanic ash and other absorbing aerosols from space began with the launch of the first Total Ozone Mapping Spectrometer (TOMS) instrument in 1978. Subsequent UV satellite missions (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS) have extended UV ash measurements to the present, generating a unique multidecadal record. A UV Aerosol Index (UVAI) based on two near-UV wavelengths, equally applicable to multispectral (TOMS, DSCOVR) or hyperspectral (GOME, SCIAMACHY, OMI, GOME-2, OMPS) instruments, has been used to derive a unique absorbing aerosol climatology across multiple UV satellite missions. Advantages of UV ash measurements relative to infrared (IR) techniques include the ability to detect ash at any altitude (assuming no clouds), above clouds, and over bright surfaces, where visible and IR techniques may fail. Disadvantages include the daytime-only restriction and nonspecificity to silicate ash, since UV measurements are sensitive to any UV-absorbing aerosol, including smoke, desert dust, and pollution. However, simultaneous retrieval of sulfur dioxide (SO2) abundance and UVAI provides robust discrimination of volcanic clouds. Although the UVAI is only semiquantitative, it has proved successful at detecting and tracking volcanic ash clouds from many volcanic eruptions since 1978. NASA A-Train measurements since 2006 (eg, CALIOP) have provided much improved constraints on volcanic ash altitude, and also permit identification of aerosol type through sensor synergy. Quantitative UV retrievals of ash optical depth, effective particle size, and ash column mass are possible and require assumptions of ash refractive index, particle size distribution, and ash layer altitude. The lack of extensive ash refractive index data in the UV-visible and the effects of ash particle shape on retrievals introduce significant uncertainty in the retrieved parameters, although limited validation against IR ash retrievals has been successful. In this contribution, we review UV ash detection and retrieval techniques and provide examples of volcanic eruptions detected in the approx. 37 year data record.
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
Shupe, Matthew
2013-05-22
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
NASA Astrophysics Data System (ADS)
Haus, R.; Kappel, D.; Arnold, G.
2014-04-01
Thermal structure and cloud features in the atmosphere of Venus are investigated using spectroscopic nightside measurements recorded by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission in the moderate resolution infrared mapping channel (M-IR, 1-5 μm). New methodical approaches and retrieval results for the northern hemisphere have been recently described by Haus et al. (Haus, R., Kappel, D., Arnold, G. [2013]. Planet. Space Sci. 89, 77-101. http://dx.doi.org/10.1016/j.pss.2013.09.020). Now, southern hemisphere maps of mesospheric temperature and cloud parameter fields are presented that cover variations with altitude, latitude, local time, and mission time. Measurements from the entire usable data archive are utilized comprising radiation spectra recorded during eight Venus solar days between April 2006 and October 2008. Zonal averages of retrieved temperature altitude profiles in both hemispheres are very similar and give evidence of global N-S axial symmetry of atmospheric temperature structure. Cold collar and warmer polar vortex regions exhibit the strongest temperature variability with standard deviations up to 8.5 K at 75°S and 63 km altitude compared with about 1.0 K at low and mid latitudes above 75 km. The mesospheric temperature field strongly depends on local time. At altitudes above about 75 km, the atmosphere is warmer in the second half of night, while the dawn side at lower altitudes is usually colder than the dusk side by about 8 K. Local minimum temperature of 220 K occurs at 03:00 h local time at 65 km and 60°S. Temperature standard deviation at polar latitudes is particularly large near midnight. Temperature variability with solar longitude is forced by solar thermal tides with a dominating diurnal component. The influence of observed cloud parameter changes on retrieved mesospheric zonal average temperature structure is moderate and does not exceed 2-3 K at altitudes between 60 and 75 km. The mesospheric thermal structure was essentially stable with Julian date between 2006 and 2008. Global N-S axial symmetry is also observed in cloud structures. Cloud top altitude at 1 μm slowly decreases from 71 km at the equator to 70 km at 45-50° and rapidly drops poleward of 50°. It reaches 61 km over both poles. Average particle size in the vertical cloud column increases from mid latitudes toward the poles and also toward the equator resulting in minimum and maximum zonal average cloud opacities of about 32 and 42 and a planetary average of 36.5 at 1 μm. Zonal averages of cloud features are similar at different solar days, but variations with local time are very complex and inseparably associated with the superrotation of the clouds.
NASA Astrophysics Data System (ADS)
Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.
2012-12-01
Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.
A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer
NASA Astrophysics Data System (ADS)
Liu, Yuli; Buehler, Stefan; Liu, Heguang
2017-04-01
Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-11-01
To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.
Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface
NASA Technical Reports Server (NTRS)
Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.
1999-01-01
Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.
Ten Years of Cloud Optical and Microphysical Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana
2010-01-01
The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).
NASA Astrophysics Data System (ADS)
Werner, F.; Ditas, F.; Siebert, H.; Simmel, M.; Wehner, B.; Pilewskie, P.; Schmeissner, T.; Shaw, R. A.; Hartmann, S.; Wex, H.; Roberts, G. C.; Wendisch, M.
2014-02-01
Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (reff) and cloud optical thickness (τ), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity (γλ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of τ and γλ toward larger values is observed, while the mean values and observed ranges of retrieved reff decrease. The relative susceptibilities (RS) of reff, τ, and γλ to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for reff and τ, and 0.27 for γλ. These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured reff and from a microphysical parcel model are in close agreement.
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Diak, George R.
1992-01-01
The rms retrieval errors in cloud top pressure for fully overcast conditions over both land and water surfaces are shown for AMSU-A oxygen channel pair 3 and 5 and MHS water vapor channel pair 4 and 5. For both pairs, the decrease of retrieval skill from high cloud is evident for almost all liquid water contents. For high cloud and medium cloud, the water vapor pair outperforms the oxygen pair. Retrieval accuracy is the best for high and middle clouds and degrades as the cloud top is lower in the atmosphere.
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian
2011-01-01
The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask applied to an independent aerosol retrieval will likely fail.
NASA Astrophysics Data System (ADS)
Borsdorff, Tobias; Andrasec, Josip; aan de Brugh, Joost; Hu, Haili; Aben, Ilse; Landgraf, Jochen
2018-05-01
In the perspective of the upcoming TROPOMI Sentinel-5 Precursor carbon monoxide data product, we discuss the benefit of using CO total column retrievals from cloud-contaminated SCIAMACHY 2.3 µm shortwave infrared spectra to detect atmospheric CO enhancements on regional and urban scales due to emissions from cities and wildfires. The study uses the operational Sentinel-5 Precursor algorithm SICOR, which infers the vertically integrated CO column together with effective cloud parameters. We investigate its capability to detect localized CO enhancements distinguishing between clear-sky observations and observations with low (< 1.5 km) and medium-high clouds (1.5-5 km). As an example, we analyse CO enhancements over the cities Paris, Los Angeles and Tehran as well as the wildfire events in Mexico-Guatemala 2005 and Alaska-Canada 2004. The CO average of the SCIAMACHY full-mission data set of clear-sky observations can detect weak CO enhancements of less than 10 ppb due to air pollution in these cities. For low-cloud conditions, the CO data product performs similarly well. For medium-high clouds, the observations show a reduced CO signal both over Tehran and Los Angeles, while for Paris no significant CO enhancement can be detected. This indicates that information about the vertical distribution of CO can be obtained from the SCIAMACHY measurements. Moreover, for the Mexico-Guatemala fires, the low-cloud CO data captures a strong outflow of CO over the Gulf of Mexico and the Pacific Ocean and so provides complementary information to clear-sky retrievals, which can only be obtained over land. For both burning events, enhanced CO values are even detectable with medium-high-cloud retrievals, confirming a distinct vertical extension of the pollution. The larger number of additional measurements, and hence the better spatial coverage, significantly improve the detection of wildfire pollution using both the clear-sky and cloudy CO retrievals. Due to the improved instrument performance of the TROPOMI instrument with respect to its precursor SCIAMACHY, the upcoming Sentinel-5 Precursor CO data product will allow improved detection of CO emissions and their vertical extension over cities and fires, making new research applications possible.
NASA Technical Reports Server (NTRS)
Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.
2002-01-01
Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.
NASA Technical Reports Server (NTRS)
Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.
2013-01-01
In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.
NASA Technical Reports Server (NTRS)
Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina
2016-01-01
We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).
Assessment of different models for computing the probability of a clear line of sight
NASA Astrophysics Data System (ADS)
Bojin, Sorin; Paulescu, Marius; Badescu, Viorel
2017-12-01
This paper is focused on modeling the morphological properties of the cloud fields in terms of the probability of a clear line of sight (PCLOS). PCLOS is defined as the probability that a line of sight between observer and a given point of the celestial vault goes freely without intersecting a cloud. A variety of PCLOS models assuming the cloud shape hemisphere, semi-ellipsoid and ellipsoid are tested. The effective parameters (cloud aspect ratio and absolute cloud fraction) are extracted from high-resolution series of sunshine number measurements. The performance of the PCLOS models is evaluated from the perspective of their ability in retrieving the point cloudiness. The advantages and disadvantages of the tested models are discussed, aiming to a simplified parameterization of PCLOS models.
NASA Technical Reports Server (NTRS)
Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.
2005-01-01
This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich
2016-01-01
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers.
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Barbosa, Henrique M J; Pöschl, Ulrich; Andreae, Meinrat O
2016-05-24
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day.
Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven
2017-01-01
Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm−3) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to −2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50 cm−3 related to a +2.5 to −1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC. PMID:29098040
NASA Technical Reports Server (NTRS)
Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven
2017-01-01
Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1 degree x 1 degree and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive ( greater than 50cm(exp. -3) change for C6-derived CDNC relative to C5.1 for the 1.6 micrometers and 2.1 micrometers channel retrievals, corresponding to a neutral to -2 micrometers difference in droplet effective radius. For 3.7 micrometer retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm(exp. -3) related to a +2.5 to -1 micrometers transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.
NASA Astrophysics Data System (ADS)
LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.
2017-12-01
We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).
A Method for Retrieving Ground Flash Fraction from Satellite Lightning Imager Data
NASA Technical Reports Server (NTRS)
Koshak, William J.
2009-01-01
A general theory for retrieving the fraction of ground flashes in N lightning observed by a satellite-based lightning imager is provided. An "exponential model" is applied as a physically reasonable constraint to describe the measured optical parameter distributions, and population statistics (i.e., mean, variance) are invoked to add additional constraints to the retrieval process. The retrieval itself is expressed in terms of a Bayesian inference, and the Maximum A Posteriori (MAP) solution is obtained. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The ability to retrieve ground flash fraction has important benefits to the atmospheric chemistry community. For example, using the method to partition the existing satellite global lightning climatology into separate ground and cloud flash climatologies will improve estimates of lightning nitrogen oxides (NOx) production; this in turn will improve both regional air quality and global chemistry/climate model predictions.
A Spectralon BRF Data Base for MISR Calibration Application
NASA Technical Reports Server (NTRS)
Bruegge, C.; Chrien, N.; Haner, D.
1999-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) is an Earth observing sensor which will provide global retrievals of aerosols, clouds, and land surface parameters. Instrument specifications require high accuracy absolute calibration, as well as accurate camera-to-camera, band-to-band and pixel-to-pixel relative response determinations.
NASA Astrophysics Data System (ADS)
Miller, R.; McFarquhar, G. M.; Gupta, S.; Poellot, M.; O'Brien, J.; Delene, D. J.
2017-12-01
During the Observations of Aerosols Above Clouds and their Interactions (ORACLES) field campaigns, the NASA P3-Orion was equipped with in-situ probes measuring aerosol and cloud microphysical properties, while the NASA ER-2 was equipped with remote sensors retrieving cloud and aerosol quantities. During ORACLES 2017, the P-3 aircraft was equipped with two Clouds Droplet Probes (CDPs) sizing droplets with diameters (D) between 2 and 50µm. The two CDPs were mounted on pylons with different designs, the CDP on the newly designed left wing pylon positioned further below and ahead of the wing, whereas that on the right wing pylon directly below the wing. The P-3 was also equipped with a Cloud and Aerosol Spectrometer (CAS) sizing droplets with 0.51 µm < D < 50 µm, and three optical array probes: a 2D-stero probe (2DS) for 10 µm < D < 1280 µm; a High Volume Precipitation Sampler (HVPS-3), for 150 µm < D < 1.92 cm; and a Cloud Imaging Probe (CIP) for 25 µm < D < 1600 µm. In addition, a Phase Doppler Interferometer (PDI) for 0.5 µm < D < 2500 µm was included. In this presentation, the number distribution functions n(D) derived from different probes in their overlap ranges and bulk quantities, such as liquid water content (LWC), effective radius (re), total number concentration, extinction, skewness, dispersion and kurtosis derived by different probes over equivalent size ranges are compared. Additional comparison with bulk parameters (e.g., LWC measured by King and hot wire probes) and remotely sensed values are also made. The effect of the software package used to process the data is also examined by using two different packages, the National Center for Atmospheric Research Software for OAP Data Analysis (SODA2), and the University of Oklahoma/Illinois' Processing Software (UIOOPS) to process the optical array probe data. These intercomparisons, as a function of aircraft parameters and environmental conditions, help quantify uncertainties in measurements, improve our understanding of conditions under which the probes best function, assist in the development of a probe-independent best estimate of cloud microphysical parameters, and evaluate the quality of remote sensing retrievals. This in turn, will allow the use of these data sets to quantify cloud-aerosol relationships in the southeast Atlantic.
Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi
2006-01-01
An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.
Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data
NASA Technical Reports Server (NTRS)
Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana
2006-01-01
Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.
MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels
NASA Technical Reports Server (NTRS)
Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome
2014-01-01
Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.
Satellite remote sensing of aerosol and cloud properties over Eurasia
NASA Astrophysics Data System (ADS)
Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit
2015-04-01
Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on surface properties, the surface reflectance can be independently retrieved using the AOD for atmospheric correction. For the retrieval of cloud properties, the SACURA algorithm has been implemented in the ADV/ASV aerosol retrieval suite. Cloud properties retrieved from AATSR data are cloud fraction, cloud optical thickness, cloud top height, cloud droplet effective radius, liquid water path. Aerosol and cloud properties are applied for different studies over the Eurasia area. Using the simultaneous retrieval of aerosol and cloud properties allows for study of the transition from the aerosol regime to the cloud regime, such as changes in effective radius or AOD (aerosol optical depth) to COT (cloud optical thickness). The column- integrated aerosol extinction, aerosol optical depth or AOD, which is primarily reported from satellite observations, can be used as a proxy for cloud condensation nuclei (CCN) and hence contains information on the ability of aerosol particles to form clouds. Hence, connecting this information with direct observations of cloud properties provides information on aerosol-cloud interactions.
NASA Technical Reports Server (NTRS)
Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.;
2006-01-01
If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.
NASA Technical Reports Server (NTRS)
Wind, Galina (Gala); Platnick, Steven; Riedi, Jerome
2011-01-01
The MODIS cloud optical properties algorithm (MOD06IMYD06 for Terra and Aqua MODIS, respectively) slated for production in Data Collection 6 has been adapted to execute using available channels on MSG SEVIRI. Available MODIS-style retrievals include IR Window-derived cloud top properties, using the new Collection 6 cloud top properties algorithm, cloud optical thickness from VISINIR bands, cloud effective radius from 1.6 and 3.7Jlm and cloud ice/water path. We also provide pixel-level uncertainty estimate for successful retrievals. It was found that at nighttime the SEVIRI cloud mask tends to report unnaturally low cloud fraction for marine stratocumulus clouds. A correction algorithm that improves detection of such clouds has been developed. We will discuss the improvements to nighttime low cloud detection for SEVIRI and show examples and comparisons with MODIS and CALIPSO. We will also show examples of MODIS-style pixel-level (Level-2) cloud retrievals for SEVIRI with comparisons to MODIS.
Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar
NASA Astrophysics Data System (ADS)
Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.
2012-12-01
Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were visible in the 2010 point cloud canopy reconstruction. A new method for retrieval of the forest canopy between-crown clumping index from angular gaps in hemispherically-projected EVI data traces gaps as they narrow with range from the instrument, thus providing the approximate physical size, rather than angular size, of the gaps. In applying this method to a range of sites in the southern Sierra Nevada, element clumping index values are lower (more between-crown clumping effect) in more open stands, providing improved results as compared to conventional hemispherical photography. In dense stands with fewer gaps, the clumping index values were closer. Foliage profiles retrieved from EVI scans at five Sierra Nevada sites are closely correlated with those of the airborne Lidar Vegetation Imaging Sensor (LVIS) when averaged over a diameter of 100 m. At smaller diameters, the EVI scans have more detail in lower canopy layers and the LVIS and EVI foliage profiles are more distinct. Foliage profiles derived from processing 3-D site point clouds with a nadir view match the LVIS foliage profiles more closely than profiles derived from EVI in scan mode. Removal of terrain effects significantly enhances the match with LVIS profiles. This research was supported by the US National Science Foundation under grant MRI DBI-0923389.
MODIS Retrievals of Cloud Optical Thickness and Particle Radius
NASA Technical Reports Server (NTRS)
Platnick, S.; King, M. D.; Ackerman, S. A.; Gray, M.; Moody, E.; Arnold, G. T.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides an unprecedented opportunity for global cloud studies with 36 spectral bands from the visible through the infrared, and spatial resolution from 250 m to 1 km at nadir. In particular, all solar window bands useful for simultaneous retrievals of cloud optical thickness and particle size (0.67, 0.86, 1.2, 1.6, 2.1, and 3.7 micron bands) are now available on a single satellite instrument/platform for the first time. An operational algorithm for the retrieval of these optical and cloud physical properties (including water path) have been developed for both liquid and ice phase clouds. The product is archived into two categories: pixel-level retrievals at 1 km spatial resolution (referred to as a Level-2 product) and global gridded statistics (Level-3 product). An overview of the MODIS cloud retrieval algorithm and early level-2 and -3 results will be presented. A number of MODIS cloud validation activities are being planned, including the recent Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign conducted in August/September 2000. The later part of the experiment concentrated on MODIS validation in the Namibian stratocumulus regime off the southwest coast of Africa. Early retrieval results from this regime will be discussed.
Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements
NASA Astrophysics Data System (ADS)
Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.
2017-12-01
The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.
Estimation of Cirrus and Stratus Cloud Heights Using Landsat Imagery
NASA Technical Reports Server (NTRS)
Inomata, Yasushi; Feind, R. E.; Welch, R. M.
1996-01-01
A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.
What does reflection from cloud sides tell us about vertical distribution of cloud droplets?
NASA Technical Reports Server (NTRS)
Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor
2006-01-01
In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.
Drivers in the Scaling Between Precipitation and Cloud Radiative Impacts in Deep Convection
NASA Astrophysics Data System (ADS)
Rapp, A. D.; Sun, L.; Smalley, K.
2017-12-01
The coupling between changes in radiation and precipitation has been demonstrated by a number of studies and suggests an important link between cloud and precipitation processes for defining climate sensitivity. Precipitation and radiative fluxes from CloudSat/CALIPSO retrieval products are used to examine the relationship between precipitation and cloud radiative impacts through two dimensionless parameters. The surface radiative cooling impact, Rc, represents the ratio of the surface shortwave cloud radiative effect to latent heating (LH) from precipitation. The atmospheric radiative heating impact, Rh, represents the ratio of the atmospheric cloud radiative effect to LH from precipitation. Together, these parameters describe the relationship between precipitation processes and how efficiently clouds cools the surface or heats the atmosphere. Deep convective clouds are identified using the 2B-GEOPROF-LIDAR joint radar-lidar product and the cloud radiative impact parameters are calculated from the 2B-FLXHR-LIDAR fluxes and 2C-RAIN-PROFILE precipitation. Deep convective clouds will be sampled according to their dynamic and thermodynamic regimes to provide insights into the factors that control the scaling between precipitation and radiative impacts. Preliminary results from analysis of precipitating deep convective pixels indicates a strong increase (decrease) in the ratio of atmospheric heating (surface cooling) and precipitation with thermodynamic environment, especially increasing water vapor; however, it remains to be seen whether these results hold when integrated over an entire deep convective cloud system. Analysis of the dependence of Rc and Rh on the cloud horizontal and vertical structure is also planned, which should lead to a better understanding of the role of non-precipitating anvil characteristics in modulating the relationship between precipitation and surface and atmospheric radiative effects.
The effect of cloud screening on MAX-DOAS aerosol retrievals.
NASA Astrophysics Data System (ADS)
Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim
2014-05-01
In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Ackerman, S. A.; Holz, R.; Heidinger, A.
2017-12-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-NPP spacecraft is considered as the next generation of instrument providing operational moderate resolution imaging capabilities after the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. However, cloud-top property (CTP) retrieval algorithms designed for the two instruments cannot be identical because of the absence of CO2 bands on VIIRS. In this study, we conduct a comprehensive sensitivity study of cloud retrievals utilizing a IR-Optimal Estimation (IROE) based algorithm. With a fast IR radiative transfer model, the IROE simultaneously retrieves cloud-top height (CTH), cloud optical thickness (COT), cloud effective radius (CER) and corresponding uncertainties using a set of IR bands. Three retrieval runs are implemented for this sensitivity study: retrievals using 1) three native VIIRS M-Bands at 750m resolution (8.5-, 11-, and 12-μm), 2) three native VIIRS M-Bands with spectrally integrated CO2 bands from the Cross-Track Infrared Sounder (CrIS), and 3) six MODIS IR bands (8.5-, 11-, 12-, 13.3-, 13.6-, and 13.9-μm). We select a few collocated MODIS and VIIRS granules for pixel-level comparison. Furthermore, aggregated daily and monthly cloud properties from the three runs are also compared. It shows that, the combined VIIRS/CrIS run agrees well with the MODIS-only run except for pixels near cloud edges. The VIIRS-only run is close to its counterparts when clouds are optically thick. However, for optically thin clouds, the VIIRS-only run can be readily influenced by the initial guess. Large discrepancies and uncertainties can be found for optically thin clouds from the VIIRS-only run.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.
2015-12-01
Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.
Mars topographic clouds: MAVEN/IUVS observations and LMD MGCM predictions
NASA Astrophysics Data System (ADS)
Schneider, Nicholas M.; Connour, Kyle; Forget, Francois; Deighan, Justin; Jain, Sonal; Vals, Margaux; Wolff, Michael J.; Chaffin, Michael S.; Crismani, Matteo; Stewart, A. Ian F.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Montmessin, Franck; Stiepen, Arnaud; Stevens, Michael H.; Evans, J. Scott; Yelle, Roger; Lo, Daniel; Clarke, John T.; Jakosky, Bruce
2017-10-01
The Imaging Ultraviolet Spectrograph (IUVS) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft takes mid-UV spectral images of the Martian atmosphere. From these apoapse disk images, information about clouds and aerosols can be retrieved and comprise the only MAVEN observations of topographic clouds and cloud morphologies. Measuring local time variability of large-scale recurring cloud features is made possible with MAVEN’s ~4.5-hour elliptical orbit, something not possible with sun-synchronous orbits. We have run the LMD MGCM (Mars global circulation model) at 1° x 1° resolution to simulate water ice cloud formation with inputs consistent with observing parameters and Mars seasons. Topographic clouds are observed to form daily during the late mornings of northern hemisphere spring and this phenomenon recurs until late summer (Ls = 160°), after which topographic clouds wane in thickness. By northern fall, most topographic clouds cease to form except over Arsia Mons and Pavonis Mons, where clouds can still be observed. Our data show moderate cloud formation over these regions as late as Ls = 220°, something difficult for the model to replicate. Previous studies have shown that models have trouble simulating equatorial cloud thickness in combination with a realistic amount of water vapor and not-too-thick polar water ice clouds, implying aspects of the water cycle are not fully understood. We present data/model comparisons as well as further refinements on parameter inputs based on IUVS observations.
Mars topographic clouds: MAVEN/IUVS observations and LMD MGCM predictions
NASA Astrophysics Data System (ADS)
Connour, K.; Schneider, N.; Forget, F.; Deighan, J.; Jain, S.; Pottier, A.; Wolff, M. J.; Chaffin, M.; Crismani, M. M. J.; Stewart, I. F.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Montmessin, F.; Stiepen, A.; Stevens, M. H.; Evans, J. S.; Yelle, R. V.; Lo, D.; Clarke, J. T.; Jakosky, B. M.
2017-12-01
The Imaging Ultraviolet Spectrograph (IUVS) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft takes mid-UV spectral images of the Martian atmosphere. From these apoapse disk images, information about clouds and aerosols can be retrieved and comprise the only MAVEN observations of topographic clouds and cloud morphologies. Measuring local time variability of large-scale recurring cloud features is made possible with MAVEN's 4.5-hour elliptical orbit, something not possible with sun-synchronous orbits. We have run the LMD MGCM (Mars global circulation model) at 1° x 1° resolution to simulate water ice cloud formation with inputs consistent with observing parameters and Mars seasons. Topographic clouds are observed to form daily during the late mornings of northern hemisphere spring and this phenomenon recurs until late summer (Ls = 160°), after which topographic clouds wane in thickness. By northern fall, most topographic clouds cease to form except over Arsia Mons and Pavonis Mons, where clouds can still be observed. Our data show moderate cloud formation over these regions as late as Ls = 220°, something difficult for the model to replicate. Previous studies have shown that models have trouble simulating equatorial cloud thickness in combination with a realistic amount of water vapor and not-too-thick polar water ice clouds, implying aspects of the water cycle are not fully understood. We present data/model comparisons as well as further refinements on parameter inputs based on IUVS observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Szoeke, Simon P.
The investigator and DOE-supported student [1] retrieved vertical air velocity and microphysical fall velocity retrieval for VOCALS and CAP-MBL homogeneous clouds. [2] Calculated in-cloud and cloud top dissipation calculation and diurnal cycle computed for VOCALS. [3] Compared CAP-MBL Doppler cloud radar scenes with (Remillard et al. 2012) automated classification.
NASA Technical Reports Server (NTRS)
Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava
2013-01-01
This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; ...
2016-03-04
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less
Active sensor synergy for arctic cloud microphysics
NASA Astrophysics Data System (ADS)
Sato, Kaori; Okamoto, Hajime; Katagiri, Shuichiro; Shiobara, Masataka; Yabuki, Masanori; Takano, Toshiaki
2018-04-01
In this study, we focus on the retrieval of liquid and ice-phase cloud microphysics from spaceborne and ground-based lidar-cloud radar synergy. As an application of the cloud retrieval algorithm developed for the EarthCARE satellite mission (JAXA-ESA) [1], the derived statistics of cloud microphysical properties in high latitudes and their relation to the Arctic climate are investigated.
Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchand, Roger
Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) programmore » sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.« less
NASA Astrophysics Data System (ADS)
Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.
2017-11-01
Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.
Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Zhang, Wenjian; Sun, Fengying; Schmit, Timothy J.; Gurka, James J.; Weisz, Elisabeth
2004-11-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1 5 km). The combined MODIS AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650 790 cm-1 or 15.38 12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS AIRS 1DVAR). The MODIS AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10 40 hPa for MODIS AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.
NASA Astrophysics Data System (ADS)
Schüller, Lothar; Bennartz, Ralf; Fischer, Jürgen; Brenguier, Jean-Louis
2005-01-01
Algorithms are now currently used for the retrieval of cloud optical thickness and droplet effective radius from multispectral radiance measurements. This paper extends their application to the retrieval of cloud droplet number concentration, cloud geometrical thickness, and liquid water path in shallow convective clouds, using an algorithm that was previously tested with airborne measurements of cloud radiances and validated against in situ measurements of the same clouds. The retrieval is based on a stratified cloud model of liquid water content and droplet spectrum. Radiance measurements in visible and near-infrared channels of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is operated from the NASA platforms Terra and Aqua, are analyzed. Because of uncertainties in the simulation of the continental surface reflectance, the algorithm is presently limited to the monitoring of the microphysical structure of boundary layer clouds over the ocean. Two MODIS scenes of extended cloud fields over the North Atlantic Ocean trade wind region are processed. A transport and dispersion model (the Hybrid Single-Particle Lagrangian Integrated Trajectory Model, HYSPLIT4) is also used to characterize the origin of the air masses and hence their aerosol regimes. One cloud field formed in an air mass that was advected from southern Europe and North Africa. It shows high values of the droplet concentration when compared with the second cloud system, which developed in a more pristine environment. The more pristine case also exhibits a higher geometrical thickness and, thus, liquid water path, which counterbalances the expected cloud albedo increase of the polluted case. Estimates of cloud liquid water path are then compared with retrievals from the Special Sensor Microwave Imager (SSM/I). SSM/I-derived liquid water paths are in good agreement with the MODIS-derived values.
NASA Astrophysics Data System (ADS)
Matsui, T. N.; Suzuki, K.; Nakajima, T. Y.; Matsumae, Y.
2011-12-01
Clouds play an import role in energy balance and climate changes of the Earth. IPCC AR4, however, pointed out that cloud feedback is still the large source of uncertainty in climate estimates. In the recent decade, the new satellites with the active instruments (e.g. Cloudsat) represented a new epoch in earth observations. The active remote sensing is powerful for illustrating the vertical structures of clouds, but the passive remote sensing from satellite images also contribute to better understating of cloud system. For instance, Nakajima et al. (2010a) and Suzuki et al. (2010) illustrated transition of cloud growth, from cloud droplet to drizzle to rain, using the combine analysis of the cloud droplet size retrieved from passive images (MODIS) and the reflectivity profiles from Cloudsat. Furthermore, EarthCARE that is a new satellite launched years later is composed of not only the active but also passive instruments for the combined analysis. On the other hands, the methods to retrieve the advanced information of cloud properties are also required because many imagers have been operated and are now planned (e.g. GCOM-C/SGLI), and have the advantages such as wide observation width and more observation channels. Cloud droplet effective radius (CDR) and cloud optical thickness (COT) can be retrieved using a non-water-absorbing band (e.g. 0.86μm) and a water-absorbing band (1.6, 2.1, 3.7μm) of imagers under the assumptions such as the log-normal droplet size distribution and the plane-parallel cloud structure. However, the differences between three retrieved CDRs using 1.6, 2.1 or 3.7μm (R16, R21 and R37) are found in the satellite observations. Several studies pointed out that vertical/horizontal inhomogeneity of cloud structure, difference of penetration depth of water-absorbing bands, multi-modal droplet distribution and/or 3-D radiative transfer effect cause the CDR differences. In other words, the advanced information of clouds may lie hidden in the differences. Nakajima et al. (2010b) investigated the impact of the differences sensitivities to particle size and the penetration depth in an attempt to explain the CDR differences found in by using a simple two-layer cloud model with the bi-modal size distribution functions. Their results showed the sensitivity differences between 1.6, 2.1 and 3.7μm bands to droplet sizes and their vertical stratification. In this study, we further investigate the impact of the vertical inhomogeneity structure including the drizzle by using a spectral-bin microphysics cloud model. We apply the 1-D radiative transfer computation to the numerical cloud fields generated by the cloud model, and retrieve the CDRs from the reflectances thus simulated at each band. We then compare the statistics of these retrieved CDRs with the CDRs obtained from MODIS observations and derive the sensitivity functions of the retrieved CDRs to the particle size and the optical depth from the sets of the droplet distribution functions predicted by the model and the retrieved CDRs. This study is an attempt to interpret the CDR differences in terms of the cloud vertical structure and the cloud particle growth processes.
Photopolarimetric Retrievals of Snow Properties
NASA Technical Reports Server (NTRS)
Ottaviani, M.; van Diedenhoven, B.; Cairns, B.
2015-01-01
Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.
Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mejia, Felipe A.; Kurtz, Ben; Murray, Keenan
A method for retrieving cloud optical depth ( τ c) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τ c produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle ( θ 0), τ c, solar pixel angle/scattering angle ( θ s), and pixel zenith angle/view angle ( θ z). The effects of these parameters are described and the functions for radiance,more » I λ τ c, θ 0, θ s, θ z , and RBR τ c, θ 0, θ s, θ z are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τ c, where RBR increases with τ c up to about τ c = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured I λ meas θ s, θ z , in addition to RBR meas θ s, θ z , to obtain a unique solution for τ c. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τ c values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τ c RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI have an RMSE of 2.2, which is well within the uncertainty of the MWR. In conclusion, the procedure developed here provides a foundation to test and develop other cloud detection algorithms.« less
Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth
Mejia, Felipe A.; Kurtz, Ben; Murray, Keenan; ...
2016-08-30
A method for retrieving cloud optical depth ( τ c) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τ c produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle ( θ 0), τ c, solar pixel angle/scattering angle ( θ s), and pixel zenith angle/view angle ( θ z). The effects of these parameters are described and the functions for radiance,more » I λ τ c, θ 0, θ s, θ z , and RBR τ c, θ 0, θ s, θ z are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τ c, where RBR increases with τ c up to about τ c = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured I λ meas θ s, θ z , in addition to RBR meas θ s, θ z , to obtain a unique solution for τ c. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τ c values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τ c RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI have an RMSE of 2.2, which is well within the uncertainty of the MWR. In conclusion, the procedure developed here provides a foundation to test and develop other cloud detection algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomew M. J.; Reynolds, R. M.; Vogelmann, A. M.
2011-11-01
The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, and liquid water path. The instrument consists of photodiode sensors positioned beneath two narrow metal bands that occult the sun by moving alternately from horizon to horizon. Measurements from the narrowband 415-nm channel were used to demonstrate a retrieval of the cloud properties of interest. With the proven operation of the relatively inexpensive TCRSR instrument, its usefulness for retrieving aerosol properties under cloud-free skiesmore » and for ship-based observations is discussed.« less
NASA Technical Reports Server (NTRS)
Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping
2007-01-01
High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.
Solar radiation measurements and their applications in climate research
NASA Astrophysics Data System (ADS)
Yin, Bangsheng
Aerosols and clouds play important roles in the climate system through their radiative effects and their vital link in the hydrological cycle. Accurate measurements of aerosol and cloud optical and microphysical properties are crucial for the study of climate and climate change. This study develops/improves retrieval algorithms for aerosol single scattering albedo (SSA) and low liquid water path (LWP) cloud optical properties, evaluates a new spectrometer, and applies long-term measurements to establish climatology of aerosol and cloud optical properties. The following results were obtained. (1) The ratio of diffuse horizontal and direct normal fluxes measured from Multifilter Rotating Shadowband Radiometer (MFRSR) has been used to derive the aerosol SSA. Various issues have impacts on the accuracy of SSA retrieval, from measurements (e.g., calibration accuracy, cosine respond correction, and forward scattering correction) to input parameters and assumptions (e.g., asymmetry factor, Rayleigh scattering optical depth, and surface albedo). This study carefully analyzed these issues and extensively assessed their impacts on the retrieval accuracy. Furthermore, the retrievals of aerosol SSA from MFRSR are compared with independent measurements from co-located instruments. (2) The Thin-Cloud Rotating Shadowband Radiometer (TCRSR) has been used to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid-water path (LWP). The evaluation of the TCRSR indicates that the error of radiometric calibration has limited impact on the cloud DER retrievals. However, the retrieval accuracy of cloud DER is sensitive to the uncertainties of background setting (e.g., aerosol loading and the existence of ice cloud) and the measured solar aureole shape. (3) A new high resolution oxygen A-band spectrometer (HABS) has been developed, which has the ability to measure both direct-beam and zenith diffuse solar radiation with polarization capability. The HABS exhibits excellent performance: stable spectral response ratio, high SNR, high spectrum resolution (0.16 nm), and high Out-of-Band Rejection (10-5). The HABS measured spectra and polarization spectra are basically consistent with the related simulated spectra. The main difference between them occurs at or near the strong oxygen absorption line centers. Furthermore, our study demonstrates that it is a good method to derive the degree of polarization-oxygen absorption optical depth (DOP-k) relationship through a polynomial fitting in the DOP-k space. (4) The long-term MFRSR measurements at Darwin (Australia), Nauru (Nauru), and Manus (Papua New Guinea) sites have been processed to develop the climatology of aerosols and clouds in the Tropical Warm Pool (TWP) region at the interannual, seasonal, and diurnal temporal scales. Due to the association of these three sites with large-scale circulation patterns, aerosol and cloud properties exhibit distinctive characteristics. The cloud optical depth (COD) and cloud fraction (CF) exhibit apparent increasing trends from 1998 to 2007 and decreasing trends after 2007. The monthly anomaly values, to some extent, are bifurcately correlated with SOI, depending on the phase of ENSO. At the two oceanic sites of Manus and Nauru, aerosols, clouds, and precipitation are modulated by the meteorological changes associated with MJO events. (5) The long-term measurements at Barrow and Atqasuk sites also have been processed to develop the climatology of aerosol and cloud properties in the North Slope of Alaska (NSA) region at interannual, seasonal, and diurnal temporal scales. Due to Arctic climate warming, at these two sites, the snow melting day arrives earlier and the non-snow-cover duration increases. Aerosol optical depth (AOD) increased during the periods of 2001-2003 and 2005-2009, and decreased during 2003-2005. The LWP, COD, and CF exhibit apparently decreasing trends from 2002 to 2007 and increased significantly after 2008. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.
2005-01-01
An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.
A New Paradigm for Satellite Retrieval of Hydrologic Variables: The CDRD Methodology
NASA Astrophysics Data System (ADS)
Smith, E. A.; Mugnai, A.; Tripoli, G. J.
2009-09-01
Historically, retrieval of thermodynamically active geophysical variables in the atmosphere (e.g., temperature, moisture, precipitation) involved some time of inversion scheme - embedded within the retrieval algorithm - to transform radiometric observations (a vector) to the desired geophysical parameter(s) (either a scalar or a vector). Inversion is fundamentally a mathematical operation involving some type of integral-differential radiative transfer equation - often resisting a straightforward algebraic solution - in which the integral side of the equation (typically the right-hand side) contains the desired geophysical vector, while the left-hand side contains the radiative measurement vector often free of operators. Inversion was considered more desirable than forward modeling because the forward model solution had to be selected from a generally unmanageable set of parameter-observation relationships. However, in the classical inversion problem for retrieval of temperature using multiple radiative frequencies along the wing of an absorption band (or line) of a well-mixed radiatively active gas, in either the infrared or microwave spectrums, the inversion equation to be solved consists of a Fredholm integral equation of the 2nd kind - a specific type of transform problem in which there are an infinite number of solutions. This meant that special treatment of the transform process was required in order to obtain a single solution. Inversion had become the method of choice for retrieval in the 1950s because it appealed to the use of mathematical elegance, and because the numerical approaches used to solve the problems (typically some type of relaxation or perturbation scheme) were computationally fast in an age when computers speeds were slow. Like many solution schemes, inversion has lingered on regardless of the fact that computer speeds have increased many orders of magnitude and forward modeling itself has become far more elegant in combination with Bayesian averaging procedures given that the a priori probabilities of occurrence in the true environment of the parameter(s) in question can be approximated (or are actually known). In this presentation, the theory of the more modern retrieval approach using a combination of cloud, radiation and other specialized forward models in conjunction with Bayesian weighted averaging will be reviewed in light of a brief history of inversion. The application of the theory will be cast in the framework of what we call the Cloud-Dynamics-Radiation-Database (CDRD) methodology - which we now use for the retrieval of precipitation from spaceborne passive microwave radiometers. In a companion presentation, we will specifically describe the CDRD methodology and present results for its application within the Mediterranean basin.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Mugnai, Alberto; Cooper, Harry J.; Tripoli, Gregory J.; Xiang, Xuwu
1992-01-01
The relationship between emerging microwave brightness temperatures (T(B)s) and vertically distributed mixtures of liquid and frozen hydrometeors was investigated, using a cloud-radiation model, in order to establish the framework for a hybrid statistical-physical rainfall retrieval algorithm. Although strong relationships were found between the T(B) values and various rain parameters, these correlations are misleading in that the T(B)s are largely controlled by fluctuations in the ice-particle mixing ratios, which in turn are highly correlated to fluctuations in liquid-particle mixing ratios. However, the empirically based T(B)-rain-rate (T(B)-RR) algorithms can still be used as tools for estimating precipitation if the hydrometeor profiles used for T(B)-RR algorithms are not specified in an ad hoc fashion.
The "RED Versa NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements"
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Evans, K.; Wiscombe, W.
2003-01-01
A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the RED and near infrared (MR) spectral regions is introduced. Because zenith radiance does not have a one-to-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances such as NDCI while largely removing nouniquiness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the 'RED vs. NIR' plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multi-channel sunphotometer, is a part of AERONET - a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.
NASA Astrophysics Data System (ADS)
Chang, Kai-Wei; L'Ecuyer, Tristan S.; Kahn, Brian H.; Natraj, Vijay
2017-05-01
Hyperspectral instruments such as Atmospheric Infrared Sounder (AIRS) have spectrally dense observations effective for ice cloud retrievals. However, due to the large number of channels, only a small subset is typically used. It is crucial that this subset of channels be chosen to contain the maximum possible information about the retrieved variables. This study describes an information content analysis designed to select optimal channels for ice cloud retrievals. To account for variations in ice cloud properties, we perform channel selection over an ensemble of cloud regimes, extracted with a clustering algorithm, from a multiyear database at a tropical Atmospheric Radiation Measurement site. Multiple satellite viewing angles over land and ocean surfaces are considered to simulate the variations in observation scenarios. The results suggest that AIRS channels near wavelengths of 14, 10.4, 4.2, and 3.8 μm contain the most information. With an eye toward developing a joint AIRS-MODIS (Moderate Resolution Imaging Spectroradiometer) retrieval, the analysis is also applied to combined measurements from both instruments. While application of this method to MODIS yields results consistent with previous channel sensitivity studies, the analysis shows that this combination may yield substantial improvement in cloud retrievals. MODIS provides most information on optical thickness and particle size, aided by a better constraint on cloud vertical placement from AIRS. An alternate scenario where cloud top boundaries are supplied by the active sensors in the A-train is also explored. The more robust cloud placement afforded by active sensors shifts the optimal channels toward the window region and shortwave infrared, further constraining optical thickness and particle size.
NASA Astrophysics Data System (ADS)
Marquis, Jared Wayne
Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Waquet, Fabien; Chand, Duli; Hu, Yongxiang
2014-01-01
We intercompare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from A-train sensors, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Polarization and Directionality of Earth Reflectances (POLDER), and Ozone Monitoring Instrument (OMI). These sensors have shown independent capabilities to retrieve aerosol loading above marine boundary layer clouds-a kind of situation often found over the southeast Atlantic Ocean during dry burning season. A systematic comparison reveals that all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532 nm ACAOD retrieved by CALIOP operational algorithm is underestimated. The retrieved 1064 nm AOD however shows closer agreement with passive sensors. Given the different types of measurements processed with different algorithms, the reported close agreement between them is encouraging. Due to unavailability of direct measurements above cloud, the validation of satellite-based ACAOD remains an open challenge. The intersatellite comparison however can be useful for the relative evaluation and consistency check
Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements
NASA Astrophysics Data System (ADS)
Molina García, Víctor; Sasi, Sruthy; Efremenko, Dmitry S.; Doicu, Adrian; Loyola, Diego
2018-07-01
In this paper we analyze the accuracy and efficiency of several radiative transfer models for inferring cloud parameters from radiances measured by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR). The radiative transfer models are the exact discrete ordinate and matrix operator methods with matrix exponential, and the approximate asymptotic and equivalent Lambertian cloud models. To deal with the computationally expensive radiative transfer calculations, several acceleration techniques such as, for example, the telescoping technique, the method of false discrete ordinate, the correlated k-distribution method and the principal component analysis (PCA) are used. We found that, for the EPIC oxygen A-band absorption channel at 764 nm, the exact models using the correlated k-distribution in conjunction with PCA yield an accuracy better than 1.5% and a computation time of 18 s for radiance calculations at 5 viewing zenith angles.
NASA Technical Reports Server (NTRS)
Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.
2003-01-01
One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.
NASA Technical Reports Server (NTRS)
Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.
2004-01-01
The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).
Retrievals of Cloud Droplet Size from the RSP Data: Validation Using in Situ Measurements
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Sinclair, Kenneth; Wasilewski, Andrzej P.; Ziemba, Luke; Crosbie, Ewan; Hair, John; Hu, Yongxiang; Hostetler, Chris; Stamnes, Snorre
2016-01-01
We present comparisons of cloud droplet size distributions retrieved from the Research Scanning Polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). This field experiment was based at St. Johns airport, Newfoundland, Canada with the latest deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring polarized and total reflectances in9 spectral channels. Its unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 and 165 degrees. A parametric fitting algorithm applied to the polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution (DSD) itself. The latter is important in the case of clouds with complex structure, which results in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparison of remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was at the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons show generally good agreement with deviations explainable by the position of the aircraft within cloud and by presence of additional cloud layers in RSP view that do not contribute to the in situ DSDs. In the latter case the distributions retrieved from the RSP data were consistent with the multi-layer cloud structures observed in the correlative High Spectral Resolution Lidar (HSRL) profiles. The comparison results provide a rare validation of polarimetric droplet size retrieval techniques, which can be used for analysis of satellite data on global scale.
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)
NASA Astrophysics Data System (ADS)
Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine
2014-05-01
The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes for recent volcanic eruptions.
NASA Astrophysics Data System (ADS)
Saito, M.; Iwabuchi, H.; Yang, P.; Tang, G.; King, M. D.; Sekiguchi, M.
2016-12-01
Cirrus clouds cover about 25% of the globe. Knowledge about the optical and microphysical properties of these clouds [particularly, optical thickness (COT) and effective radius (CER)] is essential to radiative forcing assessment. Previous studies of those properties using satellite remote sensing techniques based on observations by passive and active sensors gave inconsistent retrievals. In particular, COTs from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) using the unconstrained method are affected by variable particle morphology, especially the fraction of horizontally oriented plate particles (HPLT), because the method assumes the lidar ratio to be constant, which should have different values for different ice particle shapes. More realistic ice particle morphology improves estimates of the optical and microphysical properties. In this study, we develop an optimal estimation-based algorithm to infer cirrus COT and CER in addition to morphological parameters (e.g., Fraction of HPLT) using the observations made by CALIOP and the Infrared Imaging Radiometer (IIR) on the CALIPSO platform. The assumed ice particle model is a mixture of a few habits with variable HPLT. Ice particle single-scattering properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties associated with surface properties, atmospheric gases and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with the MODIS and CALIOP counterparts, and CERs essentially agree with the IIR operational retrievals. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters. The presentation will focus on latitudinal variations of particle morphology and the lidar ratio on a global scale.
Virtual Sensors: Using Data Mining to Efficiently Estimate Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Detecting clouds within a satellite image is essential for retrieving surface geophysical parameters, such as albedo and temperature, from optical and thermal imagery because the retrieval methods tend to be valid for clear skies only. Thus, routine satellite data processing requires reliable automated cloud detection algorithms that are applicable to many surface types. Unfortunately, cloud detection over snow and ice is difficult due to the lack of spectral contrast between clouds and snow. Snow and clouds are both highly reflective in the visible wavelen,ats and often show little contrast in the thermal Infrared. However, at 1.6 microns, the spectral signatures of snow and clouds differ enough to allow improved snow/ice/cloud discrimination. The recent Terra and Aqua Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensors have a channel (channel 6) at 1.6 microns. Presently the most comprehensive, long-term information on surface albedo and temperature over snow- and ice-covered surfaces comes from the Advanced Very High Resolution Radiometer ( AVHRR) sensor that has been providing imagery since July 1981. The earlier AVHRR sensors (e.g. AVHRR/2) did not however have a channel designed for discriminating clouds from snow, such as the 1.6 micron channel available on the more recent AVHRR/3 or the MODIS sensors. In the absence of the 1.6 micron channel, the AVHRR Polar Pathfinder (APP) product performs cloud detection using a combination of time-series analysis and multispectral threshold tests based on the satellite's measuring channels to produce a cloud mask. The method has been found to work reasonably well over sea ice, but not so well over the ice sheets. Thus, improving the cloud mask in the APP dataset would be extremely helpful toward increasing the accuracy of the albedo and temperature retrievals, as well as extending the time-series of albedo and temperature retrievals from the more recent sensors to the historical ones. In this work, we use data mining methods to construct a model of MODIS channel 6 as a function of other channels that are common to both MODIS and AVHRR. The idea is to use the model to generate the equivalent of MODIS channel 6 for AVHRR as a function of the AVHRR equivalents to MODIS channels. We call this a Virtual Sensor because it predicts unmeasured spectra. The goal is to use this virtual channel 6. to yield a cloud mask superior to what is currently used in APP . Our results show that several data mining methods such as multilayer perceptrons (MLPs), ensemble methods (e.g., bagging), and kernel methods (e.g., support vector machines) generate channel 6 for unseen MODIS images with high accuracy. Because the true channel 6 is not available for AVHRR images, we qualitatively assess the virtual channel 6 for several AVHRR images.
3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim
2007-01-01
To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.
Cloud structure of Jupiter’s troposphere from Cassini VIMS
NASA Astrophysics Data System (ADS)
Giles, Rohini S.; Fletcher, Leigh N.; Irwin, Patrick G.
2014-11-01
Cassini VIMS 4.5-5.1μm thermal emission spectra were used to study the composition and cloud structure of Jupiter’s middle troposphere during the 2000/2001 flyby. The radiance observed varies considerably across the planet (a factor of 50 between the warm North Equatorial Belt and the cool Equatorial Zone) but the spectral shape remains constant, suggesting the presence of a spectrally flat, spatially inhomogeneous cloud deck. Spectra were analysed using the NEMESIS radiative transfer code and retrieval algorithm. Both night- and day-side nadir spectra could be well reproduced using a model with a single, compact, grey cloud deck. For hotter spectra, this grey cloud could be located as deep as 3.0 bar, but the cooler spectra required the cloud deck to be at pressures of 1.2 bar or less. At these pressures, the clouds are expected to be NH4SH or NH3, but the single-scattering albedos of pure ices of NH3 or NH4SH produce spectral features that are incompatible with the VIMS data. These spectral signatures may be masked by complex rimming/coating processes, and/or by the presence of multiple cloud decks. Retrievals show that the cloud optical thickness varies significantly with latitude and longitude. The North Equatorial Belt contains discrete cloud-free “hot-spots” whose radiance is twice as bright as the coolest parts of the belt. The turbulent region in the wake of the Great Red Spot (GRS) has the thickest clouds of the South Equatorial Belt; these begin to thin out on the opposite hemisphere, 180° away from the GRS. The relatively low spectral resolution and model degeneracies mean that no variability could be detected (or ruled out) in the gaseous species (NH3, PH3 and other disequilibrium species). A limb darkening analysis was carried out using the nightside observations. Extreme inhomogeneity within latitude circles meant that simultaneous retrievals at different emission angles were not possible. However, forward modelling was used to show that highly scattering particles are required to produce results consistent with the data. Acceptable fits were obtained using cloud particles with high single-scatter albedos (ω>0.85) and low asymmetry parameters (g<0.75).
NASA Technical Reports Server (NTRS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-01-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.
NASA Astrophysics Data System (ADS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-12-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff,
NASA Technical Reports Server (NTRS)
Uttal, Taneil; Frisch, Shelby; Wang, Xuan-Ji; Key, Jeff; Schweiger, Axel; Sun-Mack, Sunny; Minnis, Patrick
2005-01-01
A one year comparison is made of mean monthly values of cloud fraction and cloud optical depth over Barrow, Alaska (71 deg 19.378 min North, 156 deg 36.934 min West) between 35 GHz radar-based retrievals, the TOVS Pathfinder Path-P product, the AVHRR APP-X product, and a MODIS based cloud retrieval product from the CERES-Team. The data sets represent largely disparate spatial and temporal scales, however, in this paper, the focus is to provide a preliminary analysis of how the mean monthly values derived from these different data sets compare, and determine how they can best be used separately, and in combination to provide reliable estimates of long-term trends of changing cloud properties. The radar and satellite data sets described here incorporate Arctic specific modifications that account for cloud detection challenges specific to the Arctic environment. The year 2000 was chosen for this initial comparison because the cloud radar data was particularly continuous and reliable that year, and all of the satellite retrievals of interest were also available for the year 2000. Cloud fraction was chosen as a comparison variable as accurate detection of cloud is the primary product that is necessary for any other cloud property retrievals. Cloud optical depth was additionally selected as it is likely the single cloud property that is most closely correlated to cloud influences on surface radiation budgets.
NASA Astrophysics Data System (ADS)
Merrelli, A. J.; Taylor, T.; O'Dell, C.; Cronk, H. Q.; Eldering, A.; Crisp, D.
2017-12-01
The Orbiting Carbon Observatory-2 (OCO-2) measures reflected sunlight in the Oxygen A-band (0.76 μm), Weak CO2 band (1.61 μm) and Strong CO2 band (2.06 μm) with resolving powers 18,000, 19,500 and 19,500, respectively. Soundings are collected at 3Hz, yielding 8 contiguous <1.3 km x 2.3 km footprints across a narrow (<0.8°) swath. After cloud screening, these high-resolution spectra are used in an optimal estimation retrieval to produce estimates of the column averaged carbon dioxide dry air mole fraction (XCO2). In the absence of strong CO2 absorbers, e.g., intense agricultural regions, or strong emitters, e.g., mega-cities, the variability of XCO2 over small scales, e.g., tens of kilometers, is expected to be less than 1 ppm. However, deviations on the order of +/- 2 ppm, or more, are often observed in the production Version 7 (B7) data product. We hypothesize that most of this variability is spurious, with contributions from both retrieval errors and undetected cloud and aerosol contamination. The contiguous nature of the OCO-2 spatial sampling allows for analysis of the variability in XCO2 and correlation with variables, such as the full spatial resolution "color slices" and other retrieved parameters. Color slices avoid the on-board averaging across the detector focal plane array, providing increased spatial information compared to the nominal spectra. This work explores the new B8 production data set using MODIS visible imagery from the CSU Vistool to provide visual context to the OCO-2 parameters. The large volume of data that has been collected since September 2014 allows for statistical analysis of parameters in relation to XCO2 variability. Some detailed case studies are presented.
Volcanic ash and meteorological clouds detection by neural networks
NASA Astrophysics Data System (ADS)
Picchiani, Matteo; Del Frate, Fabio; Stefano, Corradini; Piscini, Alessandro; Merucci, Luca; Chini, Marco
2014-05-01
The recent eruptions of the Icelandic Eyjafjallajokull and Grímsvötn volcanoes occurred in 2010 and 2011 respectively have been highlighted the necessity to increase the accuracy of the ash detection and retrieval. Follow the evolution of the ash plume is crucial for aviation security. Indeed from the accuracy of the algorithms applied to identify the ash presence may depend the safety of the passengers. The difference between the brightness temperatures (BTD) of thermal infrared channels, centered around 11 µm and 12 µm, is suitable to distinguish the ash plume from the meteorological clouds [Prata, 1989] on satellite images. Anyway in some condition an accurate interpretation is essential to avoid false alarms. In particular Corradini et al. (2008) have developed a correction procedure aimed to avoid the atmospheric water vapour effect that tends to mask, or cancel-out, the ash plume effects on the BTD. Another relevant issue is due to the height of the meteorological clouds since their brightness temperatures is affected by this parameter. Moreover the overlapping of ash plume and meteorological clouds may affects the retrieval result since this latter is dependent by the physical temperature of the surface below the ash cloud. For this reason the correct identification of such condition, that can require a proper interpretation by the analyst, is crucial to address properly the inversion of ash parameters. In this work a fast and automatic procedure based on multispectral data from MODIS and a neural network algorithm is applied to the recent eruptions of Eyjafjallajokull and Grímsvötn volcanoes. A similar approach has been already tested with encouraging results in a previous work [Picchiani et al., 2011]. The algorithm is now improved in order to distinguish the meteorological clouds from the ash plume, dividing the latter between ash above sea and ash overlapped to meteorological clouds. The results have been compared to the BTD ones, properly interpreted considering the information of the visible and infrared channels. The comparison shows that the proposed methodology achieves very promising performances, indeed an overall accuracy greater than 87% can be iteratively obtained classifying new images without human interactions. References: Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M. F., Pugnaghi, S., and Gangale, G..; "Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements". J, Atmosph. Rem. Sens., 2, 023550, DOI:10.1117/12.823215, 2008. Prata A. J., "Infrared radiative transfer calculations for volcanic ash clouds", Geophys. Res. Lett., Vol. 16, No. 11, pp. 1293-1296, 1989. Picchiani, M., Chini, M., Corradini, S., Merucci, L., Sellitto, P., Del Frate, F. and Stramondo, S., "Volcanic ash detection and retrievals from MODIS data by means of Neural Networks", Atmos. Meas. Tech., 4, 2619-2631, doi:10.5194/amt-4-2619-2011, 2011.
A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure
NASA Astrophysics Data System (ADS)
Min, Q.; Yin, B.; Li, S.; Berndt, J.; Harrison, L.; Joseph, E.; Duan, M.; Kiedron, P.
2014-06-01
Various studies indicate that high-resolution oxygen A-band spectrum has the capability to retrieve the vertical profiles of aerosol and cloud properties. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July, 2011. By using a single telescope, the HABS instrument measures the direct solar and the zenith diffuse radiation subsequently. HABS exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high-spectrum resolution (0.016 nm), and high out-of-band rejection (10-5). For the spectral retrievals of HABS measurements, a simulator is developed by combining a discrete ordinates radiative transfer code (DISORT) with the High Resolution Transmission (HITRAN) database HITRAN2008. The simulator uses a double-k approach to reduce the computational cost. The HABS-measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the discrepancies between measurements and simulations, indicated by confidence intervals (95%) of relative difference, are (-0.06, 0.05) and (-0.08, 0.09) for solar zenith angles of 27 and 72°, respectively. For zenith diffuse spectra, the related discrepancies between measurements and simulations are (-0.06, 0.05) and (-0.08, 0.07) for solar zenith angles of 27 and 72°, respectively. The main discrepancies between measurements and simulations occur at or near the strong oxygen absorption line centers. They are mainly due to two kinds of causes: (1) measurement errors associated with the noise/spikes of HABS-measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration; (2) modeling errors in the simulation, including the error of model parameters setting (e.g., oxygen absorption line parameters, vertical profiles of temperature and pressure) and the lack of treatment of the rotational Raman scattering. The high-resolution oxygen A-band measurements from HABS can constrain the active radar retrievals for more accurate cloud optical properties (e.g., cloud optical depth, effective radius), particularly for multi-layer clouds and for mixed-phase clouds.
Study on ice cloud optical thickness retrieval with MODIS IR spectral bands
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jun
2005-01-01
The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.
Retrieval of Ice Cloud Properties Using Variable Phase Functions
NASA Astrophysics Data System (ADS)
Heck, Patrick W.; Minnis, Patrick; Yang, Ping; Chang, Fu-Lung; Palikonda, Rabindra; Arduini, Robert F.; Sun-Mack, Sunny
2009-03-01
An enhancement to NASA Langley's Visible Infrared Solar-infrared Split-window Technique (VISST) is developed to identify and account for situations when errors are induced by using smooth ice crystals. The retrieval scheme incorporates new ice cloud phase functions that utilize hexagonal crystals with roughened surfaces. In some situations, cloud optical depths are reduced, hence, cloud height is increased. Cloud effective particle size also changes with the roughened ice crystal models which results in varied effects on the calculation of ice water path. Once validated and expanded, the new approach will be integrated in the CERES MODIS algorithm and real-time retrievals at Langley.
NASA Astrophysics Data System (ADS)
Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.
2016-12-01
Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice cloud microphysical properties and remote sensing applications will be discussed. Chen Zhou and Ping Yang : Backscattering peak of ice cloud particles, Opt. Express 23, 11995-12003 (2015) Holz, R. E. et al : Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075-5090 (2016)
What is the Uncertainty in MODIS Aerosol Optical Depth in the Vicinity of Clouds?
NASA Technical Reports Server (NTRS)
Patadia, Falguni; Levy, Rob; Mattoo, Shana
2017-01-01
MODIS dark-target (DT) algorithm retrieves aerosol optical depth (AOD) using a Look Up Table (LUT) approach. Global comparison of AOD (Collection 6 ) with ground-based sun photometer gives an Estimated Error (EE) of +/-(0.04 + 10%) over ocean. However, EE does not represent per-retrieval uncertainty. For retrievals that are biased high compared to AERONET, here we aim to closely examine the contribution of biases due to presence of clouds and per-pixel retrieval uncertainty. We have characterized AOD uncertainty at 550 nm, due to standard deviation of reflectance in 10 km retrieval region, uncertainty related to gas (H2O, O3) absorption, surface albedo, and aerosol models. The uncertainty in retrieved AOD seems to lie within the estimated over ocean error envelope of +/-(0.03+10%). Regions between broken clouds tend to have higher uncertainty. Compared to C6 AOD, a retrieval omitting observations in the vicinity of clouds (< or = 1 km) is biased by about +/- 0.05. For homogeneous aerosol distribution, clear sky retrievals show near zero bias. Close look at per-pixel reflectance histograms suggests retrieval possibility using median reflectance values.
APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels
NASA Astrophysics Data System (ADS)
Klüser, L.; Killius, N.; Gesell, G.
2015-04-01
The cloud processing scheme APOLLO (Avhrr Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. While building upon the physical principles having served well in the original APOLLO a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is not performed as a binary yes/no decision based on these physical principals but is expressed as cloud probability for each satellite pixel. Consequently the outcome of the algorithm can be tuned from clear confident to cloud confident depending on the purpose. The probabilistic approach allows to retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for the application with large amounts of historical satellite data. Thus the radiative transfer solution is approximated by the same two stream approach which also had been used for the original APOLLO. This allows the algorithm to be robust enough for being applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e. within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from on NOAA-18 are presented.
Multispectrum retrieval techniques applied to Venus deep atmosphere and surface problems
NASA Astrophysics Data System (ADS)
Kappel, David; Arnold, Gabriele; Haus, Rainer
The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express is continuously collecting nightside emission data (among others) from Venus. A radiative transfer model of Venus' atmosphere in conjunction with a suitable retrieval algorithm can be used to estimate atmospheric and surface parameters by fitting simulated spectra to the measured data. Because of the limited spectral resolution of VIRTIS-M-IR-spectra, that have been used so far, many different parameter sets can explain the same measurement equally well. As a common regulative measure, reasonable a priori knowledge of some parameters is applied to suppress solutions implausibly far from the expected range. It is beneficial to introduce a parallel coupled retrieval of several measurements. Since spa-tially and temporally contiguous measurements are not expected to originate from completely unrelated parameters, an assumed a priori correlation of the parameters during the retrieval can help to reduce arbitrary fluctuations of the solutions, to avoid subsidiary solutions, and to attenuate the interference of measurement noise by keeping the parameters close to a gen-eral trend. As an illustration, the resulting improvements for some swaths on the Northern hemisphere are presented. Some atmospheric features are still not very well constrained, for instance CO2 absorption under the extreme environmental conditions close to the surface. A broad band continuum due to far wing and collisional induced absorptions is commonly used to correct individual line absorption. Since the spectrally dependent continuum is constant for all measurements, the retrieval of parameters common to all spectra may be used to give some estimates of the continuum absorption. These estimates are necessary, for example, for the coupled parallel retrieval of a consistent local cloud modal composition, which in turn enables a refined surface emissivity retrieval. We gratefully acknowledge the support from the VIRTIS/Venus Express Team, from ASI, CNES, CNRS, and from the DFG funding the ongoing work.
NASA Astrophysics Data System (ADS)
Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-07-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
NASA Technical Reports Server (NTRS)
Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-01-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa
2018-01-01
Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.
NASA Astrophysics Data System (ADS)
Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho
2016-12-01
Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.
NASA Technical Reports Server (NTRS)
Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei
2014-01-01
Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.
NASA Astrophysics Data System (ADS)
Barbosa, H. M.; Martins, J. V.; McBride, B.; Espinosa, R.; Fernandez Borda, R. A.; Remer, L.; Dubovik, O.
2017-12-01
The largest impediments to estimating climate change revolve around a lack of quantitative information on aerosol forcing and our poor understanding of aerosol-cloud processes and cloud feedbacks in the climate system. This is so because global aerosol and cloud data come from satellite sensors that, today, measure limited subsets of the full Stokes parameters. Most measure only spectral intensity at one geometry, or at a severely limited set of geometries, or measure polarization non-simultaneously using a filter wheel, with a low spatial resolution. To overcome this scientific gap, the Laboratory for Aerosols, Clouds and Optics (LACO) of UMBC developed the Hyper Angular Rainbow Polarimeter (HARP): a very simple but highly effective sensor that can simultaneously measure 3 angles of polarization, at 4 different wavelengths, to observe the same target with up to 60 viewing angles, with no moving parts. The HARP-Cubesat mission will fly next January, with the main objective of proving the on-flight capabilities of a highly accurate wide FOV hyperangle imaging polarimeter for characterizing aerosol and cloud properties. AirHARP is an exact copy of the HARP sensor but prepared to fly on aircrafts. Here we report on preliminary aerosol data analysis from its first measurements during the Lake Michigan Ozone Study (LMOS) field campaign last June. We will discuss how the polarization measurements are inverted using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm to obtain the aerosol size distribution, complex index of refraction and sphericity. For the flights on June 8th and 12th, we will compare the retrievals with those from the Aeronet station LMOS-ZION, specially setup for the campaign.
Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.
NASA Astrophysics Data System (ADS)
Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi
2015-04-01
Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa: Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] D. Wu, J. Tang, Z. Liu, and Y. Hu: Simulation of coherent doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 122(0), 79-86, 2013 [3] G.D Emmitt: CFLOS and cloud statistics from satellite and their impact on future space-based Doppler Wind Lidar development. Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 2008
On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder
NASA Technical Reports Server (NTRS)
Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan
2006-01-01
A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jingjing; Dong, Xiquan; Xi, Baike
This study presents new algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform and thick anvil regions of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and recently developed empirical relationships from aircraft in situ measurements during the Midlatitude Continental Convective Clouds Experiment (MC3E). A classic DCS case on 20 May 2011 is used to compare the retrieved IWC profiles with other retrieval and cloud-resolving model simulations. The mean values of each retrieved and simulated IWC fall within one standard derivation of the other two. The statistical results frommore » six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.16 g m-3 (34%) and a negative bias of 0.39 mm (19%). To validate the newly developed retrieval algorithms from this study, IWC and Dm are performed with other DCS cases during Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign using composite gridded NEXRAD reflectivity and compared with in situ IWC and Dm from aircraft. A total of 64 1-min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWCs are 1.22 g m-3 and 1.26 g m-3 with a correlation of 0.5, and their averaged Dm values are 2.15 and 1.80 mm. These comparisons have shown that the retrieval algorithms 45 developed during MC3E can retrieve similar ice cloud microphysical properties of DCS to aircraft in situ measurements during BAMEX with median errors of ~40% and ~25% for IWC and Dm retrievals, respectively. This is indicating our retrieval algorithms are suitable for other midlatitude continental DCS ice clouds, especially at stratiform rain and thick anvil regions. In addition, based on the averaged IWC and Dm values during MC3E and BAMEX, the DCS IWC values over midlatitude are significantly different, while their Dm values are close to each other. On the other hand, these DCS IWC and Dm values are 1-2 orders of magnitude larger than those of single-layered cirrus clouds over midlatitudes.« less
Cirrus cloud retrieval from MSG/SEVIRI during day and night using artificial neural networks
NASA Astrophysics Data System (ADS)
Strandgren, Johan; Bugliaro, Luca
2017-04-01
By covering a large part of the Earth, cirrus clouds play an important role in climate as they reflect incoming solar radiation and absorb outgoing thermal radiation. Nevertheless, the cirrus clouds remain one of the largest uncertainties in atmospheric research and the understanding of the physical processes that govern their life cycle is still poorly understood, as is their representation in climate models. To monitor and better understand the properties and physical processes of cirrus clouds, it's essential that those tenuous clouds can be observed from geostationary spaceborne imagers like SEVIRI (Spinning Enhanced Visible and InfraRed Imager), that possess a high temporal resolution together with a large field of view and play an important role besides in-situ observations for the investigation of cirrus cloud processes. CiPS (Cirrus Properties from Seviri) is a new algorithm targeting thin cirrus clouds. CiPS is an artificial neural network trained with coincident SEVIRI and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations in order to retrieve a cirrus cloud mask along with the cloud top height (CTH), ice optical thickness (IOT) and ice water path (IWP) from SEVIRI. By utilizing only the thermal/IR channels of SEVIRI, CiPS can be used during day and night making it a powerful tool for the cirrus life cycle analysis. Despite the great challenge of detecting thin cirrus clouds and retrieving their properties from a geostationary imager using only the thermal/IR wavelengths, CiPS performs well. Among the cirrus clouds detected by CALIOP, CiPS detects 70 and 95 % of the clouds with an optical thickness of 0.1 and 1.0 respectively. Among the cirrus free pixels, CiPS classify 96 % correctly. For the CTH retrieval, CiPS has a mean absolute percentage error of 10 % or less with respect to CALIOP for cirrus clouds with a CTH greater than 8 km. For the IOT retrieval, CiPS has a mean absolute percentage error of 100 % or less with respect to CALIOP for cirrus clouds with an optical thickness down to 0.07. For such thin cirrus clouds an error of 100 % should be regarded as low from a geostationary imager like SEVIRI. The IWP retrieved by CiPS shows a similar performance, but has larger deviations for the thinner cirrus clouds.
Two-Channel Satellite Retrievals of Aerosol Properties: An Overview
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.
1999-01-01
In order to reduce current uncertainties in the evaluation of the direct and indirect effects of tropospheric aerosols on climate on the global scale, it has been suggested to apply multi-channel retrieval algorithms to the full period of existing satellite data. This talk will outline the methodology of interpreting two-channel satellite radiance data over the ocean and describe a detailed analysis of the sensitivity of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. We will specifically address the calibration and cloud screening issues, consider the suitability of existing satellite data sets to detecting short- and long-term regional and global changes, compare preliminary results obtained by several research groups, and discuss the prospects of creating an advanced retroactive climatology of aerosol optical thickness and size over the oceans.
What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.
2006-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions
NASA Astrophysics Data System (ADS)
Luszcz-Cook, S. H.; de Kleer, K.; de Pater, I.; Adamkovics, M.; Hammel, H. B.
2016-09-01
We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m W.M. Keck II telescope, from 26 July 2009. These data have a spatial resolution of 0.035/pixel and spectral resolution of R ∼3800 in the H (1.47-1.80 μm) and K (1.97-2.38 μm) broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark - that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ∼4 bar in these near-infrared dark regions. We construct a set of high signal-to-noise spectra spanning a range of viewing geometries to constrain the vertical structure of Neptune's aerosols in a cloud-free latitude band from 2-12°N. We find that Neptune's cloud opacity at these wavelengths is dominated by a compact, optically thick cloud layer with a base near 3 bar. Using the pyDISORT algorithm for the radiative transfer and assuming a Henyey-Greenstein phase function, we observe this cloud to be composed of low albedo (single scattering albedo = 0.45-0.01+0.01), forward scattering (asymmetry parameter g = 0.50-0.02+0.02) particles, with an assumed characteristic size of ∼1μm. Above this cloud, we require an aerosol layer of smaller (∼0.1μm) particles forming a vertically extended haze, which reaches from the upper troposphere (0.59-0.03+0.04 bar) into the stratosphere. The particles in this haze are brighter (single scattering albedo = 0.91-0.05+0.06) and more isotropically scattering (asymmetry parameter g = 0.24-0.03+0.02) than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20°N to 87°S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4) profile, and find that our retrievals indicate a strong preference for a low methane relative humidity at pressures where methane is expected to condense. When we include in our fits a parameter for methane depletion below the CH4 condensation pressure, our preferred solution at most locations is for a methane relative humidity below 10% near the tropopause in addition to methane depletion down to 2.0-2.5 bar. We tentatively identify a trend of lower CH4 columns above 2.5 bar at mid- and high-southern latitudes over low latitudes, qualitatively consistent with what is found by Karkoschka and Tomasko (2011), and similar to, but weaker than, the trend observed for Uranus.
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Marchand, R.; Ackerman, T. P.
2016-12-01
Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-7485 A
APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels
NASA Astrophysics Data System (ADS)
Klüser, L.; Killius, N.; Gesell, G.
2015-10-01
The cloud processing scheme APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. It builds upon the physical principles that have served well in the original APOLLO scheme. Nevertheless, a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is no longer performed as a binary yes/no decision based on these physical principles. It is rather expressed as cloud probability for each satellite pixel. Consequently, the outcome of the algorithm can be tuned from being sure to reliably identify clear pixels to conditions of reliably identifying definitely cloudy pixels, depending on the purpose. The probabilistic approach allows retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for application to large amounts of historical satellite data. The radiative transfer solution is approximated by the same two-stream approach which also had been used for the original APOLLO. This allows the algorithm to be applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e., within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from NOAA-18 are presented.
A Depolarisation Lidar Based Method for the Determination of Liquid-Cloud Microphysical Properties.
NASA Astrophysics Data System (ADS)
Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; De Roode, S. R.; Siebesma, P.
2014-12-01
The fact that polarisation lidars measure a multiple-scattering induced depolarisation signal in liquid clouds is well-known. The depolarisation signal depends on the lidar characteristics (e.g. wavelength and field-of-view) as well as the cloud properties (e.g. liquid water content (LWC) and cloud droplet number concentration (CDNC)). Previous efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear LWC profiles and (quasi-)constant CDNC in the cloud base region. Limiting the applicability of the procedure in this manner allows us to reduce the cloud variables to two parameters (namely liquid water content lapse-rate and the CDNC). This simplification, in turn, allows us to employ a robust optimal-estimation inversion using pre-computed look-up-tables produced using lidar Monte-Carlo multiple-scattering simulations. Here, we describe the theory behind the inversion procedure and apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data covering to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived CDNC are also presented. The results are seen to be consistent with previous studies based on aircraft-based in situ measurements.
NASA Astrophysics Data System (ADS)
Posselt, Derek J.
The research documented in this study centers around two topics: evaluation of the response of precipitating cloud systems to changes in the tropical climate system, and assimilation of cloud and precipitation information from remote-sensing platforms. The motivation for this work proceeds from the following outstanding problems: (1) Use of models to study the response of clouds to perturbations in the climate system is hampered by uncertainties in cloud microphysical parameterizations. (2) Though there is an ever-growing set of available observations, cloud and precipitation assimilation remains a difficult problem, particularly in the tropics. (3) Though it is widely acknowledged that cloud and precipitation processes play a key role in regulating the Earth's response to surface warming, the response of the tropical hydrologic cycle to climate perturbations remains largely unknown. The above issues are addressed in the following manner. First, Markov chain Monte Carlo (MCMC) methods are used to quantify the sensitivity of the NASA Goddard Cumulus Ensemble (GCE) cloud resolving model (CRM) to changes in its cloud odcrnpbymiC8l parameters. TRMM retrievals of precipitation rate, cloud properties, and radiative fluxes and heating rates over the South China Sea are then assimilated into the GCE model to constrain cloud microphysical parameters to values characteristic of convection in the tropics, and the resulting observation-constrained model is used to assess the response of the tropical hydrologic cycle to surface warming. The major findings of this study are the following: (1) MCMC provides an effective tool with which to evaluate both model parameterizations and the assumption of Gaussian statistics used in optimal estimation procedures. (2) Statistics of the tropical radiation budget and hydrologic cycle can be used to effectively constrain CRM cloud microphysical parameters. (3) For 2D CRM simulations run with and without shear, the precipitation efficiency of cloud systems increases with increasing sea surface temperature, while the high cloud fraction and outgoing shortwave radiation decrease.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-27
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Probabilistic verification of cloud fraction from three different products with CALIPSO
NASA Astrophysics Data System (ADS)
Jung, B. J.; Descombes, G.; Snyder, C.
2017-12-01
In this study, we present how Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) can be used for probabilistic verification of cloud fraction, and apply this probabilistic approach to three cloud fraction products: a) The Air Force Weather (AFW) World Wide Merged Cloud Analysis (WWMCA), b) Satellite Cloud Observations and Radiative Property retrieval Systems (SatCORPS) from NASA Langley Research Center, and c) Multi-sensor Advection Diffusion nowCast (MADCast) from NCAR. Although they differ in their details, both WWMCA and SatCORPS retrieve cloud fraction from satellite observations, mainly of infrared radiances. MADCast utilizes in addition a short-range forecast of cloud fraction (provided by the Model for Prediction Across Scales, assuming cloud fraction is advected as a tracer) and a column-by-column particle filter implemented within the Gridpoint Statistical Interpolation (GSI) data-assimilation system. The probabilistic verification considers the retrieved or analyzed cloud fractions as predicting the probability of cloud at any location within a grid cell and the 5-km vertical feature mask (VFM) from CALIPSO level-2 products as a point observation of cloud.
NASA Astrophysics Data System (ADS)
Burton, S. P.; Liu, X.; Chemyakin, E.; Hostetler, C. A.; Stamnes, S.; Moore, R.; Sawamura, P.; Ferrare, R. A.; Knobelspiesse, K. D.
2015-12-01
There is considerable interest in retrieving aerosol effective radius, number concentration and refractive index from lidar measurements of extinction and backscatter at several wavelengths. The 3 backscatter + 2 extinction (3β+2α) combination is particularly important since the planned NASA Aerosol-Clouds-Ecosystem (ACE) mission recommends this combination of measurements. The 2nd-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β+2α measurements since 2012. Here we develop a deeper understanding of the information content and sensitivities of the 3β+2α system in terms of aerosol microphysical parameters of interest. We determine best case results using a retrieval-free methodology. We calculate information content and uncertainty metrics from Optimal Estimation techniques using only a simplified forward model look-up table, with no explicit inversion. Simplifications include spherical particles, mono-modal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, our results are applicable as a best case for all existing retrievals. Retrieval-dependent errors due to mismatch between the assumptions and true atmospheric aerosols are not included. The sensitivity metrics allow for identifying (1) information content of the measurements versus a priori information; (2) best-case error bars on the retrieved parameters; and (3) potential sources of cross-talk or "compensating" errors wherein different retrieval parameters are not independently captured by the measurements. These results suggest that even in the best case, this retrieval system is underdetermined. Recommendations are given for addressing cross-talk between effective radius and number concentration. A potential solution to the under-determination problem is a combined active (lidar) and passive (polarimeter) retrieval, which is the subject of a new funded NASA project by our team.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.
2005-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval
NASA Astrophysics Data System (ADS)
Chen, Yi-Chen; Lin, Chao-Hung
2016-06-01
With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority over related methods.
NASA Astrophysics Data System (ADS)
Letu, H.; Nagao, T. M.; Nakajima, T. Y.; Ishimoto, H.; Riedi, J.; Shang, H.
2017-12-01
Ice cloud property product from satellite measurements is applicable in climate change study, numerical weather prediction, as well as atmospheric study. Ishimoto et al., (2010) and Letu et al., (2016) developed a single scattering property of the highly irregular ice particle model, called the Voronoi model for developing ice cloud product of the GCOM-C satellite program. It is investigated that Voronoi model has a good performance on retrieval of the ice cloud properties by comparing it with other well-known scattering models. Cloud property algorithm (Nakajima et al., 1995, Ishida and Nakajima., 2009, Ishimoto et al., 2009, Letu et al., 2012, 2014, 2016) of the GCOM-C satellite program is improved to produce the Himawari-8/AHI cloud products based on the variation of the solar zenith angle. Himawari-8 is the new-generational geostationary meteorological satellite, which is successfully launched by the Japan Meteorological Agency (JMA) on 7 October 2014. In this study, ice cloud optical and microphysical properties are simulated from RSTAR radiative transfer code by using various model. Scattering property of the Voronoi model is investigated for developing the AHI ice cloud products. Furthermore, optical and microphysical properties of the ice clouds are retrieved from Himawari-8/AHI satellite measurements. Finally, retrieval results from Himawari-8/AHI are compared to MODIS-C6 cloud property products for validation of the AHI cloud products.
NASA Astrophysics Data System (ADS)
Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.
2017-12-01
Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.
NASA Astrophysics Data System (ADS)
Sus, Oliver; Stengel, Martin; Stapelberg, Stefan; McGarragh, Gregory; Poulsen, Caroline; Povey, Adam C.; Schlundt, Cornelia; Thomas, Gareth; Christensen, Matthew; Proud, Simon; Jerg, Matthias; Grainger, Roy; Hollmann, Rainer
2018-06-01
We present here the key features of the Community Cloud retrieval for CLimate (CC4CL) processing algorithm. We focus on the novel features of the framework: the optimal estimation approach in general, explicit uncertainty quantification through rigorous propagation of all known error sources into the final product, and the consistency of our long-term, multi-platform time series provided at various resolutions, from 0.5 to 0.02°. By describing all key input data and processing steps, we aim to inform the user about important features of this new retrieval framework and its potential applicability to climate studies. We provide an overview of the retrieved and derived output variables. These are analysed for four, partly very challenging, scenes collocated with CALIOP (Cloud-Aerosol lidar with Orthogonal Polarization) observations in the high latitudes and over the Gulf of Guinea-West Africa. The results show that CC4CL provides very realistic estimates of cloud top height and cover for optically thick clouds but, where optically thin clouds overlap, returns a height between the two layers. CC4CL is a unique, coherent, multi-instrument cloud property retrieval framework applicable to passive sensor data of several EO missions. Through its flexibility, CC4CL offers the opportunity for combining a variety of historic and current EO missions into one dataset, which, compared to single sensor retrievals, is improved in terms of accuracy and temporal sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhien
2010-06-29
The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processesmore » is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.« less
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.
2007-01-01
Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms.
Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro, Ricardo
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.
Improved Surface Parameter Retrievals using AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John
2008-01-01
The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave C02 channel observations in the spectral region 700 cm(exp -1) to 750 cm(exp -1) are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm(exp -1) 2395 cm(exp -1) are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O3 burden.
NASA Astrophysics Data System (ADS)
Xu, Z.; Mace, G. G.; Posselt, D. J.
2017-12-01
As we begin to contemplate the next generation atmospheric observing systems, it will be critically important that we are able to make informed decisions regarding the trade space between scientific capability and the need to keep complexity and cost within definable limits. To explore this trade space as it pertains to understanding key cloud and precipitation processes, we are developing a Markov Chain Monte Carlo (MCMC) algorithm suite that allows us to arbitrarily define the specifications of candidate observing systems and then explore how the uncertainties in key retrieved geophysical parameters respond to that observing system. MCMC algorithms produce a more complete posterior solution space, and allow for an objective examination of information contained in measurements. In our initial implementation, MCMC experiments are performed to retrieve vertical profiles of cloud and precipitation properties from a spectrum of active and passive measurements collected by aircraft during the ACE Radiation Definition Experiments (RADEX). Focusing on shallow cumulus clouds observed during the Integrated Precipitation and Hydrology EXperiment (IPHEX), observing systems in this study we consider W and Ka-band radar reflectivity, path-integrated attenuation at those frequencies, 31 and 94 GHz brightness temperatures as well as visible and near-infrared reflectance. By varying the sensitivity and uncertainty of these measurements, we quantify the capacity of various combinations of observations to characterize the physical properties of clouds and precipitation.
NASA Astrophysics Data System (ADS)
McBride, B.; Martins, J. V.; Fernandez Borda, R. A.; Barbosa, H. M.
2017-12-01
The Laboratory for Aerosols, Clouds, and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) present a novel, wide FOV, hyper-angular imaging polarimeter for the microphysical sampling of clouds and aerosols from aircraft and space. The instrument, the Hyper-Angular Rainbow Polarimeter (HARP), is a precursor to the multi-angle imaging polarimeter solicited by the upcoming NASA Aerosols, Clouds, and Ecosystems (ACE) mission. HARP currently operates in two forms: a spaceborne CubeSat slated for a January 2018 launch to the ISS orbit, and an identical aircraft platform that participated in the Lake Michigan Ozone Study (LMOS) and Aerosol Characterization from Polarimeter and Lidar (ACEPOL) NASA campaigns in 2017. To ensure and validate the instrument's ability to produce high quality Level 2 cloud and aerosol microphysical products, a comprehensive calibration scheme that accounts for flatfielding, radiometry, and all optical interference processes that contribute to the retrieval of Stokes parameters I, Q, and U, is applied across the entirety of HARP's 114° FOV. We present an innovative calibration algorithm that convolves incident polarization from a linear polarization state generator with intensity information observed at three distinct linear polarizations. The retrieved results are pixel-level, modified Mueller matrices that characterize the entire HARP optical assembly, without the need to characterize every individual element or perform ellipsometric studies. Here we show results from several pre- and post- LMOS campaign radiometric calibrations at NASA GSFC and polarimetric calibration using a "polarization dome" that allows for full-FOV characterization of Stokes parameters I, Q, and U. The polarization calibration is verified by passing unpolarized light through partially-polarized, tilted glass plates with well-characterized degree of linear polarization (DoLP). We apply this calibration to a stratocumulous cloud deck case observed during the LMOS campaign on June 19 2017, and assess the polarized cloudbow for cloud droplet effective radius and variance information at 0.67µm.
Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2012-01-01
How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.
NASA Astrophysics Data System (ADS)
Mejia, J.; Mitchell, D. L.; Garnier, A.; Hosseinpour, F.; Avery, M. A.
2017-12-01
Global retrievals of cirrus cloud effective diameter De and mid-cloud temperature T were used to make the cirrus clouds simulated in CAM5 conform with the retrieved De, with the ice fall speeds in CAM5 calculated from the retrieved De. This was done by developing De-T relationships for six latitude zones. Within each latitude zone, seasonal De-T relationships were developed for cirrus over land and for cirrus over ocean (making 48 De-T relationships in total). The recently developed CALIPSO retrieval algorithm is sensitive to the ice crystal number concentration N, which is also retrieved, and it utilizes radiances from the infrared imaging radiometer and backscatter from the CALIPSO lidar. Retrieved De (N) is largest (lowest) between 30S and 30N latitude; a region dominated by anvil cirrus where pre-existing ice strongly favors heterogeneous ice nucleation (henceforth het). Therefore, the De-T relations for this region are considered representative for cirrus formed via het. Outside this region, retrieved De (N) tended to be considerably smaller (higher), presumably due to homogeneous ice nucleation (henceforth hom). Two CAM5 simulations were performed; one where cirrus cloud De is based on the CALIPSO retrievals and one where De-T for het cirrus is applied globally. Differences in net cloud radiative forcing between runs are believed due to differences in cirrus formation mechanism (hom vs. het). Such differences are typically 1.3 W m-2 in the mid-to-high latitudes in the N. Hemisphere excepting summer. These differences imply differences in cirrus cloud heating rates that affect temperatures in the underlying troposphere, which in turn affect the wind fields. The natural cirrus (mixture of hom and het) tend to trap more heat than the het cirrus. Changes in zonal wind fields between simulations suggest that heating by polar cirrus clouds have modifed meridional temperature gradients and thus zonal winds through the thermal wind balance. These changes in heating by polar cirrus clouds can modify the amplitude and meridional position of the midlatitude jet streams, which can lead to more extreme weather. Moreover, the retrievals indicate a doubling of Arctic cirrus coverage during winter, which will also result in increased heating of the underlying troposphere, likely contributing to this same phenomenon.
NASA Astrophysics Data System (ADS)
Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.
2016-07-01
Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within ±1 % of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.
NASA Technical Reports Server (NTRS)
Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.
2016-01-01
Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within 1% of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.
Norris, Peter M.; da Silva, Arlindo M.
2018-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state. PMID:29618848
NASA Technical Reports Server (NTRS)
Norris, Peter M.; da Silva, Arlindo M.
2016-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
Norris, Peter M; da Silva, Arlindo M
2016-07-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
The influence of sea fog inhomogeneity on its microphysical characteristics retrieval
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang
2008-10-01
A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.
A physically-based retrieval of cloud liquid water from SSM/I measurements
NASA Technical Reports Server (NTRS)
Greenwald, Thomas J.; Stephens, Graeme L.; Vonder Haar, Thomas H.
1992-01-01
A simple physical scheme is proposed for retrieving cloud liquid water over the ice-free global oceans from Special Sensor Microwave/Imager (SSM/I) observations. Details of the microwave retrieval scheme are discussed, and the microwave-derived liquid water amounts are compared with the ground radiometer and AVHRR-derived liquid water for stratocumulus clouds off the coast of California. Global distributions of the liquid water path derived by the method proposed here are presented.
NASA Astrophysics Data System (ADS)
Gupta, P.; Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.
2012-12-01
Measurements of top of the atmosphere (TOA) radiation are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in the orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long-wave and short-wave region of electromagnetic spectrum, and the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths. Top of the atmosphere SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). OMI measurements have been successfully utilized to derive the information on trace gases (e.g., O3, NO2, and SO2), clouds, and absorbing aerosols. In this paper, OMI retrievals of cloud/aerosol parameters and O3 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. These input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column O3, and sun-satellite viewing geometry from OMI as well as wind speed and total column water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content from SeaWiFs satellite. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of the CERES data to be used for validation. Our comparison of OMI-estimated TOA SW flux with independent CERES retrievals shows a high degree of correlation (R>0.96) between the two. About 85% of all the analyzed OMI flux data falls within ±5% of the CERES observations and global mean biases varies within ±3% over the entire year. We further examine the sensitivity of the neural network SW flux estimation to the choice of input parameters. Application of our neural network to OMI heritage measurements from the Total Ozone Mapping Spectrometer (TOMS) series can potentially provide a unique long term global record of estimated TOA SW flux starting in late 1978.
Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx
Zuidema, P.; Leon, D.; Pazmany, A.; ...
2012-01-05
Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upwardpointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the Gband (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (abovecloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to twomm and nearcoastal values reaching tenmm. The VOCALS-REx free troposphere wasmore » drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and insitu thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (≈100 m) resolution was estimated at 20 gm -2 and 3 gm -2 respectively for well-mixed conditions, and 25 gm -2 absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs <100 (40) gm -2. Coastal LWPs values were lower than those offshore. For the four dedicated 20° S flights, the mean (median) coastal LWP was 67 (61) gm -2, increasing to 166 (120) gm -2 1500 km offshore. Finally, the overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.« less
Top-of-the-Atmosphere Shortwave Flux Estimation from UV Observations: An Empirical Approach
NASA Technical Reports Server (NTRS)
Gupta, P.; Joiner, Joanna; Vasilkov, A.; Bhartia, P. K.; da Silva, Arlindo
2012-01-01
Measurements of top of the atmosphere (TOA) radiation are essential to the understanding of Earth's climate. Clouds, aerosols, and ozone (0,) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths, and Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long- and short-wave. OMI measurements have been successfully utilized to derive the information on trace gases (e.g., 0 1, NO" and SO,), clouds, and absorbing aerosols. TOA SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). In this paper, OMI retrievals of cloud/aerosol parameters and 0 1 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. This input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column 0" and sun-satellite viewing geometry from OMI as well as wind speed and water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of the CERES data to be used for validation.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin
2013-01-01
Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.
Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4more » km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.« less
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)
2002-01-01
In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.
NASA Astrophysics Data System (ADS)
Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.
2012-12-01
Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean, respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.
Retrieving the Polar Mixed-Phase Cloud Liquid Water Path by Combining CALIOP and IIR Measurements
NASA Astrophysics Data System (ADS)
Luo, Tao; Wang, Zhien; Li, Xuebin; Deng, Shumei; Huang, Yong; Wang, Yingjian
2018-02-01
Mixed-phase cloud (MC) is the dominant cloud type over the polar region, and there are challenging conditions for remote sensing and in situ measurements. In this study, a new methodology of retrieving the stratiform MC liquid water path (LWP) by combining Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and infrared imaging radiometer (IIR) measurements was developed and evaluated. This new methodology takes the advantage of reliable cloud-phase discrimination by combining lidar and radar measurements. An improved multiple-scattering effect correction method for lidar signals was implemented to provide reliable cloud extinction near cloud top. Then with the adiabatic cloud assumption, the MC LWP can be retrieved by a lookup-table-based method. Simulations with error-free inputs showed that the mean bias and the root mean squared error of the LWP derived from the new method are -0.23 ± 2.63 g/m2, with the mean absolute relative error of 4%. Simulations with erroneous inputs suggested that the new methodology could provide reliable retrieval of LWP to support the statistical or climatology analysis. Two-month A-train satellite retrievals over Arctic region showed that the new method can produce very similar cloud top temperature (CTT) dependence of LWP to the ground-based microwave radiometer measurements, with a bias of -0.78 g/m2 and a correlation coefficient of 0.95 between the two mean CTT-LWP relationships. The new approach can also produce reasonable pattern and value of LWP in spatial distribution over the Arctic region.
NASA Technical Reports Server (NTRS)
King, Michael D.
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
Cloud and Aerosol Retrieval for the 2001 GLAS Satellite Lidar Mission
NASA Technical Reports Server (NTRS)
Hart, William D.; Palm, Stephen P.; Spinhirne, James D.
2000-01-01
The Geoscience Laser Altimeter System (GLAS) is scheduled for launch in July of 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESAT). In addition to being a precision altimeter for mapping the height of the Earth's icesheets, GLAS will be an atmospheric lidar, sensitive enough to detect gaseous, aerosol, and cloud backscatter signals, at horizontal and vertical resolutions of 175 and 75m, respectively. GLAS will be the first lidar to produce temporally continuous atmospheric backscatter profiles with nearly global coverage (94-degree orbital inclination). With a projected operational lifetime of five years, GLAS will collect approximately six billion lidar return profiles. The large volume of data dictates that operational analysis algorithms, which need to keep pace with the data yield of the instrument, must be efficient. So, we need to evaluate the ability of operational algorithms to detect atmospheric constituents that affect global climate. We have to quantify, in a statistical manner, the accuracy and precision of GLAS cloud and aerosol observations. Our poster presentation will show the results of modeling studies that are designed to reveal the effectiveness and sensitivity of GLAS in detecting various atmospheric cloud and aerosol features. The studies consist of analyzing simulated lidar returns. Simulation cases are constructed either from idealized renditions of atmospheric cloud and aerosol layers or from data obtained by the NASA ER-2 Cloud Lidar System (CLS). The fabricated renditions permit quantitative evaluations of operational algorithms to retrieve cloud and aerosol parameters. The use of observational data permits the evaluations of performance for actual atmospheric conditions. The intended outcome of the presentation is that climatology community will be able to use the results of these studies to evaluate and quantify the impact of GLAS data upon atmospheric modeling efforts.
Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2014-01-01
This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas
2012-01-01
Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.
The Effect of Clouds on Water Vapor Profiling from the Millimeter-Wave Radiometric Measurements
NASA Technical Reports Server (NTRS)
Wang, J. R.; Spinhirne, J. D.; Racette, P.; Chang, L. A.; Hart, W.
1997-01-01
Simultaneous measurements with the millimeter-wave imaging radiometer (MIR), cloud lidar system (CLS), and the MODIS airborne simulator (MAS) were made aboard the NASA ER-2 aircraft over the western Pacific Ocean on 17-18 January 1993. These measurements were used to study the effects of clouds on water vapor profile retrievals based on millimeter-wave radiometer measurements. The CLS backscatter measurements (at 0.532 and 1.064 am) provided information on the heights and a detailed structure of cloud layers; the types of clouds could be positively identified. All 12 MAS channels (0.6-13 Am) essentially respond to all types of clouds, while the six MIR channels (89-220 GHz) show little sensitivity to cirrus clouds. The radiances from the 12-/Am and 0.875-gm channels of the MAS and the 89-GHz channel of the MIR were used to gauge the performance of the retrieval of water vapor profiles from the MIR observations under cloudy conditions. It was found that, for cirrus and absorptive (liquid) clouds, better than 80% of the retrieval was convergent when one of the three criteria was satisfied; that is, the radiance at 0.875 Am is less than 100 W/cm.sr, or the brightness at 12 Am is greater than 260 K, or brightness at 89 GHz is less than 270 K (equivalent to cloud liquid water of less than 0.04 g/cm). The range of these radiances for convergent retrieval increases markedly when the condition for convergent retrieval was somewhat relaxed. The algorithm of water vapor profiling from the MIR measurements could not perform adequately over the areas of storm-related clouds that scatter radiation at millimeter wavelengths.
Modeling Lidar Multiple Scattering
NASA Astrophysics Data System (ADS)
Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi
2016-06-01
A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.
NASA Technical Reports Server (NTRS)
Chang, Fu-Lung; Minnis, Patrick; Ayers, J. Kirk; McGill, Matthew J.; Palikonda, Rabindra; Spangenberg, Douglas A.; Smith, William L., Jr.; Yost, Christopher R.
2010-01-01
Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) less than 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs less than 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (+/- 2.1) km from the CPL and 10.7 (+/- 2.1), 12.1 (+/- 1.6), 9.7 (+/- 2.9), and 11.4 (+/- 2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2018-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Smith, William L., Jr.; Bedka, Kristopher M.; Nguyen, Louis; Palikonda, Rabindra; Hong, Gang; Trepte, Qing Z.; Chee, Thad; Scarino, Benjamin; Spangenberg, Douglas A.;
2014-01-01
Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near--real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near--real time globally from both geostationary (GEO) and low--earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.
NASA Astrophysics Data System (ADS)
Minnis, P.; Smith, W., Jr.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Hong, G.; Trepte, Q.; Chee, T.; Scarino, B. R.; Spangenberg, D.; Sun-Mack, S.; Fleeger, C.; Ayers, J. K.; Chang, F. L.; Heck, P. W.
2014-12-01
Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-real time globally from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.
NASA Astrophysics Data System (ADS)
Gassó, Santiago; Torres, Omar
2016-07-01
Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the retrieval (imaginary index of refraction, size distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.
Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods
NASA Technical Reports Server (NTRS)
Lin, Bing; Rossow, William B.
1994-01-01
Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about 3 times the LWP but only half the LWP in the summer hemisphere. Precipitating clouds contribute significantly to monthly, zonal mean LWP values determined from microwave, especially in the intertropical convergence zone (ITCZ), because they have almost 10 times the liquid water (cloud plus precipitation) of nonprecipitating clouds on average. There are significant differences among microwave LWP estimates associated with the treatment of precipitating clouds.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
NASA Technical Reports Server (NTRS)
Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.
1992-01-01
A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.
Improved simulation of aerosol, cloud, and density measurements by shuttle lidar
NASA Technical Reports Server (NTRS)
Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.
1981-01-01
Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.
2013-05-22
Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on themore » cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.« less
CERES ISCCP-D2like Data Products
Atmospheric Science Data Center
2014-07-24
... D2 format. Merged : Terra + Aqua MODIS and 3-hourly geostationary cloud retrievals for daytime only. GEO : 3-hourly geostationary-only cloud retrievals for daytime only. Day/Nit : Single ...
Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.
2014-05-01
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.
NASA Astrophysics Data System (ADS)
Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.
2016-12-01
Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Bhartia, Pawan K.; Remer, Lorraine; Redemann, Jens; Dunagan, Stephen E.; Livingston, John; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal-Rosenbeimer, Michal;
2014-01-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay lower level cloud decks and pose greater potentials of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. Recent development of a 'color ratio' (CR) algorithm applied to observations made by the Aura/OMI and Aqua/MODIS constitutes a major breakthrough and has provided unprecedented maps of above-cloud aerosol optical depth (ACAOD). The CR technique employs reflectance measurements at TOA in two channels (354 and 388 nm for OMI; 470 and 860 nm for MODIS) to retrieve ACAOD in near-UV and visible regions and aerosol-corrected cloud optical depth, simultaneously. An inter-satellite comparison of ACAOD retrieved from NASA's A-train sensors reveals a good level of agreement between the passive sensors over the homogeneous cloud fields. Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. We validate the ACA optical depth retrieved using the CR method applied to the MODIS cloudy-sky reflectance against the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS- 2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (RMSE less than 0.1 for AOD at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals. An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
Retrievals of Ice Cloud Microphysical Properties of Deep Convective Systems using Radar Measurements
NASA Astrophysics Data System (ADS)
Tian, J.; Dong, X.; Xi, B.; Wang, J.; Homeyer, C. R.
2015-12-01
This study presents innovative algorithms for retrieving ice cloud microphysical properties of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and newly derived empirical relationships from aircraft in situ measurements in Wang et al. (2015) during the Midlatitude Continental Convective Clouds Experiment (MC3E). With composite gridded NEXRAD radar reflectivity, four-dimensional (space-time) ice cloud microphysical properties of DCSs are retrieved, which is not possible from either in situ sampling at a single altitude or from vertical pointing radar measurements. For this study, aircraft in situ measurements provide the best-estimated ice cloud microphysical properties for validating the radar retrievals. Two statistical comparisons between retrieved and aircraft in situ measured ice microphysical properties are conducted from six selected cases during MC3E. For the temporal-averaged method, the averaged ice water content (IWC) and median mass diameter (Dm) from aircraft in situ measurements are 0.50 g m-3 and 1.51 mm, while the retrievals from radar reflectivity have negative biases of 0.12 g m-3 (24%) and 0.02 mm (1.3%) with correlations of 0.71 and 0.48, respectively. For the spatial-averaged method, the IWC retrievals are closer to the aircraft results (0.51 vs. 0.47 g m-3) with a positive bias of 8.5%, whereas the Dm retrievals are larger than the aircraft results (1.65 mm vs. 1.51 mm) with a positive bias of 9.3%. The retrieved IWCs decrease from ~0.6 g m-3 at 5 km to ~0.15 g m-3 at 13 km, and Dm values decrease from ~2 mm to ~0.7 mm at the same levels. In general, the aircraft in situ measured IWC and Dm values at each level are within one standard derivation of retrieved properties. Good agreements between microphysical properties measured from aircraft and retrieved from radar reflectivity measurements indicate the reasonable accuracy of our retrievals.
Added Value of Far-Infrared Radiometry for Ice Cloud Remote Sensing
NASA Astrophysics Data System (ADS)
Libois, Q.; Blanchet, J. P.; Ivanescu, L.; S Pelletier, L.; Laurence, C.
2017-12-01
Several cloud retrieval algorithms based on satellite observations in the infrared have been developed in the last decades. However, most of these observations only cover the midinfrared (MIR, λ < 15 μm) part of the spectrum, and none are available in the far-infrared (FIR, λ ≥ 15 μm). Recent developments in FIR sensors technology, though, now make it possible to consider spaceborne remote sensing in the FIR. Here we show that adding a few FIR channels with realistic radiometric performances to existing spaceborne narrowband radiometers would significantly improve their ability to retrieve ice cloud radiative properties. For clouds encountered in the polar regions and the upper troposphere, where the atmosphere above clouds is sufficiently transparent in the FIR, using FIR channels would reduce by more than 50% the uncertainties on retrieved values of optical thickness, effective particle diameter, and cloud top altitude. This would somehow extend the range of applicability of current infrared retrieval methods to the polar regions and to clouds with large optical thickness, where MIR algorithms perform poorly. The high performance of solar reflection-based algorithms would thus be reached in nighttime conditions. Using FIR observations is a promising venue for studying ice cloud microphysics and precipitation processes, which is highly relevant for cirrus clouds and convective towers, and for investigating the water cycle in the driest regions of the atmosphere.
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.
2017-12-01
It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the projected area is concentrated at larger sizes. Simulations across the parameter space are also compared with MODIS collection 6 retrievals and forward simulations of cloud radar reflectivity and mean Doppler velocity. Results motivate further in situ and laboratory measurements to narrow parameter uncertainties in models.
Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska
NASA Astrophysics Data System (ADS)
NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.
2016-12-01
Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation observations at the site. CALIPSO data with near-simultaneous colocation are added for multi-layered cloud cases which may have high clouds aloft beyond the ground measurements. Multi-month statistics of performance and case studies will be shown. Additional efforts for algorithm refinements will be also discussed.
NASA Astrophysics Data System (ADS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob
2016-10-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob
2016-01-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.
NASA Astrophysics Data System (ADS)
Hansell, Richard Allen, Jr.
The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud coverage for the Persian Gulf case compare reasonably well to those from the "Deep Blue" algorithm developed at NASA-GSFC. The nighttime dust/cloud detection for the cases surrounding Cape Verde and Niger, West Africa has been validated by comparing to coincident and collocated ground-based micro-pulse lidar measurements.
NASA Astrophysics Data System (ADS)
DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang
2018-01-01
One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.
NASA Astrophysics Data System (ADS)
Cornet, C.; Davies, R.
2008-02-01
Radiative transfer simulations of an isolated deep convective cloud reconstructed with stereo-techniques from the Multiangle Imaging Spectroradiometer (MISR) are compared with the reflectances measured at the nine MISR viewing angles. The simulations were done using a three dimensional Monte Carlo model, in which ocean reflectance, aerosol and Rayleigh scattering were prescribed to match the surrounding clear-sky MISR measurements. Making reasonable assumptions regarding the vertical and horizontal distribution of the volume extinction coefficient, we were able to reproduce the MISR measurements with the 3D radiative calculations. While the uniqueness of the these distributions cannot be proven, they all lead to retrievals of much larger cloud optical thickness and cloud water content than for a 1D retrieval. Averaged over the cloud, the difference was a factor of about 3, rising to 9 locally. This is a consequence of horizontal photon transport that serves to highlight the inadequacy of 1D retrievals for the case of deep convective cloud. Concerning the internal cloud properties, we noticed the angular distribution of modeled radiances did not match the measured radiances when an ice crystal phase function was applied. Better estimates of the optical depths and water contents of deep convective clouds appear to be obtainable by integrating an estimate of the extinction coefficient over the vertical cloud extent (when this can assessed) than by attempting to invert the radiance measured from a single-angle view using 1D theory.
Apperception of Clouds in AIRS Data
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Smith, William L.
2005-01-01
Our capacity to simulate the radiative characteristics of the Earth system has advanced greatly over the past decade. However, new space based measurements show that idealized simulations might not adequately represent the complexity of nature. For example, AIRS simulated multi-layer cloud clearing research provides an excellent groundwork for early Atmospheric Infra-Red Sounder (AIRS) operational cloud clearing and atmospheric profile retrieval. However, it doesn't reflect the complicated reality of clouds over land and coastal areas. Thus far, operational AIRS/AMSU (Advanced Microwave Sounding Unit) cloud clearing is not only of low yield but also of unsatisfying quality. This is not an argument for avoiding this challenging task, rather a powerful argument for exploring other synergistic approaches, and for adapting these strategies toward improving both indirect and direct use of cloudy infrared sounding data. Ample evidence is shown in this paper that the indirect use of cloudy sounding data by way of cloud clearing is sub-optimal for data assimilation. Improvements are needed in quality control, retrieval yield, and overall cloud clearing retrieval performance. For example, cloud clearing over land, especially over the desert surface, has led to much degraded retrieval quality and often a very low yield of quality controlled cloud cleared radiances. If these indirect cloud cleared radiances are instead to be directly assimilated into NWP models, great caution must be used. Our limited and preliminary cloud clearing results from AIRS/AMSU (with the use of MODIS data) and an AIRS/MODIS synergistic approach have, however, shown that higher spatial resolution multispectral imagery data can provide much needed quality control of the AIRS/AMSU cloud clearing retrieval. When AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) are used synergistically, a higher spatial resolution over difficult terrain (especially desert areas) can be achieved and with a much improved accuracy. Preliminary statistical analyses of cloud cleared radiances derived from (1) operational AIRS/AMSU, (2) operational AIRS/AMSU plus the use of MODIS data as quality control, and (3) AIRS/MODIS synergistic single channel and two field of views cloud clearing are Our capacity to simulate the radiative characteristics of the Earth system has
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey
Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar
Near-Real Time Cloud Retrievals from Operational and Research Meteorological Satellites
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Nguyen, Louis; Palilonda, Rabindra; Heck, Patrick W.; Spangenberg, Douglas A.; Doelling, David R.; Ayers, J. Kirk; Smith, William L., Jr.; Khaiyer, Mandana M.; Trepte, Qing Z.;
2008-01-01
A set of cloud retrieval algorithms developed for CERES and applied to MODIS data have been adapted to analyze other satellite imager data in near-real time. The cloud products, including single-layer cloud amount, top and base height, optical depth, phase, effective particle size, and liquid and ice water paths, are being retrieved from GOES- 10/11/12, MTSAT-1R, FY-2C, and Meteosat imager data as well as from MODIS. A comprehensive system to normalize the calibrations to MODIS has been implemented to maximize consistency in the products across platforms. Estimates of surface and top-of-atmosphere broadband radiative fluxes are also provided. Multilayered cloud properties are retrieved from GOES-12, Meteosat, and MODIS data. Native pixel resolution analyses are performed over selected domains, while reduced sampling is used for full-disk retrievals. Tools have been developed for matching the pixel-level results with instrumented surface sites and active sensor satellites. The calibrations, methods, examples of the products, and comparisons with the ICESat GLAS lidar are discussed. These products are currently being used for aircraft icing diagnoses, numerical weather modeling assimilation, and atmospheric radiation research and have potential for use in many other applications.
NASA Technical Reports Server (NTRS)
Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung
2007-01-01
The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.
2013-12-01
Atmospheric aerosols are known to produce a net cooling effect in the cloud-free conditions. However, when present over the reflective cloud decks, absorbing aerosols such as biomass burning generated smoke and wind-blown dust can potentially exert a large positive forcing through enhanced atmospheric heating resulting from cloud-aerosol radiative interactions. The interest on this aspect of aerosol science has grown significantly in the recent years. Particularly, development of the satellite-based retrieval techniques and unprecedented knowledge on the above-cloud aerosol optical depth (ACAOD) is of great relevance. A direct validation of satellite ACAOD is a difficult task primarily due to lack of ample in situ and/or remote sensing measurements of aerosols above cloud. In these circumstances, a comparative analysis on the inter-satellite ACAOD retrievals can be performed for the sack of consistency check. Here, we inter-compare the ACAOD of biomass burning plumes observed from different A-train sensors, i.e., MODIS [Jethva et al., 2013], CALIOP [Chand et al., 2008], POLDER [Waquet et al., 2009], and OMI [Torres et al., 2012]. These sensors have been shown to acquire sensitivity and independent capabilities to detect and retrieve aerosol loading above marine stratocumulus clouds--a kind of situation often found over the southeastern Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods retrieve comparable ACAOD over homogeneous cloud fields. The high-resolution sensors (MODIS and CALIOP) are able to retrieve aerosols over thin clouds but with larger discrepancies. Given the different types of sensor measurements processed with different algorithms, a reasonable agreement between them is encouraging. A direct validation of satellite-based ACAOD remains an open challenge for which dedicated field measurements over the region of frequent aerosol/cloud overlap are a prime requirement. Jethva, H., O. Torres, L. A. Remer, P. K. Bhartia (2013), A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 51(7), pp. 3862-3870, doi: 10.1109/TGRS.2012.2230008. Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433. Waquet, F., J. Riedi, L. C. Labonnote, P. Goloub, B. Cairns, J.-L. Deuzeand, and D. Tanre (2009), Aerosol remote sensing over clouds using a-train observations, J. Atmos. Sci., 66(8), 2468-2480, doi: http://dx.doi.org/10.1175/2009JAS3026.1 Torres, O., H. Jethva, and P. K. Bhartia (2012), Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies, J. Atmos. Sci., 69(3), 1037-1053, doi: http://dx.doi.org/10.1175/JAS-D-11-0130.
NASA Technical Reports Server (NTRS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-01-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km×30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R(sup 2) = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km× 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 micrometers is 1.3 micrometers larger than that from the ARM retrievals (12.8 micrometers), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm( exp -2) less than its ARM counterpart (114.2 gm( exp-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 micrometers channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from 13.7 to 2.1 gm2. The 10% differences between the ARM and CERES-MODIS LWP and r(sub e) retrievals are within the uncertainties of the ARM LWP (approximately 20gm( exp -2)) and r(sub e) (approximately 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when t is approximately 10 and topography. The t differences vary with wind direction and are consistent with the island orography.Much better agreement in t is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
NASA Astrophysics Data System (ADS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-08-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km × 30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2 = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km × 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 µm is 1.3 µm larger than that from the ARM retrievals (12.8 µm), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 µm channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CERES-MODIS LWP and re retrievals are within the uncertainties of the ARM LWP ( 20 gm-2) and re ( 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when τ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography. Much better agreement in τ is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
Convenient models of the atmosphere: optics and solar radiation
NASA Astrophysics Data System (ADS)
Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov
2017-11-01
Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.
Spatially Varying Spectrally Thresholds for MODIS Cloud Detection
NASA Technical Reports Server (NTRS)
Haines, S. L.; Jedlovec, G. J.; Lafontaine, F.
2004-01-01
The EOS science team has developed an elaborate global MODIS cloud detection procedure, and the resulting MODIS product (MOD35) is used in the retrieval process of several geophysical parameters to mask out clouds. While the global application of the cloud detection approach appears quite robust, the product has some shortcomings on the regional scale, often over determining clouds in a variety of settings, particularly at night. This over-determination of clouds can cause a reduction in the spatial coverage of MODIS derived clear-sky products. To minimize this problem, a new regional cloud detection method for use with MODIS data has been developed at NASA's Global Hydrology and Climate Center (GHCC). The approach is similar to that used by the GHCC for GOES data over the continental United States. Several spatially varying thresholds are applied to MODIS spectral data to produce a set of tests for detecting clouds. The thresholds are valid for each MODIS orbital pass, and are derived from 20-day composites of GOES channels with similar wavelengths to MODIS. This paper and accompanying poster will introduce the GHCC MODIS cloud mask, provide some examples, and present some preliminary validation.
Determination of Ice Cloud Models Using MODIS and MISR Data
NASA Technical Reports Server (NTRS)
Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.
2012-01-01
Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.
MWR3C physical retrievals of precipitable water vapor and cloud liquid water path
Cadeddu, Maria
2016-10-12
The data set contains physical retrievals of PWV and cloud LWP retrieved from MWR3C measurements during the MAGIC campaign. Additional data used in the retrieval process include radiosondes and ceilometer. The retrieval is based on an optimal estimation technique that starts from a first guess and iteratively repeats the forward model calculations until a predefined convergence criterion is satisfied. The first guess is a vector of [PWV,LWP] from the neural network retrieval fields in the netcdf file. When convergence is achieved the 'a posteriori' covariance is computed and its square root is expressed in the file as the retrieval 1-sigma uncertainty. The closest radiosonde profile is used for the radiative transfer calculations and ceilometer data are used to constrain the cloud base height. The RMS error between the brightness temperatures is computed at the last iterations as a consistency check and is written in the last column of the output file.
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.
2014-12-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.
Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas
2017-12-28
Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.
Volcano and Ship Tracks Indicate Excessive Aerosol-Induced Cloud Water Increases in a Climate Model
NASA Astrophysics Data System (ADS)
Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas
2017-12-01
Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational data set and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.
NASA Astrophysics Data System (ADS)
Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.
2006-12-01
During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.
NASA Astrophysics Data System (ADS)
Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.
2005-05-01
During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.