Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
NASA Astrophysics Data System (ADS)
LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.
2017-12-01
We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).
Evaluation of AIRS cloud properties using MPACE data
NASA Astrophysics Data System (ADS)
Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry
2005-12-01
Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.
2006-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.
Observations of Co-variation in Cloud Properties and their Relationships with Atmospheric State
NASA Astrophysics Data System (ADS)
Sinclair, K.; van Diedenhoven, B.; Fridlind, A. M.; Arnold, T. G.; Yorks, J. E.; Heymsfield, G. M.; McFarquhar, G. M.; Um, J.
2017-12-01
Radiative properties of upper tropospheric ice clouds are generally not well represented in global and cloud models. Cloud top height, cloud thermodynamic phase, cloud optical thickness, cloud water path, particle size and ice crystal shape all serve as observational targets for models to constrain cloud properties. Trends or biases in these cloud properties could have profound effects on the climate since they affect cloud radiative properties. Better understanding of co-variation between these cloud properties and linkages with atmospheric state variables can lead to better representation of clouds in models by reducing biases in their micro- and macro-physical properties as well as their radiative properties. This will also enhance our general understanding of cloud processes. In this analysis we look at remote sensing, in situ and reanalysis data from the MODIS Airborne Simulator (MAS), Cloud Physics Lidar (CPL), Cloud Radar System (CRS), GEOS-5 reanalysis data and GOES imagery obtained during the Tropical Composition, Cloud and Climate Coupling (TC4) airborne campaign. The MAS, CPL and CRS were mounted on the ER-2 high-altitude aircraft during this campaign. In situ observations of ice size and shape were made aboard the DC8 and WB57 aircrafts. We explore how thermodynamic phase, ice effective radius, particle shape and radar reflectivity vary with altitude and also investigate how these observed cloud properties vary with cloud type, cloud top temperature, relative humidity and wind profiles. Observed systematic relationships are supported by physical interpretations of cloud processes and any unexpected differences are examined.
Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny
2015-01-01
To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.
Understand rotating isothermal collapses yet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tohline, J.E.
1985-01-01
A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, andmore » a realistic starting model for cloud collapse is proposed. 18 references.« less
A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.
2008-01-01
In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.
On the Cloud Observations in JAXA's Next Coming Satellite Missions
NASA Technical Reports Server (NTRS)
Nakajima, Takashi Y.; Nagao, Takashi M.; Letu, Husi; Ishida, Haruma; Suzuki, Kentaroh
2012-01-01
The use of JAXA's next generation satellites, the EarthCARE and the GCOM-C, for observing overall cloud systems on the Earth is discussed. The satellites will be launched in the middle of 2010-era and contribute for observing aerosols and clouds in terms of climate change, environment, weather forecasting, and cloud revolution process study. This paper describes the role of such satellites and how to use the observing data showing concepts and some sample viewgraphs. Synergistic use of sensors is a key of the study. Visible to infrared bands are used for cloudy and clear discriminating from passively obtained satellite images. Cloud properties such as the cloud optical thickness, the effective particle radii, and the cloud top temperature will be retrieved from visible to infrared wavelengths of imagers. Additionally, we are going to combine cloud properties obtained from passive imagers and radar reflectivities obtained from an active radar in order to improve our understanding of cloud evolution process. This is one of the new techniques of satellite data analysis in terms of cloud sciences in the next decade. Since the climate change and cloud process study have mutual beneficial relationship, a multispectral wide-swath imagers like the GCOM-C SGLI and a comprehensive observation package of cloud and aerosol like the EarthCARE are both necessary.
Study of cloud properties using airborne and satellite measurements
NASA Astrophysics Data System (ADS)
Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae
2014-08-01
The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.
Cloud radiative properties and aerosol - cloud interaction
NASA Astrophysics Data System (ADS)
Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw
2015-04-01
The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.
Relating Cirrus Cloud Properties to Observed Fluxes: A Critical Assessment.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Ackerman, T. P.
1995-12-01
The accuracy needed in cirrus cloud scattering and microphysical properties is quantified such that the radiative effect on climate can he determined. Our ability to compute and observe these properties to within needed accuracies is assessed, with the greatest attention given to those properties that most affect the fluxes.Model calculations indicate that computing net longwave fluxes at the surface to within ±5% requires that cloud temperature be known to within as little as ±3 K in cold climates for extinction optical depths greater than two. Such accuracy could be more difficult to obtain than that needed in the values of scattering parameters. For a baseline case (defined in text), computing net shortwave fluxes at the surface to within ±5% requires accuracies in cloud ice water content that, when the optical depth is greater than 1.25, are beyond the accuracies of current measurements. Similarly, surface shortwave flux computations require accuracies in the asymmetry parameter that are beyond our current abilities when the optical depth is greater than four. Unless simplifications are discovered, the scattering properties needed to compute cirrus cloud fluxes cannot be obtained explicitly with existing scattering algorithms because the range of crystal sizes is too great and crystal shapes are too varied to be treated computationally. Thus, bulk cirrus scattering properties might be better obtained by inverting cirrus cloud fluxes and radiances. Finally, typical aircraft broadband flux measurements are not sufficiently accurate to provide a convincing validation of calculations. In light of these findings we recommend a reexamination of the methodology used in field programs such as FIRE and suggest a complementary approach.
NASA Astrophysics Data System (ADS)
Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin
2016-07-01
The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.
An investigation of cloud base height in Chiang Mai
NASA Astrophysics Data System (ADS)
Peengam, S.; Tohsing, K.
2017-09-01
Clouds play very important role in the variation of surface solar radiation and rain formation. To understand this role, it is necessary to know the physical and geometrical of properties of cloud. However, clouds vary with location and time, which lead to a difficulty to obtain their properties. In this work, a ceilometer was installed at a station of the Royal Rainmaking and Agricultural Aviation Department in Chiang Mai (17.80° N, 98.43° E) in order to measure cloud base height. The cloud base height data from this instrument were compared with those obtained from LiDAR, a more sophisticated instrument installed at the same site. It was found that the cloud base height from both instruments was in reasonable agreement, with root mean square difference (RMSD) and mean bias difference (MBD) of 19.21% and 1.58%, respectively. Afterward, a six-month period (August, 2016-January, 2017) of data from the ceilometer was analyzed. The results show that mean cloud base height during this period is 1.5 km, meaning that most clouds are in the category of low-level cloud.
Retrievals with the Infrared Atmospheric Sounding Interferometer
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.
2007-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.
Statistical properties of a cloud ensemble - A numerical study
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, Joanne; Soong, Su-Tzai
1987-01-01
The statistical properties of cloud ensembles under a specified large-scale environment, such as mass flux by cloud drafts and vertical velocity as well as the condensation and evaporation associated with these cloud drafts, are examined using a three-dimensional numerical cloud ensemble model described by Soong and Ogura (1980) and Tao and Soong (1986). The cloud drafts are classified as active and inactive, and separate contributions to cloud statistics in areas of different cloud activity are then evaluated. The model results compare well with results obtained from aircraft measurements of a well-organized ITCZ rainband that occurred on August 12, 1974, during the Global Atmospheric Research Program's Atlantic Tropical Experiment.
Comparison of CERES Cloud Properties Derived from Aqua and Terra MODIS Data and TRMM VIRS Radiances
NASA Astrophysics Data System (ADS)
Minnis, P.; Young, D. F.; Sun-Mack, S.; Trepte, Q. Z.; Chen, Y.; Heck, P. W.; Wielicki, B. A.
2003-12-01
The Clouds and Earth's Radiant Energy System (CERES) Project is obtaining Earth radiation budget measurements of unprecedented accuracy as a result of improved instruments and an analysis system that combines simultaneous, high-resolution cloud property retrievals with the broadband radiance data. The cloud properties are derived from three different satellite imagers: the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) and the Moderate Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites. A single set of consistent algorithms using the 0.65, 1.6 or 2.1, 3.7, 10.8, and 12.0-æm channels are applied to all three imagers. The cloud properties include, cloud coverage, height, thickness, temperature, optical depth, phase, effective particle size, and liquid or ice water path. Because each satellite is in a different orbit, the results provide information on the diurnal cycle of cloud properties. Initial intercalibrations show excellent consistency between the three images except for some differences of ~ 1K between the 3.7-æm channel on Terra and those on VIRS and Aqua. The derived cloud properties are consistent with the known diurnal characteristics of clouds in different areas. These datasets should be valuable for exploring the role of clouds in the radiation budget and hydrological cycle.
NASA Astrophysics Data System (ADS)
Yang, Jiefan; Lei, Hengchi
2016-02-01
Cloud microphysical properties of a mixed phase cloud generated by a typical extratropical cyclone in the Tongliao area, Inner Mongolia on 3 May 2014, are analyzed primarily using in situ flight observation data. This study is mainly focused on ice crystal concentration, supercooled cloud water content, and vertical distributions of fit parameters of snow particle size distributions (PSDs). The results showed several discrepancies of microphysical properties obtained during two penetrations. During penetration within precipitating cloud, the maximum ice particle concentration, liquid water content, and ice water content were increased by a factor of 2-3 compared with their counterpart obtained during penetration of a nonprecipitating cloud. The heavy rimed and irregular ice crystals obtained by 2D imagery probe as well as vertical distributions of fitting parameters within precipitating cloud show that the ice particles grow during falling via riming and aggregation process, whereas the lightly rimed and pristine ice particles as well as fitting parameters within non-precipitating cloud indicate the domination of sublimation process. During the two cloud penetrations, the PSDs were generally better represented by gamma distributions than the exponential form in terms of the determining coefficient ( R 2). The correlations between parameters of exponential /gamma form within two penetrations showed no obvious differences compared with previous studies.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.
2017-12-01
Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.
NASA Technical Reports Server (NTRS)
Yanai, M.; Esbensen, S.; Chu, J.
1972-01-01
The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, L. Peter; Strow, Larrybee; Mango, Stephen A.
2008-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated to benefit future NPOESS operation.
NASA Astrophysics Data System (ADS)
Peers, F.; Haywood, J. M.; Francis, P. N.; Meyer, K.; Platnick, S. E.
2017-12-01
Over the South East Atlantic Ocean, biomass burning aerosols from Southern Africa are frequently observed above clouds during fire season. However, the quantification of their interactions with both radiations and clouds remains uncertain because of a lack of information on aerosol properties and on their interaction process. In the last decade, methods have been developed to retrieve aerosol optical properties above clouds from satellite measurements, especially over the South East Atlantic Ocean. Most of these methods have been applied to polar orbiting instruments which prevent the analysis of aerosols and clouds at a sub-daily scale. With its wide spatial coverage and its high temporal resolution, the geostationary instrument SEVIRI, on board the MSG platform, offers a unique opportunity to monitor aerosols in this region and to evaluate their impact on clouds and their radiative effects. In this study, we will investigate the possibility of retrieving simultaneously aerosol and cloud properties (i.e. aerosol and cloud optical thicknesses and cloud droplet effective radius) when aerosols are located above clouds. The retrieved properties will then be compared with the ones obtained from MODIS [Meyer et al., 2015] as well as observations from the CLARIFY-2017 field campaign.
Some physical and thermodynamic properties of rocket exhaust clouds measured with infrared scanners
NASA Technical Reports Server (NTRS)
Gomberg, R. I.; Kantsios, A. G.; Rosensteel, F. J.
1977-01-01
Measurements using infrared scanners were made of the radiation from exhaust clouds from liquid- and solid-propellant rocket boosters. Field measurements from four launches were discussed. These measurements were intended to explore the physical and thermodynamic properties of these exhaust clouds during their formation and subsequent dispersion. Information was obtained concerning the initial cloud's buoyancy, the stabilized cloud's shape and trajectory, the cloud volume as a function of time, and it's initial and stabilized temperatures. Differences in radiation intensities at various wavelengths from ambient and stabilized exhaust clouds were investigated as a method of distinguishing between the two types of clouds. The infrared remote sensing method used can be used at night when visible range cameras are inadequate. Infrared scanning techniques developed in this project can be applied directly to natural clouds, clouds containing certain radionuclides, or clouds of industrial pollution.
Global monitoring of atmospheric properties by the EOS MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.
1993-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.
NASA Technical Reports Server (NTRS)
Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.
2003-01-01
One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.
2008-12-01
Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.
A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Wen, Guoyong; Coakley, James A.; Remer, Lorraine A.; Loeb, Norman G.; Cahalan, Robert F.
2008-07-01
In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3-D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper only addresses the cloud-clear sky radiative transfer interaction part. It provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. This assumption leads to a larger increase of AOT for shorter wavelengths, or to a "bluing" of aerosols near clouds. The assumption that contribution from molecular scattering dominates over aerosol scattering and surface reflection is justified for the case of shorter wavelengths, dark surfaces, and an aerosol layer below the cloud tops. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.
Cloud Impacts on Pavement Temperature in Energy Balance Models
NASA Astrophysics Data System (ADS)
Walker, C. L.
2013-12-01
Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2008-01-01
This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Center for Medium-range Weather Forecasts (ECMWF) operational analysis (EOA) and ECMWF Re-Analyses (ERA-40 and ERA Interim) are validated against those obtained from Earth Observing System satellite cloud object data for January-August 1998 and March 2000 periods. These properties include ice water path (IWP), cloud-top height and temperature, cloud optical depth and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud-object type for the January-August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The downgrade of data assimilation technique and the lack of snow water content information in ERA-40, not the coarser horizontal grid resolution, are also responsible for the disagreements with observed pdfs of cloud physical properties although the detection rates of cloud object occurrence are improved for small size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights with grid-cell dynamics. These conclusions will be rechecked using the ERA Interim data, due to recent changes in the ECMWF convective parameterization (Bechtold et al. 2004, 2008). Results from the ERA Interim will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho
2016-12-01
Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.
Fractal properties and denoising of lidar signals from cirrus clouds
NASA Astrophysics Data System (ADS)
van den Heuvel, J. C.; Driesenaar, M. L.; Lerou, R. J. L.
2000-02-01
Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by combining shots to obtain the backscatter at constant altitude. The signal at high altitude was analyzed for horizontal structure of cirrus clouds. The power spectrum and the structure function show straight lines on a double logarithmic plot. This behavior is characteristic for a Brownian fractal. Wavelet analysis using the Haar wavelet confirms the fractal aspects. It is shown that the horizontal structure of cirrus can be described by a fractal with a dimension of 1.8 over length scales that vary 4 orders of magnitude. We use the fractal properties in a new denoising method. Denoising is required for future lidar measurements from space that have a low signal to noise ratio. Our wavelet denoising is based on the Haar wavelet and uses the statistical fractal properties of cirrus clouds in a method based on the maximum a posteriori (MAP) probability. This denoising based on wavelets is tested on airborne lidar signals from ELITE using added Gaussian noise. Superior results with respect to averaging are obtained.
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.
2005-01-01
Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE was used in a ground-based configuration in several recent field campaigns. Principal data products include aerosol backscatter profiles, boundary layer heights, entrainment zone thickness, cloud fraction as a function of altitude and horizontal wind vector profiles based on correlating the motions of clouds and aerosol structures across portions of the scan. Comparisons will be made between various cloud detecting instruments to develop a baseline performance metric.
NASA Astrophysics Data System (ADS)
Polonsky, I. N.; Davis, A. B.; Love, S. P.
2004-05-01
WAIL was designed to determine physical and geometrical characteristics of optically thick clouds using the off-beam component of the lidar return that can be accurately modeled within the 3D photon diffusion approximation. The theory shows that the WAIL signal depends not only on the cloud optical characteristics (phase function, extinction and scattering coefficients) but also on the outer thickness of the cloud layer. This makes it possible to estimate the mean optical and geometrical thicknesses of the cloud. The comparison with Monte Carlo simulation demonstrates the high accuracy of the diffusion approximation for moderately to very dense clouds. During operation WAIL is able to collect a complete data set from a cloud every few minutes, with averaging over horizontal scale of a kilometer or so. In order to validate WAIL's ability to deliver cloud properties, the LANL instrument was deployed as a part of the THickness from Off-beam Returns (THOR) validation IOP. The goal was to probe clouds above the SGP CART site at night in March 2002 from below (WAIL and ARM instruments) and from NASA's P3 aircraft (carrying THOR, the GSFC counterpart of WAIL) flying above the clouds. The permanent cloud instruments we used to compare with the results obtained from WAIL were ARM's laser ceilometer, micro-pulse lidar (MPL), millimeter-wavelength cloud radar (MMCR), and micro-wave radiometer (MWR). The comparison shows that, in spite of an unusually low cloud ceiling, an unfavorable observation condition for WAIL's present configuration, cloud properties obtained from the new instrument are in good agreement with their counterparts obtained by other instruments. So WAIL can duplicate, at least for single-layer clouds, the cloud products of the MWR and MMCR together. But WAIL does this with green laser light, which is far more representative than microwaves of photon transport processes at work in the climate system.
A New Methodology for Simultaneous Multi-layer Retrievals of Ice and Liquid Water Cloud Properties
NASA Astrophysics Data System (ADS)
Sourdeval, O.; Labonnote, L.; Baran, A. J.; Brogniez, G.
2014-12-01
It is widely recognized that the study of clouds has nowadays become one of the major concern of the climate research community. Consequently, a multitude of retrieval methodologies have been developed during the last decades in order to obtain accurate retrievals of cloud properties that can be supplied to climate models. Most of the current methodologies have proven to be satisfactory for separately retrieving ice or liquid cloud properties, but very few of them have attempted simultaneous retrievals of these two cloud types. Recent studies nevertheless show that the omission of one of these layers can have strong consequences on the retrievals and their accuracy. In this study, a new methodology that simultaneously retrieves the properties of ice and liquid clouds is presented. The optical thickness and the effective radius of up to two liquid cloud layers and the ice water path of one ice cloud layer are simultaneously retrieved, along with an accurate estimation of their uncertainties. Radiometric measurements ranging from the visible to the thermal infrared are used for performing the retrievals. In order to quantify the capabilities and limitations of our methodology, the results of a theoretical information content analysis are first presented. This analysis allows obtaining an a priori understanding of how much information should be expected on each of the retrieval parameters in different atmospheric conditions, and which set of channels is likely to provide this information. After such theoretical considerations, global retrievals corresponding to several months of A-Train data are presented. Comparisons of our retrievals with operational products from active and passive instruments are effectuated and show good global agreements. These comparisons are useful for validating our retrievals but also for testing how operational products can be influenced by multi-layer configurations.
Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.
2016-12-01
The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.
Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, JD; Berg, LK
Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a moremore » complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.« less
Marine Stratocumulus Properties from the FPDR - PDI as a Function of Aerosol during ORACLES
NASA Astrophysics Data System (ADS)
Small Griswold, J. D.; Heikkila, A.
2016-12-01
Aerosol-cloud interactions in the southeastern Atlantic (SEA) region were investigated during year 1 of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field project in Aug-Sept 2016. This region is of interest due to seasonally persistent marine stratocumulus cloud decks that are an important component of the climate system due to their radiative and hydrologic impacts. The SEA deck is unique due to the interactions between these clouds and transported biomass burning aerosol during the July-October fire season. These biomass burning aerosol play multiple roles in modifying the cloud deck through interactions with radiation as absorbing aerosol and through modifications to cloud microphysical properties as cloud condensation nuclei. This work uses in situcloud data obtained with a Flight Probe Dual Range - Phase Doppler Interferometer (FPDR - PDI), standard aerosol instrumentation on board the NASA P-3, and reanalysis data to investigate Aerosol-Cloud Interactions (ACI). The FPDR - PDI provides unique cloud microphysical observations of individual cloud drop arrivals allowing for the computation of a variety of microphysical cloud properties including individual drop size, cloud drop number concentration, cloud drop size distributions, liquid water content, and cloud thickness. The FPDR - PDI measurement technique also provides droplet spacing and drop velocity information which is used to investigate turbulence and entrainment mixing processes. We use aerosol information such as average background aerosol amount (low, mid, high) and location relative to cloud (above or mixing) to sort FPDR - PDI cloud properties. To control for meteorological co-variances we further sort the data within aerosol categories by lower tropospheric stability, vertical velocity, and surface wind direction. We then determine general marine stratocumulus cloud characteristics under each of the various aerosol categories to investigate ACI in the SEA.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.
2008-01-01
Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.
MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.
NASA Astrophysics Data System (ADS)
Maahn, M.; Acquistapace, C.; de Boer, G.; Cox, C.; Feingold, G.; Marke, T.; Williams, C. R.
2017-12-01
When acting as cloud condensation nuclei (CCN) or ice nucleating particles (INPs), aerosols have a strong potential to influence cloud properties. In particular, they can impact the number, size, and phase of cloud particles and potentially cloud lifetime through aerosol indirect and semi-direct effects. In polar regions, these effects are of great importance for the radiation budget due to the shortwave albedo and longwave emissivity of mixed-phase clouds. The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program operates two super sites equipped with state of the art ground-based remote sensing instruments in northern Alaska. The sites are both coastal and are highly correlated with respect to large scale synoptic patterns. While the site at Utqiaġvik (formerly known as Barrow) generally represents a relatively pristine Arctic environment lacking significant anthropogenic sources, the site at Oliktok Point, approximately 250 km to the east, is surrounded by the Prudhoe Bay Oil Field, which is the largest oil field in North America. Based on aircraft measurement, the authors recently showed that differences in the properties of liquid clouds properties between the sites can be attributed to local emissions associated with the industrial activities in the Prudhoe Bay region (Maahn et al. 2017, ACPD). However, aircraft measurements do not provide a representative sample of cloud properties due to temporal limitations in the amount of data. In order to investigate how frequently and to what extent liquid cloud properties and processes are modified, we use ground based remote sensing observations such as e.g., cloud radar, Doppler lidar, and microwave radiometer obtained continuously at the two sites. In this way, we are able to quantify inter-site differences with respect to cloud drizzle production, liquid water path, frequency of cloud occurrence, and cloud radiative properties. Turbulence and the coupling of clouds to the boundary layer is investigated in order to infer the potential role of locally emitted aerosols in modulating the observed differences.
Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals
NASA Astrophysics Data System (ADS)
Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.
2014-12-01
Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.
NASA Astrophysics Data System (ADS)
Xie, S.; Protat, A.; Zhao, C.
2013-12-01
One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.
Influence of inland aerosol loading on the monsoon over Indian subcontinent
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Radhakrishnan, S. R.; Raghunath, K.
2008-12-01
The monsoon water cycle is the lifeline to over 60% of the world's population. The study on the behavioral change of Indian monsoon due to aerosol loading will help for the better understanding of Indian Monsoon. Aerosol system influences the atmosphere in two ways; it affects directly the radiation budget and indirectly provides condensation nuclei required for the clouds. The precipitation of the clouds in the monsoon season depends on the microphysical properties of the clouds. The effect of aerosol on cirrus clouds is being looked into through this work as an effort to study the role of aerosol on Indian Monsoon. The microphysical properties of high altitude clouds were obtained from the ground based lidar experiments at a low latitude station in the Indian subcontinent. Measurements during the Indian monsoon period from the inland station National Atmospheric Research Laboratory (NARL) Gadanki (13.5_ N, 79.2_ E), Tirupati, India were used for the investigation. The depolarization characteristics of the cirrus clouds were measured and the correlation between the depolarization and the precipitation characteristics were studied. The results obtained over a period of one year from January 1998 to December 1998 were presented.
On the Variability of Wilson Currents by Storm Type and Phase
NASA Technical Reports Server (NTRS)
Deierling, Wiebke; Kalb, Christina; Mach, Douglas; Liu, Chuntao; Peterson, Michael; Blakeslee, Richard
2014-01-01
Storm total conduction currents from electrified clouds are thought to play a major role in maintaining the potential difference between the earth's surface and the upper atmosphere within the Global Electric Circuit (GEC). However, it is not entirely known how the contributions of these currents vary by cloud type and phase of the clouds life cycle. Estimates of storm total conduction currents were obtained from data collected over two decades during multiple field campaigns involving the NASA ER-2 aircraft. In this study the variability of these currents by cloud type and lifecycle is investigated. We also compared radar derived microphysical storm properties with total storm currents to investigate whether these storm properties can be used to describe the current variability of different electrified clouds. The ultimate goal is to help improve modeling of the GEC via quantification and improved parameterization of the conduction current contribution of different cloud types.
Investigating mixed phase clouds using a synergy of ground based remote sensing measurements
NASA Astrophysics Data System (ADS)
Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich
2017-04-01
Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be obtained from a Doppler wind lidar. Furthermore, the Cloudnet scheme (www.cloud-net.org), that combines radar, lidar and microwave radiometer observations with a forecast model to provide a best estimate of cloud properties, is used for identifying mixed phase clouds. The continuous measurements carried out at AWIPEV make it possible to characterize the macro- and micro- physical properties of mixed-phase clouds on a long-term, statistical basis. The Arctic observations are compared to a 5-year observational data set from Jülich Observatory for Cloud Evolution (JOYCE) in Western Germany. The occurrence of different types of clouds (with focus on mixed-phase and super-cooled clouds), the distribution of ice and liquid within the clouds, the turbulent environment as well as the temperatures where the different phases are occurring are investigated.
NASA Astrophysics Data System (ADS)
Khlopenkov, K. V.; Duda, D. P.; Thieman, M. M.; Sun-Mack, S.; Su, W.; Minnis, P.; Bedka, K. M.
2017-12-01
The Deep Space Climate Observatory (DSCOVR) is designed to study the daytime Earth radiation budget by means of onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). EPIC imager observes in several shortwave bands (317-780 nm), while NISTAR measures the top-of-atmosphere (TOA) whole-disk radiance in shortwave and total broadband windows. Calculation of albedo and outgoing longwave flux requires a high-resolution scene identification such as the radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers. These properties have to be co-located with EPIC imager pixels to provide scene identification and to select anisotropic directional models, which are then used to adjust the NISTAR-measured radiance and subsequently obtain the global daytime shortwave and longwave fluxes. This work presents an algorithm for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. The highest quality observation is selected by means of an aggregated rating which incorporates several factors such as the nearest time relative to EPIC observation, lowest viewing zenith angle, and others. This process provides a smoother transition and avoids abrupt changes in the merged composite data. Higher spatial accuracy in the composite product is achieved by using the inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into the EPIC-view domain by convolving composite pixels with the EPIC point spread function (PSF) defined with a half-pixel accuracy. Within every EPIC footprint, the PSF-weighted average radiances and cloud properties are computed for each cloud phase and then stored within five data subsets (clear-sky, water cloud, ice cloud, total cloud, and no retrieval). Overall, the composite product has been generated for every EPIC observation from June 2015 to December 2016, typically 300-500 composites per month, which makes it useful for many climate applications.
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
NASA Astrophysics Data System (ADS)
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.; Feingold, Graham; McFarquhar, Greg M.; Wu, Wei; Mei, Fan
2017-12-01
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.
Optical properties of marine stratocumulus clouds modified by ships
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1993-01-01
Results are presented of an application of the diffusion domain method to multispectral solar radiation measurements obtained deep within a marine stratocumulus cloud layer modified by pollution from ships. In situ airborne measurements of the relative angular distribution of scattered radiation are compared to known asymptotic expressions for the intensity field deep within an optically thick cloud layer. Analytical expressions relating the ratio of the nadir-to-zenith intensities to surface reflectance, similarity parameter, and scaled optical depth beneath the aircraft flight level are used to analyze measurements obtained with the cloud absorption radiometer mounted on the University of Washington's C-131A research aircraft. It is shown that the total optical thickness of the cloud layer increased in the ship tracks, in contrast to the similarity parameter, which decreased. The decrease in absorption was a direct consequence of the reduction in cloud droplet size that occurred within the ship tracks.
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
NASA Astrophysics Data System (ADS)
Richardson, Mark; Stephens, Graeme L.
2018-03-01
Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5-764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.
Optical properties of marine stratocumulus clouds modified by ship track effluents
NASA Technical Reports Server (NTRS)
King, Michael D.; Nakajima, Teruyuki
1990-01-01
The angular distribution of scattered radiation deep within a cloud layer was measured in marine stratocumulus clouds modified by the emissions from ships. These observations, obtained at thirteen discrete wavelengths between 0.5 and 2.3 microns, were obtained as the University of Washington Convair C-131A aircraft flew through a pair of roughly parallel ship tracks off the coast of southern California on 10 July 1987. In the first of these ship tracks, the cloud droplet concentration increased from 40 to 107/cu cm (125/cu cm in the second ship track). Simultaneous to this spectacular change, the aircraft measured interstitial aerosol (Aitken nucleus) concentration that increased from 400 to 1000/cu cm and cloud liquid water content that increased from 0.03 to 0.75 g/cu m. Broadband pyranometer measurements showed that the upwelling flux density increased from 150 to 280 W/sq m. These in-situ microphysics and broadband pyranometer results, together with AVHRR satellite images obtained with the NOAA-10 satellite, are described in detail by Radke et al., (1989). Internal scattered radiation measurements at selected wavelengths obtained with the cloud absorption radiometer (King et al., 1986) for a 100 km section of marine stratocumulus clouds containing these two ship track features are presented.
Cloud-Top Entrainment in Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Mellado, Juan Pedro
2017-01-01
Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee
2007-01-01
An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.
Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Wang, Yuan; Rosenfeld, Daniel
2016-11-01
Over the past decade, the number of studies that investigate aerosol-cloud interactions has increased considerably. Although tremendous progress has been made to improve our understanding of basic physical mechanisms of aerosol-cloud interactions and reduce their uncertainties in climate forcing, we are still in poor understanding of (1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, (2) the feedback between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and (3) the significance of cloud-aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoreticalmore » studies and important mechanisms on aerosol-cloud interactions, and discusses the significances of aerosol impacts on raditative forcing and precipitation extremes associated with different cloud systems. Despite significant understanding has been gained about aerosol impacts on the main cloud types, there are still many unknowns especially associated with various deep convective systems. Therefore, large efforts are needed to escalate our understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties, cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed« less
Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds
NASA Technical Reports Server (NTRS)
Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping
2008-01-01
Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Charlock, Thomas P.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis; Coakley, J. A.; Randall, David R.
1995-01-01
The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 4 details the advanced CERES techniques for computing surface and atmospheric radiative fluxes (using the coincident CERES cloud property and top-of-the-atmosphere (TOA) flux products) and for averaging the cloud properties and TOA, atmospheric, and surface radiative fluxes over various temporal and spatial scales. CERES attempts to match the observed TOA fluxes with radiative transfer calculations that use as input the CERES cloud products and NOAA National Meteorological Center analyses of temperature and humidity. Slight adjustments in the cloud products are made to obtain agreement of the calculated and observed TOA fluxes. The computed products include shortwave and longwave fluxes from the surface to the TOA. The CERES instantaneous products are averaged on a 1.25-deg latitude-longitude grid, then interpolated to produce global, synoptic maps to TOA fluxes and cloud properties by using 3-hourly, normalized radiances from geostationary meteorological satellites. Surface and atmospheric fluxes are computed by using these interpolated quantities. Clear-sky and total fluxes and cloud properties are then averaged over various scales.
Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.
2017-12-01
The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.
Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders
NASA Astrophysics Data System (ADS)
Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony
2013-04-01
Satellite observations provide a continuous survey of the atmosphere over the whole globe. IR sounders have been observing our planet since 1979. The spectral resolution has improved from TIROS-N Operational Vertical Sounders (TOVS) to the Atmospheric InfraRed Sounder (AIRS), and to the InfraRed Atmospheric Sounding Interferometer (IASI); resolution within the CO2 absorption band makes these passive sounders most sensitive to semi-transparent cirrus (about 30% of all clouds), day and night. The LMD cloud property retrieval method developed for TOVS, has been adapted to the second generation of IR sounders like AIRS and, recently, IASI. It is based on a weighted χ2 method using different channels within the 15 micron CO2 absorption band. Once the cloud physical properties (cloud pressure and IR emissivity) are retrieved, cirrus bulk microphysical properties (De and IWP) are determined from spectral emissivity differences between 8 and 12 μm. The emissivities are determined using the retrieved cloud pressure and are then compared to those simulated by the radiative transfer model. For IASI, we use the latest version of the radiative transfer model 4A (http://4aop.noveltis.com), which has been coupled with the DISORT algorithm to take into account multiple scattering of ice crystals. The code incorporates single scattering properties of column-like or aggregate-like ice crystals provided by MetOffice (Baran et al. (2001); Baran and Francis (2004)). The synergy of AIRS and two active instruments of the A-Train (lidar and radar of the CALIPSO and CloudSat missions), which provide accurate information on vertical cloud structure, allowed the evaluation of cloud properties retrieved by the weighted χ2 method. We present first results for cloud properties obtained with IASI/ Metop-A and compare them with those of AIRS and other cloud climatologies having participated in the GEWEX cloud assessment. The combination of IASI observations at 9:30 AM and 9:30 PM complement the AIRS observations at 1:30 AM and 1:30 PM local time, giving information on the diurnal cycle of clouds. References: Baran, A.J. and Francis, P.N. and Havemann, S. and Yang, P: A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientation, using exact T-matrix theory and aircraft observations of cirrus, J. Quant. Spectrosc. Ra., 70, 505-518, 2001 Baran, A. J. and Francis, P. N.: On the radiative properties of cirrus cloud at solar and thermal wavelengths:A test of model consistency using high-resolution airborne radiance measurements, Q. J. Roy. Meteor. Soc.,130, 763-778, 2004.
Mars dust and cloud opacities and scattering properties
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, S. W.
1992-01-01
We have recently completed an analysis of the visible emission-phase function (EPF) sequences obtained with the solar-band channel of the Infrared Thermal Mapping (IRTM) instrument onboard the two Viking Orbiters. Roughly 100 of these EPF sequences were gathered during the 1977-1980 period, in which the total broadband (.3-3.0 microns) reflectances of the atmosphere/surface above specific locations on Mars were measured versus emission angle as the spacecraft passed overhead. A multiple scattering radiative transfer program was employed to model the EPF observations in terms of the optical depths of dust/clouds, their single scattering albedos and phase functions, and the Lambert albedos and phase coefficient of the underlying surfaces. Due to the predominance of atmospheric scattering at large atmospheric pathlengths and/or large dust opacities, we were able to obtain strong constraints on the scattering properties of dust/clouds and their opacities for a wide range of latitudes, longitudes, and seasons on Mars.
A Method to Analyze How Various Parts of Clouds Influence Each Other's Brightness
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander; Lau, William (Technical Monitor)
2001-01-01
This paper proposes a method for obtaining new information on 3D radiative effects that arise from horizontal radiative interactions in heterogeneous clouds. Unlike current radiative transfer models, it can not only calculate how 3D effects change radiative quantities at any given point, but can also determine which areas contribute to these 3D effects, to what degree, and through what mechanisms. After describing the proposed method, the paper illustrates its new capabilities both for detailed case studies and for the statistical processing of large datasets. Because the proposed method makes it possible, for the first time, to link a particular change in cloud properties to the resulting 3D effect, in future studies it can be used to develop new radiative transfer parameterizations that would consider 3D effects in practical applications currently limited to 1D theory-such as remote sensing of cloud properties and dynamical cloud modeling.
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM)more » Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.« less
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM)more » Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiagvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.« less
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.; ...
2017-12-11
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM)more » Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiagvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.« less
Ice clouds optical properties in the Far Infrared from the ECOWAR-COBRA Experiment
NASA Astrophysics Data System (ADS)
Rizzi, Rolando; Tosi, Ennio
ECOWAR-COBRA (Earth COoling by WAter vapouR emission -Campagna di Osservazioni della Banda Rotazionale del vapor d'Acqua) field campaign took place in Italy from 3 to 17 March 2007 with the main goal of studying the scarcely sensed atmospheric emission occurring beyond 17 microns. Instrumentation involved in the campaign included two different Fourier Transforms Spectrometers (FTS) : REFIR-PAD (at Testa Grigia Station, 3500 m a.s.l.) and FTIR-ABB (at Cervinia Station, 1990 m a.s.l.). In this work cloudy sky data have been ana-lyzed. A cloud properties retrieval methodology (RT-RET), based on high spectral resolution measurements in the atmospheric window (800-1000 cm-1), is applied to both FTS sensors. Cloud properties determined from the infrared retrievals are compared with those obtained from Raman lidar taken by the BASIL Lidar system that was operating at Cervinia station. Cloud microphysical and optical properties retrieved by RT-RET are used to perform forward simulations over the entire FTSs measurements spectral interval. Results are compared to FTS data to test the ability of single scattering ice crystals models to reproduce cloudy sky radiances in the Far Infra-Red (FIR) part of the spectrum. New methods to retrieve cloud optical and microphysical properties exploiting high spectral resolution FIR measurements are also investigated.
NASA Astrophysics Data System (ADS)
Fast, J. D.; Berg, L. K.; Schmid, B.; Alexander, M. L. L.; Bell, D.; D'Ambro, E.; Hubbe, J. M.; Liu, J.; Mei, F.; Pekour, M. S.; Pinterich, T.; Schobesberger, S.; Shilling, J.; Springston, S. R.; Thornton, J. A.; Tomlinson, J. M.; Wang, J.; Zelenyuk, A.
2016-12-01
Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations, however, contain uncertainties resulting from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneity in surface layer, boundary layer, and aerosol properties. We describe the measurement strategy and preliminary findings from the recent Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign conducted in May and September of 2016 in the vicinity of the DOE's Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site located in Oklahoma. The goal of the HI-SCALE campaign is to provide a detailed set of aircraft and surface measurements needed to obtain a more complete understanding and improved parameterizations of the lifecycle of shallow clouds. The sampling is done in two periods, one in the spring and the other in the late summer to take advantage of variations in the "greenness" for various types of vegetation, new particle formation, anthropogenic enhancement of biogenic secondary organic aerosol (SOA), and other aerosol properties. The aircraft measurements will be coupled with extensive routine ARM SGP measurements as well as Large Eddy Simulation (LES), cloud resolving, and cloud-system resolving models. Through these integrated analyses and modeling studies, the affects of inhomogeneity in land use, vegetation, soil moisture, convective eddies, and aerosol properties on the evolution of shallow clouds will be determined, including the feedbacks of cloud radiative effects.
NASA Astrophysics Data System (ADS)
Cox, Christopher J.
The polar regions serve an important role in the Earth's energy balance by acting as a heat sink for the global climate system. In the Arctic, a complex distribution of continental and oceanic features support large spatial variability in environmental parameters important for climate. Additionally, feedbacks that are unique to the cryosphere cause the region to be very sensitive to climate perturbations. Environmental changes are being observed, including increasing temperatures, reductions in sea ice extent and thickness, melting permafrost, changing atmospheric circulation patterns and changing cloud properties, which may be signaling a shift in climate. Despite these changes, the Arctic remains an understudied region, including with respect to the atmosphere and clouds. A better understanding of cloud properties and their geographical variability is needed to better understand observed changes and to forecast the future state of the system, to support adaptation and mitigation strategies, and understand how Arctic change impacts other regions of the globe. Surface-based observations of the atmosphere are critical measurements in this effort because they are high quality and have high temporal resolution, but there are few atmospheric observatories in the Arctic and the period of record is short. Reanalyses combine assimilated observations with models to fill in spatial and temporal data gaps, and also provide additional model-derived parameters. Reanalyses are spatially comprehensive, but are limited by large uncertainties and biases, in particular with respect to derived parameters. Infrared radiation is a large component of the surface energy budget. Infrared emission from clouds is closely tied to cloud properties, so measurements of the infrared spectrum can be used to retrieve information about clouds and can also be used to investigate the influence clouds have on the surface radiation balance. In this dissertation, spectral infrared radiances and other observations obtained between 2006 and 2012 at three Arctic observatories are used to investigate the spatial and temporal characteristics of cloud properties in the Arctic. The observatory locations are Barrow, Alaska; Eureka, Nunavut, Canada; and Summit Station, Greenland. Additional spatial information is inferred from reanalysis data. Therefore, to establish confidence in analysis results and context for interpretation, the reanalyses are validated using the surface observations in a mutually informative validation-analysis approach. In Chapter 1, a method is developed to convert spectral infrared radiances to downwelling infrared flux. These measurements are used to compare Barrow and Eureka. These sites are then situated in the context of the greater Arctic using the reanalyses. In Chapter 2, spectral infrared radiances are used to obtain a baseline data set of cloud microphysical and optical properties from Eureka. In Chapter 3, downwelling infrared fluxes are obtained from Summit Station using the method from Chapter 1 and are used to develop a new method for reanalysis validation. Comparisons are made between Summit, Barrow and Eureka. Spatial comparisons of cloud infrared influence are made across the Greenland ice sheet using the reanalyses. Chapter 4 reports on an effort to conduct timely and engaging educational programs for high school students in the Arctic, thereby helping to extend the reach of Arctic cloud science beyond research community.
Transparency of a magnetic cloud boundary for cosmic rays
NASA Astrophysics Data System (ADS)
Petukhov, I. S.; Petukhov, S. I.
2013-02-01
We have suggested a model of magnetic cloud presented as a torus with magnetic flux rope structure situated inside the interplanetary corona mass ejecta expanding radially away from the Sun through the interplanetary medium. The magnetic field of the torus changing during its propagation has been obtained. The magnetic cloud — solar wind boundary transparency for cosmic rays with different energies depending on the cloud orientation and properties of the torus magnetic field has been determined by means of calculation of the particle trajectories at the boundary.
Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan;
2015-01-01
We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.
HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager
NASA Astrophysics Data System (ADS)
Beck, Alexander; Henneberger, Jan; Schöpfer, Sarah; Fugal, Jacob; Lohmann, Ulrike
2017-02-01
In situ observations of cloud properties in complex alpine terrain where research aircraft cannot sample are commonly conducted at mountain-top research stations and limited to single-point measurements. The HoloGondel platform overcomes this limitation by using a cable car to obtain vertical profiles of the microphysical and meteorological cloud parameters. The main component of the HoloGondel platform is the HOLographic Imager for Microscopic Objects (HOLIMO 3G), which uses digital in-line holography to image cloud particles. Based on two-dimensional images the microphysical cloud parameters for the size range from small cloud particles to large precipitation particles are obtained for the liquid and ice phase. The low traveling velocity of a cable car on the order of 10 m s-1 allows measurements with high spatial resolution; however, at the same time it leads to an unstable air speed towards the HoloGondel platform. Holographic cloud imagers, which have a sample volume that is independent of the air speed, are therefore well suited for measurements on a cable car. Example measurements of the vertical profiles observed in a liquid cloud and a mixed-phase cloud at the Eggishorn in the Swiss Alps in the winters 2015 and 2016 are presented. The HoloGondel platform reliably observes cloud droplets larger than 6.5 µm, partitions between cloud droplets and ice crystals for a size larger than 25 µm and obtains a statistically significantly size distribution for every 5 m in vertical ascent.
NASA Technical Reports Server (NTRS)
Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava
2013-01-01
This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.
NASA Astrophysics Data System (ADS)
Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik
2018-05-01
We propose a simple analytic theory for environmentally dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations, and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.
Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project
NASA Astrophysics Data System (ADS)
Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.
2016-09-01
The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.
NASA Astrophysics Data System (ADS)
Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.
2011-10-01
Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.
Satellite Imagery Analysis for Nighttime Temperature Inversion Clouds
NASA Technical Reports Server (NTRS)
Kawamoto, K.; Minnis, P.; Arduini, R.; Smith, W., Jr.
2001-01-01
Clouds play important roles in the climate system. Their optical and microphysical properties, which largely determine their radiative property, need to be investigated. Among several measurement means, satellite remote sensing seems to be the most promising. Since most of the cloud algorithms proposed so far are daytime use which utilizes solar radiation, Minnis et al. (1998) developed a nighttime use one using 3.7-, 11 - and 12-microns channels. Their algorithm, however, has a drawback that is not able to treat temperature inversion cases. We update their algorithm, incorporating new parameterization by Arduini et al. (1999) which is valid for temperature inversion cases. This updated algorithm has been applied to GOES satellite data and reasonable retrieval results were obtained.
NASA Astrophysics Data System (ADS)
Tice, D. S.; Irwin, P. G. J.; Houghton, R. W. C.; Fletcher, L. N.; Clarke, F.; Hurley, J.; Thatte, N.; Tecza, M.
2013-09-01
Observations of Neptune were made in June/July 2012 with the SWIFT integral field spectrometer at the Palomar Observatory's 200-inch Hale Telescope. Spectral resolutions for observations between 0.65 μm and 1.0 μm were R ≥ 3250. Palomar's PALM-3000 adaptive optics system enabled images of the full Neptunian disc to be recorded at a spatial scale of 0.08"·pixel^-1 with a seeing of approximately 0.30" - 0.40". Retrievals of cloud properties and methane abundance in the highly dynamic atmosphere were obtained with the general-purpose retrieval tool, NEMESIS. The short wavelengths of the observations allowed for good characterisation of the scattering particles' optical properties in the many cloud and haze layers of the upper Neptunian atmosphere. A region of relatively low methane absorption and high collision-induced hydrogen quadrupole absorption at 825 nm further constrains spectral properties of clouds as distinguished from those of methane absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, A; Shashkov, A; Barker, H
This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it mustmore » ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.« less
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Gatebe, Charles K.
2018-07-01
Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.
NASA Technical Reports Server (NTRS)
1978-01-01
Development of systems for obtaining radiation budget and cloud data is discussed. Instruments for measuring total solar irradiance, total infrared flux, reflected solar flux, and cloud heights and properties are considered. Other topics discussed include sampling by multiple satellites, user identification, and determination of the parameters that need to be measured.
Lidar Studies of Extinction in Clouds in the ECLIPS Project
NASA Technical Reports Server (NTRS)
Martin, C.; Platt, R.; Young, Stuart A.; Patterson, Graeme P.
1992-01-01
The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS. Two periods for observation were chosen, Sep. - Dec. 1989 and Apr. - Jul. 1992 into which investigators were requested to fit 30 days of observations. These would be either continuous, or arranged to coincide with NOAA satellite overpasses to obtain AVHRR data. The distribution of the ECLIPS international effort as in 1991 is shown. The main gaps in the global distribution are in the tropics and the Southern Hemisphere.
Probability density cloud as a geometrical tool to describe statistics of scattered light.
Yaitskova, Natalia
2017-04-01
First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.
Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol
NASA Technical Reports Server (NTRS)
Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.
2004-01-01
In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.
A New Cloud Architecture of Virtual Trusted Platform Modules
NASA Astrophysics Data System (ADS)
Liu, Dongxi; Lee, Jack; Jang, Julian; Nepal, Surya; Zic, John
We propose and implement a cloud architecture of virtual Trusted Platform Modules (TPMs) to improve the usability of TPMs. In this architecture, virtual TPMs can be obtained from the TPM cloud on demand. Hence, the TPM functionality is available for applications that do not have physical TPMs in their local platforms. Moreover, the TPM cloud allows users to access their keys and data in the same virtual TPM even if they move to untrusted platforms. The TPM cloud is easy to access for applications in different languages since cloud computing delivers services in standard protocols. The functionality of the TPM cloud is demonstrated by applying it to implement the Needham-Schroeder public-key protocol for web authentications, such that the strong security provided by TPMs is integrated into high level applications. The chain of trust based on the TPM cloud is discussed and the security properties of the virtual TPMs in the cloud is analyzed.
Near-IR extinction and backscatter coefficient measurements in low- and mid-altitude clouds
NASA Technical Reports Server (NTRS)
Sztankay, Z. G.
1986-01-01
Knowledge of the attenuation and backscattering properties of clouds is required to high resolution for several types of optical sensing systems. Such data was obtained in about 15 hours of flights through clouds in the vicinity of Washington, D.C. The flights were mainly through stratocumulus, altocumulus, stratus, and stratus fractus clouds and covered an altitude and temperature range of 300 to 3200 m and -13 to 17 C. Two instruments were flown, each of which measured the backscatter from close range in two range bins to independently determine both the extinction and backscatter coefficients. The extinction and backscatter coefficients can be obtained from the signals in the two channels of each instrument, provided that the aerosol is uniform over the measurement region. When this assumptions holds, the extinction coefficient is derived basically from the ratio of the signal in the two channels; the backscatter coefficient can then be obtained from the signal in either channel.
Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; ...
2015-06-19
A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less
Space shuttle exhaust cloud properties
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Keller, V. W.
1983-01-01
A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.
NASA Astrophysics Data System (ADS)
Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.
2013-05-01
Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.
NASA Astrophysics Data System (ADS)
Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.
2013-11-01
Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in situ image cloud particles in a well-defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.
NASA Technical Reports Server (NTRS)
Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.
2011-01-01
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.
NASA Technical Reports Server (NTRS)
Gong, J.; Wu, D. L.
2014-01-01
Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.
NASA Astrophysics Data System (ADS)
Smith, William L., Jr.
The threat for aircraft icing in clouds is a significant hazard that routinely impacts aviation operations. Accurate diagnoses and forecasts of aircraft icing conditions requires identifying the location and vertical distribution of clouds with super-cooled liquid water (SLW) droplets, as well as the characteristics of the droplet size distribution. Traditional forecasting methods rely on guidance from numerical models and conventional observations, neither of which currently resolve cloud properties adequately on the optimal scales needed for aviation. Satellite imagers provide measurements over large areas with high spatial resolution that can be interpreted to identify the locations and characteristics of clouds, including features associated with adverse weather and storms. This thesis develops new techniques for interpreting cloud products derived from satellite data to infer the flight icing threat to aircraft in a wide range of cloud conditions. For unobscured low clouds, the icing threat is determined using empirical relationships developed from correlations between satellite imager retrievals of liquid water path and droplet size with icing conditions reported by pilots (PIREPS). For deep ice over water cloud systems, ice and liquid water content profiles are derived by using the imager cloud properties to constrain climatological information on cloud vertical structure and water phase obtained apriori from radar and lidar observations, and from cloud model analyses. Retrievals of the SLW content embedded within overlapping clouds are mapped to the icing threat using guidance from an airfoil modeling study. Compared to PIREPS, the satellite icing detection and intensity accuracies are found to be about 90% and 70%, respectively. Mean differences between the imager IWC retrievals with those from CloudSat and Calipso are less than 30%. This level of closure in the cloud water budget can only be achieved by correcting for errors in the imager retrievals due to the simplifying but poor assumption that deep optically thick clouds are single-phase and vertically homogeneous. When applied to geostationary satellite data, the profiling method provides a real-time characterization of clouds in 4-D. This research should improve the utility of satellite imager data for quantitatively diagnosing and predicting clouds and their effects in weather and climate applications.
23 Years of Cloud Statistics Using HIRS Over Australia
NASA Astrophysics Data System (ADS)
Chedzey, H. C.; Menzel, W. P.; Lynch, M. J.; McGann, B. T.
2004-05-01
Clouds are an integral factor in the Earth's water and radiation budgets. Observations and improvements to the accuracy of measurements of cloud properties are crucial in supporting global climate change studies. Regional studies are also of interest and analysis of regional climate variability provides an insight into local weather systems. HIRS is the High-Resolution Infrared Radiation Sounder aboard polar orbiting satellites operated by NOAA (National Oceanographic and Atmospheric Administration). An archive of HIRS data obtained between 1979 (NOAA-5) through to 2001 (NOAA-16) was made available by CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin-Madison. The data is obtained from near nadir and frequencies of observations are converted into percentages based on total number of observations for each 1 by 1 degree cell. An assessment of cloud frequency percentages for a region including areas of the Indian Ocean and Australia (0\\deg - 60\\deg S; 80\\deg E - 170\\deg E) will be presented. Climate variability and possible associations with future work to be conducted into cloud frequency and rainfall of North West Cloud Bands using MODIS data will also be covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicoll, Ken A.; O'Connor, E.
Large-scale properties of clouds such as lifetime, optical thickness, and precipitation are all dependent on small-scale cloud microphysical processes. Such processes determine when droplets will grow or shrink, their size, and the number of cloud droplets. Although our understanding of cloud microphysics has vastly improved over the past several decades with the development of remote sensing methods such as lidar and radar, there remain a number of processes that are not well understood, such as the effect of electrical charge on cloud microphysics. To understand the various processes and feedback mechanisms, high-vertical–resolution observations are required. Radiosondes provide an ideal platformmore » for providing routine vertical profiles of in situ measurements at any location (with a vertical resolution of a few meters). Modified meteorological radiosondes have been extensively developed at the University of Reading for measuring cloud properties, to allow measurements beyond the traditional thermodynamic quantities (pressure, temperature and relative humidity) to be obtained cost-effectively. This project aims to investigate a number of cloud processes in which in situ cloud observations from these modified radiosondes can provide information either complementary to or not obtainable by lidar/radar systems. During two intensive operational periods (IOPs) in May and August 2014 during deployment to Hyytiälä, Finland, the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Second ARM Mobile Facility (AMF2) launched a total of 24 instrumented radiosondes through a number of different cloud types ranging from low-level stratiform cloud to cumulonimbus. Twelve balloon flights of an accelerometer turbulence sensor were made, which detected significant turbulence on eleven of these flights. Most of the turbulent episodes encountered were due to convective processes, but several were associated with the transition from troposphere to stratosphere at the tropopause. Similarities in the location of turbulent layers were generally found between the balloon turbulence sensor and the Ka-band radar, but with discrepancies between the orders of magnitude of turbulence detected. The reason for these discrepancies is the subject of future work.« less
3D Cloud Radiative Effects on Polarized Reflectances
NASA Astrophysics Data System (ADS)
Cornet, C.; Matar, C.; C-Labonnote, L.; Szczap, F.; Waquet, F.; Parol, F.; Riedi, J.
2017-12-01
As recognized in the last IPCC report, clouds have a major importance in the climate budget and need to be better characterized. Remote sensing observations are a way to obtain either global observations of cloud from satellites or a very fine description of clouds from airborne measurements. An increasing numbers of radiometers plan to measure polarized reflectances in addition to total reflectances, since this information is very helpful to obtain aerosol or cloud properties. In a near future, for example, the Multi-viewing, Multi-channel, Multi-polarization Imager (3MI) will be part the EPS-SG Eumetsat-ESA mission. It will achieve multi-angular polarimetric measurements from visible to shortwave infrared wavelengths. An airborne prototype, OSIRIS (Observing System Including Polarization in the Solar Infrared Spectrum), is also presently developed at the Laboratoire d'Optique Atmospherique and had already participated to several measurements campaigns. In order to analyze suitably the measured signal, it it necessary to have realistic and accurate models able to simulate polarized reflectances. The 3DCLOUD model (Szczap et al., 2014) was used to generate three-dimensional synthetic cloud and the 3D radiative transfer model, 3DMCPOL (Cornet et al., 2010) to compute realistic polarized reflectances. From these simulations, we investigate the effects of 3D cloud structures and heterogeneity on the polarized angular signature often used to retrieve cloud or aerosol properties. We show that 3D effects are weak for flat clouds but become quite significant for fractional clouds above ocean. The 3D effects are quite different according to the observation scale. For the airborne scale (few tens of meter), solar illumination effects can lead to polarized cloud reflectance values higher than the saturation limit predicted by the homogeneous cloud assumption. In the cloud gaps, corresponding to shadowed areas of the total reflectances, polarized signal can also be enhanced by the molecular signal at the shortest wavelength. At the satellite scale (few kilometers), depending on the wavelength and the molecular contribution, the absolute polarized signal may be increased or decreased in the forward scattering direction and is decreased in the cloudbow directions because of the plan-parallel biases.
Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES
NASA Astrophysics Data System (ADS)
Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.
2017-12-01
The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.
Remote Sensing of Smoke, Land and Clouds from the NASA ER-2 during SAFARI 2000
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen
2002-01-01
The NASA ER-2 aircraft was deployed to southern Africa between August 17 and September 25, 2000 as part of the Southern Africa Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 x 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa, and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this sophisticated high altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectro-radiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces, and Terra analyses of cloud optical and micro-physical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom.
Radar observations of individual rain drops in the free atmosphere
Schmidt, Jerome M.; Flatau, Piotr J.; Harasti, Paul R.; Yates, Robert D.; Littleton, Ricky; Pritchard, Michael S.; Fischer, Jody M.; Fischer, Erin J.; Kohri, William J.; Vetter, Jerome R.; Richman, Scott; Baranowski, Dariusz B.; Anderson, Mark J.; Fletcher, Ed; Lando, David W.
2012-01-01
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar’s unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time. PMID:22652569
Radar observations of individual rain drops in the free atmosphere.
Schmidt, Jerome M; Flatau, Piotr J; Harasti, Paul R; Yates, Robert D; Littleton, Ricky; Pritchard, Michael S; Fischer, Jody M; Fischer, Erin J; Kohri, William J; Vetter, Jerome R; Richman, Scott; Baranowski, Dariusz B; Anderson, Mark J; Fletcher, Ed; Lando, David W
2012-06-12
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar's unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.
NASA Technical Reports Server (NTRS)
Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.
1990-01-01
Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
Cloud Size Distributions from Multi-sensor Observations of Shallow Cumulus Clouds
NASA Astrophysics Data System (ADS)
Kleiss, J.; Riley, E.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.
2017-12-01
Combined radar-lidar observations have been used for almost two decades to document temporal changes of shallow cumulus clouds at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Since the ARM zenith-pointed radars and lidars have a narrow field-of-view (FOV), the documented cloud statistics, such as distributions of cloud chord length (or horizontal length scale), represent only a slice along the wind direction of a region surrounding the SGP site, and thus may not be representative for this region. To investigate this impact, we compare cloud statistics obtained from wide-FOV sky images collected by ground-based observations at the SGP site to those from the narrow FOV active sensors. The main wide-FOV cloud statistics considered are cloud area distributions of shallow cumulus clouds, which are frequently required to evaluate model performance, such as routine large eddy simulation (LES) currently being conducted by the ARM LASSO (LES ARM Symbiotic Simulation and Observation) project. We obtain complementary macrophysical properties of shallow cumulus clouds, such as cloud chord length, base height and thickness, from the combined radar-lidar observations. To better understand the broader observational context where these narrow FOV cloud statistics occur, we compare them to collocated and coincident cloud area distributions from wide-FOV sky images and high-resolution satellite images. We discuss the comparison results and illustrate the possibility to generate a long-term climatology of cloud size distributions from multi-sensor observations at the SGP site.
Wyoming Cloud Lidar: instrument description and applications.
Wang, Zhien; Wechsler, Perry; Kuestner, William; French, Jeffrey; Rodi, Alfred; Glover, Brent; Burkhart, Matthew; Lukens, Donal
2009-08-03
The Wyoming Cloud Lidar (WCL), a compact two-channel elastic lidar, was designed to obtain cloud measurements together with the Wyoming Cloud Radar (WCR) on the University of Wyoming King Air and the National Science Foundation/National Center of Atmospheric Research C-130 aircraft. The WCL has been deployed in four field projects under a variety of atmospheric and cloud conditions during the last two years. Throughout these campaigns, it has exhibited the needed reliability for turn-key operation from aircraft. We provide here an overview of the instrument and examples to illustrate the measurements capability of the WCL. Although the WCL as a standalone instrument can provide unique measurements for cloud and boundary layer aerosol studies, the synergy of WCL and WCR measurements coupled with in situ sampling from an aircraft provide a significant step forward in our ability to observe and understand cloud microphysical property evolution.
NASA Astrophysics Data System (ADS)
Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.
2015-06-01
16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.
NASA Technical Reports Server (NTRS)
Platnick, S.; Wind, G.
2004-01-01
In order to perform satellite retrievals of cloud properties, it is important to account for the effect of the above-cloud atmosphere on the observations. The solar bands used in the operational MODIS Terra and Aqua cloud optical and microphysical algorithms (visible, NIR, and SWIR spectral windows) are primarily affected by water vapor, and to a lesser extent by well-mixed gases. For water vapor, the above-cloud column amount, or precipitable water, provides adequate information for an atmospheric correction; details of the vertical vapor distribution are not typically necessary for the level of correction required. Cloud-top pressure has a secondary effect due to pressure broadening influences. For well- mixed gases, cloud-top pressure is also required for estimates of above-cloud abundances. We present a method for obtaining above-cloud precipitable water over dark Ocean surfaces using the MODIS 0.94 pm vapor absorption band. The retrieval includes an iterative procedure for establishing cloud-top temperature and pressure, and is useful for both single layer water and ice clouds. Knowledge of cloud thermodynamic phase is fundamental in retrieving cloud optical and microphysical properties. However, in cases of optically thin cirrus overlapping lower water clouds, the concept of a single unique phase is ill- defined and depends, at least, on the spectral region of interest. We will present a method for multi-layer and multi-phase cloud detection which uses above-cloud precipitable water retrievals along with several existing MODIS operational cloud products (cloud-top pressure derived from a C02 slicing algorithm, IR and SWIR phase retrievals). Results are catagorized by whether the radiative signature in the MODIS solar bands is primarily that of a water cloud with ice cloud contamination, or visa-versa. Examples in polar and mid-latitude regions will be shown.
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis.
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard's Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments.
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard’s Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments. PMID:26606388
NASA Astrophysics Data System (ADS)
Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher
2017-10-01
The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95% of the globe.
NASA Technical Reports Server (NTRS)
Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher
2017-01-01
The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-kilometer resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function (PSF) defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95 percent of the globe.
Modeling fluid injection induced microseismicity in shales
NASA Astrophysics Data System (ADS)
Carcione, José M.; Currenti, Gilda; Johann, Lisa; Shapiro, Serge
2018-02-01
Hydraulic fracturing in shales generates a cloud of seismic—tensile and shear—events that can be used to evaluate the extent of the fracturing (event clouds) and obtain the hydraulic properties of the medium, such as the degree of anisotropy and the permeability. Firstly, we investigate the suitability of novel semi-analytical reference solutions for pore pressure evolution around a well after fluid injection in anisotropic media. To do so, we use cylindrical coordinates in the presence of a formation (a layer) and spherical coordinates for a homogeneous and unbounded medium. The involved differential equations are transformed to an isotropic diffusion equation by means of pseudo-spatial coordinates obtained from the spatial variables re-scaled by the permeability components. We consider pressure-dependent permeability components, which are independent of the spatial direction. The analytical solutions are compared to numerical solutions to verify their applicability. The comparison shows that the solutions are suitable for a limited permeability range and moderate to minor pressure dependences of the permeability. Once the pressure evolution around the well has been established, we can model the microseismic events. Induced seismicity by failure due to fluid injection in a porous rock depends on the properties of the hydraulic and elastic medium and in situ stress conditions. Here, we define a tensile threshold pressure above which there is tensile emission, while the shear threshold is obtained by using the octahedral stress criterion and the in situ rock properties and conditions. Subsequently, we generate event clouds for both cases and study the spatio-temporal features. The model considers anisotropic permeability and the results are spatially re-scaled to obtain an effective isotropic medium representation. For a 3D diffusion in spherical coordinates and exponential pressure dependence of the permeability, the results differ from those of the classical diffusion equation. Use of the classical front to fit cloud events spatially, provides good results but with a re-scaled value of these components. Modeling is required to evaluate the scaling constant in real cases.
Cassini ISS Observations of Jupiter: An Exoplanet Perspective
NASA Astrophysics Data System (ADS)
West, Robert A.; Knowles, Benjamin
2017-10-01
Understanding the optical and physical properties of planets in our solar system can guide our approach to the interpretation of observations of exoplanets. Although some work has already been done along these lines, there remain low-hanging fruit. During the Cassini Jupiter encounter, the Imaging Science Subsystem (ISS) obtained an extensive set of images over a large range of phase angles (near-zero to 140 degrees) and in filters from near-UV to near-IR, including three methane bands and nearby continuum. The ISS also obtained images using polarizers. Much later in the mission we also obtained distant images while in orbit around Saturn. Some of these data have already been studied to reveal phase behavior (Dyudina et al., Astrophys. J.822, DOI: 10.3847/0004-637X/822/2/76; Mayorga et al., 2016, Astron. J. 152, DOI: 10.3847/0004-6256/152/6/209). Here we examine rotational modulation to determine wavelength and phase angle dependence, and how these may depend on cloud and haze vertical structure and optical properties. The existence of an optically thin forward-scattering and longitudinally-homogeneous haze overlying photometrically-variable cloud fields tends to suppress rotational modulation as phase angle increases, although in the strong 890-nm methane band cloud vertical structure is important. Cloud particles (non-spherical ammonia ice, mostly) have very small polarization signatures at intermediate phase angles and rotational modulation is not apparent above the noise level of our instrument. Part of this work was performed by the Jet Propulsion Lab, Cal. Inst. Of Technology.
NASA Technical Reports Server (NTRS)
Khlopenkov, Konstantin V.; Duda, David; Thieman, Mandana; Sun-mack, Szedung; Su, Wenying; Minnis, Patrick; Bedka, Kristopher
2017-01-01
The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). EPIC delivers adequate spatial resolution imagery but only in shortwave bands (317-780 nm), while NISTAR measures the top-of-atmosphere (TOA) whole-disk radiance in shortwave and longwave broadband windows. Accurate calculation of albedo and outgoing longwave flux requires a high-resolution scene identification such as the radiance observations and cloud properties retrievals from low earth orbit (LEO, including NASA Terra and Aqua MODIS, Suomi-NPP VIIRS, and NOAA AVHRR) and geosynchronous (GEO, including GOES east and west, METEOSAT, INSAT-3D, MTSAT-2, and Himawari-8) satellite imagers. The cloud properties are derived using the Clouds and the Earth's Radiant Energy System (CERES) mission Cloud Subsystem group algorithms. These properties have to be co-located with EPIC pixels to provide the scene identification and to select anisotropic directional models (ADMs), which are then used to adjust the NISTAR-measured radiance and subsequently obtain the global daytime shortwave and longwave fluxes. This work presents an algorithm for optimal merging of selected radiance and cloud property parameters derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. Selection of satellite data for each 5-km pixel is based on an aggregated rating that incorporates five parameters: nominal satellite resolution, pixel time relative to the EPIC time, viewing zenith angle, distance from day/night terminator, and probability of sun glint. To provide a smoother transition in the merged output, in regions where candidate pixel data from two satellite sources have comparable aggregated rating, the selection decision is defined by the cumulative function of the normal distribution so that abrupt changes in the visual appearance of the composite data are avoided. Higher spatial accuracy in the composite product is achieved by using the inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling.
NASA Technical Reports Server (NTRS)
Pittman, Jasna V.; Robertson, Franklin R.; Atkinson, Robert J.
2008-01-01
Accurate representation of the physical and radiative properties of clouds in climate models continues to be a challenge. At present, both remote sensing observations and modeling of microphysical properties of clouds rely heavily on parameterizations or assumptions on particle size distribution (PSD) and cloud phase. In this study, we compare Ice Water Path (IWP), an important physical and radiative property that provides the amount of ice present in a cloud column, using measurements obtained via three different retrieval strategies. The datasets we use in this study include Visible/Near-IR IWP from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying aboard the Aqua satellite, Radar-only IWP from the CloudSat instrument operating at 94 GHz, and NOAA/NESDIS operational IWP from the 89 and 157 GHz channels of the Microwave Humidity Sounder (MHS) instrument flying aboard the NOAA-18 satellite. In the Visible/Near-IR, IWP is derived from observations of optical thickness and effective radius. CloudSat IWP is determined from measurements of cloud backscatter and assumed PSD. MHS IWP retrievals depend on scattering measurements at two different, non-water absorbing channels, 89 and 157 GHz. In order to compare IWP obtained from these different techniques and collected at different vertical and horizontal resolutions, we examine summertime cases in the tropics (30S - 30N) when all 3 satellites are within 4 minutes of each other (approximately 1500 km). All measurements are then gridded to a common 15 km x 15 km box determined by MHS. In a grid box comparison, we find CloudSat to report the highest IWP followed by MODIS, followed by MHS. In a statistical comparison, probability density distributions show MHS with the highest frequencies at IWP of 100-1000 g/m(exp 2) and CloudSat with the longest tail reporting IWP of several thousands g/m(exp 2). For IWP greater than 30 g/m(exp 2), MODIS is consistently higher than CloudSat, and it is higher at the lower IWPs but lower at the higher IWPs that overlap with MHS. Some of these differences can be attributed to the limitations of the measuring techniques themselves, but some can result from the assumptions made in the algorithms that generate the IWP product. We investigate this issue by creating categories based on various conditions such as cloud type, precipitation presence, underlying liquid water content, and surface type (land vs. ocean) and by comparing the performance of the IWP products under each condition.
A Lab Based Method for Exoplanet Cloud and Aerosol Characterization
NASA Astrophysics Data System (ADS)
Johnson, A. V.; Schneiderman, T. M.; Bauer, A. J. R.; Cziczo, D. J.
2017-12-01
The atmospheres of some smaller, cooler exoplanets, like GJ 1214b, lack strong spectral features. This may suggest the presence of a high, optically thick cloud layer and poses great challenges for atmospheric characterization, but there is hope. The study of extraterrestrial atmospheres with terrestrial based techniques has proven useful for understanding the cloud-laden atmospheres of our solar system. Here we build on this by leveraging laboratory-based, terrestrial cloud particle instrumentation to better understand the microphysical and radiative properties of proposed exoplanet cloud and aerosol particles. The work to be presented focuses on the scattering properties of single particles, that may be representative of those suspended in exoplanet atmospheres, levitated in an Electrodynamic Balance (EDB). I will discuss how we leverage terrestrial based cloud microphysics for exoplanet applications, the instruments for single and ensemble particle studies used in this work, our investigation of ammonium nitrate (NH4NO3) scattering across temperature dependent crystalline phase changes, and the steps we are taking toward the collection of scattering phase functions and polarization of scattered light for exoplanet cloud analogs. Through this and future studies we hope to better understand how upper level cloud and/or aerosol particles in exoplanet atmospheres interact with incoming radiation from their host stars and what atmospheric information may still be obtainable through remote observations when no spectral features are observed.
Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data
NASA Technical Reports Server (NTRS)
Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil
2004-01-01
Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.
Modeling and parameterization of horizontally inhomogeneous cloud radiative properties
NASA Technical Reports Server (NTRS)
Welch, R. M.
1995-01-01
One of the fundamental difficulties in modeling cloud fields is the large variability of cloud optical properties (liquid water content, reflectance, emissivity). The stratocumulus and cirrus clouds, under special consideration for FIRE, exhibit spatial variability on scales of 1 km or less. While it is impractical to model individual cloud elements, the research direction is to model a statistical ensembles of cloud elements with mean-cloud properties specified. The major areas of this investigation are: (1) analysis of cloud field properties; (2) intercomparison of cloud radiative model results with satellite observations; (3) radiative parameterization of cloud fields; and (4) development of improved cloud classification algorithms.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, George T.; Ackerman, Steven A.; Frey, Richard
2007-01-01
The MODIS Airborne Simulator (MAS) and MODIS/ASTER Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.3 (12.9 m for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Clouds and Climate Coupling Experiment (TC4) conducted over Central America and surrounding Pacific and Atlantic Oceans between July 17 and August 8, 2007. Multispectral images in eight distinct bands were used to derive a confidence in clear sky (or alternatively the probability of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of this cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm as that implemented operationally to process MODIS cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER date in TC4, is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals used three distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to MISR data to infer the cloud optical thickness of liquid water clouds from MISR. Results of this analysis will be presented and discussed.
Transport of photons produced by lightning in clouds
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard
1991-01-01
The optical effects of the light produced by lightning are of interest to atmospheric scientists for a number of reasons. Two techniques are mentioned which are used to explain the nature of these effects: Monte Carlo simulation; and an equivalent medium approach. In the Monte Carlo approach, paths of individual photons are simulated; a photon is said to be scattered if it escapes the cloud, otherwise it is absorbed. In the equivalent medium approach, the cloud is replaced by a single obstacle whose properties are specified by bulk parameters obtained by methods due to Twersky. Herein, Boltzmann transport theory is used to obtain photon intensities. The photons are treated like a Lorentz gas. Only elastic scattering is considered and gravitational effects are neglected. Water droplets comprising a cuboidal cloud are assumed to be spherical and homogeneous. Furthermore, it is assumed that the distribution of droplets in the cloud is uniform and that scattering by air molecules is neglible. The time dependence and five dimensional nature of this problem make it particularly difficult; neither analytic nor numerical solutions are known.
NASA Technical Reports Server (NTRS)
Forbes, R. E.; Smith, M. R.; Farrell, R. R.
1972-01-01
An experimental program was conducted during the static firing of the S-1C stage 13, 14, and 15 rocket engines and the S-2 stage 13, 14, and 15 rocket engines. The data compiled during the experimental program consisted of photographic recordings of the time-dependent growth and diffusion of the exhaust clouds, the collection of meteorological data in the ambient atmosphere, and the acquisition of data on the physical structure of the exhaust clouds which were obtained by flying instrumented aircraft through the clouds. A new technique was developed to verify the previous measurements of evaporation and entrainment of blast deflector cooling water into the cloud. The results of the experimental program indicate that at the lower altitudes the rocket exhaust cloud or plume closely resembles a free-jet type of flow. At the upper altitudes, where the cloud is approaching an equilibrium condition, structure is very similar to a natural cumulus cloud.
AERI Observations of Antarctic Clouds Properties During AWARE
NASA Astrophysics Data System (ADS)
Gero, P. J.; Rowe, P. M.; Walden, V. P.
2017-12-01
The ARM West Antarctic Radiation Experiment (AWARE) was a recent field campaign by the US Dept. of Energy's Atmospheric Radiation Measurement (ARM) program, in collaboration with the National Science Foundation, to measure the state of the atmosphere, the surface energy balance, and cloud properties in Antarctica. The main observing facility for AWARE, located near McMurdo Station, consisted of a wide variety of instrumentation, including an eddy-covariance system, surface aerosol measurements, cloud radar and lidar, broadband radiometers, microwave radiometer, and an infrared spectroradiometer (AERI). Collectively these measurements can be used to improve our understanding of the connections between the atmospheric state, cloud processes, and their effects on the surface energy budget. Thus, AWARE data have the potential to revolutionize our understanding of how the atmosphere and clouds impact the surface energy budget in this important region. The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based instrument developed at the University of Wisconsin-Madison that measures downwelling thermal infrared radiance from the atmosphere. Observations are made in the 400-3020 cm-1 (3.3-19 μm) spectral range with a resolution of 1 cm-1, with an accuracy better than 1% of ambient radiance. These observations can be used to obtain vertical profiles of tropospheric temperature and water vapor in the lower troposphere, as well as measurements of the concentration of various trace gases and microphysical and optical properties of clouds. We present some preliminary results from the AERI dataset from AWARE, including analysis of the downwelling radiation and cloud structure over the annual cycle.
Remote sensing of smoke, land, and clouds from the NASA ER-2 during SAFARI 2000
NASA Astrophysics Data System (ADS)
King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen
2003-07-01
The NASA ER-2 aircraft was deployed to southern Africa between 13 August and 25 September 2000 as part of the Southern African Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 × 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this high-altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces and Terra analyses of cloud optical and microphysical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom. As a result of this experiment, the MODIS cloud mask was shown to distinguish clouds, cloud shadows, and fires over land ecosystems of southern Africa with a high degree of accuracy. In addition, data acquired from the ER-2 show the vertical distribution and stratification of aerosol layers over the subcontinent and make the first observations of a "blue spike" spectral emission signature associated with air heated by fire advecting over a cooler land surface.
NASA Technical Reports Server (NTRS)
Backman, D. E. (Editor); Caroff, L. J. (Editor); Sandford, S. A. (Editor); Wooden, D. H. (Editor)
1998-01-01
The purpose of the workshop was to understand what effect circumstellar dust clouds will have on NASA's proposed Terrestrial Planet Finder (TPF) mission's ability to search for terrestrial-sized planets orbiting stars in the solar neighborhood. The workshop participants reviewed the properties of TPF, summarized what is known about the local zodiacal cloud and about exozodiacal clouds, and determined what additional knowledge must be obtained to help design TPF for maximum effectiveness within its cost constraint. Recommendations were made for ways to obtain that additional knowledge, at minimum cost. The workshop brought together approximately 70 scientists, from four different countries. The active participants included astronomers involved in the study of the local zodiacal cloud, in the formation of stars and planetary systems, and in the technologies and techniques of ground- and space-based infrared interferometry. During the course of the meeting, 15 invited talks and 20 contributed poster papers were presented, and there were four working sessions. This is a collection of the invited talks, contributed poster papers, and summaries of the working sessions.
Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data
NASA Technical Reports Server (NTRS)
Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny
2010-01-01
Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.
Cloud Condensation Nuclei in Cumulus Humilis - Selected Case Study During the CHAPS Campaign
NASA Astrophysics Data System (ADS)
Yu, X.; Berg, L. K.; Berkowitz, C. M.; Alexander, M. L.; Lee, Y.; Laskin, A.; Ogren, J. A.; Andrews, B.
2009-12-01
The Cumulus Humilis Aerosol Processing Study (CHAPS) provided a unique opportunity to study aerosol and cloud processing. Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Department of Energy (DOE) G-1 aircraft was used as one of the main platforms in CHAPS. Flight tracks were designed and implemented to characterize freshly emitted aerosols on cloud top and cloud base as well as with cloud, i.e., cumulus humilis (or fair-weather cumulus), in the vicinity of Oklahoma City. Measurements of interstitial aerosols and residuals of activated condensation cloud nuclei were conducted simultaneously. The interstitial aerosols were determined downstream of an isokinetic inlet; and the activated particles downstream of a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This work will focus on studying CCN properties in cumulus humilis. Several approaches will be taken. The first is single particle analysis of particles collected by the Time-Resolved Aerosol Sampler (TRAC) by SEM/TEM coupled with EDX. We will specifically look into differences in particle properties such as chemical composition and morphology between activated and interstitial ones. The second analysis will link in situ measurements with the snap shots observations by TRAC. For instance, by looking into the characteristic m/z obtained by AMS vs. CO or isoprene, one can gain more insight into the role of primary and secondary organic aerosols in CCNs and background aerosols. Combined with observations of cloud properties, an improved picture of CCN activation in cumulus humilis can be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.
2013-05-22
Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on themore » cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.« less
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
Cloud cover detection combining high dynamic range sky images and ceilometer measurements
NASA Astrophysics Data System (ADS)
Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.
2017-11-01
This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.
Cloud effects on the SW radiation at the surface at a mid-latitude site in southwestern Europe
NASA Astrophysics Data System (ADS)
Salgueiro, Vanda; João Costa, Maria; Silva, Ana Maria; Lanconelli, Christian; Bortoli, Daniele
2017-04-01
This work presents a study of cloud radiative effects on shortwave (CRESW) radiation at the surface in Évora region (southwestern Europe) during 2015 and a case study is analyzed. CRESW (in Wm-2) is defined as the difference between the net shortwave irradiance (downward minus upward shortwave irradiance) in cloudy and clear sky conditions. This measure is usually used to translate changes in the SW radiation that reaches the surface due to changes in clouds (type and/or cover). The CRESW is obtained using measured SW irradiance recorded with a Kipp&Zonen CM 6B pyranometer (broadband 305 - 2800 nm) during the period from January to December 2015, and is related with the cloud liquid water path (LWP) and with cloud ice water path (IWP) showing the importance of the different type of clouds in attenuating the SW radiation at the surface. The cloud modification factor, also a measure of the cloud radiative effects (CMF; ratio between the measured SW irradiance under cloudy conditions and the estimated SW irradiance in clear-sky conditions) is related with the cloud optical thickness (COT; obtained from satellite data). This relation between CMF and COT is shown for different cloud fractions revealing an exponential decreasing of CMF as COT increases. Reductions in the SW radiation of the order of 80% (CMF = 0.2) as well enhancements in the SW radiation larger than 30% (CMF = 1.3) were found for small COT values and for different cloud fractions. A case study to analyse the enhancement events in a cloudy day was considered and the cloud properties, COT and LWP (from satellite and surface measurements), were related with the CRESW.
Subvisual Cirrus cloud properties derived from a FIRE IFO case study
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Griffin, M. K.; Dodd, G. C.
1990-01-01
From the central Wisconsin IFO field at Wausau, the Mobile Polarization Lidar and a surface radiation station from the Lamont-Doherty Geological Observatory observed two very tenuous cirrus clouds on 21 October 1986. The clouds were present just below the height of the tropopause, between -60 to -70 C. The first cloud was not detected visually, and is classified as subvisual cirrus. The second, a relatively narrow cloud band that was probably the remnants of an aircraft contrail, can be termed zenith-subvisual since, although it was invisible in the zenith direction, it could be discerned when viewed at lower elevation angles and also due to strong solar forward-scattering and corona effects. The observations provide an opportunity to assess the threshold cloud optical thickness associated with cirrus cloud visibility. Ruby lidar backscattered signals were converted to isotropic volume backscatter coefficients by applying the pure-molecular scattering assumption just below the cloud base. The backscattering coefficient due to the cloud is then obtained and expressed in relation to the molecular backscattering coefficient in terms of the scattering ratio R. The linear depolarization ratio for the cloud is computed after removing the essentially parallel-polarized scattering contribution from air molecules. The values are also applied to determine the cloud optical thickness through the use of backscatter-to-extinction ratio, and the concentration of cloud particles using the backscattering gain, and the effective diameter of the particles obtained from the analysis of solar corona photographs. The sizes of the particles generating the corona are related to the angular separations between the centers of the red bands and the sun, yielding diameters of approximately 25 microns. The direct and diffuse components of shortwave radiation fluxes, measured by full hemispheric pyranometers, were used to compute the nadir optical thickness of the total atmosphere.
NASA Technical Reports Server (NTRS)
Purgold, Gerald C.; Wheeler, Robert J.; Whitlock, Charles H.
1992-01-01
Tables and figures are presented which show local site observations of cloud fractions, the number of cloud layers, direction of movement, and precipitation data collected during the FIRE (First ISCCP Regional Experiment) Phase 2 Cirrus Intensive Field Observations (IFO) conducted in Coffeyville, Kansas during November and December, 1991. Selected data are also presented at the times of the TIROS Operational Vertical Sounder (TOVS) satellite overpass. Several major scientific projects have used surface-based observations of clouds to compare directly with those being observed from satellites. Characterizing the physical properties of clouds is extremely useful in obtaining a more accurate analysis of the effect of clouds and their movements on weather and climate. It is the purpose of this paper to report data collected during the FIRE Phase 2 IFO experiment and to provide a brief history of such a surface-based system and the technical information required for recording local cloud parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.
Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of icemore » nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.« less
20 Years Lidar Observations of Clouds at the Edge of Space
NASA Astrophysics Data System (ADS)
Fiedler, J.; Baumgarten, G.; Luebken, F.
2013-12-01
The highest clouds in the Earth atmosphere are located around 83 km altitude. They were first documented in 1885 and are called noctilucent clouds (NLC) because of the impressive bluish-white displays they form against the dark night sky. NLC occur during the summer months from mid to high latitudes and are a visible sign of the extreme conditions in the mesopause region. They consist of nano-sized ice particles (mean value 48×1 nm) which are subject to the variability of the ambient atmosphere. Ice formation and growth at these high altitudes is very sensitive to temperature and water vapor content which are hardly to measure directly with high accuracy. Thus NLC can act as tracers for short-term variations and are thought to document long-term atmospheric changes as well. We will report about our NLC time series obtained by laser optical remote sensing at the research station ALOMAR in Northern Norway (69°N, 16°E). The data archive obtained with the Rayleigh/Mie/Raman-lidar covers now 20 summer seasons and is the largest NLC data set acquired by lidar. It shows variabilities of basic cloud parameters like occurrence, altitude and brightness on time scales ranging from minutes to years. Using the capability of all three emitted laser wavelengths we are able to determine ice particle properties like mean and width of the size distribution and number density. This allows investigation of the cloud water content and its variability. Comparing our ground-based measurements on a fixed location to data sets obtained from sun-synchronous satellites shows certain differences. They could at least partly be attributed to the observation conditions like measurement volume, local time, scattering angles etc. We found atmospheric tides to have a significant influence on the NLC properties. Additionally microphysical processes limit the duration within the ice particles can be considered as passive tracers. Long-term data sets are subject to varying instrument sensitivities, caused by atmospheric transmission as well as system performance. We have investigated the temporal development of the lower lidar detection limit and its impact on the retrieved cloud properties. It is important to take these effects into account as they can change the tendency of long time series.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana
2016-05-01
In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.
Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE
NASA Astrophysics Data System (ADS)
Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.
2003-12-01
Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each resolution. Results are compared with the radar reflectivity techniques employed by the NOAA ETL MMCR and the PARSL 94 GHz radars located at the CRYSTAL-FACE Eastern & Western Ground Sites, respectively. This technique is most likely to yield improvements for low and midlevel layer clouds that have little thermal variability in cloud height.
Ice Cloud Properties And Their Radiative Effects: Global Observations And Modeling
NASA Astrophysics Data System (ADS)
Hong, Yulan
Ice clouds are crucial to the Earth's radiation balance. They cool the Earth-atmosphere system by reflecting solar radiation back to space and warm it by blocking outgoing thermal radiation. However, there is a lack of an observation-based climatology of ice cloud properties and their radiative effects. Two active sensors, the CloudSat radar and the CALIPSO lidar, for the first time provide vertically resolved ice cloud data on a global scale. Using synergistic signals of these two sensors, it is possible to obtain both optically thin and thick ice clouds as the radar excels in probing thick clouds while the lidar is better to detect the thin ones. First, based on the CloudSat radar and CALIPSO lidar measurements, we have derived a climatology of ice cloud properties. Ice clouds cover around 50% of the Earth surface, and their global-mean optical depth, ice water path, and effective radius are approximately 2 (unitless), 109 g m. {-2} and 48 \\mum, respectively. Ice cloud occurrence frequency not only depends on regions and seasons, but also on the types of ice clouds as defined by optical depth (tau) values. Optically thin ice clouds (tau < 3) are most frequently observed in the tropics around 15 km and in the midlatitudes below 5 km, while the thicker clouds (tau > 3) occur frequently in the tropical convective areas and along the midlatitude storm tracks. Using ice retrievals derived from combined radar-lidar measurements, we conducted radiative transfer modeling to study ice cloud radiative effects. The combined effects of ice clouds warm the earth-atmosphere system by approximately 5 W m-2, contributed by a longwave warming effect of about 21.8 W m-2 and a shortwave cooling effect of approximately -16.7 W m-2. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, and the net warming effect occurs year-round in the tropics (˜ 10 W m-2). Ice cloud optical depth is shown to be an important factor in determining the sign and magnitude of the net radiative effect. On a global average, ice clouds with tau ≤ 4.6 display a warming effect with the largest contributions from those with tau ˜ 1.0. Optically thin and high ice clouds cause strong heating in the tropical upper troposphere, while outside the tropics, mixed-phase clouds cause strong cooling at lower altitudes (> 5 km). In addition, ice clouds occurring with liquid clouds in the same profile account for about 30%$of all observations. These liquid clouds reduce longwave heating rates in ice cloud layers by 0-1 K/day depending on the values of ice cloud optical depth and regions. This research for the first time provides a clear picture on the global distribution of ice clouds with a wide range of optical depth. Through radiative transfer modeling, we have gained better knowledge on ice cloud radiative effects and their dependence on ice cloud properties. These results not only improve our understanding of the interaction between clouds and climate, but also provide observational basis to evaluate climate models.
A Survey of Near-infrared Diffuse Interstellar Bands
NASA Astrophysics Data System (ADS)
Hamano, Satochi; Kobayashi, Naoto; Kawakita, Hideyo; Ikeda, Yuji; Kondo, Sohei; Sameshima, Hiroaki; Arai, Akira; Matsunaga, Noriyuki; Yasui, Chikako; Mizumoto, Misaki; Fukue, Kei; Izumi, Natsuko; Otsubo, Shogo; Takenada, Keiichi
2018-04-01
We propose a study of interstellar molecules with near-infrared (NIR) high-resolution spectroscopy as a science case for the 3.6-m Devasthal Optical Telescope (DOT). In particular, we present the results obtained on-going survey of diffuse interstellar bands (DIBs) in NIR with the newly developed NIR high-resolution spectrograph WINERED, which offers a high sensitivity in the wavelength range of 0.91-1.36 µm. Using the WINERED spectrograph attached to the 1.3-m Araki telescope in Japan, we obtained high-quality spectra of a number of early-type stars in various environments, such as diffuse interstellar clouds, dark clouds and star-forming regions, to investigate the properties of NIR DIBs and constrain their carriers. As a result, we successfully identified about 50 new NIR DIBs, where only five fairly strong DIBs had been identified previously. Also, some properties of DIBs in the NIR are discussed to constrain the carriers of DIBs.
NASA Astrophysics Data System (ADS)
Letu, H.; Nagao, T. M.; Nakajima, T. Y.; Ishimoto, H.; Riedi, J.; Shang, H.
2017-12-01
Ice cloud property product from satellite measurements is applicable in climate change study, numerical weather prediction, as well as atmospheric study. Ishimoto et al., (2010) and Letu et al., (2016) developed a single scattering property of the highly irregular ice particle model, called the Voronoi model for developing ice cloud product of the GCOM-C satellite program. It is investigated that Voronoi model has a good performance on retrieval of the ice cloud properties by comparing it with other well-known scattering models. Cloud property algorithm (Nakajima et al., 1995, Ishida and Nakajima., 2009, Ishimoto et al., 2009, Letu et al., 2012, 2014, 2016) of the GCOM-C satellite program is improved to produce the Himawari-8/AHI cloud products based on the variation of the solar zenith angle. Himawari-8 is the new-generational geostationary meteorological satellite, which is successfully launched by the Japan Meteorological Agency (JMA) on 7 October 2014. In this study, ice cloud optical and microphysical properties are simulated from RSTAR radiative transfer code by using various model. Scattering property of the Voronoi model is investigated for developing the AHI ice cloud products. Furthermore, optical and microphysical properties of the ice clouds are retrieved from Himawari-8/AHI satellite measurements. Finally, retrieval results from Himawari-8/AHI are compared to MODIS-C6 cloud property products for validation of the AHI cloud products.
NASA Astrophysics Data System (ADS)
Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.
2017-12-01
The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.
NASA Astrophysics Data System (ADS)
Ghanti, R.; Ghosh, S.
2010-03-01
The Indian subcontinent is undergoing a phase of rapid urbanisation. Inevitable fallout of this process is a concomitant increase in air pollution much of which can be attributed to the infamous great Indian haze phenomena. One observes that the aerosol size distributions vary considerably along the Bay of Bengal (BOB), Arabian Sea (AS) and the Indian Ocean (IO), although, the dynamical attributes are very similar, particularly over the BOB and the AS during this season. Unlike major European studies (e.g. Aerosol Characterization Experiment-2, Ghosh et al., 2005), there are no cloud microphysical modelling studies to complement these observational results for the Indian sub-continent. Ours is the first modelling study over this important region where a time-tested model (O'Dowd et al., 1999a; Ghosh et al., 2007; Rap et al., 2009) is used to obtain cloud microphysical and optical properties from observed aerosol size distributions. Un-activated aerosol particles and very small cloud droplets have to be treated specially to account for non-ideal effects-our model does this effectively yielding realistic estimate of cloud droplet number concentrations (Nc). Empirical relationships linking aerosol concentration to (Nc) yield a disproportionately higher Nc suggesting that such empirical formulations should be used with caution. Our modelling study reveals that the cloud's microphysical and optical properties are very similar along the AS and the BOB despite them having disparate dry aerosol spectral distributions. This is non-intuitive, as one would expect changes in microphysical development with widely different aerosol distributions. There is some increase in cloud droplet numbers with increased haze concentrations but much less than a simple proportion would indicate.
NASA Technical Reports Server (NTRS)
Fairall, C. W.; Hare, J. E.; Snider, Jack B.
1990-01-01
As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.
NASA Astrophysics Data System (ADS)
Protat, A.; Delanoë, J.; May, P. T.; Haynes, J.; Jakob, C.; O'Connor, E.; Pope, M.; Wheeler, M. C.
2011-08-01
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.
NASA Astrophysics Data System (ADS)
Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.
2015-12-01
Sixteen-year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from 7 and a half years (June 2006-December 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and the differences in sampling frequencies. Nearly 50-55 % of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect a higher number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. The mid-cloud altitude of sub-visible cirrus clouds is found to be increasing at the rate of 41 ± 21 m year-1. Statistically significant decrease in optical thickness of sub-visible and thick cirrus clouds is observed. Also, the fraction of sub-visible cirrus cloud is found to have increased by 9 % in the last 16 years (1998 to 2013). This increase is mainly compensated by a 7 % decrease in thin cirrus cloud fraction. This has implications for the temperature and water vapour budget in the tropical tropopause layer.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.
2010-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.
Processing Uav and LIDAR Point Clouds in Grass GIS
NASA Astrophysics Data System (ADS)
Petras, V.; Petrasova, A.; Jeziorska, J.; Mitasova, H.
2016-06-01
Today's methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.
NASA Technical Reports Server (NTRS)
Wind, Galina (Gala); Platnick, Steven; Riedi, Jerome
2011-01-01
The MODIS cloud optical properties algorithm (MOD06IMYD06 for Terra and Aqua MODIS, respectively) slated for production in Data Collection 6 has been adapted to execute using available channels on MSG SEVIRI. Available MODIS-style retrievals include IR Window-derived cloud top properties, using the new Collection 6 cloud top properties algorithm, cloud optical thickness from VISINIR bands, cloud effective radius from 1.6 and 3.7Jlm and cloud ice/water path. We also provide pixel-level uncertainty estimate for successful retrievals. It was found that at nighttime the SEVIRI cloud mask tends to report unnaturally low cloud fraction for marine stratocumulus clouds. A correction algorithm that improves detection of such clouds has been developed. We will discuss the improvements to nighttime low cloud detection for SEVIRI and show examples and comparisons with MODIS and CALIPSO. We will also show examples of MODIS-style pixel-level (Level-2) cloud retrievals for SEVIRI with comparisons to MODIS.
Cloud Property Retrieval Products for Graciosa Island, Azores
Dong, Xiquan
2014-05-05
The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.
Study of Venus' cloud layers by polarimetry using SPICAV/VEx
NASA Astrophysics Data System (ADS)
Rossi, Loïc; Marcq, Emmanuel; Montmessin, Franck; Bertaux, Jean-Loup; Korablev, Oleg; Fedorova, Anna
2013-04-01
The study of Venus's cloud layers is important in order to understand the structure, radiative balance and dynamics of the Venusian atmosphere. The main cloud layers between 50 and 70km are thought to consist in ~ 1μm radius droplets of a H2SO4-H2O solution. Nevertheless, the composition and the size distribution of the droplets are difficult to constrain more precisely. The polarization measurements have given great results in the determination of the constituents of the haze. In the early 1980s, Kawabata et al.(1980) used the polarization data from the OCPP instrument on the spacecraft Pioneer Venus to constrain the properties of the haze. They obtained a refractive index of 1.45 ± 0.04 at ? = 550nm and an effective radius of 0.23 ± 0.04μm, with a normalized size distribution variance of 0.18 ± 0.1. Our work aims to reproduce the method used by Kawabata et al. by writing a Lorentz-Mie scattering model and apply it to the so far unexploited polarization data of the SPICAV-IR instrument on-board ESA's Venus Express in order to better constrain haze and cloud particles at the top of Venus's clouds, as well as their spatial and temporal variability. We introduce here the model we developed, based on the BH-MIE scattering model. Taking into account the same size distribution of droplets as Kawabata et al., we obtained the polarization degree after a single Mie scattering by a haze at all phase angles given the effective radius and variance of the distribution and the refractive index of the droplets. Our model seems consistent as it reproduces the polarization degree modeled by Kawabata et al. We also present the first application of our model to the SPICAV-IR data under the single scattering assumption. Hence we can confirm the mean constraints on the size and refractive index of the haze and cloud droplets. In the near future, we then aim to extend our study of the polarization data by integrating our model into a radiative transfer model which will take into account the multiple scattering. Having more recent observations in wavelengths ranging from 650 to 1625nm, will put better constraints on the properties of both cloud and haze particles, with a primary focus on the cloud droplets characterization. Bibliography: BOHREN, C. F. AND HUMAN, D.R., in Absorption and Scattering of light by small particles, Wiley, 1983 KAWABATA, K. et al., Cloud and haze properties from Pioneer Venus Polarimetry, JGR, 1980
Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.
2009-12-01
In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce A.; Parker, Lindsay
2006-01-01
Three boundary-layer cloud object types, stratus, stratocumulus and cumulus, that occurred over the Pacific Ocean during January-August 1998, are identified from the CERES (Clouds and the Earth s Radiant Energy System) single scanner footprint (SSF) data from the TRMM (Tropical Rainfall Measuring Mission) satellite. This study emphasizes the differences and similarities in the characteristics of each cloud-object type between the tropical and subtropical regions and among different size categories and among small geographic areas. Both the frequencies of occurrence and statistical distributions of cloud physical properties are analyzed. In terms of frequencies of occurrence, stratocumulus clouds dominate the entire boundary layer cloud population in all regions and among all size categories. Stratus clouds are more prevalent in the subtropics and near the coastal regions, while cumulus clouds are relatively prevalent over open ocean and the equatorial regions, particularly, within the small size categories. The largest size category of stratus cloud objects occurs more frequently in the subtropics than in the tropics and has much larger average size than its cumulus and stratocumulus counterparts. Each of the three cloud object types exhibits small differences in statistical distributions of cloud optical depth, liquid water path, TOA albedo and perhaps cloud-top height, but large differences in those of cloud-top temperature and OLR between the tropics and subtropics. Differences in the sea surface temperature (SST) distributions between the tropics and subtropics influence some of the cloud macrophysical properties, but cloud microphysical properties and albedo for each cloud object type are likely determined by (local) boundary-layer dynamics and structures. Systematic variations of cloud optical depth, TOA albedo, cloud-top height, OLR and SST with cloud object sizes are pronounced for the stratocumulus and stratus types, which are related to systematic variations of the strength of inversion with cloud object sizes, produced by large-scale subsidence. The differences in cloud macrophysical properties over small regions are significantly larger than those of cloud microphysical properties and TOA albedo, suggesting a greater control of (local) large-scale dynamics and other factors on cloud object properties. When the three cloud object types are combined, the relative population among the three types is the most important factor for determining the cloud object properties in a Pacific transect where the transition of boundary-layer cloud types takes place.
Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan
NASA Astrophysics Data System (ADS)
Alam, Khan
Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP, CTT
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander; Lau, William K. M. (Technical Monitor)
2001-01-01
This paper examines three-dimensional (3D) radiative effects, which arise from horizontal radiative interactions between areas that have different cloud properties. Earlier studies have argued that these effects can cause significant uncertainties in current satellite retrievals of cloud properties, because the retrievals rely on one-dimensional (1D) theory and do not consider the effects of horizontal changes in cloud properties. This study addresses two questions: which retrieved cloud properties are influenced by 3D radiative effects, and where 3D effects tend to occur? The influence of 3D effects is detected from the wayside illumination and shadowing make clouds appear asymmetric: Areas appear brighter if the cloud top surface is tilted toward, rather than away from, the Sun. The analysis of 30 images by the Moderate Resolution Imaging Spectroradiometer (MODIS) reveals that retrievals of cloud optical thickness and cloud water content are most influenced by 3D effects, whereas retrievals of cloud particle size are much less affected. The results also indicate that while 3D effects are strongest at cloud edges, cloud top variability in cloud interiors, even in overcast regions, also produces considerable 3D effects. Finally, significant 3D effects are found in a wide variety of situations, ranging from thin clouds to thick ones and from low clouds to high ones.
Overview of the CERES Edition-4 Multilayer Cloud Property Datasets
NASA Astrophysics Data System (ADS)
Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.
2014-12-01
Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.
A Multi-Year Data Set of Cloud Properties Derived for CERES from Aqua, Terra, and TRMM
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Sunny Sun-Mack; Trepte, Quinz Z.; Yan Chen; Brown, Richard R.; Gibson, Sharon C.; Heck, Michael L.; Dong, Xiquan; Xi, Baike
2007-01-01
The Clouds and Earth's Radiant Energy System (CERES) Project is producing a suite of cloud properties from high-resolution imagers on several satellites and matching them precisely with broadband radiance data to study the influence of clouds and radiation on climate. The cloud properties generally compare well with independent validation sources. Distinct differences are found between the CERES cloud properties and those derived with other algorithms from the same imager data. CERES products will be updated beginning in late 2006.
Changes in cloud properties over East Asia deduced from the CLARA-A2 satellite data record
NASA Astrophysics Data System (ADS)
Benas, Nikos; Fokke Meirink, Jan; Hollmann, Rainer; Karlsson, Karl-Göran; Stengel, Martin
2017-04-01
Studies on cloud properties and processes, and their role in the Earth's changing climate, have advanced during the past decades. A significant part of this advance was enabled by satellite measurements, which offer global and continuous monitoring. Lately, a new satellite-based cloud data record was released: the CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data - second edition (CLARA-A2) includes high resolution cloud macro- and micro-physical properties derived from the AVHRR instruments on board NOAA and MetOp polar orbiters. Based on this data record, an analysis of cloud property changes over East Asia during the 12-year period 2004-2015 was performed. Significant changes were found in both optical and geometric cloud properties, including increases in cloud liquid water path and top height. The Cloud Droplet Number Concentration (CDNC) was specifically studied in order to gain further insight into possible connections between aerosol and cloud processes. To this end, aerosol and cloud observations from MODIS, covering the same area and period, were included in the analysis.
NASA Technical Reports Server (NTRS)
Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.
2016-01-01
Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi
2016-04-01
Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.
On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula
NASA Astrophysics Data System (ADS)
Yousef, L. A.; Temimi, M.
2015-12-01
This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Yang, Weidong; Marshak, Alexander
2016-01-01
CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Heck, Patrick W.; Liou, Kuo-Nan; Takano, Yoshihide
1992-01-01
The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II Intensive Field Observations (IFO) were taken over southeastern Kansas between November 13 and December 7,1991, to determine cirrus cloud properties. The observations include in situ microphysical data; surface, aircraft, and satellite remote sensing; and measurements of divergence over meso- and smaller-scale areas using wind profilers. Satellite remote sensing of cloud characteristics is an essential aspect for understanding and predicting the role of clouds in climate variations. The objectives of the satellite cloud analysis during FIRE are to validate cloud property retrievals, develop advanced methods for extracting cloud information from satellite-measured radiances, and provide multiscale cloud data for cloud process studies and for verification of cloud generation models. This paper presents the initial results of cloud property analyses during FIRE-II using Geostationary Operational Environmental Satellite (GOES) data and NOAA Advanced Very High Resolution Radiometer (AVHRR) radiances.
ALMA Reveals Molecular Cloud N55 in the Large Magellanic Cloud as a Site of Massive Star Formation
NASA Astrophysics Data System (ADS)
Naslim, N.; Tokuda, K.; Onishi, T.; Kemper, F.; Wong, T.; Morata, O.; Takada, S.; Harada, R.; Kawamura, A.; Saigo, K.; Indebetouw, R.; Madden, S. C.; Hony, S.; Meixner, M.
2018-02-01
We present the molecular cloud properties of N55 in the Large Magellanic Cloud using 12CO(1–0) and 13CO(1–0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have young stellar objects (YSOs) show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the 12CO and 13CO emissions. These mass estimates lead to the conclusion that (a) the clumps are in self-gravitational virial equilibrium, and (b) the 12CO(1–0)-to-H2 conversion factor, {X}{CO}, is 6.5 × 1020 cm‑2 (K km s‑1)‑1. This CO-to-H2 conversion factor for N55 clumps is measured at a spatial scale of ∼0.67 pc, which is about two times higher than the {X}{CO} value of the Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200 {M}ȯ , separating the low-mass end from the high-mass end. The low-mass end of the 12CO mass spectrum is fitted with a power law of index 0.5 ± 0.1, while for 13CO it is fitted with a power law index 0.6 ± 0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0 ± 0.3 for 12CO, and with 2.5 ± 0.4 for 13CO. This power law behavior of the core mass function in N55 is consistent with many Galactic clouds.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
WindCam and MSPI: two cloud and aerosol instrument concepts derived from Terra/MISR heritage
NASA Astrophysics Data System (ADS)
Diner, David J.; Mischna, Michael; Chipman, Russell A.; Davis, Ab; Cairns, Brian; Davies, Roger; Kahn, Ralph A.; Muller, Jan-Peter; Torres, Omar
2008-08-01
The Multi-angle Imaging SpectroRadiometer (MISR) has been acquiring global cloud and aerosol data from polar orbit since February 2000. MISR acquires moderately high-resolution imagery at nine view angles from nadir to 70.5°, in four visible/near-infrared spectral bands. Stereoscopic parallax, time lapse among the nine views, and the variation of radiance with angle and wavelength enable retrieval of geometric cloud and aerosol plume heights, height-resolved cloud-tracked winds, and aerosol optical depth and particle property information. Two instrument concepts based upon MISR heritage are in development. The Cloud Motion Vector Camera, or WindCam, is a simplified version comprised of a lightweight, compact, wide-angle camera to acquire multiangle stereo imagery at a single visible wavelength. A constellation of three WindCam instruments in polar Earth orbit would obtain height-resolved cloud-motion winds with daily global coverage, making it a low-cost complement to a spaceborne lidar wind measurement system. The Multiangle SpectroPolarimetric Imager (MSPI) is aimed at aerosol and cloud microphysical properties, and is a candidate for the National Research Council Decadal Survey's Aerosol-Cloud-Ecosystem (ACE) mission. MSPI combines the capabilities of MISR with those of other aerosol sensors, extending the spectral coverage to the ultraviolet and shortwave infrared and incorporating high-accuracy polarimetric imaging. Based on requirements for the nonimaging Aerosol Polarimeter Sensor on NASA's Glory mission, a degree of linear polarization uncertainty of 0.5% is specified within a subset of the MSPI bands. We are developing a polarization imaging approach using photoelastic modulators (PEMs) to accomplish this objective.
The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015
NASA Astrophysics Data System (ADS)
Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.
2017-12-01
The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.
NASA Astrophysics Data System (ADS)
Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion
2017-04-01
Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic structure of the atmosphere is obtained from long-term radiosonde launches. In addition, continuous vertical profiles of temperature and humidity are provided by the microwave radiometer HATPRO. A set of active remote sensing instruments performs cloud observations at Ny-Ålesund: a ceilometer and a Doppler lidar operating since 2011 and 2013, respectively, are now complemented with a novel 94 GHz FMCW cloud radar. As a first step, the CLOUDNET algorithms, including a target categorization and classification, are applied to the observations. In this study, we will present a first analysis of cloud properties at Ny-Ålesund including for example cloud occurrence, cloud geometry (cloud base, cloud top, and thickness) and cloud type (liquid, ice, mixed-phase). The different types of clouds are set into context to the environmental conditions such as temperature, amount of water vapour, and liquid water. We also expect that the cloud properties strongly depend on the wind direction. The first results of this analysis will be also shown.
NASA Astrophysics Data System (ADS)
Tiwari, S.; Ramachandran, S.
2017-12-01
Clouds are one of the major factors that influence the Earth's radiation budget and also change the precipitation pattern. Atmospheric aerosols play a crucial role in modifying the cloud properties acting as cloud condensation nuclei (CCN). It can change cloud droplet number concentration, cloud droplet size and hence cloud albedo. Therefore, the effects of aerosol on cloud parameters are one of the most important topics in climate change study. In the present study, we investigate the spatial variability of aerosol - cloud interactions during normal monsoon years and drought years over entire Indo - Gangetic Basin (IGB) which is one of the most polluted regions of the world. Based on aerosol loading and their major emission sources, we divided the entire IGB in to six major sub regions (R1: 66 - 71 E, 24 - 29 N; R2: 71 - 76 E, 29 - 34 N; R3: 76 - 81 E, 26 - 31 N; R4: 81 - 86 E, 23 - 28 N; R5: 86 - 91 E, 22 - 27 N and R6: 91 - 96 E, 23 - 28 N). With this objective, fifteen years (2001 - 2015), daily mean aerosol optical depth, cloud parameters and rainfall data obtained from MODerate resolution Imaging Spectroradiometer (MODIS) on board of Terra satellite and Tropical Rainfall Measuring Mission (TRMM) is analyzed over each sub regions of IGB for monsoon season (JJAS : June, July, August and September months). Preliminary results suggest that a slightly change in aerosol optical depth can affect the significant contribution of cloud fraction and other cloud properties which also show a large spatial heterogeneity. During drought years, higher cloud effective radius (i.e. CER > 20µm) decreases from western to eastern IGB suggesting the enhancement in cloud albedo. Relatively week correlation between cloud optical thickness and rainfall is found during drought years than the normal monsoon years over western IGB. The results from the present study will be helpful to reduce uncertainty in understanding of aerosol - cloud interaction over IGB. Further details will be presented during the conference.
NASA Astrophysics Data System (ADS)
Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.
2017-01-01
The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.
NASA Astrophysics Data System (ADS)
Coddington, O.; Pilewskie, P.; Schmidt, S.
2013-12-01
The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori retrieval distributions. In this work, we apply this general inverse theory approach to extend our analysis of the spectrally-dependent impacts of overlying aerosols on cloud properties over a broad range in cloud optical thickness and droplet effective radius. We investigate the relative impacts of this error source and compare and contrast results to biases and uncertainties in cloud properties induced by varying surface conditions (ocean, land, snow). We perform the analysis for two different measurement accuracies (3% and 0.3%) that are typical of current passive imagers, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) [Platnick et al., 2003], and that are expected for future passive imagers, such as the HyperSpectral Imager for Climate Science (HySICS) [Kopp et al., 2010]. Coddington, O., P. Pilewskie, et al., 2010, J. Geophys. Res., 115, doi: 10.1029/2009JD012829. Haywood, J. M., S. R. Osborne, and S. J. Abel, 2004, Q. J. R. Meteorol. Soc., 130, 779-800. Kopp, G., et al., 2010, Hyperspectral Imagery Radiometry Improvements for Visible and Near-Infrared Climate Studies, paper presented at 2010 Earth Science Technology Forum, Arlington, VA, USA. Platnick, S., et al., 2003, IEEE Trans. Geosci. Remote Sens., 41(2), 459- 473.
Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.
2011-02-01
A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmosphericmore » emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.« less
Satellite Data Analysis of Impact of Anthropogenic Air Pollution on Ice Clouds
NASA Astrophysics Data System (ADS)
Gu, Y.; Liou, K. N.; Zhao, B.; Jiang, J. H.; Su, H.
2017-12-01
Despite numerous studies about the impact of aerosols on ice clouds, the role of anthropogenic aerosols in ice processes, especially over pollution regions, remains unclear and controversial, and has not been considered in a regional model. The objective of this study is to improve our understanding of the ice process associated with anthropogenic aerosols, and provide a comprehensive assessment of the contribution of anthropogenic aerosols to ice nucleation, ice cloud properties, and the consequent regional radiative forcing. As the first attempt, we evaluate the effects of different aerosol types (mineral dust, air pollution, polluted dust, and smoke) on ice cloud micro- and macro-physical properties using satellite data. We identify cases with collocated CloudSat, CALIPSO, and Aqua observations of vertically resolved aerosol and cloud properties, and process these observations into the same spatial resolution. The CALIPSO's aerosol classification algorithm determines aerosol layers as one of six defined aerosol types by taking into account the lidar depolarization ratio, integrated attenuated backscattering, surface type, and layer elevation. We categorize the cases identified above according to aerosol types, collect relevant aerosol and ice cloud variables, and determine the correlation between column/layer AOD and ice cloud properties for each aerosol type. Specifically, we investigate the correlation between aerosol loading (indicated by the column AOD and layer AOD) and ice cloud microphysical properties (ice water content, ice crystal number concentration, and ice crystal effective radius) and macro-physical properties (ice water path, ice cloud fraction, cloud top temperature, and cloud thickness). By comparing the responses of ice cloud properties to aerosol loadings for different aerosol types, we infer the role of different aerosol types in ice nucleation and the evolution of ice clouds. Our preliminary study shows that changes in the ice crystal effective radius with respect to AOD over Eastern Asia for the aerosol types of polluted continental and mineral dust look similar, implying that both air pollution and mineral dust could affect the microphysical properties of ice clouds.
NASA Astrophysics Data System (ADS)
Pelon, J.; Flamant, C.; Trouillet, V.; Flamant, P. H.
Cloud parameters derived from measurements performed with the airborne backscatter lidar LEANDRE 1 during mission 206 of the EUCREX '94 campaign are reported. A new method has been developed to retrieve the extinction coefficient at the top of the dense stratocumulus deck under scrutiny during this mission. The largest extinction values are found to be related to the highest cloud top altitude revealing the small-scale structure of vertical motions within the stratocumulus field. Cloud optical depth (COD) is estimated from extinction retrievals, as well as cloud top and cloud base altitude using nadir and zenith lidar observations, respectively. Lidar-derived CODs are compared with CODs deduced from radiometric measurements made onboard the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT/F27). A fair agreement is obtained (within 20%) for COD's larger than 10. Our results show the potential of lidar measurements to analyze cloud properties at optical depths larger than 5.
An automated cirrus classification
NASA Astrophysics Data System (ADS)
Gryspeerdt, Edward; Quaas, Johannes; Sourdeval, Odran; Goren, Tom
2017-04-01
Cirrus clouds play an important role in determining the radiation budget of the earth, but our understanding of the lifecycle and controls on cirrus clouds remains incomplete. Cirrus clouds can have very different properties and development depending on their environment, particularly during their formation. However, the relevant factors often cannot be distinguished using commonly retrieved satellite data products (such as cloud optical depth). In particular, the initial cloud phase has been identified as an important factor in cloud development, but although back-trajectory based methods can provide information on the initial cloud phase, they are computationally expensive and depend on the cloud parametrisations used in re-analysis products. In this work, a classification system (Identification and Classification of Cirrus, IC-CIR) is introduced. Using re-analysis and satellite data, cirrus clouds are separated in four main types: frontal, convective, orographic and in-situ. The properties of these classes show that this classification is able to provide useful information on the properties and initial phase of cirrus clouds, information that could not be provided by instantaneous satellite retrieved cloud properties alone. This classification is designed to be easily implemented in global climate models, helping to improve future comparisons between observations and models and reducing the uncertainty in cirrus clouds properties, leading to improved cloud parametrisations.
Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band
NASA Technical Reports Server (NTRS)
Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.
2009-01-01
Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases
NASA Astrophysics Data System (ADS)
Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.
2016-12-01
he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.
Global Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Riedi, Jerome C.; Baum, Bryan A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.
Interannual variability of high ice cloud properties over the tropics
NASA Astrophysics Data System (ADS)
Tamura, S.; Iwabuchi, H.
2015-12-01
The El Niño/Southern Oscillation (ENSO) affects atmospheric conditions and cloud physical properties such as cloud fraction (CF) and cloud top height (CTH). However, an impact of the ENSO on physical properties in high-ice cloud is not well known. Therefore, this study attempts to reveal relationship between variability of ice cloud physical properties and ENSO. Ice clouds are inferred with the multiband IR method in this study. Ice clouds are categorized in terms of cloud optical thickness (COT) as thin (0.1< COT <0.3), opaque (0.3< COT <3.6), thick (3.6< COT <11), and deep convective (DC) (11< COT) clouds, and relationship between ENSO and interannual variability of cloud physical properties is investigated for each category during the period from January 2003 to December 2014. The deseasonalized anomalies of CF and CTH in all categories correlate well with Niño3.4 index, with positive anomaly over the eastern Pacific and negative anomaly over the western Pacific during El Niño condition. However, the global distribution of these correlation coefficients is different by cloud categories. For example, CF of DC correlates well with Niño3.4 index over the convergence zone, while, that of thin cloud shows high correlation extending to high latitude from convergence zone, suggesting a connection with cloud formation. The global distributions of average rate of change differ by cloud category, because the different associate with ENSO and gradual trend toward La Niña condition had occurred over the analysis period. In this conference, detailed results and relationship between variability of cloud physical properties and atmospheric conditions will be shown.
PROGRA2 experiment: new results for dust clouds and regoliths
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.
With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.
SeReNA Project: studying aerosol interactions with cloud microphysics in the Amazon Basin
NASA Astrophysics Data System (ADS)
Correia, A. L.; Catandi, P. B.; Frigeri, F. F.; Ferreira, W. C.; Martins, J.; Artaxo, P.
2012-12-01
Cloud microphysics and its interaction with aerosols is a key atmospheric process for weather and climate. Interactions between clouds and aerosols can impact Earth's radiative balance, its hydrological and energetic cycles, and are responsible for a large fraction of the uncertainty in climatic models. On a planetary scale, the Amazon Basin is one of the most significant land sources of moisture and latent heat energy. Moreover, every year this region undergoes mearked seasonal shifts in its atmospheric state, transitioning from clean to heavily polluted conditions due to the occurrence of seasonal biomass burning fires, that emit large amounts of smoke to the atmosphere. These conditions make the Amazon Basin a special place to study aerosol-cloud interactions. The SeReNA Project ("Remote sensing of clouds and their interaction with aerosols", from the acronym in Portuguese, @SerenaProject on Twitter) is an ongoing effort to experimentally investigate the impact of aerosols upon cloud microphysics in Amazonia. Vertical profiles of droplet effective radius of water and ice particles, in single convective clouds, can be derived from measurements of the emerging radiation on cloud sides. Aerosol optical depth, cloud top properties, and meteorological parameters retrieved from satellites will be correlated with microphysical properties derived for single clouds. Maps of cloud brightness temperature will allow building temperature vs. effective radius profiles for hydrometeors in single clouds. Figure 1 shows an example extracted from Martins et al. (2011), illustrating a proof-of-concept for the kind of result expected within the framework for the SeReNA Project. The results to be obtained will help foster the quantitative knowledge about interactions between aerosols and clouds in a microphysical level. These interactions are a fundamental process in the context of global climatic changes, they are key to understanding basic processes within clouds and how aerosols can influence them. Reference: Martins et al. (2011) ACP, v.11, p.9485-9501. Available at: http://bit.ly/martinspaper Figure 1. Brightness temperature (left panel) and thermodynamic phase (right) of hydrometeors in the convective cloud shown in the middle panel. Extracted from Martins et al. (2011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien
Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid-containing cloud fraction at Eureka than at Barrow; the differences can be attributed to the generally colder and drier conditions at Eureka relative to Barrow.« less
Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien; ...
2017-05-16
Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid-containing cloud fraction at Eureka than at Barrow; the differences can be attributed to the generally colder and drier conditions at Eureka relative to Barrow.« less
Life Cycle of Tropical Convection and Anvil in Observations and Models
NASA Astrophysics Data System (ADS)
McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.
2011-12-01
Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.
NASA Astrophysics Data System (ADS)
Suresh Raju, C.; Rajeev, K.; Parameswaran, K.
The climatic impact of clouds and their role in energy and radiation budget of earth-atmosphere system largely depends on the cloud properties and its altitude of occurrence. The quantitative estimates of spatio-temporal variations of cloud fraction and cloud properties are limited over the tropical Indian Oceanic region. Cloudiness and its radiative properties over this region is significantly different from other tropical regions indicating the need for their detailed studies. This has an important role in the Indian summer monsoon which is also a part of the global climate system. Daily, monthly, seasonal and yearly mean frequency of occurrence of total and high altitude clouds are derived from the brightness temperature (TB) obtained from NOAA14-AVHRR data during the period of 1996-1999, and their spatio-temporal variations are investigated. The inversion algorithm used here is similar to the CLIVAR algorithm applied by ISCCP. All clouds with TB quad < 250 K are classified as high clouds, as their altitude of occurrence will be above ˜ 6 km. The clouds above ˜ 10 km (with TB<220K) are also classified separately to study the deep convective events. The geographical distribution of monthly, seasonal and annual mean frequency of occurrence of total cloud (Ftot) and high cloud (Fh) are remarkably consistent from year to year, though the absolute magnitude of the frequency of occurrence can vary by as much as 30%. The highest annual variations in Ftot and Fh are observed near the eastern parts of Bay of Bengal. The average amplitude of the annual cycle in Ftot in this region is ˜ 40%. During the south-west monsoon season, the monthly mean of Ftot shows very large spatial gradients in the western Arabian Sea. In July, the Ftot varies from less than 20% near Arabian coastal regions to more than 75% at a location 10 degrees east of the Arabian coast. Similar gradients in Ftot are also observed between the equator and 10 S. One of the very striking features in Ftot during this period is the minimum cloudiness observed around Srilanka during the Indian summer monsoon season, which is more discernable in high clouds. The cloud occurrence over the Indian subcontinent is less than 20% during the period of December to March. The presence of double inter tropical convergence zone (ITCZ), characterized by large cloud bands that are confined in latitude and elongated in longitude, are observed over Indian Ocean during November to March period, though the frequency of occurrence of such events is very small.
Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky;
2015-01-01
The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.
Assessment of 3D cloud radiative transfer effects applied to collocated A-Train data
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Suzuki, K.; Toshiro, I.; Nakajima, T. Y.; Okamoto, H.
2017-12-01
This study investigates broadband radiative fluxes in the 3D cloud-laden atmospheres using a 3D radiative transfer (RT) model, MCstar, and the collocated A-Train cloud data. The 3D extinction coefficients are constructed by a newly devised Minimum cloud Information Deviation Profiling Method (MIDPM) that extrapolates CPR radar profiles at nadir into off-nadir regions within MODIS swath based on collocated information of MODIS-derived cloud properties and radar reflectivity profiles. The method is applied to low level maritime water clouds, for which the 3D-RT simulations are performed. The radiative fluxes thus simulated are compared to those obtained from CERES as a way to validate the MIDPM-constructed clouds and our 3D-RT simulations. The results show that the simulated SW flux agrees with CERES values within 8 - 50 Wm-2. One of the large biases occurred by cyclic boundary condition that was required to pose into our computational domain limited to 20km by 20km with 1km resolution. Another source of the bias also arises from the 1D assumption for cloud property retrievals particularly for thin clouds, which tend to be affected by spatial heterogeneity leading to overestimate of the cloud optical thickness. These 3D-RT simulations also serve to address another objective of this study, i.e. to characterize the "observed" specific 3D-RT effects by the cloud morphology. We extend the computational domain to 100km by 100km for this purpose. The 3D-RT effects are characterized by errors of existing 1D approximations to 3D radiation field. The errors are investigated in terms of their dependence on solar zenith angle (SZA) for the satellite-constructed real cloud cases, and we define two indices from the error tendencies. According to the indices, the 3D-RT effects are classified into three types which correspond to different simple three morphologies types, i.e. isolated cloud type, upper cloud-roughened type and lower cloud-roughened type. These 3D-RT effects linked to cloud morphologies are also visualized in the form of the RGB composite maps constructed from MODIS/Aqua three channels, which show cloud optical thickness and cloud height information. Such a classification offers a novel insight into 3D-RT effect in a manner that directly relates to cloud morphology.
CLAAS: the CM SAF cloud property dataset using SEVIRI
NASA Astrophysics Data System (ADS)
Stengel, M.; Kniffka, A.; Meirink, J. F.; Lockhoff, M.; Tan, J.; Hollmann, R.
2013-10-01
An 8 yr record of satellite based cloud properties named CLAAS (CLoud property dAtAset using SEVIRI) is presented, which was derived within the EUMETSAT Satellite Application Facility on Climate Monitoring. The dataset is based on SEVIRI measurements of the Meteosat Second Generation satellites, of which the visible and near-infrared channels were intercalibrated with MODIS. Including latest development components of the two applied state-of-the-art retrieval schemes ensure high accuracy in cloud detection, cloud vertical placement and microphysical cloud properties. These properties were further processed to provide daily to monthly averaged quantities, mean diurnal cycles and monthly histograms. In particular the collected histogram information enhance the insight in spatio-temporal variability of clouds and their properties. Due to the underlying intercalibrated measurement record, the stability of the derived cloud properties is ensured, which is exemplarily demonstrated for three selected cloud variables for the entire SEVIRI disk and a European subregion. All data products and processing levels are introduced and validation results indicated. The sampling uncertainty of the averaged products in CLAAS is minimized due to the high temporal resolution of SEVIRI. This is emphasized by studying the impact of reduced temporal sampling rates taken at typical overpass times of polar-orbiting instruments. In particular cloud optical thickness and cloud water path are very sensitive to the sampling rate, which in our study amounted to systematic deviations of over 10% if only sampled once a day. The CLAAS dataset facilitates many cloud related applications at small spatial scales of a few kilometres and short temporal scales of a few hours. Beyond this, the spatiotemporal characteristics of clouds on diurnal to seasonal, but also on multi-annual scales, can be studied.
CLAAS: the CM SAF cloud property data set using SEVIRI
NASA Astrophysics Data System (ADS)
Stengel, M. S.; Kniffka, A. K.; Meirink, J. F. M.; Lockhoff, M. L.; Tan, J. T.; Hollmann, R. H.
2014-04-01
An 8-year record of satellite-based cloud properties named CLAAS (CLoud property dAtAset using SEVIRI) is presented, which was derived within the EUMETSAT Satellite Application Facility on Climate Monitoring. The data set is based on SEVIRI measurements of the Meteosat Second Generation satellites, of which the visible and near-infrared channels were intercalibrated with MODIS. Applying two state-of-the-art retrieval schemes ensures high accuracy in cloud detection, cloud vertical placement and microphysical cloud properties. These properties were further processed to provide daily to monthly averaged quantities, mean diurnal cycles and monthly histograms. In particular, the per-month histogram information enhances the insight in spatio-temporal variability of clouds and their properties. Due to the underlying intercalibrated measurement record, the stability of the derived cloud properties is ensured, which is exemplarily demonstrated for three selected cloud variables for the entire SEVIRI disc and a European subregion. All data products and processing levels are introduced and validation results indicated. The sampling uncertainty of the averaged products in CLAAS is minimized due to the high temporal resolution of SEVIRI. This is emphasized by studying the impact of reduced temporal sampling rates taken at typical overpass times of polar-orbiting instruments. In particular, cloud optical thickness and cloud water path are very sensitive to the sampling rate, which in our study amounted to systematic deviations of over 10% if only sampled once a day. The CLAAS data set facilitates many cloud related applications at small spatial scales of a few kilometres and short temporal scales of a~few hours. Beyond this, the spatiotemporal characteristics of clouds on diurnal to seasonal, but also on multi-annual scales, can be studied.
NASA Astrophysics Data System (ADS)
van Dop, Han; Wilson, Keith M.
2006-11-01
The cloud albedo is a crucial parameter in radiation budget studies, and is one of the main forcings in climate. We have designed and made a device, Diram (directional radiance distribution measurement device), which not only measures reflection and transmission of solar radiation through clouds, but which also determines the radiance distribution. The construction contains 42 sensors, consisting of a collimation system and a detector, which are mounted in two domes (21 in each). The collimators reduce the field of view of each sensor to ˜7°. The domes were mounted on top and below of the Meteo France Merlin IV research aircraft. The 42 signals were continuously logged with a frequency of 10 Hz during a number of flights in the framework of the Baltex Bridge-2 campaign at Cabauw (The Netherlands) in May 2003. The Diram instrument provided radiances during in situ observations of cumulus and (broken) stratocumulus clouds and detected anisotropic effects in solar radiation scattered by clouds which are due to different cloud geometries and which are related to microphysical cloud properties. Microphysical cloud properties were obtained from the Gerber PVM100A optical sensor aboard the aircraft. Liquid water content and particle surface area were logged with a frequency of 200 Hz. Data have been collected from a total of 10 days in different weather conditions (clear sky, broken cumulus, stratocumulus and multilayered cloud). A clear sky test of the Diram indicated that the device was able to reproduce the Rayleigh scattering pattern. During flights in stratocumulus fields, strongly anisotropic patterns were observed. The DIRAM observations confirm that in thin clouds a strong preference for forward scattering is observed in the transmitted radiation field while for thicker clouds the pattern becomes more isotropic, with a slightly brighter centre relative to the limb direction.
NASA Astrophysics Data System (ADS)
Diao, M.; Jensen, J. B.
2017-12-01
Mixed-phase and ice clouds play very important roles in regulating the atmospheric radiation over the Southern Ocean. Previously, in-situ observations over this remote region are limited, and a few of the available observation-based analyses mainly focused on the cloud microphysical properties. The relationship between macroscopic and microphysical properties for both mixed-phase and ice clouds have not been thoroughly investigated based on in-situ observations. In this work, the aircraft-based observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) field campaign (Jan - Feb 2016) will be used to analyze the cloud macroscopic properties on the microscale to mesoscale, including the distributions of cloud chord length, the patchiness of clouds, and the spatial ratios of adjacent cloud segments in mixed phase and pure ice phase. In addition, these macroscopic properties will be analyzed in relation to the relative humidity (RH) background, such as the average and maximum RH inside clouds, as well as the probability density function (PDF) of in-cloud RH. We found that the clouds with larger horizontal scales are often associated with larger magnitudes of average and maximum in-cloud RH values. In addition, when decomposing the contributions from the spatial variabilities of water vapor and temperature to the variability of RH, the water vapor heterogeneities are found to have the most dominant impact on RH variability. Sensitivities of the cloud macroscopic and microphysical properties to the horizontal resolutions of the observations will be shown, including the impacts on the patchiness of clouds, cloud fraction, frequencies of ice supersaturation, and the PDFs of RH. These sensitivity analyses will provide useful information on the comparisons among multi-scale observations and simulations.
NASA Astrophysics Data System (ADS)
Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.
2017-12-01
Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.
NASA Astrophysics Data System (ADS)
Fuchs, Julia; Cermak, Jan; Andersen, Hendrik
2017-04-01
This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.
NASA Astrophysics Data System (ADS)
Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Winker, David M.; Plougonven, Riwal
2017-12-01
Measurements of the longwave cloud radiative effect (LWCRE) at the top of the atmosphere assess the contribution of clouds to the Earth warming but do not quantify the cloud property variations that are responsible for the LWCRE variations. The CALIPSO space lidar observes directly the detailed profile of cloud, cloud opacity, and cloud cover. Here we use these observations to quantify the influence of cloud properties on the variations of the LWCRE observed between 2008 and 2015 in the tropics and at global scale. At global scale, the method proposed here gives good results except over the Southern Ocean. We find that the global LWCRE variations observed over ocean are mostly due to variations in the opaque cloud properties (82%); transparent cloud columns contributed 18%. Variation of opaque cloud cover is the first contributor to the LWCRE evolution (58%); opaque cloud temperature is the second contributor (28%).
NASA Astrophysics Data System (ADS)
Khatri, P.; Iwabuchi, H.; Saito, M.
2017-12-01
High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.
NASA Astrophysics Data System (ADS)
Hu, J.; Rosenfeld, D.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E. R.; Zhang, R.
2017-12-01
Here we apply the cell tracking methodology, shown in our companion poster, to quantifying factors affecting the vigor and the time-height evolution of hydrometeors and electrification properties of convective cells. Benefitting from the Dual-polarimetric NEXRAD radar network, we composite more than 5000 well-tracked cells among three radars (at Houston, Lubbock and Oklahoma City), stratified by CCN, CAPE and land/sea locations. The analyzed cell properties include Z, ZDR, Kdp, and ρhv, Dm (raindrop diameter) and Nw (raindrop concentration) by the algorithm of Bringi et al. (2003). Lightning Mapping Array (LMA) data is also included in the analysis, which provides a 3D structure of lightning occurrence and RF power. The contrasting CCN conditions over marine, land, pristine and polluted areas are identified based on the satellite retrieval technique described in Rosenfeld et al. (2016). The results show that more CCN are associated with: Increased echo top height, manifesting the invigoration effect. Enhanced reflectivities, especially above the freezing level at around 4.5 km. Raindrop sizes at the initial stage increase at the expense of their concentrations, due to the smaller cloud droplets and suppressed coalescence. Larger propensity for hail. Lightning sources increase with greater CCN concentration and is likely due to the delayed warm rain process and enhanced mixed phase process under more CCN condition, when activated CCN into cloud droplets is too high (> 1000 cm-3) the glaciation is delayed too much and leave little ice at lower levels and thus decrease lightning activity. Land pristine clouds have fewer lightning sources than polluted clouds. Marine pristine clouds seldom have lightning Increased CAPE had a similar effect to the effect of added CCN. The cloud tracking and properties are obtained by a new methodology of Multi-Cell Identification and Tracking (MCIT) algorithm (Hu et al, 2017), with details about the algorithm to be found in the author's accompanying poster session. References [1] Bringi, V. et al., J. Atmos. Sci., 60, 354-365. (2003) [2] Rosenfeld, D. et al., Proc. Natl. Acad. Sci., 113, 5828-5834. (2016) [3] Hu, J. et al., in preparation.
Theoretical interpretation of the Venus 1.05-micron CO2 band and the Venus 0.8189-micron H2O line.
NASA Technical Reports Server (NTRS)
Regas, J. L.; Giver, L. P.; Boese, R. W.; Miller, J. H.
1972-01-01
The synthetic-spectrum technique was used in the analysis. The synthetic spectra were constructed with a model which takes into account both isotropic scattering and the inhomogeneity in the Venus atmosphere. The Potter-Hansen correction factor was used to correct for anisotropic scattering. The synthetic spectra obtained are, therefore, the first which contain all the essential physics of line formation. The results confirm Potter's conclusion that the Venus cloud tops resemble terrestrial cirrus or stratus clouds in their scattering properties.
Cloud Properties and Radiative Heating Rates for TWP
Comstock, Jennifer
2013-11-07
A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.
NASA Astrophysics Data System (ADS)
Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.
2016-12-01
Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.
Biosignatures as revealed by spectropolarimetry of Earthshine.
Sterzik, Michael F; Bagnulo, Stefano; Palle, Enric
2012-02-29
Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700 nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.
The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud
NASA Astrophysics Data System (ADS)
Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.
2012-08-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle & Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle & Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root {\\cal N} statistical fluctuations, increasing with H.
NASA Astrophysics Data System (ADS)
Liu, Yuqin; de Leeuw, Gerrit; Kerminen, Veli-Matti; Zhang, Jiahua; Zhou, Putian; Nie, Wei; Qi, Ximeng; Hong, Juan; Wang, Yonghong; Ding, Aijun; Guo, Huadong; Krüger, Olaf; Kulmala, Markku; Petäjä, Tuukka
2017-05-01
Aerosol effects on low warm clouds over the Yangtze River Delta (YRD, eastern China) are examined using co-located MODIS, CALIOP and CloudSat observations. By taking the vertical locations of aerosol and cloud layers into account, we use simultaneously observed aerosol and cloud data to investigate relationships between cloud properties and the amount of aerosol particles (using aerosol optical depth, AOD, as a proxy). Also, we investigate the impact of aerosol types on the variation of cloud properties with AOD. Finally, we explore how meteorological conditions affect these relationships using ERA-Interim reanalysis data. This study shows that the relation between cloud properties and AOD depends on the aerosol abundance, with a different behaviour for low and high AOD (i.e. AOD < 0.35 and AOD > 0.35). This applies to cloud droplet effective radius (CDR) and cloud fraction (CF), but not to cloud optical thickness (COT) and cloud top pressure (CTP). COT is found to decrease when AOD increases, which may be due to radiative effects and retrieval artefacts caused by absorbing aerosol. Conversely, CTP tends to increase with elevated AOD, indicating that the aerosol is not always prone to expand the vertical extension. It also shows that the COT-CDR and CWP (cloud liquid water path)-CDR relationships are not unique, but affected by atmospheric aerosol loading. Furthermore, separation of cases with either polluted dust or smoke aerosol shows that aerosol-cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust, which is ascribed to the higher absorption efficiency of smoke than dust. The variation of cloud properties with AOD is analysed for various relative humidity and boundary layer thermodynamic and dynamic conditions, showing that high relative humidity favours larger cloud droplet particles and increases cloud formation, irrespective of vertical or horizontal level. Stable atmospheric conditions enhance cloud cover horizontally. However, unstable atmospheric conditions favour thicker and higher clouds. Dynamically, upward motion of air parcels can also facilitate the formation of thicker and higher clouds. Overall, the present study provides an understanding of the impact of aerosols on cloud properties over the YRD. In addition to the amount of aerosol particles (or AOD), evidence is provided that aerosol types and ambient environmental conditions need to be considered to understand the observed relationships between cloud properties and AOD.
Optical properties of aerosol contaminated cloud derived from MODIS instrument
NASA Astrophysics Data System (ADS)
Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.
2016-04-01
The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu
2016-01-01
Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).
Cloud-cloud collision in the Galactic center 50 km s-1 molecular cloud
NASA Astrophysics Data System (ADS)
Tsuboi, Masato; Miyazaki, Atsushi; Uehara, Kenta
2015-12-01
We performed a search of star-forming sites influenced by external factors, such as SNRs, H II regions, and cloud-cloud collisions (CCCs), to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO v = 0, J = 2-1, H13CO+J = 1-0, and CS J = 1-0 emission lines obtained with the Nobeyama 45 m telescope. We found a half-shell-like feature (HSF) with a high integrated line intensity ratio of ∫TB(SiO v = 0, J = 2-1)dv/∫TB(H13CO+J = 1-0)dv ˜ 6-8 in the 50 km s-1 molecular cloud; the HSF is a most conspicuous molecular cloud in the region and harbors an active star-forming site where several compact H II regions can be seen. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF can be also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature originates from a CCC. We analyzed the CS J = 1-0 emission line data obtained with the Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to ˜2500 M⊙, although the CMF of the non-CCC region reaches the upper limit of ˜1500 M⊙. Most massive molecular cores with Mgas > 750 M⊙ are located only around the ridge of the HSF and adjoin the compact H II region. These may be a sign of massive star formation induced by CCCs in the Galactic center region.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Loehnert, U.; Maahn, M.
2015-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.
2014-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Giant molecular cloud scaling relations: the role of the cloud definition
NASA Astrophysics Data System (ADS)
Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.
2016-01-01
We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.
Correlations among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation
NASA Technical Reports Server (NTRS)
Reichardt, J.; Reichardt, S.; Hess, M.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)
2002-01-01
Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in January 1997 reveal a strong positive correlation between the particle optical properties, specifically depolarization ratio delta(sub par) and extinction- to-backscatter (lidar) ratio S, for delta(sub par) less than approximately 40%, and an anti-correlation for delta(sub par) greater than approximately 40%. Over the length of the measurements the particle properties vary systematically. Initially, delta (sub par) approximately equals 60% and S approximately equals 10sr are observed. Then, with decreasing delta(sub par), S first increases to approximately 27sr (delta(sub par) approximately equals 40%) before decreasing to values around 10sr again (delta(sub par) approximately equals 20%). The analysis of lidar humidity and radiosonde temperature data shows that the measured optical properties stem from scattering by dry solid ice particles, while scattering by supercooled droplets, or by wetted or subliming ice particles can be excluded. For the microphysical interpretation of the lidar measurements, ray-tracing computations of particle scattering properties have been used. The comparison with the theoretical data suggests that the observed cirrus data can be interpreted in terms of size, shape, and, under the assumption that the lidar measurements of consecutive cloud segments can be mapped on the temporal development of a single cloud parcel moving along its trajectory, growth of the cirrus particles: Near the cloud top in the early stage of cirrus development, light scattering by nearly isometric particles that have the optical characteristics of hexagonal columns (short, column-like particles) is dominant. Over time the ice particles grow, and as the cloud base height extends to lower altitudes characterized by warmer temperatures they become morphologically diverse. For large S and depolarization values of approximately 40%, the scattering contributions of column- and plate-like particles are roughly the same. In the lower ranges of the cirrus clouds, light scattering is predominantly by plate-like ice particles. This interpretation assumes random orientation of the cirrus particles. Simulations with a simple model suggest, however, that the positive correlation between S and delta(sub par) which is observed for depolarization ratios less than 40% mainly at low cloud altitudes, can be alternatively explained by horizontal alignment of a fraction of the cirrus particle population.
Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Hobbs, P. V.; Kirchoff, V. W. J. H.; Artaxo, P.; Remer, L. A.; Holben, B. N.; King, M. D.; Ward, D. E.; Prins, E. M.; Longo, K. M.;
1998-01-01
The Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project took place in the Brazilian Amazon and cerrado regions in August-September 1995 as a collaboration between Brazilian and American scientists. SCAR-B, a comprehensive experiment to study biomass burning, emphasized measurements of surface biomass, fires, smoke aerosol and trace gases, clouds, and radiation. their climatic effects, and remote sensing from aircraft and satellites. It included aircraft and ground-based in situ measurements of smoke emission factors and the compositions, sizes, and optical properties of the smoke particles; studies of the formation of ozone; the transport and evolution of smoke; and smoke interactions with water vapor and clouds. This overview paper introduces SCAR-B and summarizes some of the main results obtained so far. (1) Fires: measurements of the size distribution of fires, using the 50 m resolution MODIS Airborne Simulator, show that most of the fires are small (e.g. 0.005 square km), but the satellite sensors (e.g., AVHRR and MODIS with I km resolution) can detect fires in Brazil which are responsible for 60-85% of the burned biomass: (2) Aerosol: smoke particles emitted from fires increase their radius by as much as 60%, during their first three days in the atmosphere due to condensation and coagulation, reaching a mass median radius of 0.13-0.17 microns: (3) Radiative forcing: estimates of the globally averaged direct radiative forcing due to smoke worldwide, based on the properties of smoke measured in SCAR-B (-O.l to -0.3 W m(exp -2)), are smaller than previously modeled due to a lower single-scattering albedo (0.8 to 0.9), smaller scattering efficiency (3 square meters g(exp -2) at 550 nm), and low humidification factor; and (4) Effect on clouds: a good relationship was found between cloud condensation nuclei and smoke volume concentrations, thus an increase in the smoke emission is expected to affect cloud properties. In SCAR-B, new techniques were developed for deriving the absorption and refractive index of smoke from ground-based remote sensing. Future spaceborne radiometers (e.g., MODIS on the Earth Observing System), simulated on aircraft, proved to be very useful for monitoring smoke properties, surface properties, and the impacts of smoke on radiation and climate.
Analytic treatment of charge cloud overlaps: an improvement of the tomographic atom probe efficiency
NASA Astrophysics Data System (ADS)
Bas, P.; Bostel, A.; Grancher, G.; Deconihout, B.; Blavette, D.
1996-03-01
Although reliable position and composition data are obtained with the Tomographic Atom Probe, the procedure of position calculation by charge centroiding fails when the detector receives two or more ions with close spaced positions and the same mass-to-charge ratio. As the charge clouds of the ions overlap, they form a unique charge pattern on the multianode detector. Only one atom is represented and its position is biased. In order to estimate real positions, we have developed a correction method. The spatial distribution of charges inside a cloud issued from one impact is modelled by a Gaussian law. The particular properties of the Gaussian enable the calculation of exact positions of the two impacts of the overlapped charge patterns and charges of corresponding clouds. The calculation may be generalized for more than two overlapped clouds. The method was tested on a plane-by-plane analysis of a fully ordered Cu 3Au alloy performed on a (100) pole.
Validation of Cloud Properties From Multiple Satellites Using CALIOP Data
NASA Technical Reports Server (NTRS)
Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing
2016-01-01
The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.
Optical cloud detection from a disposable airborne sensor
NASA Astrophysics Data System (ADS)
Nicoll, Keri; Harrison, R. Giles; Brus, David
2016-04-01
In-situ measurement of cloud droplet microphysical properties is most commonly made from manned aircraft platforms due to the size and weight of the instrumentation, which is both costly and typically limited to sampling only a few clouds. This work describes the development of a small, lightweight (<200g), disposable, optical cloud sensor which is designed for use on routine radiosonde balloon flights and also small unmanned aerial vehicle (UAV) platforms. The sensor employs the backscatter principle, using an ultra-bright LED as the illumination source, with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. During recent field tests in Pallas, Finland, the retrieved optical sensor signal has been compared with the DMT Cloud and Aerosol Spectrometer (CAS) which measures cloud droplets in the size range from 0.5 to 50 microns. Both sensors were installed at the hill top observatory of Sammaltunturi during a field campaign in October and November 2015, which experienced long periods of immersion inside cloud. Preliminary analysis shows very good agreement between the CAPS and the disposable cloud sensor for cloud droplets >5micron effective diameter. Such data and calibration of the sensor will be discussed here, as will simultaneous balloon launches of the optical cloud sensor through the same cloud layers.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
A CERES-like Cloud Property Climatology Using AVHRR Data
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.
2015-12-01
Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.
Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation
NASA Technical Reports Server (NTRS)
Platnick, Steven E.
2011-01-01
The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.
Using satellites and global models to investigate aerosol-cloud interactions
NASA Astrophysics Data System (ADS)
Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.
2017-12-01
Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.
NASA Astrophysics Data System (ADS)
Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.
2009-04-01
The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction spectroscopy. In conjunction with ex situ single particle imaging and light scattering measurements the relation between the overall extinction and depolarization properties of the ice clouds and the morphological details of the constituent ice crystals are investigated. In our contribution we will concentrate on the parameterization of homogeneous and heterogeneous ice formation processes under various atmospheric conditions and on the optical properties of the ice crystals produced under these conditions. First attempts to parameterize the observations will be presented.
The interpretation of remotely sensed cloud properties from a model paramterization perspective
NASA Technical Reports Server (NTRS)
HARSHVARDHAN; Wielicki, Bruce A.; Ginger, Kathryn M.
1994-01-01
A study has been made of the relationship between mean cloud radiative properties and cloud fraction in stratocumulus cloud systems. The analysis is of several Land Resources Satellite System (LANDSAT) images and three hourly International Satellite Cloud Climatology Project (ISCCP) C-1 data during daylight hours for two grid boxes covering an area typical of a general circulation model (GCM) grid increment. Cloud properties were inferred from the LANDSAT images using two thresholds and several pixel resolutions ranging from roughly 0.0625 km to 8 km. At the finest resolution, the analysis shows that mean cloud optical depth (or liquid water path) increases somewhat with increasing cloud fraction up to 20% cloud coverage. More striking, however, is the lack of correlation between the two quantities for cloud fractions between roughly 0.2 and 0.8. When the scene is essentially overcast, the mean cloud optical tends to be higher. Coarse resolution LANDSAT analysis and the ISCCP 8-km data show lack of correlation between mean cloud optical depth and cloud fraction for coverage less than about 90%. This study shows that there is perhaps a local mean liquid water path (LWP) associated with partly cloudy areas of stratocumulus clouds. A method has been suggested to use this property to construct the cloud fraction paramterization in a GCM when the model computes a grid-box-mean LWP.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark
2006-01-01
Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.
NASA Astrophysics Data System (ADS)
Urbanek, Benedikt; Groß, Silke; Wirth, Martin
2017-04-01
Cirrus clouds impose high uncertainties on weather and climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud optical, microphysical, and radiative properties change as the cirrus evolves. To gain better understanding of cirrus clouds, their optical and microphysical properties and their changes with cirrus cloud evolution the ML-CIRRUS campaign was conducted in March and April 2014. Measurements with a combined in-situ and remote sensing payload were performed with the German research aircraft HALO based in Oberpfaffenhofen. 16 research flights with altogether 88 flight hours were performed over the North-Atlantic, western and central Europe to probe different cirrus cloud regimes and cirrus clouds at different stages of evolution. One of the key remotes sensing instruments during ML-CIRRUS was the airborne differential absorption and high spectral lidar system WALES. It measures the 2-dimensional distribution of water vapor inside and outside of cirrus clouds as well as the optical properties of the clouds. Bases on these airborne lidar measurements a novel classification scheme to derive the stage of cirrus cloud evolution was developed. It identifies regions of ice nucleation, particle growth by deposition of water vapor, and ice sublimation. This method is used to investigate differences in the distribution and value of optical properties as well as in the distribution of water vapor and relative humidity depending on the stage of evolution of the cloud. We will present the lidar based classification scheme and its application on a wave driven cirrus cloud case, and we will show first results of the dependence of optical cloud properties and relative humidity distributions on the determined stage of evolution.
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne
2011-08-01
We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 μm modal particle size and (2) clouds made of 1 μm sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 MJ , 6-13 MJ , and 3-11 MJ , respectively, and imply coeval ages between ~10 and ~150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.
Use of Field Observations for Understanding Controls of Polar Low Cloud Microphysical Properties
NASA Astrophysics Data System (ADS)
McFarquhar, G. M.
2016-12-01
Although arctic clouds have a net warming effect on the Arctic surface, their radiative effect is sensitive to cloud microphysical properties, namely the sizes, phases and shapes of cloud particles. Such cloud properties are influenced by the numbers, compositions and sizes of aerosols, meteorological conditions, and surface characteristics. Uncertainty in representing cloud-aerosol interactions in varying environmental conditions and associated feedbacks is a major cause in our lack of understanding of why the Arctic is warming faster than the rest of the Earth. Here, the understanding of cloud-aerosol interactions gained from past arctic field experiments is reviewed. Such studies have characterized the structure of single-layer mixed phase clouds that are ubiquitous in the Arctic and investigated different aerosol indirect effect mechanisms acting in these clouds. But, it is still unknown what controls the amount of supercooled water in arctic clouds (especially in complex frequently occurring multi-layer clouds), how probability distributions of cloud properties and radiative heating and their subsequent impact on temperature profiles and underlying snow and sea ice cover vary with aerosol loading and composition in different surface and meteorological conditions, how the composition and concentration of arctic aerosols and cloud microphysical properties vary annually and interannually, and how cloud-aerosol-radiative interactions can be better represented in models with varying temporal and spatial scales. These needs can be addressed in two ways. First, there is a need for comprehensive and routine aircraft, UAV and tethered balloon measurements in the presence of ground, air or space-based remote sensors over a variety of surface and meteorological conditions. Second, planned observational campaigns (the Measurements of Aerosols Radiation and Clouds over the Southern Oceans MARCUS and the Southern Oceans Cloud Radiation Transport Experimental Study SOCRATES) should provide cloud, aerosol, radiative and precipitation observations over the pristine and continually cloudy Southern Oceans that are remote from natural and continental anthropogenic aerosol sources should provide a process-oriented understanding of cloud-aerosol interactions in liquid and ice clouds.
Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia
NASA Astrophysics Data System (ADS)
Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter
2010-05-01
In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the aerosol prior to convective development and the microphysical properties of convective clouds in the Asir region of Saudi Arabia.
NASA Astrophysics Data System (ADS)
Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.
2018-03-01
It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.
NASA Astrophysics Data System (ADS)
Krishnakumar, Vasudevannair; Satyanarayana, Malladi; Radhakrishnan, Soman R.; Dhaman, Reji K.; Jayeshlal, Glory Selvan; Motty, Gopinathan Nair S.; Pillai, Vellara P. Mahadevan; Raghunath, Karnam; Ratnam, Madineni Venkat; Rao, Duggirala Ramakrishna; Sudhakar, Pindlodi
2014-01-01
High altitude cirrus clouds are composed mainly of ice crystals with a variety of sizes and shapes. They have a large influence on Earth's energy balance and global climate. Recent studies indicate that the formation, dissipation, life time, optical, and micro-physical properties are influenced by the dynamical conditions of the surrounding atmosphere like background aerosol, turbulence, etc. In this work, an attempt has been made to quantify some of these characteristics by using lidar and mesosphere-stratosphere-troposphere (MST) radar. Mie lidar and 53 MHz MST radar measurements made over 41 nights during the period 2009 to 2010 from the tropical station, Gadanki, India (13.5°N, 79.2°E). The optical and microphysical properties along with the structure and dynamics of the cirrus are presented as observed under different atmospheric conditions. The study reveals the manifestation of different forms of cirrus with a preferred altitude of formation in the 13 to 14 km altitude. There are considerable differences in the properties obtained among 2009 and 2010 showing significant anomalous behavior in 2010. The clouds observed during 2010 show relatively high asymmetry and large multiple scattering effects. The anomalies found during 2010 may be attributed to the turbulence noticed in the surrounding atmosphere. The results show a clear correlation between the crystal morphology in the clouds and the dynamical conditions of the prevailing atmosphere during the observational period.
Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Ernie R.
The Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, which deployed the second ARM Mobile Facility (AMF2) aboard the Horizon Lines cargo container ship Spirit as it ran its regular route between Los Angeles, California and Honolulu, Hawaii, measured properties of clouds and precipitation, aerosols, radiation, and atmospheric, meteorological, and oceanic conditions with the goal of obtaining statistics of these properties to achieve better understanding of the transition between stratocumulus and cumulus cloud regimes that occur in that region. This Sc-Cu transition is poorly represented in models, and a major reason for this is the lack of high-quality andmore » comprehensive data that can be used to constrain, validate, and improve model representation of the transition. MAGIC consisted of 20 round trips between Los Angeles and Honolulu, and thus over three dozen transects through the transition, totaling nearly 200 days at sea between September, 2012 and October, 2013. During this time MAGIC collected a unique and unprecedented data set, including more than 550 successful radiosonde launches. An Intensive Observational Period (IOP) occurred in July, 2013 during which more detailed measurements of the atmospheric structure were made. MAGIC was very successful in its operations and overcame numerous logistical and technological challenges, clearly demonstrating the feasibility of a marine AMF2 deployment and the ability to make accurate measurements of clouds and precipitation, aerosols, and radiation while at sea.« less
Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita
2003-11-01
A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.
NASA Technical Reports Server (NTRS)
King, Michael D.
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
Investigating the Accuracy of Point Clouds Generated for Rock Surfaces
NASA Astrophysics Data System (ADS)
Seker, D. Z.; Incekara, A. H.
2016-12-01
Point clouds which are produced by means of different techniques are widely used to model the rocks and obtain the properties of rock surfaces like roughness, volume and area. These point clouds can be generated by applying laser scanning and close range photogrammetry techniques. Laser scanning is the most common method to produce point cloud. In this method, laser scanner device produces 3D point cloud at regular intervals. In close range photogrammetry, point cloud can be produced with the help of photographs taken in appropriate conditions depending on developing hardware and software technology. Many photogrammetric software which is open source or not currently provide the generation of point cloud support. Both methods are close to each other in terms of accuracy. Sufficient accuracy in the mm and cm range can be obtained with the help of a qualified digital camera and laser scanner. In both methods, field work is completed in less time than conventional techniques. In close range photogrammetry, any part of rock surfaces can be completely represented owing to overlapping oblique photographs. In contrast to the proximity of the data, these two methods are quite different in terms of cost. In this study, whether or not point cloud produced by photographs can be used instead of point cloud produced by laser scanner device is investigated. In accordance with this purpose, rock surfaces which have complex and irregular shape located in İstanbul Technical University Ayazaga Campus were selected as study object. Selected object is mixture of different rock types and consists of both partly weathered and fresh parts. Study was performed on a part of 30m x 10m rock surface. 2D and 3D analysis were performed for several regions selected from the point clouds of the surface models. 2D analysis is area-based and 3D analysis is volume-based. Analysis conclusions showed that point clouds in both are similar and can be used as alternative to each other. This proved that point cloud produced using photographs which are both economical and enables to produce data in less time can be used in several studies instead of point cloud produced by laser scanner.
NASA Astrophysics Data System (ADS)
Andersen, Hendrik; Cermak, Jan
2015-04-01
This contribution studies the determinants of low cloud properties based on the application of various global observation data sets in machine learning algorithms. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. A main challenge in the research of aerosol-cloud interactions is the separation of aerosol effects from meteorological influence. To gain understanding of the processes that govern low cloud properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, artificial neural networks are used to relate a selection of predictors (meteorological parameters, aerosol loading) to a set of predictands (cloud microphysical and optical properties). As meteorological parameters, wind direction and velocity, sea level pressure, static stability of the lower troposphere, atmospheric water vapour and temperature at the surface are used (re-analysis data by the European Centre for Medium-Range Weather Forecasts). In addition to meteorological conditions, aerosol loading is used as a predictor of cloud properties (MODIS collection 6 aerosol optical depth). The statistical model reveals significant relationships between predictors and predictands and is able to represent the aerosol-cloud-meteorology system better than frequently used bivariate relationships. The most important predictors can be identified by the additional error when excluding one predictor at a time. The sensitivity of each predictand to each of the predictors is analyzed.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Alvarez, Joseph M.; Young, David F.; Sassen, Kenneth; Grund, Christian J.
1990-01-01
The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) provide an opportunity to examine the relationships between the satellite observed radiances and various parameters which describe the bulk properties of clouds, such as cloud amount and cloud top height. Lidar derived cloud altitude data, radiosonde data, and satellite observed radiances are used to examine the relationships between visible reflectance, infrared emittance, and cloud top temperatures for cirrus clouds.
A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.
NASA Astrophysics Data System (ADS)
Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian; Gasparovic, Richard F.; Pockalny, Robert A.
2000-08-01
A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.
Daytime variations of absorbing aerosols above clouds in the southeast Atlantic
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Christopher, S. A.
2016-12-01
The daytime variation of aerosol optical depth (AOD) above maritime stratocumulus clouds in the southeast Atlantic is investigated by merging geostationary data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) with NASA A-Train data sets. SEVIRI's 15-minute above cloud AOD and below aerosol cloud optical depth (COD) retrieval provides the opportunity to assess their direct radiative forcing using actual cloud and aerosol properties instead of using fixed values from polar-orbiting measurements. The impact of overlying aerosols above clouds on the cloud mask products are compared with active spaceborne lidar to examine the performance of the product. Uncertainty analyses of aerosol properties on the estimation of optical properties and radiative forcing are addressed.
NASA Technical Reports Server (NTRS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-01-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km×30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R(sup 2) = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km× 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 micrometers is 1.3 micrometers larger than that from the ARM retrievals (12.8 micrometers), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm( exp -2) less than its ARM counterpart (114.2 gm( exp-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 micrometers channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from 13.7 to 2.1 gm2. The 10% differences between the ARM and CERES-MODIS LWP and r(sub e) retrievals are within the uncertainties of the ARM LWP (approximately 20gm( exp -2)) and r(sub e) (approximately 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when t is approximately 10 and topography. The t differences vary with wind direction and are consistent with the island orography.Much better agreement in t is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
NASA Astrophysics Data System (ADS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-08-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km × 30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2 = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km × 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 µm is 1.3 µm larger than that from the ARM retrievals (12.8 µm), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 µm channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CERES-MODIS LWP and re retrievals are within the uncertainties of the ARM LWP ( 20 gm-2) and re ( 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when τ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography. Much better agreement in τ is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
A comparison between CloudSat and aircraft data for mixed-phase and cirrus clouds
NASA Astrophysics Data System (ADS)
Mioche, G.; Gayet, J.-F.; Minikin, A.; Herber, A.; Pelon, J.
2009-04-01
Nowadays, space remote sensing measurements are a very useful way to study the atmosphere on a global scale. Among the numerous scientific satellites in space, the A-Train is a constellation of 6 satellites flying together with on board complementary instruments of new generation (radiometers, radar, lidar, spectrometers…) to study all parts of the atmosphere: gas composition, clouds and aerosols distribution and properties, and radiation budget. Among these satellites, two of them where launched in 2006: CALIPSO and CloudSat, respectively with a Lidar (532 and 1064 nm channels with depolarization) and a 94 GHz radar on board. They are especially dedicated to the study of clouds and aerosols, and will allow to obtain for the first time the vertical profiles of clouds and aerosols on a global scale during 3 years. However, to determine clouds and aerosols properties from space raw data, retrieval methods need to be developed. In order to validate these retrieved techniques, and thus the clouds and aerosols properties, numerous validation plans take place around the world, included different ways as ground based measurements, in situ measurements, or airborne remote sensing instruments in collocation with the satellite tracks. In this context, the ASTAR-2007 and POLARCAT-2008 campaigns took place respectively in the Arctic region of Spitzbergen-Norway in April 2007 and in North part of Sweden in April 2008 to study mixed-phase clouds and the CIRCLE-2 campaign was carried out in Western Europe in May 2007 to sample mid-latitude cirrus clouds. The main objectives are the study of microphysical and optical properties of mixed-phase and ice clouds with particular interest on the validation of clouds products derived from CloudSat and CALIPSO data during co-located remote and in situ observations. The airborne microphysical instruments include the Polar Nephelometer probe to measure the scattering phase function and asymmetry parameter of cloud particles, the high resolution Cloud Particle Imager probe (CPI) for imaging the ice particle morphology (2.3 microns pixels size) and standard PMS probes: 2D-C, FSSP-100 and FSSP-300. This presentation focuses on the validation of the standard parameter of the Cloud Profiling Radar (CPR) of CloudSat (equivalent radar reflectivity factor Z). The different IWC(ice water content)-Z relationships determined from combined CloudSat and in situ data are then discussed. The method to derive equivalent reflectivity factor from the CPI data is first presented. According to the particle shape, a mass-diameter relationship and thus a reflectivity factor is determined for each type of ice crystal. This technique noticeably decreases the discrepancies of radar reflectivity-derived values due to the natural variability of ice crystal shapes. Comparisons of the reflectivity factor deduced from CPI and those from CloudSat for various types of clouds are then discussed. The next step to the interpretation of the CloudSat product is to derive IWC-Z relationships for assessing IWC distributions on a global scale, which is an important improvement to constrain global scale modelling. Several IWC-Z relationships are determined from in situ measurements according to the various case studies including Arctic mixed-phase clouds, Arctic and mid-latitude cirrus. The improvements on the results by using the CPI data-processing method are discussed. Acknowledgements: This work was funded by the Centre National d'Etudes Spatiales (CNES), the Agence Nationale de la Recherche (ANR BLAN06-1_137670), the Institut National des Sciences de l'Univers (INSU/CNRS), the Institut Polaire Français Paul Emile Victor (IPEV), the Alfred Wegener Institute (AWI) and the Deutsches Zentrum für Luft-und Raumfahrt (DLR). The CloudSat data are courtesy of the CloudSat Data Processing Center.
NASA Astrophysics Data System (ADS)
Nakajima, T. Y.; Takamatsu, T.; Funayama, T.; Yamamoto, Y.; Takenaka, H.; Nakajima, T.; Irie, H.; Higuchi, A.
2017-12-01
Recently, estimating and forecasting the solar radiation in terms of the electric power generation by photovoltaic (PV) systems is needed for the energy management system (EMS). The estimation technique depends on the latest atmospheric sciences. For instance, when one like to estimate solar radiation reached to ground surface, one will focus on the existence of clouds and their properties, because clouds exert an important influence to the radiative transfer. Visible-to-infared imaging radiometer aboard the geostationary satellites, Himawari, GOES, and Meteosat are useful for such objective, since they observe clouds for full disk of the Earth with high temporal frequency and moderately spatial resolution. Estimation of solar radiation at the ground surface from satellite imagery consists of two steps. The first step is retrieval of cloud optical and microphysical properties by use of the multispectral imaging data. Indeed, we retrieve cloud optical thickness, cloud particle sizes, and cloud top height from visible, near-infrared, and thermal infrared wavelength of the satellite imageries, respectively. The second step is the radiative transfer calculation. We will obtain solar radiation reached to the ground surface, using cloud properties retrieved from the first step, and radiative transfer calculations. We have built a system for near-real time estimation of solar radiation for global scale, named the AMATERASS system, under the support of JST (Japan Science and Technology Agency), CREST/EMS (Energy Management System). The AMATERASS dataset has been used for several researches. For example, Waseda University group applied the AMATERASS data in the electric power system, considering accidental blackout in the electric system for local scale. They made it clear that when AMATERASS data exists the chance of electric voltage deviancy is mitigated when the blackout is over. We have supported a solar car race in Australia, named World Solar Challenge (WSC) 2013, 2015, and 2017, by suppling the AMATERASS solar radiation and some meteorological data along the race track, dynamically following the location of the solar car. This experience is important because the era of electric vehicles equippe with PV panels will come soon.
NASA Astrophysics Data System (ADS)
Yue, Qing
Cirrus clouds have a unique influence on the climate system through their effects on the radiation budget of the earth and the atmosphere. To better understand the radiative effect of cirrus clouds, the microphysical and radiative properties of these clouds, especially tropical thin cirrus clouds, are studied based on both insitu cirrus measurements and satellite remote sensing observations. We perform a correlation analysis involving ice water content (IWC) and mean effective diameter (De) for applications to radiative transfer calculations and climate models using insitu measurements obtained from numerous field campaigns in the tropics, midlatitude, and Arctic regions. In conjunction with the study of cirrus clouds, we develop a high-resolution spectral infrared radiative transfer model for thin cirrus cloudy atmosphere, which is employed to retrieve De and cirrus optical depth from the Atmospheric Infrared Sounder (AIRS) infrared spectra. Numerical simulations show that cirrus cloudy radiances in the 800-1130 cm-1 thermal infrared window are sufficiently sensitive to variations in cirrus optical depth, and ice crystal size and habit. A number of nighttime thin cirrus scenes over the Atmospheric Radiation Measurement (ARM) program's Tropical Western Pacific sites have been selected from AIRS datasets for this study. The radiative transfer model is applied to these selected cases to determine cirrus optical depth, De and habit factors. Solar and infrared radiative forcings and heating rates produced by thin cirrus in the tropical atmosphere have been calculated using the retrieved cirrus optical and microphysical properties along with a modified Fu and Liou broadband radiative transfer scheme to analyze their dependence on cirrus cloud properties. Generally, larger TOA warming and smaller surface warming are associated with higher cirrus clouds. To cross-check the validity of our model, the collocated and coincident surface radiation measurements taken by ARM pyrgeometers have been compared with the calculated surface fluxes. Using the method developed in this study, regional radiation budget analyses can be carried out in the future study to quantitatively understand the role of thin cirrus clouds on solar and thermal infrared radiative forcings at the top of the atmosphere, the tropopause, and the surface.
Remote Sensing of Multiple Cloud Layer Heights Using Multi-Angular Measurements
NASA Technical Reports Server (NTRS)
Sinclair, Kenneth; Van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej; Mcgill, Matthew
2017-01-01
Cloud top height (CTH) affects the radiative properties of clouds. Improved CTH observations will allow for improved parameterizations in large-scale models and accurate information on CTH is also important when studying variations in freezing point and cloud microphysics. NASAs airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. For the determination of CTH, a set of consecutive nadir reflectances is selected and the cross-correlations between this set and co-located sets at other viewing angles are calculated for a range of assumed cloud top heights, yielding a correlation profile. Under the assumption that cloud reflectances are isotropic, local peaks in the correlation profile indicate cloud layers. This technique can be applied to every RSP footprint and we demonstrate that detection of multiple peaks in the correlation profile allow retrieval of heights of multiple cloud layers within single RSP footprints. This paper provides an in-depth description of the architecture and performance of the RSPs CTH retrieval technique using data obtained during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(exp. 4)RS) campaign. RSP retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar (CPL). The method's accuracy associated with the magnitude of correlation, optical thickness, cloud thickness and cloud height are explored. The technique is applied to measurements at a wavelength of 670 nm and 1880 nm and their combination. The 1880-nm band is virtually insensitive to the lower troposphere due to strong water vapor absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhien
2010-06-29
The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processesmore » is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.« less
Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment.
NASA Astrophysics Data System (ADS)
Silverman, Bernard A.; Sukarnjanaset, Wathana
2000-07-01
A randomized, warm-rain enhancement experiment was carried out during 1995-98 in the Bhumibol catchment area in northwestern Thailand. The experiment was conducted in accordance with a randomized, floating single-target design. The seeding targets were semi-isolated, warm convective clouds, contained within a well-defined experimental unit, that, upon qualification, were selected for seeding or not seeding with calcium chloride particles in a random manner. The seeding was done by dispensing the calcium chloride particles at an average rate of 21 kg km1 per seeding pass into the updrafts of growing warm convective clouds (about 1-2 km above cloud base) that have not yet developed or, at most, have just started to develop a precipitation radar echo. The experiment was carried out by the Bureau of Royal Rainmaking and Agricultural Aviation (BRRAA) of the Ministry of Agriculture and Cooperatives as part of its Applied Atmospheric Resources Research Program, Phase 2.During the 4 yr of the experiment, a total of 67 experimental units (34 seeded and 33 nonseeded units) were qualified in accordance with the experimental design. Volume-scan data from a 10-cm Doppler radar at 5-min intervals were used to track each experimental unit, from which various radar-estimated properties of the experimental units were obtained. The statistical evaluation of the experiment was based on a rerandomization analysis of the single ratio of seeded to unseeded experimental unit lifetime properties. In 1997, the BRRAA acquired two sophisticated King Air 350 cloud-physics aircraft, providing the opportunity to obtain physical measurements of the aerosol characteristics of the environment in which the warm clouds grow, of the hydrometeor characteristics of seeded and unseeded clouds, and of the calcium chloride seeding plume dimensions and particle size distribution-information directly related to the effectiveness of the seeding conceptual model that was not directly available up to then.The evaluation of the Thailand warm-rain enhancement experiment has provided statistically significant evidence and supporting physical evidence that the seeding of warm convective clouds with calcium chloride particles produced more rain than was produced by their unseeded counterparts. An exploratory analysis of the time evolution of the seeding effects resulted in a significant revision to the seeding conceptual model.
Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals
NASA Technical Reports Server (NTRS)
Wang, Meng-Hua; King, Michael D.
1997-01-01
We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.
Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon
NASA Technical Reports Server (NTRS)
Dodson, Jason B.; Taylor, Patrick C.
2015-01-01
The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.
NASA Astrophysics Data System (ADS)
Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.
2017-12-01
A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.
Climatology analysis of cirrus cloud in ARM site: South Great Plain
NASA Astrophysics Data System (ADS)
Olayinka, K.
2017-12-01
Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarquhar, Greg
We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign,more » over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.« less
NASA Astrophysics Data System (ADS)
Kim, Yumi; Kim, Sang-Woo; Kim, Man-Hae; Yoon, Soon-Chang
2014-03-01
This study examines cirrus cloud top and bottom heights (CTH and CBH, respectively) and the associated optical properties revealed by ground-based lidar in Seoul (SNU-L), Korea, and space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which were obtained during a three-year measurement period between July 2006 and June 2009. From two selected cases, we determined good agreement in CTH and CBH with cirrus cloud optical depth (COD) between ground-based lidar and space-borne CALIOP. In particular, CODs at a wavelength of 532 nm calculated from the three years of SNU-L and CALIOP measurements were 0.417 ± 0.394 and 0.425 ± 0.479, respectively. The fraction of COD lower than 0.1 was approximately 17% and 25% of the total SNU-L and CALIOP profiles, respectively, and approximately 50% of both lidar profiles were classified as sub-visual or optically thin such that COD was < 0.3. The mean depolarization ratio was estimated to be 0.30 ± 0.06 for SNU-L and 0.34 ± 0.08 for CALIOP. The monthly variation of CODs from SNU-L and CALIOP measurements was not distinct, whereas cirrus altitudes from both SNU-L and CALIOP showed distinct monthly variation. CALIOP observations showed that cirrus clouds reached the tropopause level in all months, whereas the up-looking SNU-L did not detect cirrus clouds near the tropopause in summer due to signal attenuation by underlying optically thick clouds. The cloud layer thickness (CLT) and COD showed a distinct linear relationship up to approximately 2 km of the CLT; however, the COD did not increase, but remained constant when the CLT was greater than 2.0 km. The ice crystal content, lidar signal attenuation, and the presence of multi-layered cirrus clouds may have contributed to this tendency.
NASA Technical Reports Server (NTRS)
Sayres, D. S.; Smith, J. B.; Pittman, J. V.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Fridland, A. M.; Ackerman, A. S.
2007-01-01
In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches.
UV extinction properties of carina nebular dust
NASA Technical Reports Server (NTRS)
Massa, Derck
1993-01-01
I have performed an analysis of the UV extinction by dust along the line of sight to the young open cluster Tr 16. The observed curves are parameterized in order to extract quantitative information about the structure of the curves. Furthermore, by constructing differential extinction curves, obtained by differencing curves for stars which lie within a few arc seconds of each other on the sky, I was able to obtain a curve which is free of the effects of foreground extinction, and represents the extinction by the dust in the Tr 16 molecular cloud. I then show that this curve is nearly identical to one due to dust in the Orion molecular cloud. This result shows that dust in the Carina arm exhibits the same behavior as that in the local arm.
Optical property retrievals of subvisual cirrus clouds from OSIRIS limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2012-08-01
We present a technique for retrieving the optical properties of subvisual cirrus clouds detected by OSIRIS, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Optical properties from an in-situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is demonstrated that the retrieved extinction profile models accurately the measured in-cloud radiances from OSIRIS. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
Remote sensing of cirrus cloud vertical size profile using MODIS data
NASA Astrophysics Data System (ADS)
Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.
2009-05-01
This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.
NASA Astrophysics Data System (ADS)
Saito, Masanori; Iwabuchi, Hironobu; Yang, Ping; Tang, Guanglin; King, Michael D.; Sekiguchi, Miho
2017-04-01
Ice particle morphology and microphysical properties of cirrus clouds are essential for assessing radiative forcing associated with these clouds. We develop an optimal estimation-based algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including quasi-horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle model is used, and the relevant bulk optical properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric gases, and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with other satellite products and CERs essentially agree with the other counterparts. A 1 month global analysis for April 2007, in which CALIPSO off-nadir angle is 0.3°, shows that the HOP has significant temperature-dependence and is critical to the lidar ratio when cloud temperature is warmer than -40°C. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is 27-31 sr over the globe.
NASA Astrophysics Data System (ADS)
Hirsikko, Anne; Brus, David; O'Connor, Ewan J.; Filioglou, Maria; Komppula, Mika; Romakkaniemi, Sami
2017-04-01
In the high and mid latitudes super-cooled liquid water layers are frequently observed on top of clouds. These layers are difficult to forecast with numerical weather prediction models, even though, they have strong influence on atmospheric radiative properties, cloud microphysical properties, and subsequently, precipitation. This work investigates properties of super-cooled liquid water layer topped sub-arctic clouds and precipitation observed with ground-based in-situ (cloud probes) and remote-sensing (a cloud radar, Doppler and multi-wavelength lidars) instrumentation during two-month long Pallas Cloud Experiment (PaCE 2015) in autumn 2015. Analysis is based on standard Cloudnet scheme supplemented with new retrieval products of the specific clouds and their properties. Combination of two scales of observation provides new information on properties of clouds and precipitation in the sub-arctic Pallas region. Current status of results will be presented during the conference. The authors acknowledge financial support by the Academy of Finland (Centre of Excellence Programme, grant no 272041; and ICINA project, grant no 285068), the ACTRIS2 - European Union's Horizon 2020 research and innovation programme under grant agreement No 654109, the KONE foundation, and the EU FP7 project BACCHUS (grant no 603445).
NASA Astrophysics Data System (ADS)
Barbosa, H. M.; Martins, J. V.; McBride, B.; Espinosa, R.; Fernandez Borda, R. A.; Remer, L.; Dubovik, O.
2017-12-01
The largest impediments to estimating climate change revolve around a lack of quantitative information on aerosol forcing and our poor understanding of aerosol-cloud processes and cloud feedbacks in the climate system. This is so because global aerosol and cloud data come from satellite sensors that, today, measure limited subsets of the full Stokes parameters. Most measure only spectral intensity at one geometry, or at a severely limited set of geometries, or measure polarization non-simultaneously using a filter wheel, with a low spatial resolution. To overcome this scientific gap, the Laboratory for Aerosols, Clouds and Optics (LACO) of UMBC developed the Hyper Angular Rainbow Polarimeter (HARP): a very simple but highly effective sensor that can simultaneously measure 3 angles of polarization, at 4 different wavelengths, to observe the same target with up to 60 viewing angles, with no moving parts. The HARP-Cubesat mission will fly next January, with the main objective of proving the on-flight capabilities of a highly accurate wide FOV hyperangle imaging polarimeter for characterizing aerosol and cloud properties. AirHARP is an exact copy of the HARP sensor but prepared to fly on aircrafts. Here we report on preliminary aerosol data analysis from its first measurements during the Lake Michigan Ozone Study (LMOS) field campaign last June. We will discuss how the polarization measurements are inverted using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm to obtain the aerosol size distribution, complex index of refraction and sphericity. For the flights on June 8th and 12th, we will compare the retrievals with those from the Aeronet station LMOS-ZION, specially setup for the campaign.
Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years
Patil, Nitin; Dave, Prashant; Venkataraman, Chandra
2017-01-01
Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis. PMID:28337991
In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone
NASA Astrophysics Data System (ADS)
Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.
2016-12-01
Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.
Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years.
Patil, Nitin; Dave, Prashant; Venkataraman, Chandra
2017-03-24
Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.
Synopsis of TC4 Missions and Meteorology
NASA Astrophysics Data System (ADS)
Starr, D.; Pfister, L.; Selkirk, H.; Nguyen, L.
2007-12-01
The TC4 (Tropical Composition, Clouds and Climate Coupling) Experiment conducted 26 aircraft sorties on 13 flight days from July 17 to August 8, 2007 (23 days). Quality science observations were also obtained during the transit flights to/from from San Jose, Costa Rica, where the mission was based. On 9 days, coordinated aircraft missions were flown with the NASA ER-2 and DC-8, and with the NASA WB-57 on 3 occasions (and transit flights). The ER-2 served as an A-Train simulator (MODIS, CloudSat, CALIPSO, AIRS/TES, partial AMSR-E) while the WB-57 provided in-situ measurements of upper tropospheric cloud particles, aerosols and trace gases. The DC-8 provided both in-situ and remote sensing measurements, where the latter were focused on Aura validation, and also including a down-looking scanning precipitation radar (TRMM PR simulator). This paper will provide a synopsis of the science observations that were obtained, as regards the clouds and cloud systems sampled, from a meteorological perspective. A diversity of clouds were sampled and the meteorology proved more interesting than expected, at least to this author. Upper tropospheric cirrus outflows were sampled from a number of convective cloud systems including ITCZ-type systems as well as systems close to and affected by land. The low level inflows to these systems were also sampled in some cases (DC-8) and missions were flown to sample stratocumulus clouds over the Pacific Ocean exploiting the unique instrumentation on the DC-8 to add to the knowledge of these clouds which are so important to the Earth radiation budget. Measurements were made in the tropical Tropopause Transition Layer (TTL) by the WB-57. Upper tropospheric clouds and TTL properties and processes were central TC4 objectives. Excellent data were also obtained on the fate of the Saharan Air Layer and its aerosols over the Caribbean and Central America, as well as samples of plumes from volcanoes in Ecuador and Columbia and biogenic emissions over Columbia and the Pacific Ocean. Satellite observations, including those from various A-Train sensors, were used in planning the missions which were, in many cases, coordinated, at least in part, with satellite overpasses, especially Aura and other A-Train sensors (DC-8) and Terra.
Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.
2012-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent).
The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2
NASA Astrophysics Data System (ADS)
Swales, Dustin J.; Pincus, Robert; Bodas-Salcedo, Alejandro
2018-01-01
The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) gathers together a collection of observation proxies or satellite simulators
that translate model-simulated cloud properties to synthetic observations as would be obtained by a range of satellite observing systems. This paper introduces COSP2, an evolution focusing on more explicit and consistent separation between host model, coupling infrastructure, and individual observing proxies. Revisions also enhance flexibility by allowing for model-specific representation of sub-grid-scale cloudiness, provide greater clarity by clearly separating tasks, support greater use of shared code and data including shared inputs across simulators, and follow more uniform software standards to simplify implementation across a wide range of platforms. The complete package including a testing suite is freely available.
NASA Technical Reports Server (NTRS)
Lihavainen, H.; Kerminen, V.-M.; Remer, L. A.
2009-01-01
The first aerosol indirect effect over a clean, northern high-latitude site was investigated by determining the aerosol cloud interaction (ACI) using three different approaches; ground-based in situ measurements, combined ground-based in situ measurements 5 and satellite retrievals and using only satellite retrievals. The obtained values of ACI were highest for in situ ground-based data, clearly lower for combined ground-based and satellite data, and lowest for data relying solely on satellite retrievals. One of the key findings of this study was the high sensitivity of ACI to the definition of the aerosol burden. We showed that at least a part of the variability in ACI can be explained by 10 how different investigators have related dierent cloud properties to "aerosol burden".
Solar radiation measurements and their applications in climate research
NASA Astrophysics Data System (ADS)
Yin, Bangsheng
Aerosols and clouds play important roles in the climate system through their radiative effects and their vital link in the hydrological cycle. Accurate measurements of aerosol and cloud optical and microphysical properties are crucial for the study of climate and climate change. This study develops/improves retrieval algorithms for aerosol single scattering albedo (SSA) and low liquid water path (LWP) cloud optical properties, evaluates a new spectrometer, and applies long-term measurements to establish climatology of aerosol and cloud optical properties. The following results were obtained. (1) The ratio of diffuse horizontal and direct normal fluxes measured from Multifilter Rotating Shadowband Radiometer (MFRSR) has been used to derive the aerosol SSA. Various issues have impacts on the accuracy of SSA retrieval, from measurements (e.g., calibration accuracy, cosine respond correction, and forward scattering correction) to input parameters and assumptions (e.g., asymmetry factor, Rayleigh scattering optical depth, and surface albedo). This study carefully analyzed these issues and extensively assessed their impacts on the retrieval accuracy. Furthermore, the retrievals of aerosol SSA from MFRSR are compared with independent measurements from co-located instruments. (2) The Thin-Cloud Rotating Shadowband Radiometer (TCRSR) has been used to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid-water path (LWP). The evaluation of the TCRSR indicates that the error of radiometric calibration has limited impact on the cloud DER retrievals. However, the retrieval accuracy of cloud DER is sensitive to the uncertainties of background setting (e.g., aerosol loading and the existence of ice cloud) and the measured solar aureole shape. (3) A new high resolution oxygen A-band spectrometer (HABS) has been developed, which has the ability to measure both direct-beam and zenith diffuse solar radiation with polarization capability. The HABS exhibits excellent performance: stable spectral response ratio, high SNR, high spectrum resolution (0.16 nm), and high Out-of-Band Rejection (10-5). The HABS measured spectra and polarization spectra are basically consistent with the related simulated spectra. The main difference between them occurs at or near the strong oxygen absorption line centers. Furthermore, our study demonstrates that it is a good method to derive the degree of polarization-oxygen absorption optical depth (DOP-k) relationship through a polynomial fitting in the DOP-k space. (4) The long-term MFRSR measurements at Darwin (Australia), Nauru (Nauru), and Manus (Papua New Guinea) sites have been processed to develop the climatology of aerosols and clouds in the Tropical Warm Pool (TWP) region at the interannual, seasonal, and diurnal temporal scales. Due to the association of these three sites with large-scale circulation patterns, aerosol and cloud properties exhibit distinctive characteristics. The cloud optical depth (COD) and cloud fraction (CF) exhibit apparent increasing trends from 1998 to 2007 and decreasing trends after 2007. The monthly anomaly values, to some extent, are bifurcately correlated with SOI, depending on the phase of ENSO. At the two oceanic sites of Manus and Nauru, aerosols, clouds, and precipitation are modulated by the meteorological changes associated with MJO events. (5) The long-term measurements at Barrow and Atqasuk sites also have been processed to develop the climatology of aerosol and cloud properties in the North Slope of Alaska (NSA) region at interannual, seasonal, and diurnal temporal scales. Due to Arctic climate warming, at these two sites, the snow melting day arrives earlier and the non-snow-cover duration increases. Aerosol optical depth (AOD) increased during the periods of 2001-2003 and 2005-2009, and decreased during 2003-2005. The LWP, COD, and CF exhibit apparently decreasing trends from 2002 to 2007 and increased significantly after 2008. (Abstract shortened by UMI.)
THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.
2012-08-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloudmore » structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.« less
FIRE Cirrus on October 28, 1986: LANDSAT; ER-2; King Air; theory
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Suttles, John T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Parker, Lindsay; Arduini, Robert F.
1990-01-01
A simultaneous examination was conducted of cirrus clouds in the FIRE Cirrus IFO-I on 10/28/86 using a multitude of remote sensing and in-situ measurements. The focus is cirrus cloud radiative properties and their relationship to cloud microphysics. A key element is the comparison of radiative transfer model calculations and varying measured cirrus radiative properties (emissivity, reflectance vs. wavelength, reflectance vs. viewing angle). As the number of simultaneously measured cloud radiative properties and physical properties increases, more sharply focused tests of theoretical models are possible.
On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic
NASA Astrophysics Data System (ADS)
Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina
2017-10-01
This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.
Role of Gravity Waves in Determining Cirrus Cloud Properties
NASA Technical Reports Server (NTRS)
OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong
2008-01-01
Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).
NASA Technical Reports Server (NTRS)
Chepfer, H.; Sauvage, L.; Flamant, P. H.; Pelon, J.; Goloub, P.; Brogniez, G.; spinhirne, J.; Lavorato, M.; Sugimoto, N.
1998-01-01
At mid and tropical latitudes, cirrus clouds are present more than 50% of the time in satellites observations. Due to their large spatial and temporal coverage, and associated low temperatures, cirrus clouds have a major influence on the Earth-Ocean-Atmosphere energy balance through their effects on the incoming solar radiation and outgoing infrared radiation. At present the impact of cirrus clouds on climate is well recognized but remains to be asserted more precisely, for their optical and radiative properties are not very well known. In order to understand the effects of cirrus clouds on climate, their optical and radiative characteristics of these clouds need to be determined accurately at different scales in different locations i.e. latitude. Lidars are well suited to observe cirrus clouds, they can detect very thin and semi-transparent layers, and retrieve the clouds geometrical properties i.e. altitude and multilayers, as well as radiative properties i.e. optical depth, backscattering phase functions of ice crystals. Moreover the linear depolarization ratio can give information on the ice crystal shape. In addition, the data collected with an airborne version of POLDER (POLarization and Directionality of Earth Reflectances) instrument have shown that bidirectional polarized measurements can provide information on cirrus cloud microphysical properties (crystal shapes, preferred orientation in space). The spaceborne version of POLDER-1 has been flown on ADEOS-1 platform during 8 months (October 96 - June 97), and the next POLDER-2 instrument will be launched in 2000 on ADEOS-2. The POLDER-1 cloud inversion algorithms are currently under validation. For cirrus clouds, a validation based on comparisons between cloud properties retrieved from POLDER-1 data and cloud properties inferred from a ground-based lidar network is currently under consideration. We present the first results of the validation.
The Influence of Cloud Field Uniformity on Observed Cloud Amount
NASA Astrophysics Data System (ADS)
Riley, E.; Kleiss, J.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.
2017-12-01
Two ground-based measurements of cloud amount include cloud fraction (CF) obtained from time series of zenith-pointing radar-lidar observations and fractional sky cover (FSC) acquired from a Total Sky Imager (TSI). In comparison with the radars and lidars, the TSI has a considerably larger field of view (FOV 100° vs. 0.2°) and therefore is expected to have a different sensitivity to inhomogeneity in a cloud field. Radiative transfer calculations based on cloud properties retrieved from narrow-FOV overhead cloud observations may differ from shortwave and longwave flux observations due to spatial variability in local cloud cover. This bias will impede radiative closure for sampling reasons rather than the accuracy of cloud microphysics retrievals or radiative transfer calculations. Furthermore, the comparison between observed and modeled cloud amount from large eddy simulations (LES) models may be affected by cloud field inhomogeneity. The main goal of our study is to estimate the anticipated impact of cloud field inhomogeneity on the level of agreement between CF and FSC. We focus on shallow cumulus clouds observed at the U.S. Department of Energy Atmospheric Radiation Measurement Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Our analysis identifies cloud field inhomogeneity using a novel metric that quantifies the spatial and temporal uniformity of FSC over 100-degree FOV TSI images. We demonstrate that (1) large differences between CF and FSC are partly attributable to increases in inhomogeneity and (2) using the uniformity metric can provide a meaningful assessment of uncertainties in observed cloud amount to aide in comparing ground-based measurements to radiative transfer or LES model outputs at SGP.
Platnick, Steven; Meyer, Kerry G; King, Michael D; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G Thomas; Zhang, Zhibo; Hubanks, Paul A; Holz, Robert E; Yang, Ping; Ridgway, William L; Riedi, Jérôme
2017-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases-daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel's retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant.
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.; Yang, Ping; Ridgway, William L.; Riedi, Jérôme
2018-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases–daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel’s retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant. PMID:29657349
Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Wu, P.; Qiu, S.
2017-12-01
A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.
NASA Astrophysics Data System (ADS)
Saponaro, Giulia; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Virtanen, Timo; de Leeuw, Gerrit
2017-02-01
Retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite, 12 years (2003-2014) of aerosol and cloud properties were used to statistically quantify aerosol-cloud interaction (ACI) over the Baltic Sea region, including the relatively clean Fennoscandia and the more polluted central-eastern Europe. These areas allowed us to study the effects of different aerosol types and concentrations on macro- and microphysical properties of clouds: cloud effective radius (CER), cloud fraction (CF), cloud optical thickness (COT), cloud liquid water path (LWP) and cloud-top height (CTH). Aerosol properties used are aerosol optical depth (AOD), Ångström exponent (AE) and aerosol index (AI). The study was limited to low-level water clouds in the summer. The vertical distributions of the relationships between cloud properties and aerosols show an effect of aerosols on low-level water clouds. CF, COT, LWP and CTH tend to increase with aerosol loading, indicating changes in the cloud structure, while the effective radius of cloud droplets decreases. The ACI is larger at relatively low cloud-top levels, between 900 and 700 hPa. Most of the studied cloud variables were unaffected by the lower-tropospheric stability (LTS), except for the cloud fraction. The spatial distribution of aerosol and cloud parameters and ACI, here defined as the change in CER as a function of aerosol concentration for a fixed LWP, shows positive and statistically significant ACI over the Baltic Sea and Fennoscandia, with the former having the largest values. Small negative ACI values are observed in central-eastern Europe, suggesting that large aerosol concentrations saturate the ACI.
Satellite remote sensing of aerosol and cloud properties over Eurasia
NASA Astrophysics Data System (ADS)
Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit
2015-04-01
Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on surface properties, the surface reflectance can be independently retrieved using the AOD for atmospheric correction. For the retrieval of cloud properties, the SACURA algorithm has been implemented in the ADV/ASV aerosol retrieval suite. Cloud properties retrieved from AATSR data are cloud fraction, cloud optical thickness, cloud top height, cloud droplet effective radius, liquid water path. Aerosol and cloud properties are applied for different studies over the Eurasia area. Using the simultaneous retrieval of aerosol and cloud properties allows for study of the transition from the aerosol regime to the cloud regime, such as changes in effective radius or AOD (aerosol optical depth) to COT (cloud optical thickness). The column- integrated aerosol extinction, aerosol optical depth or AOD, which is primarily reported from satellite observations, can be used as a proxy for cloud condensation nuclei (CCN) and hence contains information on the ability of aerosol particles to form clouds. Hence, connecting this information with direct observations of cloud properties provides information on aerosol-cloud interactions.
Infrared Extinction and the Initial Conditions for Star and Planet Formation
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funded a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program were to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) use the results to measure and quantitatively describe the physical conditions of the dense gas and dust that produce stars and their accompanying planetary systems in molecular clouds. The goals of this project were met and exceeded as described below. 1) The infrared data for the project were obtained in a number of observing runs using the 3.5-meter NTT and 8-meter VLT telescopes of the European Southern Observatory in Chile and the 1.2-meter telescope of the Smithsonian Astrophysical Observatory in Arizona, the 1 0-meter Keck telescope in Hawaii, the 6.5-meter MMT of the Smithsonian Astrophysical Observatory in Arizona, and the NASA Hubble Space Telescope. The molecular-line data was obtained in three runs using the IRAM 30-meter telescope in Spain and one run with the ESO-15 meter millimeter-wave telescope in Chile. Millimeter-wave continuum measurements were obtained with the 15-meter JCMT in Hawaii. 2) Considerable effort was expended to reduce the infrared imaging observations including the development of custom software to produce high quality photometry and source astrometry. All the millimeter-line data was reduced using standard reduction routines. The highlights of the infrared analysis were the production of detailed extinction maps and the construction of profiles of the density structure of the B68, Coalsack, B335 and Lupus clouds. 3) The principal scientific accomplishments of this research program include the following: We were able to use our infrared observations to determine the density structure of the B68 cloud to an unprecedented level of precision. This lead to a major breakthrough in the study of molecular cloud structure. For the first time we have been able to characterize the structure of a dark cloud in a detail only exceeded by that known for a star. We determined that the cloud's structure is exquisitely well described by the equations of a Bonner-Ebert sphere (a pressure confined isothermal sphere). We were able to show that the cloud is very nearly in equilibrium with the internal thermal pressure of the cloud balancing gravity and the external pressure of the surrounding interstellar medium. We were able to determine for the first time the gas-to-dust ratio in a dense cloud core. We also demonstrated a new method to determine extremely precise distances to such clouds by combining knowledge of the properties of Bonner-Ebert Spheres with our infrared and millimeter-wave observations.
NASA Astrophysics Data System (ADS)
Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin
2016-04-01
Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.
NASA Technical Reports Server (NTRS)
Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina
2016-01-01
We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).
Aerosol-Cloud Interactions During Puijo Cloud Experiments - The effects of weather and local sources
NASA Astrophysics Data System (ADS)
Komppula, Mika; Portin, Harri; Leskinen, Ari; Romakkaniemi, Sami; Brus, David; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Kortelainen, Aki; Hao, Liqing; Miettinen, Pasi; Jaatinen, Antti; Ahmad, Irshad; Lihavainen, Heikki; Laaksonen, Ari; Lehtinen, Kari E. J.
2013-04-01
The Puijo measurement station has provided continuous data on aerosol-cloud interactions since 2006. The station is located on top of the Puijo observation tower (306 m a.s.l, 224 m above the surrounding lake level) in Kuopio, Finland. The top of the tower is covered by cloud about 15 % of the time, offering perfect conditions for studying aerosol-cloud interactions. With a twin-inlet setup (total and interstitial inlets) we are able to separate the activated particles from the interstitial (non-activated) particles. The continuous twin-inlet measurements include aerosol size distribution, scattering and absorption. In addition cloud droplet number and size distribution are measured continuously with weather parameters. During the campaigns the twin-inlet system was additionally equipped with aerosol mass spectrometer (AMS) and Single Particle Soot Photometer (SP-2). This way we were able to define the differences in chemical composition of the activated and non-activated particles. Potential cloud condensation nuclei (CCN) in different supersaturations were measured with two CCN counters (CCNC). The other CCNC was operated with a Differential Mobility Analyzer (DMA) to obtain size selected CCN spectra. Other additional measurements included Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) for particle hygroscopicity. Additionally the valuable vertical wind profiles (updraft velocities) are available from Halo Doppler lidar during the 2011 campaign. Cloud properties (droplet number and effective radius) from MODIS instrument onboard Terra and Aqua satellites were retrieved and compared with the measured values. This work summarizes the two latest intensive campaigns, Puijo Cloud Experiments (PuCE) 2010 & 2011. We study especially the effect of the local sources on the cloud activation behaviour of the aerosol particles. The main local sources include a paper mill, a heating plant, traffic and residential areas. The sources can be categorized and identified by wind direction. Clear changes can be seen in the aerosol and cloud properties when being under the influence of a local pollutant source. Also differences in the chemical composition of aerosol activated to cloud droplet and those staying interstitial has been observed. For example, the light absorption by cloud interstitial particles is higher when the wind blows from the local pollutant sources compared to a cleaner sector. This may be due to the fact that the absorptive material, e.g. fresh soot, is generally hydrophobic and therefore inhibits activation. Another point of interest is the occasional freezing conditions during the campaign (temperature below zero), which also affects the activation behaviour. The full usage of this special data set will provide new information on the properties and differences of activating and non-activating aerosol particles, as well as on the variables affecting the activation.
The Properties of Single Interstellar Clouds Cycle 2
NASA Astrophysics Data System (ADS)
Hobbs, Lewis
1991-07-01
IN THIS CONTINUATION PROPOSAL, WE PROPOSE TO USE THE ECHELLEAND 160M GRATINGS OF THE HIGH RESOLUTION SPECTROGRAPH TO OBSERVE THE PZROFILES OF INTERSTELLAR ABSORPTION LINES, DURING THE SECOND YEAR OF A TWO-YEAR PROGRAM. IN THE TWO CYCLES TOGETHER, THE COLUMN DENSITES OF 17 NEUTRAL OR IONIZED FORMS OF THE ELEMENTS C,N,O,Mg,Si,P,S,Fe, AND Zn WILL BE MEASURED IN THE APPROXIMATELY 100 INDIVIDUAL INTERSTELLAR CLOUDS ALONG THE LIGHT PATHS TO 12 BRIGHT, BROAD-LINED STARS OF EARLY SPECTRAL TYPE WITHIN 1 KPC OF THE SUN. THE PRIMARY PURPOSE OF THE OBSERVATIONS IS TO DETERMINE MORE ACCURATELY THAN WAS HITHERTO POSSIBLE THE FUNDAMENTAL PHYSICAL PROPERTIES OF THE RESOLVED CLOUDS, INCLUDING LINEAR SIZE, TEMPERATURE, TOTAL DENSITY, FRACTIONAL IONIZATION AND THE RELATIVE ABUNDANCES OF THE 9 SELECTED ELEMENTS. THIS SECOND-YEAR PROGRAM CONSISTS OF ECH-B AND G160M OBSERVATIONS OF EACH OF 4 STARS AT 21 OR MORE WAVELENGTHS, AND OF A SUBSET OF THESE OBSERVATIONS FOR A FIFTH STAR, PI SCO. PROGRAMS 2251 AND 3993 SHOULD BE CONSULTED FOR DETAILS OF THE PREVIOUS OBSERVATIONS OBTAINED DURING CYCLE 1.
A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke,E.; Kollias, P.
2007-08-06
The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.« less
NASA Astrophysics Data System (ADS)
Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer
2017-11-01
New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Dong, Xiquan; Wood, Robert
With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds,more » whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need for comprehensive in situ characterizations of boundary-layer structure, and associated vertical distributions and horizontal variabilities of low clouds and aerosol over the Azores. ARM Aerial Facility (AAF) Gulfstream-1 (G-1) aircraft will be deployed at the ENA site during two intensive operational periods (IOPs) of early summer (June to July) of 2017 and winter (January to February) of 2018, respectively. Deployments during both seasons allow for examination of key aerosol and cloud processes under a variety of representative meteorological and cloud conditions. The science themes for the deployments include: 1) Budget of MBL CCN and its seasonal variation; 2) Effects of aerosol on cloud and precipitation; 3) Cloud microphysical and macrophysical structures, and entrainment mixing; 4) Advancing retrievals of turbulence, cloud, and drizzle; and 5) Model evaluation and processes studies. A key advantage of the deployments is the strong synergy between the measurements onboard the G-1 and the routine measurements at the ENA site, including state-of-the-art profiling and scanning radars. The 3D cloud structures provided by the scanning radars will put the detailed in situ measurements into mesoscale and cloud lifecycle contexts. On the other hand, high quality in situ measurements will enable validation and improvements of ground-based retrieval algorithms at the ENA site, leading to high-quality and statistically robust data sets from the routine measurements. The deployments, combined with the routine measurements at the ENA site, will have a long lasting impact on the research and modeling of low clouds and aerosols in the remote marine environment.« less
One-dimensional wave propagation in particulate suspensions
NASA Technical Reports Server (NTRS)
Rochelle, S. G.; Peddieson, J., Jr.
1976-01-01
One-dimensional small-amplitude wave motion in a two-phase system consisting of an inviscid gas and a cloud of suspended particles is analyzed using a continuum theory of suspensions. Laplace transform methods are used to obtain several approximate solutions. Properties of acoustic wave motion in particulate suspensions are inferred from these solutions.
NASA Technical Reports Server (NTRS)
Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.;
2012-01-01
Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.
GEWEX cloud assessment: A review
NASA Astrophysics Data System (ADS)
Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu
2013-05-01
Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.
NASA Astrophysics Data System (ADS)
Bu, Lingbing; Pan, Honglin; Kumar, K. Raghavendra; Huang, Xingyou; Gao, Haiyang; Qin, Yanqiu; Liu, Xinbo; Kim, Dukhyeon
2016-10-01
Cirrus plays an important role in the regulation of the Earth-atmosphere radiation budget. The joint observation using both the LIght Detection And Ranging (LIDAR) and Millimeter-Wave Cloud RADAR (MWCR) was implemented in this study to obtain properties of cirrus at Atmospheric Radiation Measurement (ARM) mobile facility in Shouxian (32.56°N, 116.78°E, 21 m above sea level), China during May-December 2008. We chose the simultaneous measurements of LIDAR and MWCR with effective data days, and the days must with cirrus. Hence, the cirrus properties based on 37 days of data between October 18th and December 13th, 2008 were studied in the present work. By comparing the LIDAR data with the MWCR data, we analyzed the detection capabilities of both instruments quantitatively for measuring the cirrus. The LIDAR cannot penetrate through the thicker cirrus with optical depth (τ) of more than 1.5, while the MWCR cannot sense the clouds with an optical depth of less than 0.3. Statistical analysis showed that the mean cloud base height (CBH) and cloud thickness (CT) of cirrus were 6.5±0.8 km and 2.1±1.1 km, respectively. Furthermore, we investigated three existing inversion methods for deriving the ice water content (IWC) by using the separate LIDAR, MWCR, and the combination of both, respectively. Based on the comparative analysis, a novel joint method was provided to obtain more accurate IWC. In this joint method, cirrus was divided into three different categories according to the optical depth (τ≤0.3, τ≥1.5, and 0.3<τ<1.5). Based on the joint method used in this study, the mean IWC was calculated by means of the statistics, which showed that the mean IWC of cirrus was 0.011±0.008 g m-3.
NASA Technical Reports Server (NTRS)
Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.
2000-01-01
A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.
New approaches to quantifying aerosol influence on the cloud radiative effect
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...
2016-02-01
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol–cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol–cloud interactions adequately. There is a dearth of observational constraints on aerosol–cloud interactions. In this paper, we develop a conceptual approach to systematically constrain the aerosol–cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. Finally, we heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol–cloud radiation system.« less
New approaches to quantifying aerosol influence on the cloud radiative effect
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian
2016-01-01
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system. PMID:26831092
New approaches to quantifying aerosol influence on the cloud radiative effect.
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian
2016-05-24
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.
NASA Astrophysics Data System (ADS)
Cornet, C.; Davies, R.
2008-02-01
Radiative transfer simulations of an isolated deep convective cloud reconstructed with stereo-techniques from the Multiangle Imaging Spectroradiometer (MISR) are compared with the reflectances measured at the nine MISR viewing angles. The simulations were done using a three dimensional Monte Carlo model, in which ocean reflectance, aerosol and Rayleigh scattering were prescribed to match the surrounding clear-sky MISR measurements. Making reasonable assumptions regarding the vertical and horizontal distribution of the volume extinction coefficient, we were able to reproduce the MISR measurements with the 3D radiative calculations. While the uniqueness of the these distributions cannot be proven, they all lead to retrievals of much larger cloud optical thickness and cloud water content than for a 1D retrieval. Averaged over the cloud, the difference was a factor of about 3, rising to 9 locally. This is a consequence of horizontal photon transport that serves to highlight the inadequacy of 1D retrievals for the case of deep convective cloud. Concerning the internal cloud properties, we noticed the angular distribution of modeled radiances did not match the measured radiances when an ice crystal phase function was applied. Better estimates of the optical depths and water contents of deep convective clouds appear to be obtainable by integrating an estimate of the extinction coefficient over the vertical cloud extent (when this can assessed) than by attempting to invert the radiance measured from a single-angle view using 1D theory.
NASA Astrophysics Data System (ADS)
Li, Weijun; Li, Peiren; Sun, Guode; Zhou, Shengzhen; Yuan, Qi; Wang, Wenxing
2011-05-01
Most studies of aerosol-cloud interactions have been conducted in remote locations; few have investigated the characterization of cloud condensation nuclei (CCN) over highly polluted urban and industrial areas. The present work, based on samples collected at Mt. Tai, a site in northern China affected by nearby urban and industrial air pollutant emissions, illuminates CCN properties in a polluted atmosphere. High-resolution transmission electron microscopy (TEM) was used to obtain the size, composition, and mixing state of individual cloud residues and interstitial aerosols. Most of the cloud residues displayed distinct rims which were found to consist of soluble organic matter (OM). Nearly all (91.7%) cloud residues were attributed to sulfate-related salts (the remainder was mostly coarse crustal dust particles with nitrate coatings). Half the salt particles were internally mixed with two or more refractory particles (e.g., soot, fly ash, crustal dust, CaSO 4, and OM). A comparison between cloud residues and interstitial particles shows that the former contained more salts and were of larger particle size than the latter. In addition, a somewhat high number scavenging ratio of 0.54 was observed during cloud formation. Therefore, the mixtures of salts with OMs account for most of the cloud-nucleating ability of the entire aerosol population in the polluted air of northern China. We advocate that both size and composition - the two influential, controlling factors for aerosol activation - should be built into all regional climate models of China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James
We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulatedmore » cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.« less
Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data
NASA Technical Reports Server (NTRS)
Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana
2006-01-01
Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.
An improved ice cloud formation parameterization in the EMAC model
NASA Astrophysics Data System (ADS)
Bacer, Sara; Pozzer, Andrea; Karydis, Vlassis; Tsimpidi, Alexandra; Tost, Holger; Sullivan, Sylvia; Nenes, Athanasios; Barahona, Donifan; Lelieveld, Jos
2017-04-01
Cirrus clouds cover about 30% of the Earth's surface and are an important modulator of the radiative energy budget of the atmosphere. Despite their importance in the global climate system, there are still large uncertainties in understanding the microphysical properties and interactions with aerosols. Ice crystal formation is quite complex and a variety of mechanisms exists for ice nucleation, depending on aerosol characteristics and environmental conditions. Ice crystals can be formed via homogeneous nucleation or heterogeneous nucleation of ice-nucleating particles in different ways (contact, immersion, condensation, deposition). We have implemented the computationally efficient cirrus cloud formation parameterization by Barahona and Nenes (2009) into the EMAC (ECHAM5/MESSy Atmospheric Chemistry) model in order to improve the representation of ice clouds and aerosol-cloud interactions. The parameterization computes the ice crystal number concentration from precursor aerosols and ice-nucleating particles accounting for the competition between homogeneous and heterogeneous nucleation and among different freezing modes. Our work shows the differences and the improvements obtained after the implementation with respect to the previous version of EMAC.
Improvements to GOES Twilight Cloud Detection over the ARM SGP
NASA Technical Reports Server (NTRS)
Yost, c. R.; Trepte, Q.; Khaiyer, M. M.; Palikonda, R.; Nguyen, L.
2007-01-01
The current ARM satellite cloud products derived from Geostationary Operational Environmental Satellite (GOES) data provide continuous coverage of many cloud properties over the ARM Southern Great Plains domain. However, discontinuities occur during daylight near the terminator, a time period referred to here as twilight. This poster presentation will demonstrate the improvements in cloud detection provided by the improved cloud mask algorithm as well as validation of retrieved cloud properties using surface observations from the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) site.
Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan;
2015-01-01
Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.
NASA Astrophysics Data System (ADS)
Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.
2017-12-01
The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.
Upper-Tropospheric Cloud Ice from IceCube
NASA Astrophysics Data System (ADS)
Wu, D. L.
2017-12-01
Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2, 2017 shows a clear distribution of the inter-tropical convergence zone (ITCZ), as well as the classic Gill-model pattern over the Western Pacific and Indian monsoon regions. Like the ISS, the coverage of ICIR observations is limited to low-to-mid latitudes. More science results and IceCube experiments with the cubesat operation will be discussed.
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming
2015-01-01
Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.
Taylor, Patrick C; Kato, Seiji; Xu, Kuan-Man; Cai, Ming
2015-12-27
Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.
An automated cirrus classification
NASA Astrophysics Data System (ADS)
Gryspeerdt, Edward; Quaas, Johannes; Goren, Tom; Klocke, Daniel; Brueck, Matthias
2018-05-01
Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using reanalysis and satellite data, cirrus clouds are separated into four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back-trajectory-based analysis, it is shown that these observation-based regimes can provide extra information on the cloud-scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mechanisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processes.
NASA Technical Reports Server (NTRS)
1995-01-01
The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 3 details the advanced CERES methods for performing scene identification and inverting each CERES scanner radiance to a top-of-the-atmosphere (TOA) flux. CERES determines cloud fraction, height, phase, effective particle size, layering, and thickness from high-resolution, multispectral imager data. CERES derives cloud properties for each pixel of the Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and the Earth Observing System (EOS) moderate-resolution imaging spectroradiometer. Cloud properties for each imager pixel are convolved with the CERES footprint point spread function to produce average cloud properties for each CERES scanner radiance. The mean cloud properties are used to determine an angular distribution model (ADM) to convert each CERES radiance to a TOA flux. The TOA fluxes are used in simple parameterization to derive surface radiative fluxes. This state-of-the-art cloud-radiation product will be used to substantially improve our understanding of the complex relationship between clouds and the radiation budget of the Earth-atmosphere system.
Multispectral Cloud Retrievals from MODIS on Terra and Aqua
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.
2002-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. Thomas
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun- synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
NASA Astrophysics Data System (ADS)
Ham, Seung-Hee; Kato, Seiji; Barker, Howard W.; Rose, Fred G.; Sun-Mack, Sunny
2014-01-01
Three-dimensional (3-D) effects on broadband shortwave top of atmosphere (TOA) nadir radiance, atmospheric absorption, and surface irradiance are examined using 3-D cloud fields obtained from one hour's worth of A-train satellite observations and one-dimensional (1-D) independent column approximation (ICA) and full 3-D radiative transfer simulations. The 3-D minus ICA differences in TOA nadir radiance multiplied by π, atmospheric absorption, and surface downwelling irradiance, denoted as πΔI, ΔA, and ΔT, respectively, are analyzed by cloud type. At the 1 km pixel scale, πΔI, ΔA, and ΔT exhibit poor spatial correlation. Once averaged with a moving window, however, better linear relationships among πΔI, ΔA, and ΔT emerge, especially for moving windows larger than 5 km and large θ0. While cloud properties and solar geometry are shown to influence the relationships amongst πΔI, ΔA, and ΔT, once they are separated by cloud type, their linear relationships become much stronger. This suggests that ICA biases in surface irradiance and atmospheric absorption can be approximated based on ICA biases in nadir radiance as a function of cloud type.
NASA Technical Reports Server (NTRS)
Khaiyer, M. M.; Rapp, A. D.; Doelling, D. R.; Nordeen, M. L.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.
2001-01-01
While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual climatological trends can be analyzed with such a dataset. For this purpose, monthly datasets of cloud and radiative properties from December 1996 through November 1999 over the SGP region have been derived using the layered bispectral threshold method (LBTM). The properties derived include cloud optical depths (ODs), temperatures and albedos, and are produced on two grids of lower (0.5 deg) and higher resolution (0.3 deg) centered on the ARM SGP CF. The extensive time period and high-resolution of the inner grid of this dataset allows for comparison with the suite of instruments located at the ARM CF. In particular, Whole-Sky Imager (WSI) and the Active Remote Sensing of Clouds (ARSCL) cloud products can be compared to the cloud amounts and heights of the LBTM 0.3 deg grid box encompassing the CF site. The WSI provides cloud fraction and the ARSCL computes cloud fraction, base, and top heights using the algorithms by Clothiaux et al. (2001) with a combination of Belfort Laser Ceilometer (BLC), Millimeter Wave Cloud Radar (MMCR), and Micropulse Lidar (MPL) data. This paper summarizes the results of the LBTM analysis for 3 years of GOES-8 data over the SGP and examines the differences between surface and satellite-based estimates of cloud fraction.
NASA Technical Reports Server (NTRS)
Luo, Yali; Xu, Kuan-Man; Wielicki, Bruce A.; Wong, Takmeng; Eitzen, Zachary A.
2007-01-01
The present study evaluates the ability of a cloud-resolving model (CRM) to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System (CERES) data product. The emphasis of this study is the comparisons among the small-, medium- and large-size categories of cloud objects observed during March 1998 and between the large-size categories of cloud objects observed during March 1998 (strong El Ni o) and March 2000 (weak La Ni a). Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and they are averaged to match the scale of the CERES satellite footprints. Cloud physical properties are analyzed in terms of their summary histograms for each category. It is found that there is a general agreement in the overall shapes of all cloud physical properties between the simulated and observed distributions. Each cloud physical property produced by the CRM also exhibits different degrees of disagreement with observations over different ranges of the property. The simulated cloud tops are generally too high and cloud top temperatures are too low except for the large-size category of March 1998. The probability densities of the simulated top-of-the-atmosphere (TOA) albedos for all four categories are underestimated for high albedos, while those of cloud optical depth are overestimated at its lowest bin. These disagreements are mainly related to uncertainties in the cloud microphysics parameterization and inputs such as cloud ice effective size to the radiation calculation. Summary histograms of cloud optical depth and TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods, consistent with the CERES observations. However, the CRM is unable to reproduce the significant differences in the observed cloud top height while it overestimates the differences in the observed outgoing longwave radiation and cloud top temperature between the two periods. Comparisons between the CRM results and the observations for most parameters in March 1998 consistently show that both the simulations and observations have larger differences between the large- and small-size categories than between the large- and medium-size, or between the medium- and small-size categories. However, the simulated cloud properties do not change as much with size as observed. These disagreements are likely related to the spatial averaging of the forcing data and the mismatch in time and in space between the numerical weather prediction model from which the forcing data are produced and the CERES observed cloud systems.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Minnis, Patrick; Xi, Baike
2005-01-01
A record of single-layer and overcast low cloud (stratus) properties has been generated using approximately 4000 hours of data collected from January 1997 to December 2002 at the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid-phase and liquid-dominant, mixed-phase, low cloud macrophysical, microphysical, and radiative properties including cloud-base and -top heights and temperatures, and cloud physical thickness derived from a ground-based radar and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) and content (LWC), and cloud-droplet effective radius (r(sub e)) and number concentration (N) derived from the macrophysical properties and radiometer data; and cloud optical depth (tau), effective solar transmission (gamma), and cloud/top-of-atmosphere albedos (R(sub cldy)/R(sub TOA)) derived from Eppley precision spectral pyranometer measurements. The cloud properties were analyzed in terms of their seasonal, monthly, and hourly variations. In general, more stratus clouds occur during winter and spring than in summer. Cloud-layer altitudes and physical thicknesses were higher and greater in summer than in winter with averaged physical thicknesses of 0.85 km and 0.73 km for day and night, respectively. The seasonal variations of LWP, LWC, N. tau, R(sub cldy), and R(sub TOA) basically follow the same pattern with maxima and minima during winter and summer, respectively. There is no significant variation in mean r(sub e), however, despite a summertime peak in aerosol loading, Although a considerable degree of variability exists, the 6-yr average values of LWP, LWC, r(sub e), N, tau, gamma, R(sub cldy) and R(sub TOA) are 150 gm(exp -2) (138), 0.245 gm(exp -3) (0.268), 8.7 micrometers (8.5), 213 cm(exp -3) (238), 26.8 (24.8), 0.331, 0.672, 0.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has been developed from this study. The low stratus cloud amount monotonically increases from midnight to early morning (0930 LT), and remains large until around local noon, then declines until 1930 LT when it levels off for the remainder of the night. In the morning, the stratus cloud layer is low, warm, and thick with less LWC, while in the afternoon it is high, cold, and thin with more LWC. Future parts of this series will consider other cloud types and cloud radiative forcing at the ARM SCF.
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.
2017-12-01
In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.
NASA Technical Reports Server (NTRS)
Eitzen, Zachary A.; Xu, Kuan-Man; Wong, Takmeng
2011-01-01
Simulations of climate change have yet to reach a consensus on the sign and magnitude of the changes in physical properties of marine boundary layer clouds. In this study, the authors analyze how cloud and radiative properties vary with SST anomaly in low-cloud regions, based on five years (March 2000 - February 2005) of Clouds and the Earth s Radiant Energy System (CERES) -- Terra monthly gridded data and matched European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalaysis data. In particular, this study focuses on the changes in cloud radiative effect, cloud fraction, and cloud optical depth with SST anomaly. The major findings are as follows. First, the low-cloud amount (-1.9% to -3.4% /K) and the logarithm of low-cloud optical depth (-0.085 to -0.100/K) tend to decrease while the net cloud radiative effect (3.86 W/m(exp 2)/ K) becomes less negative as SST anomalies increase. These results are broadly consistent with previous observational studies. Second, after the changes in cloud and radiative properties with SST anomaly are separated into dynamic, thermodynamic, and residual components, changes in the dynamic component (taken as the vertical velocity at 700 hPa) have relatively little effect on cloud and radiative properties. However, the estimated inversion strength decreases with increasing SST, accounting for a large portion of the measured decreases in cloud fraction and cloud optical depth. The residual positive change in net cloud radiative effect (1.48 W/m(exp 2)/ K) and small changes in low-cloud amount (-0.81% to 0.22% /K) and decrease in the logarithm of optical depth (-0.035 to -0.046/ K) with SST are interpreted as a positive cloud feedback, with cloud optical depth feedback being the dominant contributor. Last, the magnitudes of the residual changes differ greatly among the six low-cloud regions examined in this study, with the largest positive feedbacks (approximately 4 W/m(exp 2)/ K) in the southeast and northeast Atlantic regions and a slightly negative feedback (-0.2 W/m(exp 2)/ K) in the south-central Pacific region. Because the retrievals of cloud optical depth and/or cloud fraction are difficult in the presence of aerosols, the transport of heavy African continental aerosols may contribute to the large magnitudes of estimated cloud feedback in the two Atlantic regions.
Investigation of plasma contactors for use with orbiting wires
NASA Technical Reports Server (NTRS)
Estes, Robert D.; Grossi, Mario D.; Hohlfeld, Robert
1987-01-01
The proposed Shuttle-based short tether experiments with hollow cathodes have the potential for providing important data that will not be obtained in long tether experiments. A critical property for hollow cathode effectiveness as a plasma contactor is the cross magnetic field conductivity of the emitted plasma. The different effects of hollow cathode cloud overlap in the cases of motion-driven and battery-driven operation are emphasized. The calculations presented on the size and shape of the hollow cathode cloud improve the qualitative picture of hollow cathodes in low Earth orbit and provide estimates of time constants for establishing the fully-expanded cloud. The magnetic boundary value problem calculations indicate the way in which the magnetic field will effect the shape of the cloud by resisting expansion in the direction perpendicular to the field. The large-scale interactions of the system were also considered. It was concluded that recent plasma chamber experiments by Stenzel and Urrutia do not model an electrodynamic tether well enough to apply the results to tethered system behavior. Orbiting short tether experiments on hollow cathodes will provide critical information on hollow cathode performance and the underlying physics that cannot be obtained any other way. Experiments should be conducted as soon as funding and a suitable space vehicle are available.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Minnis, Patrick; Wood, Robert
2013-01-01
A 19-month record of total, and single-layered low (0-3 km), middle (3-6 km), and high (> 6 km) cloud fractions (CFs), and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties has been generated from ground-based measurements taken at the ARM Azores site between June 2009 and December 2010. It documents the most comprehensive and longest dataset on marine cloud fraction and MBL cloud properties to date. The annual means of total CF, and single-layered low, middle, and high CFs derived from ARM radar-lidar observations are 0.702, 0.271, 0.01 and 0.106, respectively. More total and single-layered high CFs occurred during winter, while single-layered low CFs were greatest during summer. The diurnal cycles for both total and low CFs are stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at approx. 1 km and higher one between 8 and 11 km during all seasons, except summer, when only the low peak occurs. The persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, while the low pressure and moist air masses during winter generate more total and multilayered-clouds, and deep frontal clouds associated with midlatitude cyclones.
Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Ackerman, Andrew; Menon, Surabi
2005-01-01
The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.
Progressive data transmission for anatomical landmark detection in a cloud.
Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D
2012-01-01
In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.
Towards a Three-Dimensional Near-Real Time Cloud Product for Aviation Safety and Weather Diagnoses
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Nguyen, Louis; Palikonda, Rabindra; Spangeberg, Douglas; Nordeen, Michele L.; Yi, Yu-Hong; Ayers, J. Kirk
2004-01-01
Satellite data have long been used for determining the extent of cloud cover and for estimating the properties at the cloud tops. The derived properties can also be used to estimate aircraft icing potential to improve the safety of air traffic in the region. Currently, cloud properties and icing potential are derived in near-real time over the United States of America (USA) from the Geostationary Operational Environmental Satellite GOES) imagers at 75 W and 135 W. Traditionally, the results have been given in two dimensions because of the lack of knowledge about the vertical extent of clouds and the occurrence of overlapping clouds. Aircraft fly in a three-dimensional space and require vertical as well as horizontal information about clouds, their intensity, and their potential for icing. To improve the vertical component of the derived cloud and icing parameters, this paper explores various methods and datasets for filling in the three-dimensional space over the USA with cloud water.
NASA Technical Reports Server (NTRS)
Marchant, Benjamin; Platnick, Steven; Meyer, Kerry; Arnold, George Thomas; Riedi, Jerome
2016-01-01
Cloud thermodynamic phase (e.g., ice, liquid) classification is an important first step for cloud retrievals from passive sensors such as MODIS (Moderate-Resolution Imaging Spectroradiometer). Because ice and liquid phase clouds have very different scattering and absorbing properties, an incorrect cloud phase decision can lead to substantial errors in the cloud optical and microphysical property products such as cloud optical thickness or effective particle radius. Furthermore, it is well established that ice and liquid clouds have different impacts on the Earth's energy budget and hydrological cycle, thus accurately monitoring the spatial and temporal distribution of these clouds is of continued importance. For MODIS Collection 6 (C6), the shortwave-derived cloud thermodynamic phase algorithm used by the optical and microphysical property retrievals has been completely rewritten to improve the phase discrimination skill for a variety of cloudy scenes (e.g., thin/thick clouds, over ocean/land/desert/snow/ice surface, etc). To evaluate the performance of the C6 cloud phase algorithm, extensive granule-level and global comparisons have been conducted against the heritage C5 algorithm and CALIOP. A wholesale improvement is seen for C6 compared to C5.
Outcome of the third cloud retrieval evaluation workshop
NASA Astrophysics Data System (ADS)
Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi
2013-05-01
Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.
Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Praveen, P. S.; Ramanathan, V.
2013-12-01
Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2% hematite content. The cloud spectral optical properties and the radiative properties for the aforesaid cases during CARDEX observations will be discussed in detail.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Piketh, S.; Formenti, P.; L'Ecuyer, T.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.;
2016-01-01
Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA's ORACLES, the UK Met Office's CLARIFY-2016, the DoE's LASIC, NSF's ONFIRE, and CNRS' AEROCLO-SA.
NASA Astrophysics Data System (ADS)
Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; L'Ecuyer, T. S.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; LeBlanc, S. E.; Vaughan, M. A.; Schmidt, S.; Flynn, C. J.; Song, S.; Schmid, B.; Luna, B.; Abel, S.
2015-12-01
Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA's ORACLES, the UK Met Office's CLARIFY-2016, the DoE's LASIC, NSF's ONFIRE, and CNRS' AEROCLO-SA.
Determination of Ice Cloud Models Using MODIS and MISR Data
NASA Technical Reports Server (NTRS)
Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.
2012-01-01
Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.
NASA Astrophysics Data System (ADS)
Dai, Guangyao; Wu, Songhua; Song, Xiaoquan; Zhai, Xiaochun
2018-04-01
Cirrus clouds affect the energy budget and hydrological cycle of the earth's atmosphere. The Tibetan Plateau (TP) plays a significant role in the global and regional climate. Optical and geometrical properties of cirrus clouds in the TP were measured in July-August 2014 by lidar and radiosonde. The statistics and temperature dependences of the corresponding properties are analyzed. The cirrus cloud formations are discussed with respect to temperature deviation and dynamic processes.
NASA Astrophysics Data System (ADS)
Evrard, Rebecca L.; Ding, Yifeng
2018-01-01
Clouds play a large role in the Earth's global energy budget, but the impact of cirrus clouds is still widely questioned and researched. Cirrus clouds reside high in the atmosphere and due to cold temperatures are comprised of ice crystals. Gaining a better understanding of ice cloud optical properties and the distribution of cirrus clouds provides an explanation for the contribution of cirrus clouds to the global energy budget. Using radiative transfer models (RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global energy budget as well as improve the use of global climate models. A newer, faster RTM such as the visible infrared imaging radiometer suite (VIIRS) fast radiative transfer model (VFRTM) is compared to a rigorous RTM such as the line-by-line radiative transfer model plus the discrete ordinates radiative transfer program. By comparing brightness temperature (BT) simulations from both models, the accuracy of the VFRTM can be obtained. This study shows root-mean-square error <0.2 K for BT difference using reanalysis data for atmospheric profiles and updated ice particle habit information from the moderate-resolution imaging spectroradiometer collection 6. At a higher resolution, the simulated results of the VFRTM are compared to the observations of VIIRS resulting in a <1.5 % error from the VFRTM for all cases. The VFRTM is validated and is an appropriate RTM to use for global cloud retrievals.
A Sample of What We Have Learned from A-Train Cloud Measurements
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Vasilkov, Alexander; Ziemke, Jerry; Chandra, Sushil; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick; Sneep, Maarten; Menzel, Paul; Platnick, Steve;
2008-01-01
The A-train active sensors CloudSat and CALIPSO provide detailed information about cloud vertical structure. Coarse vertical information can also be obtained from a combination of passive sensors (e.g. cloud liquid water content from AMSR-E, cloud ice properties from MLS and HIRDLS, cloud-top pressure from MODIS and AIRS, and UVNISINear IR absorption and scattering from OMI, MODIS, and POLDER). In addition, the wide swaths of instruments such as MODIS, AIRS, OMI, POLDER, and AMSR-E can be exploited to create estimates of the three-dimensional cloud extent. We will show how data fusion from A-train sensors can be used, e.g., to detect and map the presence of multiple layer/phase clouds. Ultimately, combined cloud information from Atrain instruments will allow for estimates of heating and radiative flux at the surface as well as UV/VIS/Near IR trace-gas absorption at the overpass time on a near-global daily basis. CloudSat has also dramatically improved our interpretation of visible and UV passive measurements in complex cloudy situations such as deep convection and multiple cloud layers. This has led to new approaches for unique and accurate constituent retrievals from A-train instruments. For example, ozone mixing ratios inside tropical deep convective clouds have recently been estimated using the Aura Ozone Monitoring Instrument (OMI). Field campaign data from TC4 provide additional information about the spatial variability and origin of trace-gases inside convective clouds. We will highlight some of the new applications of remote sensing in cloudy conditions that have been enabled by the synergy between the A-train active and passive sensors.
Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar
NASA Technical Reports Server (NTRS)
Orr, Brad W.; Kropfli, Robert A.
1993-01-01
During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.
CLaMS-Ice: Large-scale cirrus cloud simulations in comparison with observations
NASA Astrophysics Data System (ADS)
Costa, Anja; Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Afchine, Armin; Spelten, Nicole; Dreiling, Volker; Zöger, Martin; Krämer, Martina
2016-04-01
Cirrus clouds are an element of uncertainty in the climate system and have received increasing attention since the last IPCC reports. The interactions of different freezing mechanisms, sedimentation rates, updraft velocity fluctuations and other factors that determine the formation and evolution of those clouds is still not fully understood. Thus, a reliable representation of cirrus clouds in models representing real atmospheric conditions is still a challenging task. At last year's EGU, Rolf et al. (2015) introduced the new large-scale microphysical cirrus cloud model CLaMS-Ice: based on trajectories calculated with CLaMS (McKenna et al., 2002 and Konopka et al. 2007), it simulates the development of cirrus clouds relying on the cirrus bulk model by Spichtinger and Gierens (2009). The qualitative agreement between CLaMS-Ice simulations and observations could be demonstrated at that time. Now we present a detailed quantitative comparison between standard ECMWF products, CLaMS-Ice simulations, and in-situ measurements obtained during the ML-Cirrus campaign 2014. We discuss the agreement of the parameters temperature (observational data: BAHAMAS), relative humidity (SHARC), cloud occurrence, cloud particle concentration, ice water content and cloud particle radii (all NIXE-CAPS). Due to the precise trajectories based on ECMWF wind and temperature fields, CLaMS-Ice represents the cirrus cloud vertical and horizontal coverage more accurately than the ECMWF ice water content (IWC) fields. We demonstrate how CLaMS-Ice can be used to evaluate different input settings (e.g. amount of ice nuclei, freezing thresholds, sedimentation settings) that lead to cirrus clouds with the microphysical properties observed during ML-Cirrus (2014).
Development of GK-2A cloud optical and microphysical properties retrieval algorithm
NASA Astrophysics Data System (ADS)
Yang, Y.; Yum, S. S.; Um, J.
2017-12-01
Cloud and aerosol radiative forcing is known to be one of the the largest uncertainties in climate change prediction. To reduce this uncertainty, remote sensing observation of cloud radiative and microphysical properties have been used since 1970s and the corresponding remote sensing techniques and instruments have been developed. As a part of such effort, Geo-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) will be launched in 2018. On the GK-2A, the Advanced Meteorological Imager (AMI) is primary instrument which have 3 visible, 3 near-infrared, and 10 infrared channels. To retrieve optical and microphysical properties of clouds using AMI measurements, the preliminary version of new cloud retrieval algorithm for GK-2A was developed and several validation tests were conducted. This algorithm retrieves cloud optical thickness (COT), cloud effective radius (CER), liquid water path (LWP), and ice water path (IWP), so we named this algorithm as Daytime Cloud Optical thickness, Effective radius and liquid and ice Water path (DCOEW). The DCOEW uses cloud reflectance at visible and near-infrared channels as input data. An optimal estimation (OE) approach that requires appropriate a-priori values and measurement error information is used to retrieve COT and CER. LWP and IWP are calculated using empirical relationships between COT/CER and cloud water path that were determined previously. To validate retrieved cloud properties, we compared DCOEW output data with other operational satellite data. For COT and CER validation, we used two different data sets. To compare algorithms that use cloud reflectance at visible and near-IR channels as input data, MODIS MYD06 cloud product was selected. For the validation with cloud products that are based on microwave measurements, COT(2B-TAU)/CER(2C-ICE) data retrieved from CloudSat cloud profiling radar (W-band, 94 GHz) was used. For cloud water path validation, AMSR-2 Level-3 Cloud liquid water data was used. Detailed results will be shown at the conference.
Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.
The Characteristics of Ice Cloud Properties in China Derived from DARDAR data
NASA Astrophysics Data System (ADS)
Lin, T.; Zheng, Y.
2017-12-01
Ice clouds play an important role in modulating the Earth radiation budget and global hydrological cycle.Thus,study the properties of ice clouds has the vital significance on the interaction between the atmospheric models,cloud,radiation and climate .The world has explore the combination of two or several kinds of sensor data to solve the complementary strengths and error reduction to improve accuracy of ice cloud at the present , but for China ,has be lack of research on combination sensor data to analysis properties of ice cloud.To reach a wider range of ice cloud, a combination of the CloudSat radar and the CALIPSO lidar is used to derive ice cloud properties. These products include the radar/lidar product (DARDAR) developed at the University of Reading.The China probability distribution of ice cloud occurrence frequency, ice water path, ice water content and ice cloud effective radius were presented based on DARDAR data from 2012 to 2016,the distribution and vertical sturctures was discussed.The results indicate that the ice cloud occurrence frequency distribution takes on ascend trend in the last 4 years and has obvious seasonal variation, the high concentration area in the northeastern part of the Tibetan Plateau,ice cloud occurrence frequency is relatively high in northwest area.the increased of ice cloud occurrence frequency play an integral role of the climate warming in these four years; the general trend for the ice water path is southeast area bigger than northwest area, in winter the IWP is the smallest, biggest in summer; the IWC is the biggest in summer, and the vertical height distribution higher than other seasons; ice cloud effective radius and ice water content had similar trend..There were slight declines in ice cloud effective radius with increase height of China,in the summer ice effective radius is generally larger.The ice cloud impact Earth radiation via their albedo an greenhouse effects, that is, cooling the Earth by reflecting solar incident radiation and at the same time.Thus,thorough research of the characteristics of ice cloud properties can explain the complicated relationship between ice cloud and global warming,and this kind of data analysis can comprehend the climate effect of mainland China .
Seeing Through the Clouds: AGN Geometry with the Swift BAT Sample
NASA Astrophysics Data System (ADS)
Glikman, Eilat; Urry, M.; Schawinski, K.; Koss, M. J.; Winter, L. M.; Elitzur, M.; Wilkin, W. H.
2011-01-01
We investigate the intrinsic structure of the clouds surrounding AGN which give rise to their X-ray and optical emission properties. Using a complete sample of Swift BAT AGN selected in hard X-rays (14-195 keV), which is unbiased with respect to obscuration and extinction, we compute the reddening in the broad line region along the line of sight to the nucleus of each source using Balmer decrement from the ratio of the broad components of H-alpha/H-beta. We compare reddening from dust in the broad line clouds to the hydrogen column density (NH) obtained from their X-ray spectra. The distribution of the gas-to-dust ratios over many lines of sight allow us to test models of AGN structure and probe the immediate environment of the accreting supermassive black holes.
Validation of CERES-MODIS Arctic cloud properties using CloudSat/CALIPSO and ARM NSA observations
NASA Astrophysics Data System (ADS)
Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.
2011-12-01
The traditional passive satellite studies of cloud properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic clouds and the snow- and ice-covered surfaces beneath them, which can lead to difficulties in satellite retrievals of cloud properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for cloud properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic cloud fraction and cloud heights derived from the NASA CERES team (CERES-MODIS) have been compared with CloudSat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of cloud fraction and height between CERES-MODIS and CloudSat/CALIPSO was then conducted for the same time period. The CERES-MODIS cloud properties, which include cloud fraction and cloud effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. CloudSat/CALIPSO cloud fraction and cloud-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard CloudSat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and CloudSat/CALIPSO show generally good agreement in CF (0.79 vs. 0.74), while CERES-MODIS derived values are much lower (0.60). CERES-MODIS derived cloud effective height (2.7 km) falls between the CloudSat/CALIPSO derived cloud base (0.6 km) and top (6.4 km) and the ARM ceilometers and MMCR derived cloud base (0.9 km) and radar derived cloud top (5.8 km). When extended to the entire Arctic, although the CERES-MODIS and Cloudsat/CALIPSO derived annual mean CFs agree within a few percents, there are significant differences over several regions, and the maximum cloud heights derived from CloudSat/CALIPSO (13.4 km) and CERES-MODIS (10.7 km) show the largest disagreement during early spring.
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Formisano, V.; Moroz, V. I.; Bibring, J.-P.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Bellucci, G.; Altieri, F.; Blecka, M.; Gnedykh, V. N.; Grigoriev, A. V.; Lellouch, E.; Mattana, A.; Maturilli, A.; Moshkin, B. E.; Nikolsky, Yu. V.; Patsaev, D. V.; Piccioni, G.; Ratai, M.; Saggin, B.; Fonti, S.; Khatuntsev, I. V.; Hirsh, H.; Ekonomov, A. P.
2006-07-01
We discuss the results of measurements made with the Planetary Fourier Spectrometer (PFS) onboard the Mars Express spacecraft. The data were obtained in the beginning of the mission and correspond to the end of summer in the southern hemisphere of Mars ( L s ˜ 340°). Three orbits are considered, two of which passed through volcanoes Olympus and Ascraeus Mons (the height above the surface is about +20 km), while the third orbit intersects lowland Hellas (-7 km). The influence of the relief on the properties of the aerosol observed is demonstrated: clouds of water ice with a visual optical thickness of 0.1-0.5 were observed above volcanoes, while only dust was found during the observations (close in time) along the orbit passing through Hellas in low and middle latitudes. This dust is homogeneously mixed with gas and has a reduced optical thickness of 0.25±0.05 (at v = 1100 cm-1). In addition to orographic clouds, ice clouds were observed in this season in the northern polar region. The clouds seen in the images obtained simultaneously by the mapping spectrometer OMEGA confirm the PFS results. Temperature inversion is discovered in the north polar hood below the level 1 mbar with a temperature maximum at about 0.6 mbar. This inversion is associated with descending movements in the Hadley cell.
The clouds of Venus. [physical and chemical properties
NASA Technical Reports Server (NTRS)
Young, A. T.
1975-01-01
The physical and chemical properties of the clouds of Venus are reviewed, with special emphasis on data that are related to cloud dynamics. None of the currently-popular interpretations of cloud phenomena on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models. Several lines of attack are suggested to resolve some of the contradictions. A sound understanding of the clouds appears to be several years in the future.
Observed Cloud Properties Above the Northern Indian Ocean During CARDEX 2012
NASA Astrophysics Data System (ADS)
Gao, L.; Wilcox, E. M.
2016-12-01
An analysis of cloud microphysical, macrophysical and radiative properties during the dry winter monsoon season above the northern Indian Ocean is presented. The Cloud Aerosol Radiative Forcing Experiment (CARDEX), conducted from 16 February to 30 March 2012 at the Maldives Climate Observatory on Hanimaadhoo (MCOH), used autonomous unmanned aerial vehicles (UAVs) to measure the aerosol profiles, water vapor flux and cloud properties concurrent with continuous ground measurements of surface aerosol and meteorological variables as well as the total-column precipitable water vapor (PWV) and the cloud liquid water path (LWP). Here we present the cloud properties only for the cases with lower atmospheric water vapor using the criterion that the PWV less than 40 kg/m2. This criterion acts to filter the data to control for the natural meteorological variability in the region according to previous studies. The high polluted case is found to correlate with warmer temperature, higher relative humidity in boundary layer and lower lifted condensation level (LCL). Micro Pulse Lidar (MPL) retrieved cloud base height coincides with calculated LCL height which is lower for high polluted case. Meanwhile satellite retrieved cloud top height didn't show obvious variation indicating cloud deepening which is consistent with the observed greater cloud LWP in high polluted case. Those high polluted clouds are associated with more cloud droplets and smaller effective radius and are generally becoming narrower due to the stronger cloud side evaporation-entrainment effect and becoming deeper due to more moist static energy. Clouds in high polluted condition become brighter with higher albedo which can cause a net shortwave forcing over -40 W/m2 in this region.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Platnick, Steven
2012-01-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.
Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals
NASA Astrophysics Data System (ADS)
Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui
2018-04-01
Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (<0.3 aerosol optical depth) and decrease with further aerosol increase. For in situ formed ice clouds, however, these cloud properties increase monotonically and more sharply with aerosol loadings. An increase in loading of smoke aerosols generally reduces cloud optical thickness of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution aerosols. These relationships between different cloud/aerosol types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.
Kato, Seiji; Xu, Kuan‐Man; Cai, Ming
2015-01-01
Abstract Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice‐cloud relationship in the Arctic using a satellite footprint‐level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A‐Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest‐magnitude cloud‐sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near‐surface static stability is found at larger sea ice concentrations. PMID:27818851
Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Wenlong; Macri, Lucas M.; He, Shiyuan
We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK{sub s}. We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K{sub s}. We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
NASA Astrophysics Data System (ADS)
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.
2017-04-01
There are multiple factors which affect the micro- and macrophysical properties of clouds, including the atmospheric vertical structure and dominant meteorological conditions in addition to aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. As bio- and fossil fuel combustion has increased in southeast Asia, corresponding increases in atmospheric aerosol pollution have been seen over the surrounding regions. These emissions notably include black carbon (BC) aerosols, which absorb rather than reflect solar radiation, affecting the atmosphere over the Indian Ocean through direct warming in addition to modifying cloud microphysical properties. The CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign was conducted during the winter monsoon season (February and March) of 2012 in the northern Indian Ocean, a region dominated by trade cumulus clouds. During CARDEX, small unmanned aircraft were deployed, measuring aerosol, radiation, cloud, water vapor fluxes, and meteorological properties while a surface observatory collected continuous measurements of atmospheric precipitable water vapor (PWV), water vapor fluxes, surface and total-column aerosol, and cloud liquid water path (LWP). We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV)
Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.
2007-01-01
Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.
1995-01-01
A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gate conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micron radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and under-prediction of peak supersaturations.
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.
1995-01-01
A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micrometers radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and underprediction of peak supersaturations.
Detection and Retrieval of Multi-Layered Cloud Properties Using Satellite Data
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Sun-Mack, Sunny; Chen, Yan; Yi, Helen; Huang, Jian-Ping; Nguyen, Louis; Khaiyer, Mandana M.
2005-01-01
Four techniques for detecting multilayered clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. A new technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other methods examined here use atmospheric sounding data (CO2-slicing, CO2), BTD, or microwave data. The CO2 and BTD methods are limited to optically thin cirrus over low clouds, while the MWR methods are limited to ocean areas only. This paper explores the use of the BTD and CO2 methods as applied to Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data taken from the Aqua satellite over ocean surfaces. Cloud properties derived from MODIS data for the Clouds and the Earth's Radiant Energy System (CERES) Project are used to classify cloud phase and optical properties. The preliminary results focus on a MODIS image taken off the Uruguayan coast. The combined MW visible infrared (MVI) method is assumed to be the reference for detecting multilayered ice-over-water clouds. The BTD and CO2 techniques accurately match the MVI classifications in only 51 and 41% of the cases, respectively. Much additional study is need to determine the uncertainties in the MVI method and to analyze many more overlapped cloud scenes.
Detection and retrieval of multi-layered cloud properties using satellite data
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Sun-Mack, Sunny; Chen, Yan; Yi, Helen; Huang, Jianping; Nguyen, Louis; Khaiyer, Mandana M.
2005-10-01
Four techniques for detecting multilayered clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. A new technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other methods examined here use atmospheric sounding data (CO2-slicing, CO2), BTD, or microwave data. The CO2 and BTD methods are limited to optically thin cirrus over low clouds, while the MWR methods are limited to ocean areas only. This paper explores the use of the BTD and CO2 methods as applied to Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data taken from the Aqua satellite over ocean surfaces. Cloud properties derived from MODIS data for the Clouds and the Earth's Radiant Energy System (CERES) Project are used to classify cloud phase and optical properties. The preliminary results focus on a MODIS image taken off the Uruguayan coast. The combined MW visible infrared (MVI) method is assumed to be the reference for detecting multilayered ice-over-water clouds. The BTD and CO2 techniques accurately match the MVI classifications in only 51 and 41% of the cases, respectively. Much additional study is need to determine the uncertainties in the MVI method and to analyze many more overlapped cloud scenes.
NASA Astrophysics Data System (ADS)
Havemann, S.; Aumann, H. H.; Desouza-Machado, S. G.
2017-12-01
The HT-FRTC uses principal components which cover the spectrum at a very high spectral resolution allowing very fast line-by-line-like, hyperspectral and broadband simulations for satellite-based, airborne and ground-based sensors. Using data from IASI and from the Airborne Research Interferometer Evaluation System (ARIES) on board the FAAM BAE 146 aircraft, variational retrievals in principal component space with HT-FRTC as forward model have demonstrated that valuable information on temperature and humidity profiles and on the cirrus cloud properties can be obtained simultaneously. The NASA/JPL/UMBC cloudy RTM inter-comparison project has been working on a global dataset consisting of 7377 AIRS spectra. Initial simulations with HT-FRTC for this dataset have been promising. A next step taken here is to investigate how sensitive the results are with respect to different assumptions in the cloud modelling. One aspect of this is to study how assumptions about the microphysical and related optical properties of liquid/ice clouds impact the statistics of the agreement between model and observations. The other aspect is about the cloud overlap scheme. Different schemes have been tested (maximum, random, maximum random). As the computational cost increases linearly with the number of cloud columns, it will be investigated if there is an optimal number of columns beyond which there is little additional benefit to be gained. During daytime the high wave number channels of AIRS are affected by solar radiation. With full scattering calculations using a monochromatic version of the Edwards-Slingo radiation code the HT-FRTC can model solar radiation reasonably well, but full scattering calculations are relatively expensive. Pure Chou scaling on the other hand can not properly describe scattering of solar radiation by clouds and requires additional refinements.
Marine Boundary Layer Cloud Properties From AMF Point Reyes Satellite Observations
NASA Technical Reports Server (NTRS)
Jensen, Michael; Vogelmann, Andrew M.; Luke, Edward; Minnis, Patrick; Miller, Mark A.; Khaiyer, Mandana; Nguyen, Louis; Palikonda, Rabindra
2007-01-01
Cloud Diameter, C(sub D), offers a simple measure of Marine Boundary Layer (MBL) cloud organization. The diurnal cycle of cloud-physical properties and C(sub D) at Pt Reyes are consistent with previous work. The time series of C(sub D) can be used to identify distinct mesoscale organization regimes within the Pt. Reyes observation period.
Final Technical Report for Grant # DE-FG02-06ER64169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Beat Schmid, PI
2007-07-13
The Atmospheric Radiation Measurement (ARM) program is funding this project to improve the methodology of ground-based remote sensing of the vertical distribution of aerosol and cloud optical properties, and their effect on atmospheric radiative transfer. Remotely-sensed and in situ observed aerosol, cloud physical, and optical properties collected during the May 2003 Aerosol Intensive Operational Period (AIOP) and the Aerosol Lidar Validation Experiment (ALIVE), conducted from September 11-22, 2005, are the basis for the investigation. We have used ground-based lidar, airborne sunphotometer and in situ measurements and other data to evaluate the vertical profile of aerosol properties. We have been pursuingmore » research in the following three areas: (1) Aerosol Best Estimate Product--Sensitivity Study: ARM is developing an Aerosol Best Estimate (ABE) Value Added Product (VAP) to provide aerosol optical properties at all times and heights above its sites. The ABE is used as input for the Broadband Heating Rate Profile (BBHRP) VAP, whose output will be used to evaluate the radiative treatment of aerosols and clouds in climate models. ARM has a need to assess how much detail is required for the ABE and if a useful ABE can be derived for the tropical and arctic climate research facilities (CRFs) where only limited aerosol information in the vertical is available. We have been determining the sensitivity of BBHRP to the vertical profile of aerosol optical properties used in ABE. (2) Vertically Resolved Aerosol and Cloud Radiative Properties over the Southern Great Plains (SGP): The AIOP delivered an unprecedented airborne radiometric and in situ data set related to aerosols and clouds. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS's) Twin Otter aircraft carried solar pointing, up- and down-looking radiometers (spectral and broadband, visible, and infrared) with the uplooking radiometers mounted on a stabilized platform. We are performing an integrated analysis of the largely unexploited radiometric data set to provide observation-based quantification of the effect of aerosols and clouds on the radiation field. We will link aerosol and cloud properties measured in situ with the observed radiative fluxes using radiative transfer models. This over-determined dataset will provide validation of the BBHRP VAP. (3) Integrated Analysis of Data from the Aerosol Lidar Validation Experiment: The ABE VAP relies on continuous lidar observations to provide the vertical distribution of the aerosols above the ARM sites. The goal of ALIVE, conducted in September 2005, was the validation of the aerosol extinction profiles obtained from the SGP Raman lidar, which has been recently refurbished/updated, and the Micro Pulse Lidar, for which a new algorithm to retrieve aerosol profiles has recently been developed, using the National Aeronautics and Space Administration (NASA) Ames Airborne Tracking 14 channel Sun photometer. We are performing and publishing the integrated analysis of the ALIVE data set.« less
NASA Astrophysics Data System (ADS)
Osborne, S. R.; Haywood, J. M.
2001-12-01
An initial analysis will be shown from the ~80 h of data collected between 2--18 September 2000 by the UK Met Office C-130 aircraft during the dry season campaign of the Southern African Regional Science Initiative (SAFARI-2000). The talk will concentrate on the physical and optical properties of the biomass aerosol. The evolution of the particle size spectrum and its optical properties at emission and after ageing will be shown. The vertical distribution of the biomass plume over the land and sea will be compared in view of the local meteorology. A generalised three log-normal model is shown to represent aged biomass aerosol over the sea areas, both in terms of the number and mass particle size spectra, but also derived optical properties (e.g. asymmetry factor, single scatter albedo (ω 0) and extinction coefficient) as calculated using Mie theory and appropriate refractive indices. ω 0 was determined independently using a particle soot absorption photometer (giving the absorption coefficient at a wavelength of 0.567 μ m) and a nephelometer (giving the scattering coefficients at 0.45, 0.55 and 0.65 μ m). Good agreement was found between the measurements and those obtained from the Mie calculations and observed size distributions. A typical value of ω 0 at 0.55 μ m for aged biomass aerosol was 0.90. The radiative properties of the biomass aerosol over both land and sea will be summarised. Stratocumulus cloud was present on some of the days over the sea and the surprising lack of interaction between the elevated biomass plume (containing significant levels of cloud condensation nuclei) and the cloud capping the marine boundary layer will be illustrated. Using the cloud-free and cloudy case studies we can begin to elucidate the levels of direct and indirect forcing of the biomass aerosol on a regional scale. >http://www.mrfnet.demon.co.uk/africa/SAFARI2000.htm
Laboratory study of microphysical and scattering properties of corona-producing cirrus clouds.
Järvinen, E; Vochezer, P; Möhler, O; Schnaiter, M
2014-11-01
Corona-producing cirrus clouds were generated and measured under chamber conditions at the AIDA cloud chamber in Karlsruhe. We were able to measure the scattering properties as well as microphysical properties of these clouds under well-defined laboratory conditions in contrast with previous studies of corona-producing clouds, where the measurements were conducted by means of lidar and in situ aircraft measurements. Our results are in agreement with those of previous studies, confirming that corona-producing cirrus clouds consist of a narrow distribution of small (median Dp=19-32 μm) and compact ice crystals. We showed that the ice crystals in these clouds are most likely formed in homogeneous freezing processes. As a result of the homogeneous freezing process, the ice crystals grow uniformly in size; furthermore, the majority of the ice crystals have rough surface features.
Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime
NASA Astrophysics Data System (ADS)
Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina
2016-04-01
The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud particles are nevertheless classified as spherical for all temperatures, possibly indicating columnar ice crystals (see Järvinen et al, submitted to JAS 2016).
Model-Observation Comparisons of Biomass Burning Smoke and Clouds Over the Southeast Atlantic Ocean
NASA Astrophysics Data System (ADS)
Doherty, S. J.; Saide, P.; Zuidema, P.; Shinozuka, Y.; daSilva, A.; McFarquhar, G. M.; Pfister, L.; Carmichael, G. R.; Ferrada, G. A.; Howell, S. G.; Freitag, S.; Dobracki, A. N.; Smirnow, N.; Longo, K.; LeBlanc, S. E.; Adebiyi, A. A.; Podolske, J. R.; Small Griswold, J. D.; Hekkila, A.; Ueyama, R.; Wood, R.; Redemann, J.
2017-12-01
From August through October, in the SE Atlantic a plume of biomass burning smoke from central Africa overlays a relatively persistent stratocumulus-to-cumulus cloud deck. These smoke aerosols are believed to have significant climate forcing via aerosol-radiation and aerosol-cloud interactions, though both the magnitude and sign of this forcing is highly uncertain. This is due to large model spread in simulated aerosol and cloud properties and, until now, a sparsity of observations to constrain the models. Here we will present a comparison of both aerosol and cloud properties over the region using data from the first deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) field experiment (August-September 2016). We examine both horizontal and geographic variations in a range of aerosol and cloud properties and their position relative to each other, since the degree to which aerosols and clouds coincide both horizontally and vertically is perhaps the greatest source of uncertainty in their climate forcing.
Far Infrared Line Profiles from Photodissociation Regions and Warm Molecular Clouds
NASA Technical Reports Server (NTRS)
Boreiko, R. T.; Betz, A. L.
1998-01-01
This report summarizes the work done under NASA Grant NAG2-1056 awarded to the University of Colorado. The aim of the project was to analyze data obtained over the past several years with the University of Colorado far-infrared heterodyne spectrometer (Betz & Boreiko 1993) aboard the Kuiper Airborne Observatory. Of particular interest were observations of CO and ionized carbon (C II) in photodissociation regions (PDRs) at the interface between UV-ionized H II regions and the neutral molecular clouds supporting star formation. These data, obtained with a heterodyne spectrometer having a resolution of 3.2 MHz, which is equivalent to a velocity resolution of 0.2 km/s at 60 microns and 1.0 km/s at 300 microns, were analyzed to obtain physical parameters such as density and temperature in the observed PDR. The publication resulting from the work reported here is appended. No inventions were made nor was any federally owned property acquired as a result of the activities under this grant.
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.
2009-01-01
Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.
Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific
NASA Astrophysics Data System (ADS)
Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.
2005-12-01
Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.
Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.
2004-01-01
Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.
A Case Study of Ships Forming and Not Forming Tracks in Moderately Polluted Clouds.
NASA Astrophysics Data System (ADS)
Noone, Kevin J.; Öström, Elisabeth; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Johnson, Doug W.; Taylor, Jonathan P.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; O'Dowd, Colin D.; Smith, Michael H.; Durkee, Philip A.; Nielsen, Kurt; Hudson, James G.; Pockalny, Robert A.; de Bock, Lieve; van Grieken, René E.; Gasparovic, Richard F.; Brooks, Ian
2000-08-01
The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed;these indicate that combustion-derived particles in the size range of about 0.03-0.3-m radius were those that caused the microphysical changes in the clouds that were responsible for the ship track.The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.
High-energy radiation from collisions of high-velocity clouds and the Galactic disc
NASA Astrophysics Data System (ADS)
del Valle, Maria V.; Müller, A. L.; Romero, G. E.
2018-04-01
High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.
Low altitude cloud height and methane humidity retrievals on Titan in the near-IR
NASA Astrophysics Data System (ADS)
Adamkovics, M.; Hayes, A.; Mitchell, J.; De Pater, I.; Young, E.
2013-12-01
The formation of low altitude clouds on Titan, with cloud-top altitudes below ~10km, likely occurs by a fundamentally different mechanism than for the clouds commonly observed to have cloud-tops in the upper troposphere, above ~15km [1]. Near-infrared spectroscopy of clouds has been the method of choice for determining cloud altitudes [2], however, uncertainties in aerosols scattering properties and opacities, together with limitations in laboratory measurements of gas opacities (in particular for methane), lead to uncertainties in how accurately the altitude of low clouds can be retrieved [3]. Here we revisit near-IR spectra obtained with Keck and Cassini using new laboratory methane line data in the HITRAN 2012 database [4] to address the problem of measuring the altitudes of low clouds. We discuss the role of topography in relation to the formation of low clouds and other diagnostics of conditions near the surface, such as the tropospheric methane humidity. We reanalyze measurements the tropospheric humidity variation [5] and describe observational strategies for improved diagnostics of the tropospheric humidity on Titan . Acknowledgements: Funding for this work is provided by the NSF grant AST-1008788 and NASA OPR grant NNX12AM81G. References: [1] Brown, et al. (2009) ApJ, 706, L110-L113. [2] Ádámkovics et al. (2010) Icarus, 208, 868-877. [3] Griffith et al. (2012) Icarus, 218, 975-988. [4] Rothman et al. (2013) AIP Conf. Proc., 1545, 223-231. [5] Penteado & Griffith (2010) Icarus, 206, 345-351.
Overlap Properties of Clouds Generated by a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Khairoutdinov, M.
2002-01-01
In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will estimate the radiation effects of multi-layer cloud fields more accurately.
NASA Astrophysics Data System (ADS)
Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan
2015-04-01
Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in-cloud sampling through the CVI contained mainly organic material and, to a lesser extent, nitrate.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin G.; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.;
2016-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties(optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations.The C6 algorithm changes collectively can result in significant changes relative to C5,though the magnitude depends on the dataset and the pixels retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud opticalproperty datasets, other MODIS cloud datasets are discussed when relevant.
NASA Astrophysics Data System (ADS)
Jinya, John; Bipasha, Paul S.
2016-05-01
Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in
Outcome of the Third Cloud Retrieval Evaluation Workshop
NASA Astrophysics Data System (ADS)
Roebeling, R.; Baum, B.; Bennartz, R.; Hamann, U.; Heidinger, A.; Thoss, A.; Walther, A.
2012-04-01
Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and inter-annual variations are needed to improve the understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics need to be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), which was held from 15-18 November 2011 in Madison, Wisconsin, USA, is to enhance our knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimising these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods that are used to prepare daily and monthly cloud parameter climatologies. An important component of the workshop is the discussion on the results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we will summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on the reasons for the observed differences. More in depth discussions were held on retrieval principles and validation, and the utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement; cloud physical properties, and cloud climatologies. We will present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize the actions defined to tailor the CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention will be given to increase the traceability and uniformity of different long-term and homogeneous records of cloud parameters.
NASA Technical Reports Server (NTRS)
Uttal, Taneil; Frisch, Shelby; Wang, Xuan-Ji; Key, Jeff; Schweiger, Axel; Sun-Mack, Sunny; Minnis, Patrick
2005-01-01
A one year comparison is made of mean monthly values of cloud fraction and cloud optical depth over Barrow, Alaska (71 deg 19.378 min North, 156 deg 36.934 min West) between 35 GHz radar-based retrievals, the TOVS Pathfinder Path-P product, the AVHRR APP-X product, and a MODIS based cloud retrieval product from the CERES-Team. The data sets represent largely disparate spatial and temporal scales, however, in this paper, the focus is to provide a preliminary analysis of how the mean monthly values derived from these different data sets compare, and determine how they can best be used separately, and in combination to provide reliable estimates of long-term trends of changing cloud properties. The radar and satellite data sets described here incorporate Arctic specific modifications that account for cloud detection challenges specific to the Arctic environment. The year 2000 was chosen for this initial comparison because the cloud radar data was particularly continuous and reliable that year, and all of the satellite retrievals of interest were also available for the year 2000. Cloud fraction was chosen as a comparison variable as accurate detection of cloud is the primary product that is necessary for any other cloud property retrievals. Cloud optical depth was additionally selected as it is likely the single cloud property that is most closely correlated to cloud influences on surface radiation budgets.
Discrete Angle Radiative Transfer in Uniform and Extremely Variable Clouds.
NASA Astrophysics Data System (ADS)
Gabriel, Philip Mitri
The transfer of radiant energy in highly inhomogeneous media is a difficult problem that is encountered in many geophysical applications. It is the purpose of this thesis to study some problems connected with the scattering of solar radiation in natural clouds. Extreme variability in the optical density of these clouds is often believed to occur regularly. In order to facilitate study of very inhomogeneous optical media such as clouds, the difficult angular part of radiative transfer calculations is simplified by considering a series of models in which conservative scattering only occurs in discrete directions. Analytic and numerical results for the radiative properties of these Discrete Angle Radiative Transfer (DART) systems are obtained in the limits of both optically thin and thick media. Specific results include: (a) In thick homogeneous media, the albedo (reflection coefficient), unlike the transmission, cannot be obtained by a diffusion equation. (b) With the aid of an exact analogy with an early model of conductor/superconductor mixtures, it is argued that inhomogeneous media with embedded holes, neither the transmission, nor the albedo can be described by diffusive random walks. (c) Using renormalization methods, it is shown that thin cloud behaviour is sensitive to the scattering phase functions since it is associated with a repelling fixed point, whereas, the thick cloud limit is universal in that it is phase function independent, and associated with an attracting fixed point. (d) In fractal media, the optical thickness required for a given albedo or transmission can differ by large factors from that required in the corresponding plane parallel geometry. The relevant scaling exponents have been calculated in a very simple example. (e) Important global meteorological and climatological implications of the above are discussed when applied to the scattering of visible light in clouds. In the remote sensing context, an analysis of satellite data reveals that augmenting a satellite's resolution reveals increasingly detailed structures that are found to occupy a decreasing fraction of the image, while simultaneously brightening to compensate. By systematically degrading the resolution of visible and infra red satellite cloud and surface data as well as radar rain data, resolution -independent co-dimension functions were defined which were useful in describing the spatial distribution of image features as well as the resolution dependence of the intensities themselves. The scale invariant functions so obtained fit into theoretically predicted functional forms. These multifractal techniques have implications for our ability to meaningfully estimate cloud brightness fraction, total cloud amount, as well as other remotely sensed quantities.
Retrieval of cloud properties from POLDER-3 data using the neural network approach
NASA Astrophysics Data System (ADS)
Di Noia, A.; Hasekamp, O. P.
2017-12-01
Satellite multi-angle spectroplarimetry is a useful technique for observing the microphysical properties of clouds and aerosols. Most of the algorithms for the retrieval of cloud and aerosol properties from satellite measurements require multiple calls to radiative transfer models, which make the retrieval computationally expensive. A traditional alternative to these schemes is represented by lookup-tables (LUTs), where the retrieval is performed by choosing, within a predefined database of combinations of clouds or aerosol properties, the combination that best fits the measurements. LUT retrievals are quicker than full-physics, iterative retrievals, but their accuracy is limited by the number of entries stored in the LUT. Another retrieval method capable of producing very quick retrievals without a big sacrifice in accuracy is the neural network method. Neural network methods are routinely applied to several types of satellite measurements, but their application to multi-angle spectropolarimetric data is still in its early stage, because of the difficulty of accounting for the angular variability of the measurements in the training process. We have recently developed a neural network scheme for the retrieval of cloud properties from POLDER-3 data. The neural network retrieval is trained using synthetic measurements performed for realistic combinations of cloud properties and measurement angles, and is able to process an entire orbit in about 20 seconds. Comparisons of the retrieved cloud properties with Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products during one year show encouraging retrieval performance for cloud optical thickness and effective radius. A discussion of the setup of the neural network and of the validation results will be the main topic of our presentation.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk
2006-03-01
The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.
Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects
NASA Astrophysics Data System (ADS)
Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.
2016-12-01
Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.
The impact of galactic disc environment on star-forming clouds
NASA Astrophysics Data System (ADS)
Nguyen, Ngan K.; Pettitt, Alex R.; Tasker, Elizabeth J.; Okamoto, Takashi
2018-03-01
We explore the effect of different galactic disc environments on the properties of star-forming clouds through variations in the background potential in a set of isolated galaxy simulations. Rising, falling, and flat rotation curves expected in halo-dominated, disc-dominated, and Milky Way-like galaxies were considered, with and without an additional two-arm spiral potential. The evolution of each disc displayed notable variations that are attributed to different regimes of stability, determined by shear and gravitational collapse. The properties of a typical cloud were largely unaffected by the changes in rotation curve, but the production of small and large cloud associations was strongly dependent on this environment. This suggests that while differing rotation curves can influence where clouds are initially formed, the average bulk properties are effectively independent of the global environment. The addition of a spiral perturbation made the greatest difference to cloud properties, successfully sweeping the gas into larger, seemingly unbound, extended structures and creating large arm-interarm contrasts.
Using Ground-Based Measurements and Retrievals to Validate Satellite Data
NASA Technical Reports Server (NTRS)
Dong, Xiquan
2002-01-01
The proposed research is to use the DOE ARM ground-based measurements and retrievals as the ground-truth references for validating satellite cloud results and retrieving algorithms. This validation effort includes four different ways: (1) cloud properties on different satellites, therefore different sensors, TRMM VIRS and TERRA MODIS; (2) cloud properties at different climatic regions, such as DOE ARM SGP, NSA, and TWP sites; (3) different cloud types, low and high level cloud properties; and (4) day and night retrieving algorithms. Validation of satellite-retrieved cloud properties is very difficult and a long-term effort because of significant spatial and temporal differences between the surface and satellite observing platforms. The ground-based measurements and retrievals, only carefully analyzed and validated, can provide a baseline for estimating errors in the satellite products. Even though the validation effort is so difficult, a significant progress has been made during the proposed study period, and the major accomplishments are summarized in the follow.
Impacts of Saharan Dust on the Atmospheric Radiative Balance in the Caribbean during SALTRACE 2013
NASA Astrophysics Data System (ADS)
Sauer, D. N.; Weinzierl, B.; Gross, S.; Minikin, A.; Freudenthaler, V.; Gasteiger, J.; Mayer, B. C.
2013-12-01
Direct and indirect aerosol radiative effects represent one of the largest uncertainties in the modeling of the climate system. To better quantify the effects of aerosols on the Earth's radiative balance and understand important physical effects on small scales such as the influence of aerosols on clouds, detailed measurements of aerosol properties are needed to build a globally representative data set. Mineral dust is among the most abundant aerosols and the Sahara Desert constitutes its largest source. During frequent dust outbreaks thick elevated aerosol layers are formed and transported over large distances -often across the Atlantic Ocean into the Caribbean. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in June/July 2013 continues the SAMUM field experiments conducted in 2006 and 2008. It aims to study the long-range transport of Saharan mineral dust, the properties of aged mineral dust aerosol, and its impact on radiative quantities and cloud processes. The experiment led to an extensive data set on dust layers from Senegal to the Caribbean using airborne in-situ and remote sensing measurements, complemented with ground-based remote sensing and in-situ measurements on sites in Barbados and Puerto Rico as well as satellite remote sensing data. The airborne data were obtained with an extensive aerosol payload aboard the DLR-operated Falcon 20E research aircraft. The measurements cover the entire size range of atmospheric aerosol with a combination of cabin-operated and wing-mounted instruments. In addition, particle properties such as absorption coefficients and volatility are measured. A nadir-looking 2-μm Doppler-lidar system aboard the aircraft was used for wind measurements and served as a path finder for the selection of representative aerosol in-situ levels. In the Caribbean the dust usually arrives in several layers with distinct properties: the mostly undisturbed pure dust layer in altitudes up to 4-5 km, a transition layer where mixing and cloud processing has occurred, and a lower layer with a significant contribution from marine boundary layer aerosol. Here we present a case study of the direct radiative effects of Saharan dust layers found over Barbados using airborne in-situ and ground-based lidar observations. Using the radiative transfer package libRadtran we estimate the direct radiative forcing and radiative heating rate profiles inside the tropospheric column over Barbados. To deduce aerosol optical properties for the radiative transfer model, particle size distributions, aerosol refractive indices, and shape distributions are obtained from in-situ data. Coinciding lidar observations are used to deduce the vertical extent and structure of the different aerosol layers. To study the effect of aerosol aging on the radiative balance we compare the model results from in-situ data obtained in Barbados with results based on data from Senegal and the Cape Verde region and from the SAMUM field experiments, which characterized the dust properties near the source.
Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchand, Roger
Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) programmore » sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.« less
Global CALIPSO Observations of Aerosol Changes Near Clouds
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2011-01-01
Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.
What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.
2006-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
NASA Astrophysics Data System (ADS)
Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens
2018-03-01
An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung
2014-01-01
Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.
Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements
NASA Astrophysics Data System (ADS)
Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.
2017-12-01
The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.
Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.
2014-12-01
Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various datasets available, the methods employed to utilize them in the cloud property retrieval validation process, and the results and how they aid future development of the retrieval algorithms. Future needs are also discussed.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.
2011-10-01
One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of 345.4 W m-2 is estimated by combining the modeled instantaneous surface longwave irradiance computed with CALIOP and CPR cloud profiles with the global annual mean longwave irradiance from the CERES product (AVG), which includes the diurnal variation of the irradiance. The estimated bias error is -1.5 W m-2 and the uncertainty is 6.9 W m-2. The uncertainty is predominately caused by the near-surface temperature and column water vapor amount uncertainties.
NASA Astrophysics Data System (ADS)
NOH, Y. J.; Miller, S. D.; Heidinger, A. K.
2015-12-01
Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising potential of the algorithm.
Cloud-property retrieval using merged HIRS and AVHRR data
NASA Technical Reports Server (NTRS)
Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay
1992-01-01
A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cziczo, Daniel
2016-05-01
The formation of clouds is an essential element in understanding the Earth’s radiative budget. Liquid water clouds form when the relative humidity exceeds saturation and condensedphase water nucleates on atmospheric particulate matter. The effect of aerosol properties such as size, morphology, and composition on cloud droplet formation has been studied theoretically as well as in the laboratory and field. Almost without exception these studies have been limited to parallel measurements of aerosol properties and cloud formation or collection of material after the cloud has formed, at which point nucleation information has been lost. Studies of this sort are adequate whenmore » a large fraction of the aerosol activates, but correlations and resulting model parameterizations are much more uncertain at lower supersaturations and activated fractions.« less
NASA Technical Reports Server (NTRS)
Kinne, S.; Wiscombe, Warren; Einaudi, Franco (Technical Monitor)
2001-01-01
Understanding the effect of aerosol on cloud systems is one of the major challenges in atmospheric and climate research. Local studies suggest a multitude of influences on cloud properties. Yet the overall effect on cloud albedo, a critical parameter in climate simulations, remains uncertain. NASA's Triana mission will provide, from its EPIC multi-spectral imager, simultaneous data on aerosol properties and cloud reflectivity. With Triana's unique position in space these data will be available not only globally but also over the entire daytime, well suited to accommodate the often short lifetimes of aerosol and investigations around diurnal cycles. This pilot study explores the ability to detect relationships between aerosol properties and cloud reflectivity with sophisticated statistical methods. Sample results using data from the EOS Terra platform to simulate Triana are presented.
Investigation of tropical cirrus cloud properties using ground based lidar measurements
NASA Astrophysics Data System (ADS)
Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.
2016-05-01
Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.
What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.
2005-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert
2015-01-01
This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.
Cloud Ozone Dust Imager (CODI). Volume 1; Investigation and Technical Plan
NASA Technical Reports Server (NTRS)
Clancy, R. Todd; Dusenbery, Paul; Wolff, Michael; James, Phil; Allen, Mark; Goguen, Jay; Kahn, Ralph; Gladstone, Rany; Murphy, Jim
1995-01-01
The Cloud Ozone Dust Imager (CODI) is proposed to investigate the current climatic balance of the Mars atmosphere, with particular emphasis on the important but poorly understood roles which dust and water ice aerosols play in this balance. The large atmospheric heating (20-50 K) resulting from global dust storms around Mars perihelion is well recognized. However, groundbased observations of Mars atmospheric temperatures, water vapor, and clouds since the Viking missions have identified a much colder, cloudier atmosphere around Mars aphelion that may prove as important as global dust storms in determining the interannual and long-term behavior of the Mars climate. The key climate issues CODI is designed to investigate are: 1) the degree to which non-linear interactions between atmospheric dust heating, water vapor saturation, and cloud nucleation influence the seasonal and interannual variability of the Mars atmosphere, and 2) whether the strong orbital forcing of atmospheric dust loading, temperatures and water vapor saturation determines the long-term balance of Mars water, as reflected in the north-south hemispheric asymmetries of atmospheric water vapor and polar water ice abundances. The CODI experiment will measure the daily, seasonal and (potentially) interannual variability of atmospheric dust and cloud opacities, and the key physical properties of these aerosols which determine their role in the climate cycles of Mars. CODI is a small (1.2 kg), fixed pointing camera, in which four wide-angle (+/- 70 deg) lenses illuminate fixed filters and CCD arrays. Simultaneous sky/surface imaging of Mars is obtained at an angular resolution of 0.28 deg/pixel for wavelengths of 255, 336, 502, and 673 nm (similar to Hubble Space Telescope filters). These wavelengths serve to measure atmospheric ozone (255 and 336 nm), discriminate ice and dust aerosols (336 and 673 nm), and construct color images (336, 502, and 673 nm). The CODI images are detected on four 512 x 512 pixel arrays, as partitioned on two 1024 x 1024 CCD's operated in frame transfer mode. The center of the CODI field-of-view is canted 40 deg from the zenith direction to obtain sky brightness measurements and a 20 deg surface field-of-view. Daily image observations will be conducted when the Sun is greater than or equal to 5 deg outside the edge of the CODI field-of-view, and twilight and nighttime imaging will obtained on a weekly basis. The 673 nm channel includes a polarizer wheel to obtain sky/surface polarimetry. A dust cover protects the entire lens assemblies of all four CODI channels. This opaque dust cover, which is normally opened for CODI imaging, includes a small fixed mirror and transparent window positioned above the 673 nm lens, to redirect the 673 nm field-of-view to the surface for descent imaging. Fixed pointing, internal data buffering, low operating power (2-4 W for less than or equal to 30 seconds), selective data transmission, and simple operational characteristics of the CODI experiment place minimum resource and operational demands on the Mars Surveyor 1998 lander. The CODI science goals are optimized for, but not restricted to, a low-latitude landing site (20 deg S-30 deg N). The primary CODI measurement objectives are the opacities, wave forms, particle properties (size, shape, and alignment), and heights of clouds; the opacities, particle properties, and vertical distribution of dust; and the opacity and vertical distribution of ozone. The variability of cloud, ozone, and dust opacities will be determined on diurnal, daily, and seasonal timescales. Wind velocities will be determined from cloud motions and wave characteristics; and the temporal variability of atmospheric water vapor, with limited altitude information, will be inferred from the CODI ozone observations. Secondary measurement objectives include limited descent imaging capability, surface uv-visible photometry and polarimetry, photochemistry, and meteorite infall rates.
Cloud Ozone Dust Imager (CODI)
NASA Astrophysics Data System (ADS)
Clancy, R. Todd; Dusenbery, Paul; Wolff, Michael; James, Phil; Allen, Mark; Goguen, Jay; Kahn, Ralph; Gladstone, Rany; Murphy, Jim
1995-01-01
The Cloud Ozone Dust Imager (CODI) is proposed to investigate the current climatic balance of the Mars atmosphere, with particular emphasis on the important but poorly understood roles which dust and water ice aerosols play in this balance. The large atmospheric heating (20-50 K) resulting from global dust storms around Mars perihelion is well recognized. However, groundbased observations of Mars atmospheric temperatures, water vapor, and clouds since the Viking missions have identified a much colder, cloudier atmosphere around Mars aphelion that may prove as important as global dust storms in determining the interannual and long-term behavior of the Mars climate. The key climate issues CODI is designed to investigate are: 1) the degree to which non-linear interactions between atmospheric dust heating, water vapor saturation, and cloud nucleation influence the seasonal and interannual variability of the Mars atmosphere, and 2) whether the strong orbital forcing of atmospheric dust loading, temperatures and water vapor saturation determines the long-term balance of Mars water, as reflected in the north-south hemispheric asymmetries of atmospheric water vapor and polar water ice abundances. The CODI experiment will measure the daily, seasonal and (potentially) interannual variability of atmospheric dust and cloud opacities, and the key physical properties of these aerosols which determine their role in the climate cycles of Mars. CODI is a small (1.2 kg), fixed pointing camera, in which four wide-angle (+/- 70 deg) lenses illuminate fixed filters and CCD arrays. Simultaneous sky/surface imaging of Mars is obtained at an angular resolution of 0.28 deg/pixel for wavelengths of 255, 336, 502, and 673 nm (similar to Hubble Space Telescope filters). These wavelengths serve to measure atmospheric ozone (255 and 336 nm), discriminate ice and dust aerosols (336 and 673 nm), and construct color images (336, 502, and 673 nm). The CODI images are detected on four 512 x 512 pixel arrays, as partitioned on two 1024 x 1024 CCD's operated in frame transfer mode. The center of the CODI field-of-view is canted 40 deg from the zenith direction to obtain sky brightness measurements and a 20 deg surface field-of-view. Daily image observations will be conducted when the Sun is greater than or equal to 5 deg outside the edge of the CODI field-of-view, and twilight and nighttime imaging will obtained on a weekly basis. The 673 nm channel includes a polarizer wheel to obtain sky/surface polarimetry. A dust cover protects the entire lens assemblies of all four CODI channels. This opaque dust cover, which is normally opened for CODI imaging, includes a small fixed mirror and transparent window positioned above the 673 nm lens, to redirect the 673 nm field-of-view to the surface for descent imaging. Fixed pointing, internal data buffering, low operating power (2-4 W for less than or equal to 30 seconds), selective data transmission, and simple operational characteristics of the CODI experiment place minimum resource and operational demands on the Mars Surveyor 1998 lander. The CODI science goals are optimized for, but not restricted to, a low-latitude landing site (20 deg S-30 deg N). The primary CODI measurement objectives are the opacities, wave forms, particle properties (size, shape, and alignment), and heights of clouds; the opacities, particle properties, and vertical distribution of dust; and the opacity and vertical distribution of ozone. The variability of cloud, ozone, and dust opacities will be determined on diurnal, daily, and seasonal timescales. Wind velocities will be determined from cloud motions and wave characteristics; and the temporal variability of atmospheric water vapor, with limited altitude information, will be inferred from the CODI ozone observations. Secondary measurement objectives include limited descent imaging capability, surface uv-visible photometry and polarimetry, photochemistry, and meteorite infall rates.
Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.
2003-01-01
Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.
NASA Technical Reports Server (NTRS)
1994-01-01
With the growing awareness and debate over the potential changes associated with global climate change, the polar regions are receiving increased attention. Global cloud distributions can be expected to be altered by increased greenhouse forcing. Owing to the similarity of cloud and snow-ice spectral signatures in both the visible and infrared wavelengths, it is difficult to distinguish clouds from surface features in the polar regions. This work is directed towards the development of algorithms for the ASTER and HIRIS science/instrument teams. Special emphasis is placed on a wide variety of cloud optical property retrievals, and especially retrievals of cloud and surface properties in the polar regions.
Radiative forcing and climate response due to the presence of black carbon in cloud droplets
NASA Astrophysics Data System (ADS)
Wang, Zhili; Zhang, Hua; Li, Jiangnan; Jing, Xianwen; Lu, Peng
2013-05-01
Optical properties of clouds containing black carbon (BC) particles in their water droplets are calculated by using the Maxwell Garnett mixing rule and Mie theory. The obtained cloud optical properties were then applied to an interactive system by coupling an aerosol model with a General Circulation Model. This system is used to investigate the radiative forcing and the equilibrium climate response due to BC in cloud droplets. The simulated global annual mean radiative forcing at the top of the atmosphere due to the BC in cloud droplets is found to be 0.086 W m-2. Positive radiative forcing can be seen in Africa, South America, East and South Asia, and West Europe, with a maximum value of 1.5 W m-2 being observed in these regions. The enhanced cloud absorption is shown to increase the global annual mean values of solar heating rate, water vapor, and temperature, but to decrease the global annual mean cloud fraction. Finally, the global annual mean surface temperature is shown to increase by +0.08 K. The local maximum changes are found to be as low as -1.5 K and as high as +0.6 K. We show there has been a significant difference in surface temperature change in the Southern and Northern Hemisphere (+0.19 K and -0.04 K, respectively). Our results show that this interhemispheric asymmetry in surface temperature change could cause a corresponding change in atmospheric dynamics and precipitation. It is also found that the northern trade winds are enhanced in the Intertropical Convergence Zone (ITCZ). This results in northerly surface wind anomalies which cross the equator to converge with the enhanced southern trade winds in the tropics of Southern Hemisphere. This is shown to lead to an increase (a decrease) of vertical ascending motion and precipitation on the south (north) side of the equator, which could induce a southward shift in the tropical rainfall maximum related to the ITCZ.
Radiative forcing and climate response due to the presence of black carbon in cloud droplets
NASA Astrophysics Data System (ADS)
Wang, Z.; Zhang, H.; Li, J.; Jing, X.; Lu, P.
2013-05-01
Optical properties of clouds containing black carbon (BC) particles in their water droplets are calculated by using the Maxwell Garnett mixing rule and Mie theory. The obtained cloud optical properties were then applied to an interactive system by coupling an aerosol model with a General Circulation Model. This system is used to investigate the radiative forcing and the equilibrium climate response due to BC in cloud droplets. The simulated global annual mean radiative forcing at the top of the atmosphere due to the BC in cloud droplets is found to be 0.086 W m-2. Positive radiative forcing can be seen in Africa, South America, East and South Asia and West Europe, with a maximum value of 1.5 W m-2 being observed in these regions. The enhanced cloud absorption is shown to increase the global annual mean values of solar heating rate, water vapor and temperature, but to decrease the global annual mean cloud fraction. Finally, the global annual mean surface temperature is shown to increase by +0.08 K. The local maximum changes are found to be as low as -1.5 K and as high as +0.6 K. We show there has been a significant difference in surface temperature change in the Southern and Northern Hemisphere (+0.19 K and -0.04 K, respectively). Our results show that this interhemispheric asymmetry in surface temperature change could cause a corresponding change in atmospheric dynamics and precipitation. It is also found that the northern trade winds are enhanced in the Intertropical Convergence Zone (ITCZ). This results in northerly surface wind anomalies which cross the equator to converge with the enhanced southern trade winds in the tropics of Southern Hemisphere. This is shown to lead to an increase (a decrease) of vertical ascending motion and precipitation on the south (north) side of the equator, which could induce a southward shift in the tropical rainfall maximum related to the ITCZ.
NASA Astrophysics Data System (ADS)
Sumargo, E.; Cayan, D. R.; Iacobellis, S.
2014-12-01
Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.
Ground-based remote sensing scheme for monitoring aerosol–cloud interactions
Sarna, Karolina; Russchenberg, Herman W. J.
2016-03-14
A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurementmore » (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius ( r e) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m -2 wide. For every LWP bin we present the correlation coefficient between ln r e and ln ATB, as well as ACI r (defined as ACI r = -d ln r e d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACI r are in the range 0.01–0.1. In conclusion, we show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liljegren, J.C.
1994-01-01
The Atmospheric Radiation Measurement (ARM) Program is focused on improving the treatment of radiation transfer in models of the atmospheric general circulation, as well as on improving parameterizations of cloud properties and formation processes in these models (USDOE, 1990). To help achieve these objectives, ARM is deploying several two-channel, microwave radiometers at the Cloud and Radiation Testbed (CART) site in Oklahoma for the purpose of obtaining long time series observations of total precipitable water vapor (PWV) and cloud liquid water path (LWP). The performance of the WVR-1100 microwave radiometer deployed by ARM at the Oklahoma CART site central facility tomore » provide time series measurements precipitable water vapor (PWV) and liquid water path (LWP) has been presented. The instrument has proven to be durable and reliable in continuous field operation since June, 1992. The accuracy of the PWV has been demonstrated to achieve the limiting accuracy of the statistical retrieval under clear sky conditions, degrading with increasing LWP. Improvements are planned to address moisture accumulation on the Teflon window, as well as to identity the presence of clouds with LWP at or below the retrieval uncertainty.« less
Insights from a refined decomposition of cloud feedbacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.
Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloudmore » feedback but its anticorrelation with other components damps overall spread. Furthermore, the ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the “null hypothesis” climate sensitivity from well-understood and robustly simulated feedbacks are discussed.« less
Insights from a refined decomposition of cloud feedbacks
Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.
2016-09-05
Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloudmore » feedback but its anticorrelation with other components damps overall spread. Furthermore, the ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the “null hypothesis” climate sensitivity from well-understood and robustly simulated feedbacks are discussed.« less
NASA Astrophysics Data System (ADS)
Watanabe, T.; Nohara, D.
2017-12-01
The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan
2012-01-01
CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.
Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds
Yang, Fan; Luke, Edward P.; Kollias, Pavlos; ...
2018-04-20
Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less
Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Luke, Edward P.; Kollias, Pavlos
Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnis, Patrick
2013-06-28
During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products andmore » raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.« less
NASA Technical Reports Server (NTRS)
Nguyen, Louis; Minnis, Patrick; Spangenberg, Douglas A.; Nordeen, Michele L.; Palikonda, Rabindra; Khaiyer, Mandana M.; Gultepe, Ismail; Reehorst, Andrew L.
2004-01-01
Satellites are ideal for continuous monitoring of aircraft icing conditions in many situations over extensive areas. The satellite imager data are used to diagnose a number of cloud properties that can be used to develop icing intensity indices. Developing and validating these indices requires comparison with objective "cloud truth" data in addition to conventional pilot reports (PIREPS) of icing conditions. Minnis et al. examined the relationships between PIREPS icing and satellite-derived cloud properties. The Atlantic-THORPEX Regional Campaign (ATReC) and the second Alliance Icing Research Study (AIRS-II) field programs were conducted over the northeastern USA and southeastern Canada during late 2003 and early 2004. The aircraft and surface measurements are concerned primarily with the icing characteristics of clouds and, thus, are ideal for providing some validation information for the satellite remote sensing product. This paper starts the process of comparing cloud properties and icing indices derived from the Geostationary Operational Environmental Satellite (GOES) with the aircraft in situ measurements of several cloud properties during campaigns and some of the The comparisons include cloud phase, particle size, icing intensity, base and top altitudes, temperatures, and liquid water path. The results of this study are crucial for developing a more reliable and objective icing product from satellite data. This icing product, currently being derived from GOES data over the USA, is an important complement to more conventional products based on forecasts, and PIREPS.
Assessment and validation of the community radiative transfer model for ice cloud conditions
NASA Astrophysics Data System (ADS)
Yi, Bingqi; Yang, Ping; Weng, Fuzhong; Liu, Quanhua
2014-11-01
The performance of the Community Radiative Transfer Model (CRTM) under ice cloud conditions is evaluated and improved with the implementation of MODIS collection 6 ice cloud optical property model based on the use of severely roughened solid column aggregates and a modified Gamma particle size distribution. New ice cloud bulk scattering properties (namely, the extinction efficiency, single-scattering albedo, asymmetry factor, and scattering phase function) suitable for application to the CRTM are calculated by using the most up-to-date ice particle optical property library. CRTM-based simulations illustrate reasonable accuracy in comparison with the counterparts derived from a combination of the Discrete Ordinate Radiative Transfer (DISORT) model and the Line-by-line Radiative Transfer Model (LBLRTM). Furthermore, simulations of the top of the atmosphere brightness temperature with CRTM for the Crosstrack Infrared Sounder (CrIS) are carried out to further evaluate the updated CRTM ice cloud optical property look-up table.
NASA Astrophysics Data System (ADS)
Chen, Y. H.; Kuo, C. P.; Huang, X.; Yang, P.
2017-12-01
Clouds play an important role in the Earth's radiation budget, and thus realistic and comprehensive treatments of cloud optical properties and cloud-sky radiative transfer are crucial for simulating weather and climate. However, most GCMs neglect LW scattering effects by clouds and tend to use inconsistent cloud SW and LW optical parameterizations. Recently, co-authors of this study have developed a new LW optical properties parameterization for ice clouds, which is based on ice cloud particle statistics from MODIS measurements and state-of-the-art scattering calculation. A two-stream multiple-scattering scheme has also been implemented into the RRTMG_LW, a widely used longwave radiation scheme by climate modeling centers. This study is to integrate both the new LW cloud-radiation scheme for ice clouds and the modified RRTMG_LW with scattering capability into the NCAR CESM to improve the cloud longwave radiation treatment. A number of single column model (SCM) simulations using the observation from the ARM SGP site on July 18 to August 4 in 1995 are carried out to assess the impact of new LW optical properties of clouds and scattering-enabled radiation scheme on simulated radiation budget and cloud radiative effect (CRE). The SCM simulation allows interaction between cloud and radiation schemes with other parameterizations, but the large-scale forcing is prescribed or nudged. Comparing to the results from the SCM of the standard CESM, the new ice cloud optical properties alone leads to an increase of LW CRE by 26.85 W m-2 in average, as well as an increase of the downward LW flux at surface by 6.48 W m-2. Enabling LW cloud scattering further increases the LW CRE by another 3.57 W m-2 and the downward LW flux at the surface by 0.2 W m-2. The change of LW CRE is mainly due to an increase of cloud top height, which enhances the LW CRE. A long-term simulation of CESM will be carried out to further understand the impact of such changes on simulated climates.
The CREW intercomparison of SEVIRI cloud retrievals
NASA Astrophysics Data System (ADS)
Hamann, U.; Walther, A.; Bennartz, R.; Thoss, A.; Meirink, J. M.; Roebeling, R.
2012-12-01
About 70% of the earth's surface is covered with clouds. They strongly influence the radiation balance and the water cycle of the earth. Hence the detailed monitoring of cloud properties - such as cloud fraction, cloud top temperature, cloud particle size, and cloud water path - is important to understand the role of clouds in the weather and the climate system. The remote sensing with passive sensors is an essential mean for the global observation of the cloud parameters, but is nevertheless challenging. This presentation focuses on the inter-comparison and validation of cloud physical properties retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard METEOSAT. For this study we use retrievals from 12 state-of-art algorithms (Eumetsat, KNMI, NASA Langley, NASA Goddard, University Madison/Wisconsin, DWD, DLR, Meteo-France, KMI, FU Berlin, UK MetOffice) that are made available through the common database of the CREW (Cloud Retrieval Evaluation Working) group. Cloud detection, cloud top phase, height, and temperature, as well as optical properties and water path are validated with CLOUDSAT, CALIPSO, MISR, and AMSR-E measurements. Special emphasis is given to challenging retrieval conditions. Semi-transparent clouds over the earth's surface or another cloud layer modify the measured brightness temperature and increase the retrieval uncertainty. The consideration of the three-dimensional radiative effects is especially important for large viewing angles and broken cloud fields. Aerosols might be misclassified as cloud and may increase the retrieval uncertainty, too. Due to the availability of the high number of sophisticated retrieval datasets, the advantages of different retrieval approaches can be examined and suggestions for future retrieval developments can be made. We like to thank Eumetsat for sponsoring the CREW project including this work.nstitutes that participate in the CREW project.
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei
2011-01-01
Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.
NASA Technical Reports Server (NTRS)
Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.
2005-01-01
An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.
Long-term observations of aerosol and cloud condensation nuclei concentrations in Barbados
NASA Astrophysics Data System (ADS)
Pöhlker, Mira L.; Klimach, Thomas; Krüger, Ovid O.; Hrabe de Angelis, Isabella; Ditas, Florian; Praß, Maria; Holanda, Bruna; Su, Hang; Weber, Bettina; Pöhlker, Christopher; Farrell, David A.; Stevens, Bjorn; Prospero, Joseph M.; Andreae, Meinrat O.; Pöschl, Ulrich
2017-04-01
Long-term observation of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations has been conducted at the Ragged Point site in Barbados since August 2016. Ragged Point is a well-established station to monitor the transatlantic transport of Saharan dust outbreaks [1]. In the absence of dust plumes, it represents an ideal site to analyze the maritime boundary layer aerosol that is transported with the trade winds over the Atlantic towards Barbados [2,3]. Broad aerosol size distribution (10 nm to 10 µm) as well as size-resolved CCN measurements at 10 different supersaturations from 0.05 % to 0.84 % have been conducted. The continuous online analyses are supplemented by intensive sampling periods to probe specific aerosol properties with various offline techniques (i.e., microscopy and spectroscopy). Aerosol key properties from our measurements are compared with the continuous and in depth observation of cloud properties at Deebles Point, which is in close neighborhood to the Ragged Point site [2]. Moreover, our activities have been synchronized with the HALO-NARVAL-2 aircraft campaign in August 2016 that added further detailed information on shallow cumulus clouds, which are characteristic for the Atlantic trade winds and represent a crucial factor in the Earth climate system. Our measurements have the following two focal points: (i) We aim to obtain a detailed CCN climatology for the alternation of maritime and dust-impacted episodes at this unique coastal location. This study will complement our recent in-depth analysis for the long-term CCN variability at a remote rain forest location [4]. (ii) Furthermore, we aim to collect detailed information on the role of different aerosol populations on the properties of the climatically important shallow cumulus clouds. References: [1] Prospero, J. M., Collard, F. X., Molinie, J., Jeannot, A. (2014), Global Biogeochemical Cycles, 28, 757-773. [2] Stevens, B., et al. (2016), Bulletin of the American Meteorological Society, 97, 787-801. [3] Wex, H., et al., (2016), Atmos. Chem. Phys., 16, 14107-14130. [4] Pöhlker, M. L.., et al. (2016), Atmos. Chem. Phys., 16, 15709-15740.
NASA Technical Reports Server (NTRS)
Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu
2014-01-01
A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and effective diameter. In the MODIS infrared window bands centered at 8.5, 11, and 12 micrometers biases in the optical thickness and effective diameter are up to 12% and 10%, respectively. The CGOM-based simulation errors in ice cloud radiative forcing calculations are on the order of 10Wm(exp 2).
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.
2006-01-01
This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols, thermodynamics, and the diurnal cycle.
GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM
NASA Astrophysics Data System (ADS)
Langer, William; Velusamy, T.; Goldsmith, P. F.; Li, D.; Pineda, J.; Yorke, H.
2010-01-01
Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon CII fine structure line at 1.9 THz is an important tracer of the atomic gas in the diffuse regions and the atomic to molecular cloud transformation. Furthermore, C+ is a major ISM coolant, the Galaxy's strongest emission line, with a total luminosity about a 1000 times that of CO J=1-0. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling CII line emission throughout the Galactic disk. GOT C+ will obtain high spectral resolution CII using the Heterodyne Instrument for the Far Infrared (HIFI) instrument. It employees deep integrations, wide velocity coverage (350 km s-1) with 0.22 km s-1 resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource of the atomic gas properties, in the (a) Galactic disk, (b) Galaxy's central 300pc, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). Along with HI, CO isotopes, and CI spectra, our C+ data will provide the astronomical community with a rich statistical database of diffuse cloud properties, for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale CII surveys. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology and is supported by a NASA grant.
A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar
NASA Technical Reports Server (NTRS)
Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor
2004-01-01
High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.
Aircraft-Induced Hole Punch and Canal Clouds
NASA Astrophysics Data System (ADS)
Heymsfield, A. J.; Kennedy, P.; Massie, S. T.; Schmitt, C. G.; Wang, Z.; Haimov, S.; Rangno, A.
2009-12-01
The production of holes and channels in altocumulus clouds by two commercial turboprop aircraft is documented for the first time. An unprecedented data set combining in situ measurements from microphysical probes with remote sensing measurements from cloud radar and lidar, all operating from the NSF/NCAR C130 aircraft, as well as ground-based NOAA and CSU radars, is used to describe the radar/lidar properties of a hole punch cloud and channel and the ensuing ice microphysical properties and structure of the ice column that subsequently developed. Ice particle production by commercial turboprop aircraft climbing through clouds much warmer than the regions where contrails are produced has the potential to modify significantly the cloud microphysical properties and effectively seed them under some conditions. Jet aircraft may also be producing hole punch clouds when flying through altocumulus with supercooled droplets at heights lower than their normal cruise altitudes where contrails can form. Commercial aircraft therefore can generate ice and affect the clouds at temperatures as much as 30°C warmer than the -40°C contrail formation threshold temperature.
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Stephens, Graeme L.
1993-01-01
Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.
Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo
NASA Technical Reports Server (NTRS)
Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.
1990-01-01
Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.
Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.
2016-01-01
An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.
Modeling Cloud Phase Fraction Based on In-situ Observations in Stratiform Clouds
NASA Astrophysics Data System (ADS)
Boudala, F. S.; Isaac, G. A.
2005-12-01
Mixed-phase clouds influence weather and climate in several ways. Due to the fact that they exhibit very different optical properties as compared to ice or liquid only clouds, they play an important role in the earth's radiation balance by modifying the optical properties of clouds. Precipitation development in clouds is also enhanced under mixed-phase conditions and these clouds may contain large supercooled drops that freeze quickly in contact with aircraft surfaces that may be a hazard to aviation. The existence of ice and liquid phase clouds together in the same environment is thermodynamically unstable, and thus they are expected to disappear quickly. However, several observations show that mixed-phase clouds are relatively stable in the natural environment and last for several hours. Although there have been some efforts being made in the past to study the microphysical properties of mixed-phase clouds, there are still a number of uncertainties in modeling these clouds particularly in large scale numerical models. In most models, very simple temperature dependent parameterizations of cloud phase fraction are being used to estimate the fraction of ice or liquid phase in a given mixed-phase cloud. In this talk, two different parameterizations of ice fraction using in-situ aircraft measurements of cloud microphysical properties collected in extratropical stratiform clouds during several field programs will be presented. One of the parameterizations has been tested using a single prognostic equation developed by Tremblay et al. (1996) for application in the Canadian regional weather prediction model. The addition of small ice particles significantly increased the vapor deposition rate when the natural atmosphere is assumed to be water saturated, and thus this enhanced the glaciation of simulated mixed-phase cloud via the Bergeron-Findeisen process without significantly affecting the other cloud microphysical processes such as riming and particle sedimentation rates. After the water vapor pressure in mixed-phase cloud was modified based on the Lord et al. (1984) scheme by weighting the saturation water vapor pressure with ice fraction, it was possible to simulate more stable mixed-phase cloud. It was also noted that the ice particle concentration (L>100 μm) in mixed-phase cloud is lower on average by a factor 3 and as a result the parameterization should be corrected for this effect. After accounting for this effect, the parameterized ice fraction agreed well with observed mean ice fraction.
Marine stratocumulus cloud characteristics from multichannel satellite measurements
NASA Technical Reports Server (NTRS)
Durkee, Philip A.; Mineart, Gary M.
1990-01-01
Understanding the effects of aerosols on the microphysical characteristics of marine stratocumulus clouds, and the resulting influence on cloud radiative properties, is a primary goal of FIRE. The potential for observing variations of cloud characteristics that might be related to variations of available aerosols is studied. Some results from theoretical estimates of cloud reflectance are presented. Also presented are the results of comparisons between aircraft measured microphysical characteristics and satellite detected radiative properties of marine stratocumulus clouds. These results are extracted from Mineart where the analysis procedures and a full discussion of the observations are presented. Only a brief description of the procedures and the composite results are presented.
Study on ice cloud optical thickness retrieval with MODIS IR spectral bands
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jun
2005-01-01
The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.
Depolarization Lidar Determination Of Cloud-Base Microphysical Properties
NASA Astrophysics Data System (ADS)
Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.
2016-06-01
The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.
Ground-based remote sensing of thin clouds in the Arctic
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Zhao, C.
2012-11-01
This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" where absorption by water vapor is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in two micro-windows, constrained by the transmission through clouds of stratospheric ozone emission. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius, visible optical depth, number concentration, and water path are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement program (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with ground-based microwave radiometer measurements of liquid water path. Compared to other retrieval methods, advantages of this technique include its ability to characterize thin clouds year round, that water vapor is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies.
CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.
2004-02-01
The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.
Cold and warm atomic gas around the Perseus molecular cloud. I. Basic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanimirović, Snežana; Murray, Claire E.; Miller, Jesse
2014-10-01
Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T{sub s} ) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for randommore » interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of cold H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ∼15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with ≳ 85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear candidates for probing the CO-dark gas as they have N(H I)>10{sup 21} cm{sup –2} yet no detectable CO emission.« less
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2013-09-01
Context. Owing to their wavelength-dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. The potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Such a greenhouse effect, however, is a complicated function of the CO2 ice particles' optical properties. Aims: We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. To determine the effectiveness of the scattering greenhouse effect caused by CO2 ice clouds, the radiative transfer calculations are performed over the relevant wide range of particle sizes and optical depths, employing different numerical methods. Methods: We used Mie theory to calculate the optical properties of particle polydispersion. The radiative transfer calculations were done with a high-order discrete ordinate method (DISORT). Two-stream radiative transfer methods were used for comparison with previous studies. Results: The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf, the CO2 ice particles show no strong effective scattering greenhouse effect by using the high-order discrete ordinate method, whereas a positive net greenhouse effect was found for the two-stream radiative transfer schemes. As a result, previous studies of the effects of CO2 ice clouds using two-stream approximations overrated the atmospheric warming caused by the scattering greenhouse effect. Consequently, the scattering greenhouse effect of CO2 ice particles seems to be less effective than previously estimated. In general, higher order radiative transfer methods are needed to describe the effects of CO2 ice clouds accurately as indicated by our numerical radiative transfer studies.
Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data
NASA Technical Reports Server (NTRS)
Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.
2007-01-01
Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for constraining the use of the passive retrieval data in models and for improving the accuracy of the retrievals.
Global Analysis of Aerosol Properties Above Clouds
NASA Technical Reports Server (NTRS)
Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.
2013-01-01
The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.
NASA Astrophysics Data System (ADS)
de Laat, Adrianus; Defer, Eric; Delanoë, Julien; Dezitter, Fabien; Gounou, Amanda; Grandin, Alice; Guignard, Anthony; Fokke Meirink, Jan; Moisselin, Jean-Marc; Parol, Frédéric
2017-04-01
We present an evaluation of the ability of passive broadband geostationary satellite measurements to detect high ice water content (IWC > 1 g m-3) as part of the European High Altitude Ice Crystals (HAIC) project for detection of upper-atmospheric high IWC, which can be a hazard for aviation. We developed a high IWC mask based on measurements of cloud properties using the Cloud Physical Properties (CPP) algorithm applied to the geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Evaluation of the high IWC mask with satellite measurements of active remote sensors of cloud properties (CLOUDSAT/CALIPSO combined in the DARDAR (raDAR-liDAR) product) reveals that the high IWC mask is capable of detecting high IWC values > 1 g m-3 in the DARDAR profiles with a probability of detection of 60-80 %. The best CPP predictors of high IWC were the condensed water path, cloud optical thickness, cloud phase, and cloud top height. The evaluation of the high IWC mask against DARDAR provided indications that the MSG-CPP high IWC mask is more sensitive to cloud ice or cloud water in the upper part of the cloud, which is relevant for aviation purposes. Biases in the CPP results were also identified, in particular a solar zenith angle (SZA) dependence that reduces the performance of the high IWC mask for SZAs > 60°. Verification statistics show that for the detection of high IWC a trade-off has to be made between better detection of high IWC scenes and more false detections, i.e., scenes identified by the high IWC mask that do not contain IWC > 1 g m-3. However, the large majority of these detections still contain IWC values between 0.1 and 1 g m-3. Comparison of the high IWC mask against results from the Rapidly Developing Thunderstorm (RDT) algorithm applied to the same geostationary SEVIRI data showed that there are similarities and differences with the high IWC mask: the RDT algorithm is very capable of detecting young/new convective cells and areas, whereas the high IWC mask appears to be better capable of detecting more mature and ageing convection as well as cirrus remnants. The lack of detailed understanding of what causes aviation hazards related to high IWC, as well as the lack of clearly defined user requirements, hampers further tuning of the high IWC mask. Future evaluation of the high IWC mask against field campaign data, as well as obtaining user feedback and user requirements from the aviation industry, should provide more information on the performance of the MSG-CPP high IWC mask and contribute to improving the practical use of the high IWC mask.
NASA Astrophysics Data System (ADS)
Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe
2017-07-01
This paper introduces a statistical framework for detecting cylindrical shapes in dense point clouds. We target the application of mapping fallen trees in datasets obtained through terrestrial laser scanning. This is a challenging task due to the presence of ground vegetation, standing trees, DTM artifacts, as well as the fragmentation of dead trees into non-collinear segments. Our method shares the concept of voting in parameter space with the generalized Hough transform, however two of its significant drawbacks are improved upon. First, the need to generate samples on the shape's surface is eliminated. Instead, pairs of nearby input points lying on the surface cast a vote for the cylinder's parameters based on the intrinsic geometric properties of cylindrical shapes. Second, no discretization of the parameter space is required: the voting is carried out in continuous space by means of constructing a kernel density estimator and obtaining its local maxima, using automatic, data-driven kernel bandwidth selection. Furthermore, we show how the detected cylindrical primitives can be efficiently merged to obtain object-level (entire tree) semantic information using graph-cut segmentation and a tailored dynamic algorithm for eliminating cylinder redundancy. Experiments were performed on 3 plots from the Bavarian Forest National Park, with ground truth obtained through visual inspection of the point clouds. It was found that relative to sample consensus (SAC) cylinder fitting, the proposed voting framework can improve the detection completeness by up to 10 percentage points while maintaining the correctness rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sena, Elisa T.; McComiskey, Allison; Feingold, Graham
Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.
2014-12-01
We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.
Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)
NASA Technical Reports Server (NTRS)
Platnick, Steven
2004-01-01
MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.
NASA Astrophysics Data System (ADS)
Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.
2009-04-01
Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03
NASA Astrophysics Data System (ADS)
Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Cuevas, Emilio; Ochoa, Héctor; Gil-Ojeda, Manuel
2017-01-01
Cirrus (Ci) cloud properties can change significantly from place to place over the globe as a result of weather processes, reflecting their likely different radiative and climate implications. In this work Cirrus clouds (Ci) features observed in late autumn/early winter season at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements were carried out in three stations: São Paulo (MSP, Brazil) and Tenerife (SCO, Canary Islands, Spain), as subtropical sites, and the polar Belgrano II base (BEL, Argentina) in the Antarctic continent. The backscattering ratio (BSR) profiles and the top and base heights of the Ci layers together to their Cirrus Cloud Optical Depth (CCOD) and Lidar Ratio (LR) for Ci clouds were derived. In addition, temperatures at the top and base boundaries of the Ci clouds were also obtained from local radiosoundings to verify pure ice Ci clouds occurrence using a given temperature top threshold (<- 38 °C). Ci clouds observed along the day were assembled in groups based on their predominant CCOD, and classified according to four CCOD-based categories. Ci clouds were found to be vertically-distributed in relation with the temperature, forming subvisual Ci clouds at lower temperatures and higher altitudes than other Ci categories at both latitudes. Discrepancies shown on LR values for the three stations, but mainly remarked between subtropical and polar cases, can be associated to different temperature regimes for Ci formation, influencing the internal ice habits of the Ci clouds, and hence likely affecting the LR derived for the Ci layer. In comparison with literature values, daily mean CCOD/LR for SCO (0.4 ± 0.4/21 ± 10 sr), MSP (0.5 ± 0.5/27 ± 5 sr) and BEL (0.2 ± 0.3/28 ± 9 sr) are in good agreement; however, the variability of the Ci optical features along the day present large discrepancies. In comparison with CALIOP data, Ci clouds are observed at similar altitudes (around 10-13 km height); however, differences are found mostly in CCOD values for subtropical Ci clouds, whereas LR values are in a closer agreement. These differences are carefully examined in relation with the closest CALIPSO overpass time and distance from the station (> 70 km far), inferring the irregular extension and inhomogeneity of the Ci clouds over each study area. These considerations can be useful for assimilation of the Ci features into climate models and evaluation of future space-borne lidar observations of Ci clouds, especially for the future ESA/Copernicus-Sentinel and ESA/EarthCARE missions.
Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals
NASA Technical Reports Server (NTRS)
Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra
2013-01-01
In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.
NASA Technical Reports Server (NTRS)
Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.
2010-01-01
Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.
THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Dan P.; Tassis, K.; Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov
2016-12-20
The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarizationmore » position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.« less
NASA Technical Reports Server (NTRS)
Bergstrom, Robert A.; Russell, Philip B.
2000-01-01
We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single- scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, Philip B.
2000-01-01
We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Bergstrom, Robert W.; Schmid, Beat; Livingston, John M.
2000-01-01
We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.
Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic
NASA Technical Reports Server (NTRS)
Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.;
2016-01-01
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.
Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic
Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.; ...
2016-01-21
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less
The pointing errors of geosynchronous satellites
NASA Technical Reports Server (NTRS)
Sikdar, D. N.; Das, A.
1971-01-01
A study of the correlation between cloud motion and wind field was initiated. Cloud heights and displacements were being obtained from a ceilometer and movie pictures, while winds were measured from pilot balloon observations on a near-simultaneous basis. Cloud motion vectors were obtained from time-lapse cloud pictures, using the WINDCO program, for 27, 28 July, 1969, in the Atlantic. The relationship between observed features of cloud clusters and the ambient wind field derived from cloud trajectories on a wide range of space and time scales is discussed.
NASA Astrophysics Data System (ADS)
Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.
2016-12-01
The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the substantial uncertainty in assessment of the aerosol-ice cloud radiative forcing.
NASA Astrophysics Data System (ADS)
Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.
2017-12-01
The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the substantial uncertainty in assessment of the aerosol-ice cloud radiative forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiquan
In this proposed research, we will investigate how different meteorological regimes and aerosol sources affect DCS properties, diurnal and life cycles, and precipitation using multiple observational platforms (surface, satellite, and aircraft) and NARR reanalysis at the ARM SGP site. The Feng et al. (2011, 2012) DCS results will serve as a starting point for this proposed research, and help us to address some fundamental issues of DCSs, such as convective initiation, rain rate, areal extent (including stratiform and convective regions), and longevity. Convective properties will be stratified by meteorological regime (synoptic/mesoscale patterns) identified by reanalysis. Aerosol information obtained from themore » ARM SGP site will also be stratified by meteorological regimes to understand their effects on convection. Finally, the aircraft in-situ measurements and various radar observations and retrievals during the MC3E campaign will provide a “cloud-truth” dataset and are an invaluable data source for verifying the findings and investigating the proposed hypotheses in Objective 1.« less
NASA Technical Reports Server (NTRS)
Khaiyer, M. M.; Doelling, D. R.; Palikonda, R.; Mordeen, M. L.; Minnis, P.
2007-01-01
This poster presentation reviews the process used to validate the GOES-10 satellite derived cloud and radiative properties. The ARM Mobile Facility (AMF) deployment at Pt Reyes, CA as part of the Marine Stratus Radiation Aerosol and Drizzle experiment (MASRAD), 14 March - 14 September 2005 provided an excellent chance to validate satellite cloud-property retrievals with the AMF's flexible suite of ground-based remote sensing instruments. For this comparison, NASA LaRC GOES10 satellite retrievals covering this region and period were re-processed using an updated version of the Visible Infrared Solar-Infrared Split-Window Technique (VISST), which uses data taken at 4 wavelengths (0.65, 3.9,11 and 12 m resolution), and computes broadband fluxes using improved CERES (Clouds and Earth's Radiant Energy System)-GOES-10 narrowband-to-broadband flux conversion coefficients. To validate MASRAD GOES-10 satellite-derived cloud property data, VISST-derived cloud amounts, heights, liquid water paths are compared with similar quantities derived from available ARM ground-based instrumentation and with CERES fluxes from Terra.
Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Jensen, Eric; Gore, Warren J. (Technical Monitor)
2002-01-01
Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.
NASA Astrophysics Data System (ADS)
Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.
2009-12-01
Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.
On signatures of clouds in exoplanetary transit spectra
NASA Astrophysics Data System (ADS)
Pinhas, Arazi; Madhusudhan, Nikku
2017-11-01
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features in the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely the optical slope, the uniformity of this slope and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes and scaleheights. First, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na2S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g. MnS, ZnS, TiO2 and Fe2O3 have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO2, Fe2O3, Mg2SiO4 and MgSiO3 bearing strong infrared features observable with James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.
NASA Technical Reports Server (NTRS)
Perkins, Porter J.; Kline, Dwight B.
1951-01-01
Flight icing-rate data obtained in a dense and. abnormally deep supercooled stratiform cloud system indicated the existence of liquid-water contents generally exceeding values in amount and extent previously reported over the midwestern sections of the United States. Additional information obtained during descent through a part of the cloud system indicated liquid-water contents that significantly exceeded theoretical values, especially near the middle of the cloud layer.. The growth of cloud droplets to sizes that resulted in sedimentation from the upper portions of the cloud is considered to be a possible cause of the high water contents near the center of the cloud layer. Flight measurements of the vertical temperature distribution in the cloud layer indicated a rate of change of temperature with altitude exceeding that of the moist adiabatic lapse rate. This excessive rate of change is considered to have contributed to the severity of the condition.
Dusty Donuts: Modeling the Reverberation Response of the Circumnuclear Dusty Torus Emission in AGN
NASA Astrophysics Data System (ADS)
Almeyda, Triana R.
The obscuring circumnuclear torus of dusty molecular gas is one of the major components of AGN (active galactic nuclei), yet its size, composition, and structure are not well understood. These properties can be studied by analyzing the temporal variations of the infrared (IR) dust emission from the torus in response to variations in the AGN continuum luminosity; a technique known as reverberation mapping. In a recent international campaign 12 AGN were monitored using the Spitzer Space Telescope and several ground-based telescopes, providing a unique set of well-sampled mid-IR and optical light curves which are required in order to determine the approximate sizes of the tori in these AGN. To help extract structural information contained in the data a computer model, TORMAC, has been developed that simulates the reverberation response of the clumpy torus emission. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. A large library of torus reverberation response simulations has been constructed, to investigate the effects of various geometrical and structural properties such as inclination, cloud distribution, disk half-opening angle, and radial depth. The effects of dust cloud orientation, cloud optical depth, anisotropy of the illuminating AGN radiation field, dust cloud shadowing, and cloud occultation are also explored in detail. TORMAC was also used to generate synthetic IR light curves for the Seyfert 1 galaxy, NGC 6418, using the observed optical light curve as the input, to investigate how the torus and dust cloud properties incorporated in the code affect the results obtained from reverberation mapping. This dissertation presents the most comprehensive investigation to date showing that radiative transfer effects within the torus and anisotropic illumination of the torus can strongly influence the torus IR response at different wavelengths, and should be accounted for when interpreting reverberation mapping data. TORMAC provides a powerful modeling tool that can generate simulated IR light curves for direct comparison to observations. As many types of astronomical sources are both variable and embedded in, or surrounded, by dust, TORMAC also has applications for dust reverberation studies well beyond the AGN observed in the Spitzer monitoring campaign.
Sena, Elisa T.; McComiskey, Allison; Feingold, Graham
2016-09-13
Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less
Global distributions of cloud properties for CERES
NASA Astrophysics Data System (ADS)
Sun-Mack, S.; Minnis, P.; Heck, P.; Young, D.
2003-04-01
The microphysical and macrophysical properties of clouds play a crucial role in the earth's radiation budget. Simultaneous measurement of the radiation and cloud fields on a global basis has long been recognized as a key component in understanding and modeling the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. With the implementation of the NASA Clouds and Earth's Radiant Energy System (CERES) in 1998, this need is being met. Broadband shortwave and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth from the TRMM Visible Infrared Scanner and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The combined cloud-radiation product has already been used for developing new, highly accurate anisotropic directional models for converting broadband radiances to flux. They also provide a consistent measure of cloud properties at different times of day over the globe since January 1998. These data will be valuable for determining the indirect effects of aerosols and for linking cloud water to cloud radiation. This paper provides an overview of the CERES cloud products from the three satellites including the retrieval methodology, validation, and global distributions. Availability and access to the datasets will also be discussed.
Photometric and spectral properties of some T Tauri stars
NASA Technical Reports Server (NTRS)
Warner, J. W.; Hubbard, R. P.; Gallagher, J. S.
1978-01-01
Photometric and spectroscopic data have been obtained for selected T Tauri members of the Taurus-Aurigae cloud and the Orion complex. A correlation between the intensity ratio of calcium and hydrogen emission lines and the infrared excess at 3.5 microns is found for these stars, which indicates a causal relationship between 'chromospheric activity' and emission processes in the circumstellar shells. It is argued that a comparison with properties of well-studied novae could lead to a better understanding of the physical structure of T Tauri stars.
The Monoceros R2 Molecular Cloud
NASA Astrophysics Data System (ADS)
Carpenter, J. M.; Hodapp, K. W.
2008-12-01
The Monoceros R2 region was first recognized as a chain of reflection nebulae illuminated by A- and B-type stars. These nebulae are associated with a giant molecular cloud that is one of the closest massive star forming regions to the Sun. This chapter reviews the properties of the Mon R2 region, including the namesake reflection nebulae, the large scale molecula= r cloud, global star formation activity, and properties of prominent star forming regions in the cloud.
IRAS images of nearby dark clouds
NASA Technical Reports Server (NTRS)
Wood, Douglas O. S.; Myers, Philip C.; Daugherty, Debra A.
1994-01-01
We have investigated approximately 100 nearby molecular clouds using the extensive, all-sky database of IRAS. The clouds in this study cover a wide range of physical properties including visual extinction, size, mass, degree of isolation, homogeneity and morphology. IRAS 100 and 60 micron co-added images were used to calculate the 100 micron optical depth of dust in the clouds. These images of dust optical depth compare very well with (12)CO and (13)CO observations, and can be related to H2 column density. From the optical depth images we locate the edges of dark clouds and the dense cores inside them. We have identified a total of 43 `IRAS clouds' (regions with A(sub v) greater than 2) which contain a total of 255 `IRAS cores' (regions with A(sub v) greater than 4) and we catalog their physical properties. We find that the clouds are remarkably filamentary, and that the cores within the clouds are often distributed along the filaments. The largest cores are usually connected to other large cores by filaments. We have developed selection criteria to search the IRAS Point Source Catalog for stars that are likely to be associated with the clouds and we catalog the IRAS sources in each cloud or core. Optically visible stars associated with the clouds have been identified from the Herbig and Bell catalog. From these data we characterize the physical properties of the clouds including their star-formation efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Casey J.; Hartmann, Dennis L.; Ma, Po-Lun
Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the middle-troposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm- and cold-sector of cyclones. The observed relationships between clouds andmore » meteorology are compared to those in the Community Atmosphere Model version 5 (CAM5) using satellite simulators. Low-clouds simulated by CAM5 are too few, too bright, and contain too much ice, and low-clouds located in the cold-sector of cyclones are too sensitive to variations in the meteorology. The latter two biases are dramatically reduced when CAM5 is coupled with an updated boundary layer parameterization know as Cloud Layers Unified by Binormals (CLUBB). More generally, this study demonstrates that examining the instantaneous timescale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.« less
Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi
2006-01-01
An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.
Sensitivity of CAM5-simulated Arctic clouds and radiation to ice nucleation parameterization
Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; ...
2013-08-06
Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and amore » decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron–Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. As a result, issues with the observations and the model–observation comparison in the Arctic region are discussed.« less
Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.; Martin, S. T.; Kleinman, L.
2016-03-01
Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical andmore » microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.« less
Short-term solar irradiance forecasting via satellite/model coupling
Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.; ...
2017-12-01
The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of the algorithm and validate its performance against Surface Radiation (SURFRAD; Augustine et al., 2000, 2005) network observations. Typical errors range from 8.5% to 17.2% depending on the complexity of cloud regimes, and an operational demonstration outperformed persistence-based forecasting of Global Horizontal Irradiance (GHI) under all conditions by ~10 W/m2.« less
Evaluating aerosol influence on cloud models using in-situ measurements during the INUPIAQ campaign
NASA Astrophysics Data System (ADS)
Farrington, R.; Connolly, P.; Choularton, T.; Bower, K.; Lloyd, G.; Flynn, M.; Crosier, J.; Field, P.
2014-12-01
At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) initiate the nucleation of ice under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures around -20°C (e.g. Sassen et al. 2003), however the cause of ice nucleation at temperatures of around -5°C is less certain. Coupled with the limited representation of aerosol and cloud processes in large-scale weather and climate models, the need for improved in-situ measurements of aerosol properties and cloud micro-physical processes to drive the improvement of aerosol-clouds processes in models is evident. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in early 2013 and early 2014. Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl). Using data from the 2013 campaign and modelling simulations from the Weather Research and Forecasting model (WRF), an upwind site, located at Schilthorn (2970m asl), was determined for measuring aerosol properties out of cloud during the 2014 campaign. Further measurements of the cloud and aerosols properties were taken remotely using a doppler LiDAR located at Kleine Scheidegg (2061m asl). The aim of this project is to determine whether detailed aerosol information is important to determining cloud and precipitation properties downwind. To this end WRF was run using the aerosol number concentrations and size distributions measured at the Schilthorn site to compare modelled ice number concentrations with measurements taken at Jungfraujoch using state of the science cloud ice probes, including the Three-View Cloud Particle Imager (3V-CPI) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL), with the results of the comparison presented and discussed at this meeting. ReferencesSassen, K., et al, 2003: Saharan dust storms and indirect aerosol effects on clouds: Crystal-face results. Geophys. Res. Lett., 30(12), 1633-1636.
Short-term solar irradiance forecasting via satellite/model coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.
The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of the algorithm and validate its performance against Surface Radiation (SURFRAD; Augustine et al., 2000, 2005) network observations. Typical errors range from 8.5% to 17.2% depending on the complexity of cloud regimes, and an operational demonstration outperformed persistence-based forecasting of Global Horizontal Irradiance (GHI) under all conditions by ~10 W/m2.« less
NASA Astrophysics Data System (ADS)
Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.
2016-12-01
The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloud retrievals from ORACLES, compared with standard RSP low-level cloud retrieval method that has been validated against in situ observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less
Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic
NASA Technical Reports Server (NTRS)
Zamora, Lauren; Kahn, R. A.; Cubison, M. C.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Wisthaler, A.; Zelenyuk, A.;
2016-01-01
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were 50 smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq))/ and various biomass burning tracers (BBt/ across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/ cu m) and very high aerosol concentrations (2000-3000 cu m) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2 and 4 W/sq or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei. However, the influence of background particles on smoke-driven indirect effects is currently unclear.
"Analysis of the multi-layered cloud radiative effects at the surface using A-train data"
NASA Astrophysics Data System (ADS)
Viudez-Mora, A.; Smith, W. L., Jr.; Kato, S.
2017-12-01
Clouds cover about 74% of the planet and they are an important part of the climate system and strongly influence the surface energy budget. The cloud vertical distribution has important implications in the atmospheric heating and cooling rates. Based on observations by active sensors in the A-train satellite constellation, CALIPSO [Winker et. al, 2010] and CloudSat [Stephens et. al, 2002], more than 1/3 of all clouds are multi-layered. Detection and retrieval of multi-layer cloud physical properties are needed in understanding their effects on the surface radiation budget. This study examines the sensitivity of surface irradiances to cloud properties derived from satellite sensors. Surface irradiances were computed in two different ways, one using cloud properties solely from MODerate resolution Imaging Spectroradiometer (MODIS), and the other using MODIS data supplemented with CALIPSO and CloudSat (hereafter CLCS) cloud vertical structure information [Kato et. al, 2010]. Results reveal that incorporating more precise and realistic cloud properties from CLCS into radiative transfer calculations yields improved estimates of cloud radiative effects (CRE) at the surface (CREsfc). The calculations using only MODIS cloud properties, comparisons of the computed CREsfc for 2-layer (2L) overcast CERES footprints, CLCS reduces the SW CRE by 1.5±26.7 Wm-2, increases the LW CRE by 4.1±12.7 Wm-2, and increases the net CREsfc by 0.9±46.7 Wm-2. In a subsequent analysis, we classified up to 6 different combinations of multi-layered clouds depending on the cloud top height as: High-high (HH), high-middle (HM), high-low (HL), middle-middle (MM), middle-low (ML) and low-low (LL). The 3 most frequent 2L cloud systems were: HL (56.1%), HM (22.3%) and HH (12.1%). For these cases, the computed CREsfc estimated using CLCS data presented the most significant differences when compared using only MODIS data. For example, the differences for the SW and Net CRE in the case HH was 12.3±47.3 Wm-2 and 16.0±48.45 Wm-2, respectively. For the case of HM, the LW CRE difference was -9.9±14.0 Wm-2. Kato, S., et al. (2010), J. Geophys. Res., 115. Stephens, G. L., et al. (2002), Bull. Am. Meteorol. Soc., 83. Winker, D. M., et al., (2010),Bull. Amer. Meteor. Soc., 91.
Effect of Amazon Smoke on Cloud Microphysics and Albedo-Analysis from Satellite Imagery.
NASA Astrophysics Data System (ADS)
Kaufman, Yoram J.; Nakajima, Teruyuki
1993-04-01
NOAA Advanced Very High Resolution Radiometer images taken over the Brazilian Amazon Basin during the biomass burning season of 1987 are used to study the effect of smoke aerosol particles on the properties of low cumulus and stratocumulus clouds. The reflectance at a wavelength of 0.64 µm and the drop size, derived from the cloud reflectance at 3.75 µm, are studied for tens of thousands of clouds. The opacity of the smoke layer adjacent to each cloud is also monitored simultaneously. Though from satellite data it is impossible to derive all the parameters that influence cloud properties and smoke cloud interaction (e.g., detailed aerosol particles size distribution and chemistry, liquid water content, etc.); satellite data can be used to generate large-scale statistics of the properties of clouds and surrounding aerosol (e.g., smoke optical thickness, cloud-drop size, and cloud reflection of solar radiation) from which the interaction of aerosol with clouds can be surmised. In order to minimize the effect of variations in the precipitable water vapor and in other smoke and cloud properties, biomass burning in the tropics is chosen as the study topic, and the results are averaged for numerous clouds with the same ambient smoke optical thickness.It is shown in this study that the presence of dense smoke (an increase in the optical thickness from 0.1 to 2.0) can reduce the remotely sensed drop size of continental cloud drops from 15 to 9 µm. Due to both the high initial reflectance of clouds in the visible part of the spectrum and the presence of graphitic carbon, the average cloud reflectance at 0.64 µm is reduced from 0.71 to 0.68 for an increase in smoke optical thickness from 0.1 to 2.0. The measurements are compared to results from other years, and it is found that, as predicted, high concentration of aerosol particles causes a decrease in the cloud-drop size and that smoke darkens the bright Amazonian clouds. Comparison with theoretical computations based on Twomey's model show that by using the measured reduction in the cloud-drop size due to the presence of smoke it is possible to explain the reduction in the cloud reflectance at 0.64 µm for smoke imagery index of 0.02 to 0.03.Smoke particles are hygroscopic and have a similar size distribution to maritime and anthropogenic sulfuric aerosol particles. Therefore, these results may also be representative of the interaction of sulfuric particles with clouds.
Progress in interpreting CO2 lidar signatures to obtain cirrus microphysical and optical properties
NASA Technical Reports Server (NTRS)
Eberhard, Wynn L.
1993-01-01
One cloud/radiation issue at FIRE 2 that has been addressed by the CO2 lidar team is the zenith-enhanced backscatter (ZEB) signature from oriented crystals. A second topic is narrow-beam optical depth measurements using CO2 lidar. This paper describes the theoretical models we have developed for these phenomena and the data-processing algorithms derived from them.
Statistical properties of the normalized ice particle size distribution
NASA Astrophysics Data System (ADS)
Delanoë, Julien; Protat, Alain; Testud, Jacques; Bouniol, Dominique; Heymsfield, A. J.; Bansemer, A.; Brown, P. R. A.; Forbes, R. M.
2005-05-01
Testud et al. (2001) have recently developed a formalism, known as the "normalized particle size distribution (PSD)", which consists in scaling the diameter and concentration axes in such a way that the normalized PSDs are independent of water content and mean volume-weighted diameter. In this paper we investigate the statistical properties of the normalized PSD for the particular case of ice clouds, which are known to play a crucial role in the Earth's radiation balance. To do so, an extensive database of airborne in situ microphysical measurements has been constructed. A remarkable stability in shape of the normalized PSD is obtained. The impact of using a single analytical shape to represent all PSDs in the database is estimated through an error analysis on the instrumental (radar reflectivity and attenuation) and cloud (ice water content, effective radius, terminal fall velocity of ice crystals, visible extinction) properties. This resulted in a roughly unbiased estimate of the instrumental and cloud parameters, with small standard deviations ranging from 5 to 12%. This error is found to be roughly independent of the temperature range. This stability in shape and its single analytical approximation implies that two parameters are now sufficient to describe any normalized PSD in ice clouds: the intercept parameter N*0 and the mean volume-weighted diameter Dm. Statistical relationships (parameterizations) between N*0 and Dm have then been evaluated in order to reduce again the number of unknowns. It has been shown that a parameterization of N*0 and Dm by temperature could not be envisaged to retrieve the cloud parameters. Nevertheless, Dm-T and mean maximum dimension diameter -T parameterizations have been derived and compared to the parameterization of Kristjánsson et al. (2000) currently used to characterize particle size in climate models. The new parameterization generally produces larger particle sizes at any temperature than the Kristjánsson et al. (2000) parameterization. These new parameterizations are believed to better represent particle size at global scale, owing to a better representativity of the in situ microphysical database used to derive it. We then evaluated the potential of a direct N*0-Dm relationship. While the model parameterized by temperature produces strong errors on the cloud parameters, the N*0-Dm model parameterized by radar reflectivity produces accurate cloud parameters (less than 3% bias and 16% standard deviation). This result implies that the cloud parameters can be estimated from the estimate of only one parameter of the normalized PSD (N*0 or Dm) and a radar reflectivity measurement.
NASA Technical Reports Server (NTRS)
Grund, Christian John; Eloranta, Edwin W.
1990-01-01
Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.
Antarctic cloud and surface properties: Satellite observations and climate implications
NASA Astrophysics Data System (ADS)
Berque, Joannes
2004-12-01
The radiative effect of clouds in the Antarctic, although small at the top of the atmosphere, is very large within the surface-atmosphere system, and influences a variety of climate processes on a global scale. Because field observations are difficult in the Antarctic interior, satellite observations may be especially valuable in this region; but the remote sensing of clouds and surface properties over the high ice sheets is problematic due to the lack of radiometric contrast between clouds and the snow. A radiative transfer model of the Antarctic snow-atmosphere system is developed, and a new method is proposed for the examination of the problem of cloud properties retrieval from multi-spectral measurements. Key limitations are identified, and a method is developed to overcome them. Using data from the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Agency (NOAA) polar orbiters, snow grain size is retrieved over the course of a summer. Significant variability is observed, and it appears related to major precipitation events. A radiative transfer model and a single-column model are used to evaluate the impact of this variability on the Antarctic plateau. The range of observed grain size induces changes of up to 30 Wm-2 on the absorption of shortwave radiation in both models. Cloud properties are then retrieved in summertime imagery of the South Pole. Comparison of model to observations over a wide range of cloud optical depths suggests that this method allows the meaningful interpretation of AVHRR radiances in terms of cloud properties over the Antarctic plateau. The radiative effect of clouds at the top of the atmosphere is evaluated over the South Pole with ground-based lidar observations and data from Clouds and the Earth Radiant Energy System (CERES) onboard NASA's Terra satellite. In accord with previous work, results indicate that the shortwave and net effect are one of cooling throughout the year, while the longwave effect is one of cooling in winter and slight warming in summer.
Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign
NASA Technical Reports Server (NTRS)
Knobelspiesse, K.; Cairns, B.; Redemann, J.; Bergstrom, R. W.; Stohl, A.
2011-01-01
Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of (0.555 m).
NASA Technical Reports Server (NTRS)
Kawamoto, Kazuaki; Minnis, Patrick; Smith, William L., Jr.
2001-01-01
One of the most perplexing problems in satellite cloud remote sensing is the overlapping of cloud layers. Although most techniques assume a 1-layer cloud system in a given retrieval of cloud properties, many observations are affected by radiation from more than one cloud layer. As such, cloud overlap can cause errors in the retrieval of many properties including cloud height, optical depth, phase, and particle size. A variety of methods have been developed to identify overlapped clouds in a given satellite imager pixel. Baum el al. (1995) used CO2 slicing and a spatial coherence method to demonstrate a possible analysis method for nighttime detection of multilayered clouds. Jin and Rossow (1997) also used a multispectral CO2 slicing technique for a global analysis of overlapped cloud amount. Lin et al. (1999) used a combination infrared, visible, and microwave data to detect overlapped clouds over water. Recently, Baum and Spinhirne (2000) proposed 1.6 and 11 microns. bispectral threshold method. While all of these methods have made progress in solving this stubborn problem, none have yet proven satisfactory for continuous and consistent monitoring of multilayer cloud systems. It is clear that detection of overlapping clouds from passive instruments such as satellite radiometers is in an immature stage of development and requires additional research. Overlapped cloud systems also affect the retrievals of cloud properties over the ARM domains (e.g., Minnis et al 1998) and hence should identified as accurately as possible. To reach this goal, it is necessary to determine which information can be exploited for detecting multilayered clouds from operational meteorological satellite data used by ARM. This paper examines the potential information available in spectral data available on the Geostationary Operational Environmental Satellite (GOES) imager and the NOAA Advanced Very High Resolution Radiometer (AVHRR) used over the ARM SGP and NSA sites to study the capability of detecting overlapping clouds
NASA Technical Reports Server (NTRS)
Kawamoto, K.; Minnis, P.; Smith, W. L., Jr.
2001-01-01
One of the most perplexing problems in satellite cloud remote sensing is the overlapping of cloud layers. Although most techniques assume a one layer cloud system in a given retrieval of cloud properties, many observations are affected by radiation from more than one cloud layer. As such, cloud overlap can cause errors in the retrieval of many properties including cloud height, optical depth, phase, and particle size. A variety of methods have been developed to identify overlapped clouds in a given satellite imager pixel. Baum et al used CO2 slicing and a spatial coherence method to demonstrate a possible analysis method for nighttime detection of multilayered clouds. Jin and Rossow also used a multispectral CO2 slicing technique for a global analysis of overlapped cloud amount. Lin et al. used a combination infrared (IR), visible (VIS), and microwave data to detect overlapped clouds over water. Recently, Baum and Spinhirne proposed a 1.6 and 11 micron bispectral threshold method. While all of these methods have made progress in solving this stubborn problem none have yet proven satisfactory for continuous and consistent monitoring of multilayer cloud systems. It is clear that detection of overlapping clouds from passive instruments such as satellite radiometers is in an immature stage of development and requires additional research. Overlapped cloud systems also affect the retrievals of cloud properties over the Atmospheric Radiation Measurement (ARM) domains and hence should be identified as accurately as possible. To reach this goal, it is necessary to determine which information can be exploited for detecting multilayered clouds from operational meteorological satellite data used by ARM. This paper examines the potential information available in spectral data available on the Geostationary Operational Environmental Satellite (GOES) imager and the National Oceanic Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) used over the ARM Program's Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites to study the capability of detecting overlapping clouds.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-27
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hua; Zhang, Zhibo; Ma, Po-Lun
This paper presents a two-step evaluation of the marine boundary layer (MBL) cloud properties from two Community Atmospheric Model (version 5.3, CAM5) simulations, one based on the CAM5 standard parameterization schemes (CAM5-Base), and the other on the Cloud Layers Unified By Binormals (CLUBB) scheme (CAM5-CLUBB). In the first step, we compare the cloud properties directly from model outputs between the two simulations. We find that the CAM5-CLUBB run produces more MBL clouds in the tropical and subtropical large-scale descending regions. Moreover, the stratocumulus (Sc) to cumulus (Cu) cloud regime transition is much smoother in CAM5-CLUBB than in CAM5-Base. In addition,more » in CAM5-Base we find some grid cells with very small low cloud fraction (<20%) to have very high in-cloud water content (mixing ratio up to 400mg/kg). We find no such grid cells in the CAM5-CLUBB run. However, we also note that both simulations, especially CAM5-CLUBB, produce a significant amount of “empty” low cloud cells with significant cloud fraction (up to 70%) and near-zero in-cloud water content. In the second step, we use satellite observations from CERES, MODIS and CloudSat to evaluate the simulated MBL cloud properties by employing the COSP satellite simulators. We note that a feature of the COSP-MODIS simulator to mimic the minimum detection threshold of MODIS cloud masking removes much more low clouds from CAM5-CLUBB than it does from CAM5-Base. This leads to a surprising result — in the large-scale descending regions CAM5-CLUBB has a smaller COSP-MODIS cloud fraction and weaker shortwave cloud radiative forcing than CAM5-Base. A sensitivity study suggests that this is because CAM5-CLUBB suffers more from the above-mentioned “empty” clouds issue than CAM5-Base. The COSP-MODIS cloud droplet effective radius in CAM5-CLUBB shows a spatial increase from coastal St toward Cu, which is in qualitative agreement with MODIS observations. In contrast, COSP-MODIS cloud droplet effective radius in CAM5-Base almost remains a constant. In comparison with CloudSat observations, the histogram of the radar reflectivity from modeled MBL clouds is too narrow without a distinct separation between cloud and drizzle modes. Moreover, the probability of drizzle in both simulations is almost twice as high as the observation. Future studies are needed to understand the causes of these differences and their potential connection with the “empty” cloud issues in the model.« less
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. T.; King, Michael D. (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper I will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of cloud drops and ice crystals. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.
2018-01-01
The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.
Clouds and Hazes in Saturn's Troposphere and Stratosphere
NASA Astrophysics Data System (ADS)
Merlet, Cecile; Irwin, P.; Fletcher, L.
2012-10-01
We present new results from the analysis of Saturn's near-infrared spectra measured with the Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini orbiter. VIMS near-infrared data are particularly relevant for the study of clouds and hazes in the troposphere and stratosphere of Saturn. Thermal emission in the 4.5-5.1 wavelength range is absorbed and scattered mainly by tropospheric clouds and radiatively active gases. The vertical structure as well as the optical and physical properties of tropospheric aerosols are obtained from Saturn's thermal emission spectra by using the retrieval algorithm Nemesis. The distribution of tropospheric phosphine and ammonia in gas phase will also be presented here. We managed to break the degeneracies inherent to the retrieval problem by analysing Saturn's thermal emission simultaneously at various viewing geometries. By using this method, we found that VIMS spectra at 4.5-5.1 microns are also sensitive to the hazes formed above the cloud layers. Saturn's reflected sunlight spectra at 0.8-3.5 microns measured with VIMS were also analysed in order to constrain the haze properties in the upper troposphere and lower stratosphere of the planet. Results from both the 0.8-3.5 and 4.5-5.1 wavelength ranges were combined to determine the cloud and haze model most consistent with VIMS spectroscopy over a wide range of viewing geometries and lighting conditions. An increase of temperature below the tropopause, often referred to as the temperature knee, was retrieved from Cassini/CIRS spectra. Seasonal variations of the knee and haze structure are compared, and as a result the assumption of local heating by the hazes to explain this feature will be discussed.
Disk and circumsolar radiances in the presence of ice clouds
Haapanala, Päivi; Räisänen, Petri; McFarquhar, Greg M.; ...
2017-06-12
The impact of ice clouds on solar disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0 to 8° from the center of the sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus (SPARTICUS) campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements obtained by the Sun and Aureole Measurements (SAM) instrument. First, the sensitivity of the radiances to themore » ice cloud properties and aerosol optical thickness is addressed. The angular dependence of the disk and circumsolar radiances is found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals) and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in comparisons with SAM data, the ice cloud optical thickness is adjusted for each case so that the simulated radiances agree closely (i.e., within 3 %) with the measured disk radiances. Circumsolar radiances at angles larger than ≈ 3° are systematically underestimated when assuming smooth ice crystals, whereas the agreement with the measurements is better when rough ice crystals are assumed. In conclusion, our results suggest that it may well be possible to infer the particle roughness directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.« less
NASA Astrophysics Data System (ADS)
Okyay, U.; Glennie, C. L.; Khan, S.
2017-12-01
Owing to the advent of terrestrial laser scanners (TLS), high-density point cloud data has become increasingly available to the geoscience research community. Research groups have started producing their own point clouds for various applications, gradually shifting their emphasis from obtaining the data towards extracting more and meaningful information from the point clouds. Extracting fracture properties from three-dimensional data in a (semi-)automated manner has been an active area of research in geosciences. Several studies have developed various processing algorithms for extracting only planar surfaces. In comparison, (semi-)automated identification of fracture traces at the outcrop scale, which could be used for mapping fracture distribution have not been investigated frequently. Understanding the spatial distribution and configuration of natural fractures is of particular importance, as they directly influence fluid-flow through the host rock. Surface roughness, typically defined as the deviation of a natural surface from a reference datum, has become an important metric in geoscience research, especially with the increasing density and accuracy of point clouds. In the study presented herein, a surface roughness model was employed to identify fracture traces and their distribution on an ophiolite outcrop in Oman. Surface roughness calculations were performed using orthogonal distance regression over various grid intervals. The results demonstrated that surface roughness could identify outcrop-scale fracture traces from which fracture distribution and density maps can be generated. However, considering outcrop conditions and properties and the purpose of the application, the definition of an adequate grid interval for surface roughness model and selection of threshold values for distribution maps are not straightforward and require user intervention and interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janet Intrieri; Mathhew Shupe
2005-01-01
Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cyclesmore » of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.« less
IRAS and the Boston University Arecibo Galactic H I Survey: A catalog of cloud properties
NASA Technical Reports Server (NTRS)
Bania, Thomas M.
1992-01-01
The Infrared Astronomy Satellite (IRAS) Galactic Plane Surface Brightness Images were used to identify infrared emission associated with cool, diffuse H I clouds detected by the Boston University-Arecibo Galactic H I Survey. These clouds are associated with galactic star clusters, H II regions, and molecular clouds. Using emission-absorption experiments toward galactic H II regions, we determined the H I properties of cool H I clouds seen in absorption against the thermal continuum, including their kinematic distances. Correlations were then made between IRAS sources and these H II regions, thus some of the spatial confusion associated with the IRAS fields near the galactic plane was resolved since the distances to these sources was known. Because we can also correlate the BU-Arecibo clouds with existing CO surveys, these results will allow us to determine the intrinsic properties of the gas (neutral and ionized atomic as well as molecular) and dust for interstellar clouds in the inner galaxy. For the IRAS-identified H II region sample, we have established the far infrared (FIR) luminosities and galactic distribution of these sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.
Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4more » km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.« less
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; Giangrande, Scott E.
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
NASA Astrophysics Data System (ADS)
Sassen, K.; Canonica, L.; James, C.; Khvorostyanov, V.
2005-12-01
Water-dominated altocumulus clouds are distributed world-wide in the middle troposphere, and so are generally supercooled clouds with variable amounts of ice production via the heterogeneous droplet freezing process, which depends on temperature and the availability of ice nuclei. Although they tend to be relatively optically thin (i.e., for water clouds) and may often act similarly to cirrus clouds, altocumulus are globally widespread and probably play a significant role in maintaining the radiation balance of the Earth/atmosphere system. We will review recent cloud microphysical/ radiative model findings describing their impact on radiation transfer, and how increasing ice content (leading to cloud glaciation) affects their radiative impact. These simulations are based on the results of a polarization lidar climatology of the macrophysical properties of midlatitude altocumulus clouds, which variably produced ice virga. A new more advanced polarization lidar algorithm for characterizing mixed-phase cloud properties is currently being developed. Relative ice content is shown to have a large effect on atmospheric heating rates. We will also present lidar data examples, from Florida to Alaska, that indicate how desert dust and forest fire smoke aerosols can affect supercooled cloud phase. Since such aerosols may be becoming increasingly prevalent due to various human activities or climate change itself, it is important to assess the potential effects of increasing ice nuclei to climate change.
NASA Astrophysics Data System (ADS)
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large-eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud top occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time-varying three-dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.
NASA Astrophysics Data System (ADS)
Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.
2016-05-01
Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.
NASA Astrophysics Data System (ADS)
Luo, S.
2016-12-01
Radiation field and cloud properties over the Southern Ocean area generated by the Australian Community Climate and Earth System Simulator (ACCESS) are evaluated using multiple-satellite products from the Fast Longwave And Shortwave radiative Fluxes (FLASHFlux) project and NASA/GEWEX surface radiation budget (SRB) data. The cloud properties are also evaluated using the observational simulator package COSP, a synthetic brightness temperature model (SBTM) and cloud liquid-water path data (UWisc) from the University of Wisconsin satellite retrievals. All of these evaluations are focused on the Southern Ocean area in an effort to understand the reasons behind the short-wave radiation biases at the surface. It is found that the model overestimates the high-level cloud fraction and frequency of occurrence of small ice-water content and underestimates the middle and low-level cloud fraction and water content. In order to improve the modelled radiation fields over the Southern Ocean area, two main modifications have been made to the physical schemes in the ACCESS model. Firstly the autoconversion rate at which the cloud water is converted into rain and the accretion rate in the warm rain scheme have been modified, which increases the cloud liquid-water content in warm cloud layers. Secondly, the scheme which determines the fraction of supercooled liquid water in mixed-phase clouds in the parametrization of cloud optical properties has been changed to use one derived from CALIPSO data which provides larger liquid cloud fractions and thus higher optical depths than the default scheme. Sensitivity tests of these two schemes in ACCESS climate runs have shown that applying either can lead to a reduction of the solar radiation reaching the surface and reduce the short-wave radiation biases.
Effects of cloud size and cloud particles on satellite-observed reflected brightness
NASA Technical Reports Server (NTRS)
Reynolds, D. W.; Mckee, T. B.; Danielson, K. S.
1978-01-01
Satellite observations allowed obtaining data on the visible brightness of cumulus clouds over South Park, Colorado, while aircraft observations were made in cloud to obtain the drop size distributions and liquid water content of the cloud. Attention is focused on evaluating the relationship between cloud brightness, horizontal dimension, and internal microphysical structure. A Monte Carlo cloud model for finite clouds was run using different distributions of drop sizes and numbers, while varying the cloud depth and width to determine how theory would predict what the satellite would view from its given location in space. Comparison of these results to the satellite observed reflectances is presented. Theoretical results are found to be in good agreement with observations. For clouds of optical thickness between 20 and 60, monitoring cloud brightness changes in clouds of uniform depth and variable width gives adequate information about a cloud's liquid water content. A cloud having a 10:1 width to depth ratio is almost reaching its maximum brightness for a specified optical thickness.
The MSG-SEVIRI-based cloud property data record CLAAS-2
NASA Astrophysics Data System (ADS)
Benas, Nikos; Finkensieper, Stephan; Stengel, Martin; van Zadelhoff, Gerd-Jan; Hanschmann, Timo; Hollmann, Rainer; Fokke Meirink, Jan
2017-07-01
Clouds play a central role in the Earth's atmosphere, and satellite observations are crucial for monitoring clouds and understanding their impact on the energy budget and water cycle. Within the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF), a new cloud property data record was derived from geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) measurements for the time frame 2004-2015. The resulting CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2) data record is publicly available via the CM SAF website (https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V002). In this paper we present an extensive evaluation of the CLAAS-2 cloud products, which include cloud fractional coverage, thermodynamic phase, cloud top properties, liquid/ice cloud water path and corresponding optical thickness and particle effective radius. Data validation and comparisons were performed on both level 2 (native SEVIRI grid and repeat cycle) and level 3 (daily and monthly averages and histograms) with reference datasets derived from lidar, microwave and passive imager measurements. The evaluation results show very good overall agreement with matching spatial distributions and temporal variability and small biases attributed mainly to differences in sensor characteristics, retrieval approaches, spatial and temporal samplings and viewing geometries. No major discrepancies were found. Underpinned by the good evaluation results, CLAAS-2 demonstrates that it is fit for the envisaged applications, such as process studies of the diurnal cycle of clouds and the evaluation of regional climate models. The data record is planned to be extended and updated in the future.
Uranus Cloud Layers As Constrained By HST STIS Spectra
NASA Astrophysics Data System (ADS)
Fry, Patrick M.; Sromovsky, L. A.
2007-10-01
Space Telescope Imaging Spectrograph (STIS) observations of Uranus were obtained in 2002. We analyzed observations taken with the slit parallel to Uranus' spin axis and positioned on the central meridian, combining 430L and 750L grating observations to obtain a rectified spectrum spanning the wavelength range of 290 nm to 1050 nm. At the time of these observations the subearth planetocentric latitude was -20.5 degrees, making latitudes of 43 S and 7.6 N latitudes of approximately equal view angle. Comparing wavelengths that probe different depths of the Uranian atmosphere, controlled mainly by Rayleigh and Raman scattering at short wavelengths, and by Methane absorption at longer wavelengths, we are able to estimate the pressure levels at which cloud bands reside in the Uranus atmosphere and identify asymmetries in cloud and haze properties. At 399 nm we find that the southern hemisphere is darker than the northern hemispheres at comparable view angles, providing evidence of stratospheric haze absorption. At 467 nm there is nearly perfect symmetry about the center of the disk, with Rayleigh scattering obscuring views of deeper cloud bands. At 590 nm, which is more deeply penetrating, there appears a strong asymmetry in which the southern hemisphere is brighter than corresponding view angles in the northern hemisphere. Wavelengths of 725 nm and 789 nm imply that the bright band near seen at 45 S at 789 nm but not seen at 725 nm lies between about 1.7 bars and 3-4 bars. Quantitative radiation transfer models of these spectra are currently stymied by calibration issues identified by comparison of central disk spectra with central disk I/F values obtained from WFPC2 bandpass filter images. This research was supported by the Outer Planets Research Program.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.
Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks
NASA Astrophysics Data System (ADS)
Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.
2017-12-01
Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.
Cloud properties inferred from 8-12 micron data
NASA Technical Reports Server (NTRS)
Strabala, Kathleen I.; Ackerman, Steven A.; Menzel, W. Paul
1994-01-01
A trispectral combination of observations at 8-, 11-, and 12-micron bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive 8-minus-11-micron brightness temperature differences indicate cloud, while near-zero or negative differences indicate clear regions. The absorption coefficient for water increases more between 11 and 12 microns than between 8 and 11 microns, while for ice, the reverse is true. Cloud phases is determined by a scatter diagram of 8-minus-11-micron versus 11-minus-12-micron brightness temperature differences; ice cloud shows a slope greater than 1 and water cloud less than 1. The trispectral brightness temperature method was tested upon high-resolution interferometer data resulting in clear-cloud and cloud-phase delineation. Simulations using differing 8-micron bandwidths revealed no significant degradation of cloud property detection. Thus, the 8-micron bandwidth for future satellites can be selected based on the requirements of other applications, such as surface characterization studies. Application of the technique to current polar-orbiting High-Resolution Infrared Sounder (HIRS)-Advanced Very High Resolution Radiometer (AVHRR) datasets is constrained by the nonuniformity of the cloud scenes sensed within the large HIRS field of view. Analysis of MAS (MODIS Airborne Simulator) high-spatial resolution (500 m) data with all three 8-, 11-, and 12-micron bands revealed sharp delineation of differing cloud and background scenes, from which a simple automated threshold technique was developed. Cloud phase, clear-sky, and qualitative differences in cloud emissivity and cloud height were identified on a case study segment from 24 November 1991, consistent with the scene. More rigorous techniques would allow further cloud parameter clarification. The opportunities for global cloud delineation with the Moderate-Resolution Imaging Spectrometer (MODIS) appear excellent. The spectral selection, the spatial resolution, and the global coverage are all well suited for significant advances.
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Miller, M. A.; Wang, J.
2017-12-01
The first Intensive Observation Period of the DOE Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) took place from 21 June through 20 July 2017 involving the deployment of the ARM Gulfstream-159 (G-1) aircraft with a suite of in situ cloud and aerosol instrumentation in the vicinity of the ARM Climate Research Facility Eastern North Atlantic (ENA) site on Graciosa Island, Azores. Here we present preliminary analysis of the thermodynamic characteristics of the marine boundary layer and the variability of cloud properties for a mixed cloud field including both stratiform cloud layers and deeper cumulus elements. Analysis combines in situ atmospheric state observations from the G-1 with radiosonde profiles and surface meteorology from the ENA site in order to characterize the thermodynamic structure of the marine boundary layer including the coupling state and stability. Cloud/drizzle droplet size distributions measured in situ are combined with remote sensing observations from a scanning cloud radar, and vertically pointing cloud radar and lidar provide quantification of the macrophysical and microphysical properties of the mixed cloud field.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-11-01
To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.