NASA Astrophysics Data System (ADS)
Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.
2015-12-01
Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. There, another MIRA-35 was operated in simultaneous transmission and simultaneous reception (STSR) mode for obtaining measurements of differential reflectivity (ZDR) and correlation coefficient ρhv.
Borque, Paloma; Luke, Edward; Kollias, Pavlos
2016-05-27
Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borque, Paloma; Luke, Edward; Kollias, Pavlos
Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Williams, C.; Grachev, A. A.; Brewer, A.; Choukulkar, A.
2013-12-01
The VAMOS (VOCALS) field program involved deployment of several measurement systems based on ships, land and aircraft over the SE Pacific Ocean. The NOAA Ship Ronald H. Brown was the primary platform for surface based measurements which included the High Resolution Doppler Lidar (HRDL) and the motion-stabilized 94-GHz cloud Doppler radar (W-band radar). In this paper, the data from the W-band radar will be used to study the turbulent and microphysical structure of the stratocumulus clouds prevalent in the region. The radar data consists of a 3 Hz time series of radar parameters (backscatter coefficient, mean Doppler shift, and Doppler width) at 175 range gates (25-m spacing). Several statistical methods to de-convolve the turbulent velocity and gravitational settling velocity are examined and an optimized algorithm is developed. 20 days of observations are processed to examine in-cloud profiles of mean turbulent statistics (vertical velocity variance, skewness, dissipation rate) in terms of surface fluxes and estimates of entrainment and cloudtop radiative cooling. The clean separation of turbulent and fall velocities will allow us to compute time-averaged drizzle-drop size spectra within and below the cloud that are significantly superior to previous attempts with surface-based marine cloud radar observations.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Loehnert, U.; Maahn, M.
2015-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.
2014-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Observing microphysical structures and hydrometeor phase in convection with ARM active sensors
NASA Astrophysics Data System (ADS)
Riihimaki, L.; Comstock, J. M.; Luke, E. P.; Thorsen, T. J.; Fu, Q.
2016-12-01
The existence and distribution of super-cooled liquid water within convective clouds impacts the microphysical processes responsible for cloud radiative and lifetime effects. Yet few observations of cloud phase are available within convection and associated stratiform anvils. Here we identify super-cooled liquid layers within convection and associated stratiform clouds using measured radar Doppler spectra from vertically pointing Ka-band cloud radar and Raman Lidar, capitalizing on the strengths of both instruments. Observations from these sensors are used to show that liquid exists in patches within the cloud, rather than in uniform layers, impacting the growth and formation of ice. While a depolarization lidar like the Raman Lidar is a trusted measurement for identifying super-cooled liquid, the lidar attenuates at an optical depth of around three, limiting its ability to probe the full cloud. The use of the radar Doppler spectra is particularly valuable for this purpose because it allows observations within optically thicker clouds. We demonstrate a new method for identifying super-cooled liquid objectively from the radar Doppler spectra using machine-learning techniques.
A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke,E.; Kollias, P.; Johnson, K.
2006-06-12
The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basismore » for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.« less
Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling
Kalesse, Heike; Szyrmer, Wanda; Kneifel, Stefan; ...
2016-03-09
In this paper, Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyondmore » the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. In conclusion, this suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.« less
Remillard, J.; Fridlind, Ann M.; Ackerman, A. S.; ...
2017-09-20
Here, a case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated withmore » an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remillard, J.; Fridlind, Ann M.; Ackerman, A. S.
Here, a case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated withmore » an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.« less
NASA Astrophysics Data System (ADS)
Bluestein, H. B.; Unruh, W. P.
1989-12-01
A severe-storm intercept field program was held in Oklahoma and nearby parts of Texas during the 1987-38 spring seasons. The purpose of the experiment was to use, for the first time, a low-power, portable, continuous-wave (CW), 3-cm Doppler radar to obtain wind spectra in tornadoes from a distance of less than 10 km.We discuss measurements of spectra we recorded in a tornado, a funnel cloud, and two wall clouds. Photographic documentation is also given to aid in the interpretation of our data. Wind speeds as high as 60 m s1 were measured in the tornado. It was found that deploying the portable Doppler radar from a storm-intercept vehicle may increase substantially the number of measurements of wind speeds in tornadoes.The radar has recently been modified so that it has frequency modulation (FM) capability, and hence can obtain wind spectra within range bins. A plan is presented for using the radar to find the source of vorticity in tornadoes.
A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER
NASA Astrophysics Data System (ADS)
Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan
2014-05-01
One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform, occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR observed sensitivity as low as -37 dBZ at 1 km range and resolved linear depolarization ratio (LDR) signature better than -29 dB during its latest test flights. References: Kollias, P., and B. A. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter wavelength radar observation. J. Atmos. Sci., 57, 2417-2434. Kollias, P., B.A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci. 58, 1750-1766. Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. Hunning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bulletin of the American Meteorological Society, 87, 896-909. Pazmany, A. L., R. E. McIntosh, R. Kelly, and V. G., 1994: An airborne 95-GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32, 731-739. Vali, G., Kelly, R.D., French, J., Haimov, S., Leon, D., McIntosh, R., Pazmany, A., 1998. Fine-scale structure and microphysics of coastal stratus. J. Atmos. Sci. 55, 3540-3564.
Observations of tornadoes and wall clouds with a portable FM-CW Doppler radar: 1989--1990 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; Unruh, W.P.
1990-01-01
The purpose of this paper is to report on our progress using a portable, 1 W,FM (frequency modulated)-CW (continuous wave) Doppler radar developed at the Los Alamos National Laboratory (LANL), to make measurements of the wind field in tornadoes and wall clouds along with simultaneous visual documentation. Results using a CW version of the radar in 1987--1988 are given in Bluestein and Unruh (1989). 18 refs., 2 figs., 1 tab.
A portable CW/FM-CW Doppler radar for local investigation of severe storms
NASA Astrophysics Data System (ADS)
Unruh, Wesley P.; Wolf, Michael A.; Bluestein, Howard B.
During the 1987 spring storm season we used a portable 1-W X-band CW Doppler radar to probe a tornado, a funnel cloud, and a wall cloud in Oklahoma and Texas. This same device was used during the spring storm season in 1988 to probe a wall cloud in Texas. The radar was battery powered and highly portable, and thus convenient to deploy from our chase vehicle. The device separated the receding and approaching Doppler velocities in real time and, while the radar was being used, it allowed convenient stereo data recording for later spectral analysis and operator monitoring of the Doppler signals in stereo headphones. This aural monitoring, coupled with the ease with which an operator can be trained to recognize the nature of the signals heard, made the radar very easy to operate reliably and significantly enhanced the quality of the data being recorded. At the end of the 1988 spring season, the radar was modified to include FM-CW ranging and processing. These modifications were based on a unique combination of video recording and FM chirp generation, which incorporated a video camera and recorder as an integral part of the radar. After modification, the radar retains its convenient portability and the operational advantage of being able to listen to the Doppler signals directly. The original mechanical design was unaffected by these additions. During the summer of 1988, this modified device was used at the Langmuir Laboratory at Socorro, New Mexico in an attempt to measure vertical convective flow in a thunderstorm.
Optimizing observations of drizzle onset with millimeter-wavelength radars
Acquistapace, Claudia; Kneifel, Stefan; Löhnert, Ulrich; ...
2017-05-12
Cloud Doppler radars are increasingly used to study cloud and precipitation microphysical processes. Typical bulk cloud properties such as liquid or ice content are usually derived using the first three standard moments of the radar Doppler spectrum. Recent studies demonstrated the value of higher moments for the reduction of retrieval uncertainties and for providing additional insights into microphysical processes. Large effort has been undertaken, e.g., within the Atmospheric Radiation Measurement (ARM) program to ensure high quality of radar Doppler spectra. However, a systematic approach concerning the accuracy of higher moment estimates and sensitivity to basic radar system settings, such asmore » spectral resolution, integration time and beam width, are still missing. Here In this study, we present an approach on how to optimize radar settings for radar Doppler spectra moments in the specific context of drizzle detection. The process of drizzle development has shown to be particularly sensitive to higher radar moments such as skewness. We collected radar raw data (I/Q time series) from consecutive zenith-pointing observations for two liquid cloud cases observed at the cloud observatory JOYCE in Germany. The I/Q data allowed us to process Doppler spectra and derive their moments using different spectral resolutions and integration times during identical time intervals. This enabled us to study the sensitivity of the spatiotemporal structure of the derived moments to the different radar settings. The observed signatures were further investigated using a radar Doppler forward model which allowed us to compare observed and simulated sensitivities and also to study the impact of additional hardware-dependent parameters such as antenna beam width. For the observed cloud with drizzle onset we found that longer integration times mainly modify spectral width ( S w) and skewness ( S k), leaving other moments mostly unaffected. An integration time of 2 s seems to be an optimal compromise: both observations and simulations revealed that a 10 s integration time – as it is widely used for European cloud radars – leads to a significant turbulence-induced increase of S w and reduction of S k compared to 2 s integration time. This can lead to significantly different microphysical interpretations with respect to drizzle water content and effective radius. A change from 2 s to even shorter integration times (0. 4 s) has much smaller effects on S w and S k. We also find that spectral resolution has a small impact on the moment estimations, and thus on the microphysical interpretation of the drizzle signal. Even the coarsest spectral resolution studied, 0. 08 ms -1, seems to be appropriate for calculation moments of drizzling clouds. Moreover, simulations provided additional insight into the microphysical interpretation of the skewness signatures observed: in low (high)-turbulence conditions, only drizzle larger than 20 µm (40 µm) can generate S k values above the S k noise level (in our case 0.4). Higher S k values are also obtained in simulations when smaller beam widths are adopted.« less
NASA Astrophysics Data System (ADS)
Ghate, V. P.; Albrecht, B. A.; Fairall, C. W.; Miller, M. A.; Brewer, A.
2010-12-01
Turbulence in the stratocumulus topped marine boundary layer (BL) is an important factor that is closely connected to both the cloud macro- and micro-physical characteristics, which can substantially affect their radiaitve properties. Data collected by ship borne instruments on the R/V Ronald H. Brown on November 27, 2008 as a part of the VAMOS Ocean-Cloud-Atmosphere-Land-Study Regional Experiment (VOCALS-Rex) are analyzed to study the turbulence structure of a stratocumulus topped marine BL. The first half of the analyzed 24 hour period was characterized by a coupled BL topped by a precipitating stratocumulus cloud; the second half had clear sky conditions with a decoupled BL. The motion stabilized vertically pointing W-band Doppler cloud radar reported the full Doppler spectrum at a temporal and spatial resolution of 3 Hz and 25 m respectively. The collocated motion stabilized Doppler lidar was operating at 2 micron wavelength and reported the Signal to Noise Ratio (SNR) and Doppler velocity at temporal and spatial resolution of 2 Hz and 30 m respectively. Data from the cloud Doppler radar and Doppler lidar were combined to yield the turbulence structure of entire BL in both cloudy and clear sky conditions. Retrievals were performed to remove the contribution of precipitating drizzle drops to the mean Doppler velocity measured by the radar. Hourly profiles of vertical velocity variance suggested high BL variance during coupled BL conditions and low variance during decoupled BL conditions. Some of the terms in second and third moment budget of vertical velocity are calculated and their diurnal evolution is explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalesse, Heike; Szyrmer, Wanda; Kneifel, Stefan
In this paper, Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyondmore » the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. In conclusion, this suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.« less
NASA Technical Reports Server (NTRS)
Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.
2012-01-01
Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.
NASA Astrophysics Data System (ADS)
Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; Luke, Edward P.
2018-03-01
The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populations in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (ZDR), while an enhanced specific differential phase (KDP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce ZDR and KDP values close to 0, suggesting the occurrence of a riming process. Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and ZDR.
NASA Astrophysics Data System (ADS)
LIU, J.; Bi, Y.; Duan, S.; Lu, D.
2017-12-01
It is well-known that cloud characteristics, such as top and base heights and their layering structure of micro-physical parameters, spatial coverage and temporal duration are very important factors influencing both radiation budget and its vertical partitioning as well as hydrological cycle through precipitation data. Also, cloud structure and their statistical distribution and typical values will have respective characteristics with geographical and seasonal variation. Ka band radar is a powerful tool to obtain above parameters around the world, such as ARM cloud radar at the Oklahoma US, Since 2006, Cloudsat is one of NASA's A-Train satellite constellation, continuously observe the cloud structure with global coverage, but only twice a day it monitor clouds over same local site at same local time.By using IAP Ka band Doppler radar which has been operating continuously since early 2013 over the roof of IAP building in Beijing, we obtained the statistical characteristic of clouds, including cloud layering, cloud top and base heights, as well as the thickness of each cloud layer and their distribution, and were analyzed monthly and seasonal and diurnal variation, statistical analysis of cloud reflectivity profiles is also made. The analysis covers both non-precipitating clouds and precipitating clouds. Also, some preliminary comparison of the results with Cloudsat/Calipso products for same period and same area are made.
Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambukkange,M.; Verlinde, J.; Elorante, E.
2006-07-10
Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivitymore » of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.« less
Scanning Radar Investigations to Characterize Cloud and Precipitation Processes for ASR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatachalam, Chandrasekar
2016-12-17
The project conducted investigations in the following areas related to scanning radar retrievals: a) Development for Cloud drizzle separation studies for the ENA site based on Doppler Spectra b) Advanced radar retrieval for the SGP site c) Characterizing falling snow using multifrequency dual-polarization measurements d) BAECC field experiment. More details about these investigations can be found within each subtopic within the report.
G-band atmospheric radars: new frontiers in cloud physics
NASA Astrophysics Data System (ADS)
Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.
2014-01-01
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud-scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G-band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G-band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
G band atmospheric radars: new frontiers in cloud physics
NASA Astrophysics Data System (ADS)
Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.
2014-06-01
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander
The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less
Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; ...
2018-03-16
The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less
Scanning Cloud Radar Observations at the ARM sites
NASA Astrophysics Data System (ADS)
Kollias, P.; Clothiaux, E. E.; Shupe, M.; Widener, K.; Bharadwaj, N.; Miller, M. A.; Verlinde, H.; Luke, E. P.; Johnson, K. L.; Jo, I.; Tatarevic, A.; Lamer, K.
2012-12-01
Recently, the DOE Atmospheric Radiation Measurement (ARM) program upgraded its fixed and mobile facilities with the acquisition of state-of-the-art scanning, dual-wavelength, polarimetric, Doppler cloud radars. The scanning ARM cloud radars (SACR's) are the most expensive and significant radar systems at all ARM sites and eight SACR systems will be operational at ARM sites by the end of 2013. The SACR's are the primary instruments for the detection of 3D cloud properties (boundaries, volume cloud fractional coverage, liquid water content, dynamics, etc.) beyond the soda-straw (profiling) limited view. Having scanning capabilities with two frequencies and polarization allows more accurate probing of a variety of cloud systems (e.g., drizzle and shallow, warm rain), better correction for attenuation, use of attenuation for liquid water content retrievals, and polarimetric and dual-wavelength ratio characterization of non-spherical particles for improved ice crystal habit identification. Examples of SACR observations from four ARM sites are presented here: the fixed sites at Southern Great Plains (SGP) and North Slope of Alaska (NSA), and the mobile facility deployments at Graciosa Island, Azores and Cape Cod, Massachusetts. The 3D cloud structure is investigated both at the macro-scale (20-50 km) and cloud-scale (100-500 m). Doppler velocity measurements are corrected for velocity folding and are used either to describe the in-cloud horizontal wind profile or the 3D vertical air motions.
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Cammarata, Michael; Arnold, James E. (Technical Monitor)
2002-01-01
Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.
Total Lightning as an Indicator of Mesocyclone Behavior
NASA Technical Reports Server (NTRS)
Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.
2014-01-01
Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.
NASA Astrophysics Data System (ADS)
Luce, Hubert; Mega, Tomoaki; Yamamoto, Masayuki K.; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Fukao, Shoichiro; Nishi, Noriyuki; Tajiri, Takuya; Nakazato, Masahisa
2010-10-01
Using the very high frequency (46.5 MHz) middle and upper atmosphere radar (MUR), Ka band (35 GHz) and X band (9.8 GHz) weather radars, a Kelvin-Helmholtz (KH) instability occurring at a cloud base and its impact on modulating cloud bottom altitudes are described by a case study on 8 October 2008 at the Shigaraki MU Observatory, Japan (34.85°N, 136.10°E). KH braids were monitored by the MUR along the slope of a cloud base gradually rising with time around an altitude of ˜5.0 km. The KH braids had a horizontal wavelength of about 3.6 km and maximum crest-to-trough amplitude of about 1.6 km. Nearly monochromatic and out of phase vertical air motion oscillations exceeding ±3 m s-1 with a period of ˜3 min 20 s were measured by the MUR above and below the cloud base. The axes of the billows were at right angles of the wind and wind shear both oriented east-north-east at their altitude. The isotropy of the radar echoes and the large variance of Doppler velocity in the KH billows (including the braids) indicate the presence of strong turbulence at the Bragg (˜3.2 m) scale. After the passage of the cloud system, the KH waves rapidly damped and the vertical scale of the KH braids progressively decreased down to about 100 m before their disappearance. The radar observations suggest that the interface between clear air and cloud was conducive to the presence of the dynamical shear instability by reducing static stability (and then the Richardson number) near the cloud base. Downward cloudy protuberances detected by the Ka band radar had vertical and horizontal scales of about 0.6-1.1 and 3.2 km, respectively, and were clearly associated with the downward air motions. Observed oscillations of the reflectivity-weighted Doppler velocity measured by the X band radar indicate that falling ice particles underwent the vertical wind motions generated by the KH instability to form the protuberances. The protuberances at the cloud base might be either KH billow clouds or perhaps some sort of mamma. Reflectivity-weighted particle fall velocity computed from Doppler velocities measured by the X band radar and the MUR showed an average value of 1.3 ms-1 within the cloud and in the protuberance environment.
NASA Astrophysics Data System (ADS)
Haeffelin, Martial
2016-04-01
Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.
A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events
NASA Astrophysics Data System (ADS)
Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.
2017-12-01
Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles (< 0.5 m s-1) coexisted with faster-falling particles (> 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested large, faster-falling, high-reflectivity particles, consistent with large aggregates (> 1 cm) observed at the ground. The presentation will show an advanced analysis using synergy between multi frequency, polarimetry, and Doppler spectra measurements.
NASA Astrophysics Data System (ADS)
Riihimaki, L. D.; Comstock, J. M.; Luke, E.; Thorsen, T. J.; Fu, Q.
2017-07-01
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
2017-04-23
With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. Themore » second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.« less
Development of High Altitude UAV Weather Radars for Hurricane Research
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald; Li, Li-Hua
2005-01-01
A proposed effort within NASA called (ASHE) over the past few years was aimed at studying the genesis of tropical disturbances off the east coast of Africa. This effort was focused on using an instrumented Global Hawk UAV with high altitude (%Ok ft) and long duration (30 h) capability. While the Global Hawk availability remains uncertain, development of two relevant instruments, a Doppler radar (URAD - UAV Radar) and a backscatter lidar (CPL-UAV - Cloud Physics Lidar), are in progress. The radar to be discussed here is based on two previous high-altitude, autonomously operating radars on the NASA ER-2 aircraft, the ER-2 Doppler Radar (EDOP) at X-band (9.6 GHz), and the Cloud Radar System (CRS) at W- band (94 GHz). The nadir-pointing EDOP and CRS radars profile vertical reflectivity structure and vertical Doppler winds in precipitation and clouds, respectively. EDOP has flown in all of the CAMEX flight series to study hurricanes over storms such as Hurricanes Bonnie, Humberto, Georges, Erin, and TS Chantal. These radars were developed at Goddard over the last decade and have been used for satellite algorithm development and validation (TRMM and Cloudsat), and for hurricane and convective storm research. We describe here the development of URAD that will measure wind and reflectivity in hurricanes and other weather systems from a top down, high-altitude view. URAD for the Global Hawk consists of two subsystems both of which are at X-band (9.3-9.6 GHz) and Doppler: a nadir fixed-beam Doppler radar for vertical motion and precipitation measurement, and a Conical scanning radar for horizontal winds in cloud and at the surface, and precipitation structure. These radars are being designed with size, weight, and power consumption suitable for the Global Hawk and other UAV's. The nadir radar uses a magnetron transmitter and the scanning radar uses a TWT transmitter. With conical scanning of the radar at a 35" incidence angle over an ocean surface in the absence of precipitation, the surface return over a single 360 degree sweep over -25 h-diameter region provides information on the surface wind speed and direction within the scan circle. In precipitation regions, the conical scan with appropriate mapping and analysis provides the 3D structure of reflectivity beneath the plane and the horizontal winds. The use of conical scanning in hurricanes has recently been demonstrated for measuring inner core winds with the IWRAP system flying on the NOAA P3's. In this presentation, we provide a description of the URAD system hardware, status, and future plans. In addition to URAD, NASA SBIR activity is supporting a Phase I study by Remote Sensing Solutions and the University of Massachusetts for a dual-frequency IWRAP for a high altitude UAV that utilizes solid state transmitters at 14 and 35 GHz, the same frequencies that are planned for the radar on the Global Precipitation System satellite. This will be discussed elsewhere at the meeting.
Phase-partitioning in mixed-phase clouds - An approach to characterize the entire vertical column
NASA Astrophysics Data System (ADS)
Kalesse, H.; Luke, E. P.; Seifert, P.
2017-12-01
The characterization of the entire vertical profile of phase-partitioning in mixed-phase clouds is a challenge which can be addressed by synergistic profiling measurements with ground-based polarization lidars and cloud radars. While lidars are sensitive to small particles and can thus detect supercooled liquid (SCL) layers, cloud radar returns are dominated by larger particles (like ice crystals). The maximum lidar observation height is determined by complete signal attenuation at a penetrated optical depth of about three. In contrast, cloud radars are able to penetrate multiple liquid layers and can thus be used to expand the identification of cloud phase to the entire vertical column beyond the lidar extinction height, if morphological features in the radar Doppler spectrum can be related to the existence of SCL. Relevant spectral signatures such as bimodalities and spectral skewness can be related to cloud phase by training a neural network appropriately in a supervised learning scheme, with lidar measurements functioning as supervisor. The neural network output (prediction of SCL location) derived using cloud radar Doppler spectra can be evaluated with several parameters such as liquid water path (LWP) detected by microwave radiometer (MWR) and (liquid) cloud base detected by ceilometer or Raman lidar. The technique has been previously tested on data from Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) instruments in Barrow, Alaska and is in this study utilized for observations from the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. Comparisons to supercooled-liquid layers as classified by CLOUDNET are provided.
RAWS: The spaceborne radar wind sounder
NASA Technical Reports Server (NTRS)
Moore, Richard K.
1991-01-01
The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.
Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements
NASA Technical Reports Server (NTRS)
Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.
2008-01-01
Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.
NASA Technical Reports Server (NTRS)
Leroux, C.; Bertin, F.; Mounir, H.
1991-01-01
Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectramore » from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.« less
The Multiple Doppler Radar Workshop, November 1979.
NASA Astrophysics Data System (ADS)
Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.
1980-10-01
The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for the dual Doppler and multiple Doppler cases. Various filters and techniques, including statistical and variational approaches, are mentioned. Emphasis is placed on the importance of experiment design and procedures, technological improvements, incorporation of all information from supporting sensors, and analysis priority for physically simple cases. Integrated reliability is proposed as an objective tool for radar siting.Verification of multiple Doppler-derived vertical velocity is discussed in Part V. Three categories of verification are defined as direct, deductive, and theoretical/numerical. Direct verification consists of zenith-pointing radar measurements (from either airborne or ground-based systems), air motion sensing aircraft, instrumented towers, and tracking of radar chaff. Deductive sources include mesonetworks, aircraft (thermodynamic and microphysical) measurements, satellite observations, radar reflectivity, multiple Doppler consistency, and atmospheric soundings. Theoretical/numerical sources of verification include proxy data simulation, momentum checking, and numerical cloud models. New technology, principally in the form of wide bandwidth radars, is seen as a development that may reduce the need for extensive verification of multiple Doppler-derived vertical air motions. Airborne Doppler radar is perceived as the single most important source of verification within the bounds of existing technology.Nine stages of data processing and display are identified in Part VI. The stages are identified as field checks, archival, selection, editing, coordinate transformation, synthesis of Cartesian fields, filtering, display, and physical analysis. Display of data is considered to be a problem critical to assimilation of data at all stages. Interactive computing systems and software are concluded to be very important, particularly for the editing stage. Three- and 4-dimensional displays are considered essential for data assimilation, particularly at the physical analysis stage. The concept of common data tape formats is approved both for data in radar spherical space as well as for synthesized Cartesian output.1169
A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke,E.; Kollias, P.
2007-08-06
The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Szoeke, Simon P.
The investigator and DOE-supported student [1] retrieved vertical air velocity and microphysical fall velocity retrieval for VOCALS and CAP-MBL homogeneous clouds. [2] Calculated in-cloud and cloud top dissipation calculation and diurnal cycle computed for VOCALS. [3] Compared CAP-MBL Doppler cloud radar scenes with (Remillard et al. 2012) automated classification.
NASA Technical Reports Server (NTRS)
Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.
2005-01-01
An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.
Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar
NASA Technical Reports Server (NTRS)
Orr, Brad W.; Kropfli, Robert A.
1993-01-01
During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.
Riihimaki, Laura D.; Comstock, J. M.; Luke, E.; ...
2017-07-12
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. Furthermore, thismore » approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; Comstock, J. M.; Luke, E.
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. Furthermore, thismore » approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.« less
Breaking Kelvin-Helmholtz waves and cloud-top entrainment as revealed by K-band Doppler radar
NASA Technical Reports Server (NTRS)
Martner, Brooks E.; Ralph, F. Martin
1993-01-01
Radars have occasionally detected breaking Kelvin-Helmholtz (KH) waves under clear-air conditions in the atmospheric boundary layer and in the free troposphere. However, very few direct measurements of such waves within clouds have previously been reported and those have not clearly documented wave breaking. In this article, we present some of the most detailed and striking radar observations to date of breaking KH waves within clouds and at cloud top and discuss their relevance to the issue of cloud-top entrainment, which is believed to be important in convective and stratiform clouds. Aircraft observations reported by Stith suggest that vortex-like circulations near cloud top are an entrainment mechanism in cumuliform clouds. Laboratory and modeling studies have examined possibility that KH instability may be responsible for mixing at cloud top, but direct observations have not yet been presented. Preliminary analyses shown here may help fill this gap. The data presented in this paper were obtained during two field projects in 1991 that included observations from the NOAA Wave Propagation Laboratory's K-band Doppler radar (wavelength = 8.7 mm) and special rawinsonde ascents. The sensitivity (-30 dBZ at 10 km range), fine spatial resolution (375-m pulse length and 0.5 degrees beamwidth), velocity measurement precision (5-10 cm s-1), scanning capability, and relative immunity to ground clutter make it sensitive to non-precipitating and weakly precipitating clouds, and make it an excellent instrument to study gravity waves in clouds. In particular, the narrow beam width and short pulse length create scattering volumes that are cylinders 37.5 m long and 45 m (90 m) in diameter at 5 km (10 km) range. These characteristics allow the radar to resolve the detailed structure in breaking KH waves such as have been seen in photographic cloud images.
The Earthcare Cloud Profiling Radar, its PFM development status (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nakatsuka, Hirotaka; Tomita, Eichi; Aida, Yoshihisa; Seki, Yoshihiro; Okada, Kazuyuki; Maruyama, Kenta; Ishii, Yasuyuki; Tomiyama, Nobuhiro; Ohno, Yuichi; Horie, Hiroaki; Sato, Kenji
2016-10-01
The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is joint mission between Europe and Japan for the launch year of 2018. Mission objective is to improve scientific understanding of cloud-aerosol-radiation interactions that is one of the biggest uncertain factors for numerical climate and weather predictions. The EarthCARE spacecraft equips four instruments such as an ultra violet lidar (ATLID), a cloud profiling radar (CPR), a broadband radiometer (BBR), and a multi-spectral imager (MSI) and perform complete synergy observation to observe aerosols, clouds and their interactions simultaneously from the orbit. Japan Aerospace Exploration Agency (JAXA) is responsible for development of the CPR in this EarthCARE mission and the CPR will be the first space-borne W-band Doppler radar. The CPR is defined with minimum radar sensitivity of -35dBz (6dB better than current space-borne cloud radar, i.e. CloudSat, NASA), radiometric accuracy of 2.7 dB, and Doppler velocity measurement accuracy of less than 1.3 m/s. These specifications require highly accurate pointing technique in orbit and high power source with large antenna dish. JAXA and National Institute of Information and Communications Technology (NICT) have been jointly developed this CPR to meet these strict requirements so far and then achieved the development such as new CFRP flex-core structure, long life extended interaction klystron, low loss quasi optical feed technique, and so on. Through these development successes, CPR development phase has been progressed to critical design phase. In addition, new ground calibration technique is also being progressed for launch of EarthCARE/CPR. The unique feature of EarthCARE CPR is vertical Doppler velocity measurement capability. Vertical Doppler velocity measurement is very attractive function from the science point of view, because vertical motions of cloud particles are related with cloud microphysics and dynamics. However, from engineering point of view, Doppler measurement from satellite is quite challenging Technology. In order to maintain and ensure the CPR performance, several types of calibration data will be obtained by CPR. Overall performance of CPR is checked by Active Radar Calibrator (ARC) equipped on the ground (CPR in External Calibration mode). ARC is used to check the CPR transmitter performance (ARC in receiver mode) and receiver performance (ARC in transmitter mode) as well as overall performance (ARC in transponder mode with delay to avoid the contamination with ground echo). In Japan, the instrument industrial Critical Design Review of the CPR was completed in 2013 and it was also complemented by an Interface and Mission aspects CPR CDR, involving ESA and the EarthCARE Prime, that was completed successfully in 2015. The CPR Proto-Flight Model is currently being tested with almost completion of Proto-Flight Model integration. After handed-over to ESA planned for the beginning of 2017, the CPR will be installed onto the EarthCARE satellite with the other instruments. After that the CPR will be tested, transported to Guiana Space Center in Kourou, French Guiana and launched by a Soyuz launcher in 2018. This presentation will show the summary of the latest CPR design and CPR PFM testing status.
Investigating mixed phase clouds using a synergy of ground based remote sensing measurements
NASA Astrophysics Data System (ADS)
Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich
2017-04-01
Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be obtained from a Doppler wind lidar. Furthermore, the Cloudnet scheme (www.cloud-net.org), that combines radar, lidar and microwave radiometer observations with a forecast model to provide a best estimate of cloud properties, is used for identifying mixed phase clouds. The continuous measurements carried out at AWIPEV make it possible to characterize the macro- and micro- physical properties of mixed-phase clouds on a long-term, statistical basis. The Arctic observations are compared to a 5-year observational data set from Jülich Observatory for Cloud Evolution (JOYCE) in Western Germany. The occurrence of different types of clouds (with focus on mixed-phase and super-cooled clouds), the distribution of ice and liquid within the clouds, the turbulent environment as well as the temperatures where the different phases are occurring are investigated.
NASA Astrophysics Data System (ADS)
Arunachalam, M. S.; Puli, Anil; Anuradha, B.
2016-07-01
In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth
NASA Astrophysics Data System (ADS)
Hoblitt, R. P.; Schneider, D. J.
2009-12-01
The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector centered on the volcano while NEXRAD scanned a full 360 degrees. The sector strategy scanned the volcano more frequently than the 360-degree strategy. Consequently, the USGS system detected event onset within less than a minute, while the NEXRAD required about 4 minutes. The observed column heights were as high as 20 km above sea level and compared favorably to those from NEXRAD. NEXRAD tracked ash clouds to greater distances than the USGS system. This experience shows that Doppler radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.
New Cloud Science from the New ARM Cloud Radar Systems (Invited)
NASA Astrophysics Data System (ADS)
Wiscombe, W. J.
2010-12-01
The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.
Solid-State Cloud Radar System (CRS) Upgrade and Deployment
NASA Technical Reports Server (NTRS)
McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay
2015-01-01
The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart
2016-12-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).
Giangrande, Scott E.; Toto, Tami; Bansemer, Aaron; ...
2016-05-19
Our study presents aircraft spiral ascent and descent observations intercepting a transition to riming processes during widespread stratiform precipitation. The sequence is documented using collocated scanning and profiling radar, including longer-wavelength dual polarization measurements and shorter-wavelength Doppler spectra. Riming regions are supported using aircraft measurements recording elevated liquid water concentrations, spherical particle shapes, and saturation with respect to water. Profiling cloud radar observations indicate riming regions during the event as having increasing particle fall speeds, rapid time-height changes, and bimodalities in Doppler spectra. These particular riming signatures are coupled to scanning dual polarization radar observations of higher differential reflectivity (ZDR)more » aloft. Moreover, reduced melting layer enhancements and delayed radar bright-band signatures in the column are also observed during riming periods, most notably with the profiling radar observations. The bimodal cloud radar Doppler spectra captured near riming zones indicate two time-height spectral ice peaks, one rimed particle peak, and one peak associated with pristine ice needle generation and/or growth between -4°C and -7°C also sampled by aircraft probes. We observe this pristine needle population near the rimed particle region which gives a partial explanation for the enhanced ZDR. The riming signatures aloft and radar measurements within the melting level are weakly lag correlated (r~0.6) with smaller median drop sizes at the surface, as compared with later times when aggregation of larger particle sizes was believed dominant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Toto, Tami; Bansemer, Aaron
Our study presents aircraft spiral ascent and descent observations intercepting a transition to riming processes during widespread stratiform precipitation. The sequence is documented using collocated scanning and profiling radar, including longer-wavelength dual polarization measurements and shorter-wavelength Doppler spectra. Riming regions are supported using aircraft measurements recording elevated liquid water concentrations, spherical particle shapes, and saturation with respect to water. Profiling cloud radar observations indicate riming regions during the event as having increasing particle fall speeds, rapid time-height changes, and bimodalities in Doppler spectra. These particular riming signatures are coupled to scanning dual polarization radar observations of higher differential reflectivity (ZDR)more » aloft. Moreover, reduced melting layer enhancements and delayed radar bright-band signatures in the column are also observed during riming periods, most notably with the profiling radar observations. The bimodal cloud radar Doppler spectra captured near riming zones indicate two time-height spectral ice peaks, one rimed particle peak, and one peak associated with pristine ice needle generation and/or growth between -4°C and -7°C also sampled by aircraft probes. We observe this pristine needle population near the rimed particle region which gives a partial explanation for the enhanced ZDR. The riming signatures aloft and radar measurements within the melting level are weakly lag correlated (r~0.6) with smaller median drop sizes at the surface, as compared with later times when aggregation of larger particle sizes was believed dominant.« less
The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft
NASA Technical Reports Server (NTRS)
Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed
2003-01-01
The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.
Microbursts in JAWS depicted by Doppler radars, PAM, and aerial photographs
NASA Technical Reports Server (NTRS)
Fujita, T. T.; Wakimoto, R. M.
1983-01-01
Preliminary results obtained from the JAWS (Joint Airport Weather Studies) Project near Denver, Colorado in the spring and summer of 1982 using Doppler radar, PAM, and aerial photography are presented. The definitions of the microburst phenomenon are discussed, and statistics comparing NIMROD (Northern Illinois Meteorological Research On Downbursts) for the Midwest region are compared with JAWS for the High Plains region. Possible parent clouds of the microburst are considered, and an analysis of a macroburst/microburst event on July 14, 1982 is presented.
NASA Astrophysics Data System (ADS)
Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.
2017-12-01
An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed-phase clouds from the ground where low-level supercooled liquid layer are more easily observed and where additional environmental properties such as cloud condensation nuclei are quantified. This should help assist in choosing between several possible diagnostic ice nucleation schemes for ModelE stratiform cloud.
Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska
Schneider, David J.; Hoblitt, Richard P.
2013-01-01
The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.
NASA Technical Reports Server (NTRS)
Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee
2013-01-01
This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Smith, R. E.
1983-01-01
The Elton, Louisiana tornado on March 24, 1976 has been studied using GOES digital infrared data for the growth and collapse of the cloud top, the temperature-height relationship and air mass instability from rawinsonde data, gravity waves from Doppler sounder records, and radar summaries from storm activity during the three-hour time period immediately preceding the touchdown of the tornado. In this case, the overshooting turret collapsed 30 minutes before the tornado touchdown as the eastward moving cloud reached Elton, Louisiana. Results show that the gravity waves were excited by the enhanced convection of the storm penetrating through the tropopause in the 2.5 hour time period before the tornado touched down.
NASA Astrophysics Data System (ADS)
Hung, R. J.; Smith, R. E.
1983-05-01
The Elton, Louisiana tornado on March 24, 1976 has been studied using GOES digital infrared data for the growth and collapse of the cloud top, the temperature-height relationship and air mass instability from rawinsonde data, gravity waves from Doppler sounder records, and radar summaries from storm activity during the three-hour time period immediately preceding the touchdown of the tornado. In this case, the overshooting turret collapsed 30 minutes before the tornado touchdown as the eastward moving cloud reached Elton, Louisiana. Results show that the gravity waves were excited by the enhanced convection of the storm penetrating through the tropopause in the 2.5 hour time period before the tornado touched down.
NASA Astrophysics Data System (ADS)
Lee, H.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.
2017-12-01
Cloud radar Doppler spectra provide rich information for evaluating the fidelity of particle size distributions from cloud models. The intrinsic simplifications of bulk microphysics schemes generally preclude the generation of plausible Doppler spectra, unlike bin microphysics schemes, which develop particle size distributions more organically at substantial computational expense. However, bin microphysics schemes face the difficulty of numerical diffusion leading to overly rapid large drop formation, particularly while solving the stochastic collection equation (SCE). Because such numerical diffusion can cause an even greater overestimation of radar reflectivity, an accurate method for solving the SCE is essential for bin microphysics schemes to accurately simulate Doppler spectra. While several methods have been proposed to solve the SCE, here we examine those of Berry and Reinhardt (1974, BR74), Jacobson et al. (1994, J94), and Bott (2000, B00). Using a simple box model to simulate drop size distribution evolution during precipitation formation with a realistic kernel, it is shown that each method yields a converged solution as the resolution of the drop size grid increases. However, the BR74 and B00 methods yield nearly identical size distributions in time, whereas the J94 method produces consistently larger drops throughout the simulation. In contrast to an earlier study, the performance of the B00 method is found to be satisfactory; it converges at relatively low resolution and long time steps, and its computational efficiency is the best among the three methods considered here. Finally, a series of idealized stratocumulus large-eddy simulations are performed using the J94 and B00 methods. The reflectivity size distributions and Doppler spectra obtained from the different SCE solution methods are presented and compared with observations.
A satellite-based radar wind sensor
NASA Technical Reports Server (NTRS)
Xin, Weizhuang
1991-01-01
The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.
Research on electrical properties of severe thunderstorms in the Great Plains
NASA Technical Reports Server (NTRS)
Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Arnold, R. T.
1981-01-01
Techniques, equipment, and results of studies (1978-1980) to determine the relationships between electrical phenomena and the dynamics and precipitation of storms are reported. Doppler and conventional radar, video tapes and movies, and VHF recording devices were used to monitor an area 200 x 100 km, aligned SW to NE. The 23 cm radar and a Doppler radar were employed to acquire radar echoes from lightning. Observations of a squall line, a severe storm, and radar echoes from electrical discharges are described. Positively charged cloud-to-ground lightning was observed during the severe and final stages of severe storms; average lightning rates and total flashes for normal and severe storms are provided. Comparisons of lightning echoes and electric field changes indicated that abrupt increases in radar reflectivity were correlated with return strokes and K-type field changes.
Strauss, Lukas; Serafin, Stefano; Haimov, Samuel; Grubišić, Vanda
2015-10-01
Atmospheric turbulence generated in flow over mountainous terrain is studied using airborne in situ and cloud radar measurements over the Medicine Bow Mountains in southeast Wyoming, USA. During the NASA Orographic Clouds Experiment (NASA06) in 2006, two complex mountain flow cases were documented by the University of Wyoming King Air research aircraft carrying the Wyoming Cloud Radar. The structure of turbulence and its intensity across the mountain range are described using the variance of vertical velocity σw2 and the cube root of the energy dissipation rate ɛ 1/3 (EDR). For a quantitative analysis of turbulence from the cloud radar, the uncertainties in the Doppler wind retrieval have to be taken into account, such as the variance of hydrometeor fall speed and the contamination of vertical Doppler velocity by the horizontal wind. A thorough analysis of the uncertainties shows that 25% accuracy or better can be achieved in regions of moderate to severe turbulence in the lee of the mountains, while only qualitative estimates of turbulence intensity can be obtained outside the most turbulent regions. Two NASA06 events exhibiting large-amplitude mountain waves, mid-tropospheric wave breaking, and rotor circulations are examined. Moderate turbulence is found in a wave-breaking region with σw2 and EDR reaching 4.8 m 2 s -2 and 0.25 m 2/3 s -1 , respectively. Severe turbulence is measured within the rotor circulations with σw2 and EDR respectively in the ranges of 7.8-16.4 m 2 s -2 and 0.50-0.77 m 2/3 s -1 . A unique result of this study is the quantitative estimation of the intensity of turbulence and its spatial distribution in the interior of atmospheric rotors, provided by the radar-derived turbulence fields.
Use of a W-band polarimeter to measure microphysical characteristics of clouds
NASA Astrophysics Data System (ADS)
Galloway, John Charles
1997-08-01
This dissertation presents W-Band measurements of the copolar correlation co-efficient and Doppler spectrum taken from the University of Wyoming King Air research airplane. These measurements demonstrate the utility of making W-Band polarimetric and Doppler spectrum measurements from an airborne platform in investigations of cloud microphysical properties. Comparison of copolar correlation coefficient measurements with aircraft in situ probe measurements verifies that polarimetric measurements indicate phase transitions, and hydrometeor alignment in ice clouds. Melting layers in clouds were measured by the W-Band system on board the King Air during 1992 and 1994. Both measurements established the use of the linear depolarization ratio, LDR, to locate the melting layer using an airborne W-Band system. The measurement during 1994 allowed direct comparison of the magnitude of the copolar correlation coefficient with the values of LDR. The relation between the measurements corresponds with a predicted relationship between the two parameters for observation of particles exhibiting isotropy in the plane of polarization. Measurements of needle crystals at horizontal and vertical incidence provided further evidence that the copolar correlation coefficient values agreed with the expected response from hydrometeors possessing a preferred alignment for the side looking case, and hydrometeors without a preferred alignment for the vertical incidence case. Observation of significant specific differential phase at vertical incidence, the first reported at W-Band, corresponded to a significant increase in differential reflectivity overhead, which was most likely produced by hydrometeor alignment driven by cloud electrification. Comparison of the drop size distributions estimated using the Doppler spectra with those measured by the wingtip probes on the King Air reveals that the radar system is better suited under some liquid cloud conditions to provide microphysical measurements of the cloud or precipitation than the probes. The radiometric calibration of the radar system determines the accuracy of the drop size distribution estimate. The results presented here indicate that the procedure used to absolutely calibrate the W-Band radar system successfully characterized the reflectivity measurements to the extent required to obtain close correspondence between the radar and probe measurements of the drop size distribution.
SGP and TWP (Manus) Ice Cloud Vertical Velocities
Kalesse, Heike
2013-06-27
Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald Heymsfield
Data was taken with the NASA ER-2 aircraft with the Cloud Radar System and other instruments in conjunction with the DOE ARM CLASIC field campaign. The flights were near the SGP site in north Central Oklahoma and targeted small developing convection. The CRS is a 94 GHz nadir pointing Doppler radar. Also on board the ER-2 was the Cloud Physics Lidar (CPL). Seven science flights were conducted but the weather conditions did not cooperate in that there was neither developing convection, or there was heavy rain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, Kirk W.; Oue, Mariko; Kollias, Pavlos
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
North, Kirk W.; Oue, Mariko; Kollias, Pavlos; ...
2017-08-04
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
NASA Technical Reports Server (NTRS)
Nicholson, Shaun R.
1994-01-01
Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.
logo and clouds NSSL is one of the National Oceanic and Atmospheric Administration's internationally of tornado Tornadoes picture of vintage doppler radar Instruments picture of clouds Sky Scenes -known Environmental Research Laboratories, leading the way in investigations of all aspects of severe
Radar observations of individual rain drops in the free atmosphere.
Schmidt, Jerome M; Flatau, Piotr J; Harasti, Paul R; Yates, Robert D; Littleton, Ricky; Pritchard, Michael S; Fischer, Jody M; Fischer, Erin J; Kohri, William J; Vetter, Jerome R; Richman, Scott; Baranowski, Dariusz B; Anderson, Mark J; Fletcher, Ed; Lando, David W
2012-06-12
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar's unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.
Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita
2003-11-01
A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.
Radar observations of individual rain drops in the free atmosphere
Schmidt, Jerome M.; Flatau, Piotr J.; Harasti, Paul R.; Yates, Robert D.; Littleton, Ricky; Pritchard, Michael S.; Fischer, Jody M.; Fischer, Erin J.; Kohri, William J.; Vetter, Jerome R.; Richman, Scott; Baranowski, Dariusz B.; Anderson, Mark J.; Fletcher, Ed; Lando, David W.
2012-01-01
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar’s unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time. PMID:22652569
Observations of Overshooting Convective Tops and Dynamical Implications
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Halverson, Jeffrey; Fitzgerald, Mike; Dominquez, Rose; Starr, David OC. (Technical Monitor)
2002-01-01
Convective tops overshooting the tropopause have been suggested in the literature to play an important role in modifying the tropical tropopause. The structure of thunderstorm tops overshooting the tropopause have been difficult to measure due to the intensity of the convection and aircraft safety. This paper presents remote observations of overshooting convective tops with the high-altitude ER-2 aircraft during several of the Tropical Rain Measuring Mission (TRMM) and (Convection and Moisture Experiment) CAMEX campaigns. The ER-2 was instrumented with the down-looking ER-2 Doppler Radar (EDOP), a new dropsonde system (ER-2 High Altitude Dropsonde, EHAD), and an IR radiometer (Modis Airborne Simulator, MAS). Measurements were collected in Florida and Amazonia (Brazil). In this study, we utilize the radar cloud top information and cloud top infrared temperatures to document the amount of overshoot and temperature difference relative to the soundings provided by dropsondes and conventional upsondes. The radar measurements provide the details of the updraft structure near cloud top, and it is found that tops of stronger convective cells can overshoot by 1-2 km and with temperatures 5C colder than the tropopause minimum temperature. The negatively buoyant cloud tops are also evidenced in the Doppler measurements by strong subsiding flow along the sides of the convective tops . These findings support some of the conceptual and modeling studies of deep convection penetrating the tropopause.
Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment
NASA Technical Reports Server (NTRS)
Carey, Lawrence; Blakeslee, Richard; Koshak, William; Bain, Lamont; Rogers, Ryan; Kozlowski, Danielle; Sherrer, Adam; Saari, Matt; Bigelbach, Brandon; Scott, Mariana;
2013-01-01
The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity soundings were obtained with the UAHuntsville mobile sounding unit and the Redstone Arsenal (QAG) morning sounding.
Site Scientist for the North Slope of Alaska Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verlinde, Johannes
2016-03-11
Under this grant our team contributed scientific support to the Department of Energy Atmospheric Radiation Program’s (DOE-ARM) Infrastructure team to maintain high quality research data at the DOE-ARM North Slope of Alaska with special emphasis on the radars. Under our guidance two major field campaigns focusing on mixed-phase Arctic clouds were conducted that greatly increased the community’s understanding of the many processes working together to control the evolution of single-layer cloud mixed-phase clouds. A series of modeling and observational studies revealed that the longevity of the radiatively important liquid phase is strongly dependent on how the ice phase develops inmore » mixed-phase clouds. A new ice microphysics parameterization was developed to capture better the natural evolution of ice particle growth in evolving environments. An ice particle scattering database was developed for all ARM radar frequencies. This database was used in a radar simulator (Doppler spectrum and polarimetric variables) to aid in the interpretation of the advanced ARM radars. At the conclusion of this project our team was poised to develop a complete radar simulator consistent with the new microphysical parameterization, taking advantage of parameterization’s advanced characterization of the ice shape and ice density.« less
Core Facility of the Juelich Observatory for Cloud Evolution (JOYCE - CF)
NASA Astrophysics Data System (ADS)
Beer, J.; Troemel, S.
2017-12-01
A multiple and holistic multi-sensor monitoring of clouds and precipitation processes is a challenging but promising task in the meteorological community. Instrument synergies offer detailed views in microphysical and dynamical developments of clouds. Since 2017 The the Juelich Observatory for Cloud Evolution (JOYCE) is transformed into a Core Facility (JOYCE - CF). JOYCE - CF offers multiple long-term remote sensing observations of the atmosphere, develops an easy access to all observations and invites scientists word wide to exploit the existing data base for their research but also to complement JOYCE-CF with additional long-term or campaign instrumentation. The major instrumentation contains a twin set of two polarimetric X-band radars, a microwave profiler, two cloud radars, an infrared spectrometer, a Doppler lidar and two ceilometers. JOYCE - CF offers easy and open access to database and high quality calibrated observations of all instruments. E.g. the two polarimetric X-band radars which are located in 50 km distance are calibrated using the self-consistency method, frequently repeated vertical pointing measurements as well as instrument synergy with co-located micro-rain radar and distrometer measurements. The presentation gives insights into calibration procedures, the standardized operation procedures and recent synergistic research exploiting our radars operating at three different frequencies.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1986-05-01
By using an HF radar which produces a steerable beam about 4° wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of mid-latitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1° from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds, each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
Using an HF radar which produces a steerable beam about 4 deg wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of midlatitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1 deg from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; Unruh, W.P.
1991-01-01
Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamosmore » National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.« less
NASA Astrophysics Data System (ADS)
Heymsfield, A.; Bansemer, A.; Tanelli, S.; Poellot, M.
2015-12-01
This study uses a data set from either overflying aircraft or ground-based radars operating at Ku and Ka bands, combined with in-situ microphysical measurements to develop radar reflectivity (Ze)-ice water content (IWC) and Ze-snowfall rate (S) relationships that are suited for retrieval of snowfall rate from the GPM radars. During GCPEX, the NASA DC-8 aircraft, carrying the JPL APR-2 KU and KA band radars overflew the UND Citation aircraft, making microphysical measurements in the ice clouds below. On two days, 19 and 28 January 2011, there are a total of almost 7000 1-sec colocations of the aircraft, where a collocation was defined as having a combination of a spatial separation of less than 3 km and a time separation of less than 10 minutes. During the NASA GPM Mid-latitude Continental Convective Cloud Experiment (MC3E), the Citation aircraft made in-situ observations over Oklahoma in 2011. We evaluated the data from two types of collocations. First, there were two Citation spirals on 27 April 2011, over the NPOL radar. At the same time, the UHF-band KUZR radar was collecting data in a vertically-pointing mode. Also, the Ka band KAZR Doppler radar was operating in a zenith orientation. Reflectivities and Doppler velocities, without and with appreciable Mie-scattering effects of the hydrometers (for KUZR and KAZR, respectively), are thus available during the spirals. Also during MC3E, six deep convective clouds with a total of more than 5000 5-sec samples and a range of temperatures from -40 to 0C were sampled by the Citation at the same time that NEXRAD reflectivities were measured at about the same position. These data allows us to evaluate various backscatter models and to develop multi-wavelength Z-IWC and Z-S relationships. We will present the results of this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Min; Kollias, Pavlos; Feng, Zhe
The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification ismore » equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Fang, Ming; Ghate, Virendra
2016-02-01
Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using themore » radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in the parameterizations to give hourly estimates of the entrainment rates using the radar derived vertical velocity variance and dissipation rates. Hourly entrainment rates were estimated from a convective velocity w* parameterization depends on the local surface buoyancy fluxes and the calculated radiative flux divergence, parameterization using a bulk coefficient obtained from the mean inversion height budget. The hourly rates from the cloud turbulence estimates and the w* parameterization, which is independent of the radar observations, are compared with the hourly we values from the budget. All show rough agreement with each other and capture the entrainment variability associated with substantial changes in the surface flux and radiative divergence at cloud top. Major uncertainties in the hourly estimates from the height budget and w* are discussed. The results indicate a strong potential for making entrainment rate estimates directly from the radar vertical velocity variance and the EDR measurements—a technique that has distinct advantages over other methods for estimating entrainment rates. Calculations based on the EDR alone can provide high temporal resolution (for averaging intervals as small as 10 minutes) of the entrainment processes and do not require an estimate of the boundary layer depth, which can be difficult to define when the boundary layer is decoupled.« less
Kinematic and Microphysical Control of Lightning Flash Rate over Northern Alabama
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Bain, Anthony L.; Matthee, Retha; Schultz, Christopher J.; Schultz, Elise V.; Deierling, Wiebke; Petersen, Walter A.
2015-01-01
The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep convection and the production of nitrogen oxides (NO (sub x)) via lightning (LNO (sub x)). A critical step in estimating LNO (sub x) production in a cloud-resolving model (CRM) without explicit lightning is to estimate the flash rate from available model parameters that are statistically and physically correlated. As such, the objective of this study is to develop, improve and evaluate lightning flash rate parameterizations in a variety of meteorological environments and storm types using radar and lightning mapping array (LMA) observations taken over Northern Alabama from 2005-2012, including during DC3. UAH's Advanced Radar for Meteorological and Operational Research (ARMOR) and the Weather Surveillance Radar - 1988 Doppler (WSR 88D) located at Hytop (KHTX) comprises the dual-Doppler and polarimetric radar network, which has been in operation since 2004. The northern Alabama LMA (NA LMA) in conjunction with Vaisala's National Lightning Detection Network (NLDN) allow for a detailed depiction of total lightning during this period. This study will integrate ARMOR-KHTX dual Doppler/polarimetric radar and NA LMA lightning observations from past and ongoing studies, including the more recent DC3 results, over northern Alabama to form a large data set of 15-20 case days and over 20 individual storms, including both ordinary multicell and supercell convection. Several flash rate parameterizations will be developed and tested, including those based on 1) graupel/small hail volume; 2) graupel/small hail mass, and 3) convective updraft volume. Sensitivity of the flash rate parameterizations to storm intensity, storm morphology and environmental conditions will be explored.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo
2012-01-01
Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.
Scanning ARM Cloud Radar Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widener, K; Bharadwaj, N; Johnson, K
2012-06-18
The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and Northmore » Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.« less
NASA Astrophysics Data System (ADS)
Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.
2015-12-01
Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.
Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria
2016-06-01
The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less
Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications
NASA Astrophysics Data System (ADS)
Vivekanandan, Jothiram; Loew, Eric
2018-01-01
NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.
Detailed flow, hydrometeor and lightning characteristics of an isolated thunderstorm during COPS
NASA Astrophysics Data System (ADS)
Schmidt, K.; Hagen, M.; Höller, H.; Richard, E.; Volkert, H.
2012-04-01
The three-hour life-cycle of the isolated thunderstorm on 15 July 2007 during the Convective and Orographically-induced Precipitation Study (COPS) is documented in detail, with a special emphasis on the rapid development and mature phases. Remote sensing techniques as 5-min rapid scans from geostationary satellites, combined velocity retrievals from up to four Doppler-radars, the polarimetric determination of hydrometeors and spatio-temporal occurrences of lightning strokes are employed to arrive at a synoptic quantification of the physical parameters of this, during the COPS period, rare event. Inner cloud flow fields are available from radar multiple Doppler analyses, gridded on a 500 m-mesh, at four consecutive times separated by 15 min-intervals (14:35, 14:50, 15:05, 15:20; all times are in UTC). They contain horizontal winds of around 15 m s-1 and updrafts exceeding 5 m s-1, the latter collocated with lightning strokes. Reflectivity and polarimetric data indicate the existence of hail at the 2 km level around 14:40. Furthermore, polarimetric and Doppler radar variables indicate intense hydrometeor variability and cloud dynamics corresponding to an enhanced variance of the retrieved 3-D wind fields. Profiles of flow and hydrometeor statistics over the entire cloud volume provide reference data for high-resolution, episode-type numerical weather prediction runs in research mode. The study embarks from two multi-channel time-lapse movie-loops from geostationary satellite imagery (as Supplement), which provide an intuitive distinction of six phases making up the entire life-cycle of the thunderstorm. It concludes with a triple image-loop, juxtaposing a close-up of the cloud motion as seen by Meteosat, simulated brightness temperature (as a proxy for clouds seen by the infrared satellite channel), and a perspective view on the model generated system of cloud cells. By employing the motion-geared human visual system, such multiple image loops provide a high, and as yet hardly utilised potential for a well-grounded specification of further sensitivity experiments in the modelling community.
Weather Radars and Lidar for Observing the Atmosphere
NASA Astrophysics Data System (ADS)
(Vivek) Vivekanandan, J.
2010-05-01
The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.
NASA Astrophysics Data System (ADS)
Montopoli, Mario; Vulpiani, Gianfranco; Riccci, Matteo; Corradini, Stefano; Merucci, Luca; Marzano, Frank S.
2015-04-01
Ground based weather radar observations of volcanic ash clouds are gaining momentum after recent works which demonstrated their potential use either as stand alone tool or in combination with satellite retrievals. From an operational standpoint, radar data have been mainly exploited to derive the height of ash plume and its temporal-spatial development, taking into account the radar limitation of detecting coarse ash particles (from approximately 20 microns to 10 millimeters and above in terms of particle's radius). More sophisticated radar retrievals can include airborne ash concentration, ash fall rate and out-flux rate. Marzano et al. developed several volcanic ash radar retrieval (VARR) schemes, even though their practical use is still subject to a robust validation activity. The latter is made particularly difficult due to the lack of field campaigns with multiple observations and the scarce repetition of volcanic events. The radar variable, often used to infer the physical features of actual ash clouds, is the radar reflectivity named ZHH. It is related to ash particle size distribution and it shows a nice power law relationship with ash concentration. This makes ZHH largely used in radar-volcanology studies. However, weather radars are often able to detect Doppler frequency shifts and, more and more, they have a polarization-diversity capability. The former means that wind speed spectrum of the ash cloud is potentially inferable, whereas the latter implies that variables other than ZHH are available. Theoretically, these additional radar variables are linked to the degree of eccentricity of ash particles, their orientation and density as well as the presence of strong turbulence effects. Thus, the opportunity to refine the ash radar estimates so far developed can benefit from the thorough analysis of radar Doppler and polarization diversity. In this work we show a detailed analysis of Doppler shifts and polarization variables measured by the X band radar working at Catania airport (Sicily, Italy) and observing the Mt. Etna fountains about 33 km far away. Collocated infrared satellite observations will be shown as well to complete the investigation. The case study on November 23rd, 2013 is taken as reference case due to its strength and its well-defined narrow plume, which is transported by the prevailing wind hundred kilometers away. For this case study, the X-band radar in Catania tracked the ash-signal from 9:40 UTC to 10:30 UTC every 10 min providing, at each acquisition step, the following variables, abbreviated as ZDR, RHV, VEL, SWD KDP and ZHH. The latter stand for differential reflectivity, correlation coefficients, radial velocity, spectral width, specific differential phase shift and reflectivity, respectively. The outcomes of this analysis reveal that the interpretation of polarization diversity and Doppler shifts might introduce new insights in the estimates of the fraction of ash mass loading due to larger particles and its rate of mass flux. This would be an important achievement for the APhoRISM Project in witch this work is framed. APHORISM is a 3 years FP7-EU project started on December 2013 that aims to develop innovative products to support the management and mitigation of the volcanic and the seismic crisis.
Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro
2016-04-01
Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.
Techniques and resources for storm-scale numerical weather prediction
NASA Technical Reports Server (NTRS)
Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert
1993-01-01
The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.
Radar sensitivity and antenna scan pattern study for a satellite-based Radar Wind Sounder (RAWS)
NASA Technical Reports Server (NTRS)
Stuart, Michael A.
1992-01-01
Modeling global atmospheric circulations and forecasting the weather would improve greatly if worldwide information on winds aloft were available. Recognition of this led to the inclusion of the LAser Wind Sounder (LAWS) system to measure Doppler shifts from aerosols in the planned for Earth Observation System (EOS). However, gaps will exist in LAWS coverage where heavy clouds are present. The RAdar Wind Sensor (RAWS) is an instrument that could fill these gaps by measuring Doppler shifts from clouds and rain. Previous studies conducted at the University of Kansas show RAWS as a feasible instrument. This thesis pertains to the signal-to-noise ratio (SNR) sensitivity, transmit waveform, and limitations to the antenna scan pattern of the RAWS system. A dop-size distribution model is selected and applied to the radar range equation for the sensitivity analysis. Six frequencies are used in computing the SNR for several cloud types to determine the optimal transmit frequency. the results show the use of two frequencies, one higher (94 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) for better penetration in rain, provide ample SNR. The waveform design supports covariance estimation processing. This estimator eliminates the Doppler ambiguities compounded by the selection of such high transmit frequencies, while providing an estimate of the mean frequency. the unambiguous range and velocity computation shows them to be within acceptable limits. The design goal for the RAWS system is to limit the wind-speed error to less than 1 ms(exp -1). Due to linear dependence between vectors for a three-vector scan pattern, a reasonable wind-speed error is unattainable. Only the two-vector scan pattern falls within the wind-error limits for azimuth angles between 16 deg to 70 deg. However, this scan only allows two components of the wind to be determined. As a result, a technique is then shown, based on the Z-R-V relationships, that permit the vertical component (i.e., rain) to be computed. Thus the horizontal wind components may be obtained form the covariance estimator and the vertical component from the reflectivity factor. Finally, a new candidate system is introduced which summarizes the parameters taken from previous RAWS studies, or those modified in this thesis.
NASA Astrophysics Data System (ADS)
Sheng, C.; Gao, S.; Xue, M.
2006-11-01
With the ARPS (Advanced Regional Prediction System) Data Analysis System (ADAS) and its complex cloud analysis scheme, the reflectivity data from a Chinese CINRAD-SA Doppler radar are used to analyze 3D cloud and hydrometeor fields and in-cloud temperature and moisture. Forecast experiments starting from such initial conditions are performed for a northern China heavy rainfall event to examine the impact of the reflectivity data and other conventional observations on short-range precipitation forecast. The full 3D cloud analysis mitigates the commonly known spin-up problem with precipitation forecast, resulting a significant improvement in precipitation forecast in the first 4 to 5 hours. In such a case, the position, timing and amount of precipitation are all accurately predicted. When the cloud analysis is used without in-cloud temperature adjustment, only the forecast of light precipitation within the first hour is improved. Additional analysis of surface and upper-air observations on the native ARPS grid, using the 1 degree real-time NCEP AVN analysis as the background, helps improve the location and intensity of rainfall forecasting slightly. Hourly accumulated rainfall estimated from radar reflectivity data is found to be less accurate than the model predicted precipitation when full cloud analysis is used.
A simple biota removal algorithm for 35 GHz cloud radar measurements
NASA Astrophysics Data System (ADS)
Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas
2018-03-01
Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is promisingly simple in realization but powerful in performance due to the flexibility in constraining, identifying and filtering out the biota and screening out the true cloud content, especially the CBL clouds. Therefore, the TEST algorithm is superior for screening out the low-level clouds that are strongly linked to the rainmaking mechanism associated with the Indian Summer Monsoon region's CVS.
NASA Astrophysics Data System (ADS)
Kacerek, Richard
2018-02-01
Public reports about a bright flash of light, sonic booms and some shaking of the ground could be associated with a giant dust cloud registered on a Doppler radar image, indicating an explosion of a bolide about 20 miles off the coast followed by an impact in the ocean.
Lightning forecasting studies using LDAR, LLP, field mill, surface mesonet, and Doppler radar data
NASA Technical Reports Server (NTRS)
Forbes, Gregory S.; Hoffert, Steven G.
1995-01-01
The ultimate goal of this research is to develop rules, algorithms, display software, and training materials that can be used by the operational forecasters who issue weather advisories for daily ground operations and launches by NASA and the United States Air Force to improve real-time forecasts of lightning. Doppler radar, Lightning Detection and Ranging (LDAR), Lightning Location and Protection (LLP), field mill (Launch Pad Lightning Warning System -- LPLWS), wind tower (surface mesonet) and additional data sets have been utilized in 10 case studies of thunderstorms in the vicinity of KSC during the summers of 1994 and 1995. These case studies reveal many intriguing aspects of cloud-to-ground, cloud-to-cloud, in-cloud, and cloud-to-air lightning discharges in relation to radar thunderstorm structure and evolution. They also enable the formulation of some preliminary working rules of potential use in the forecasting of initial and final ground strike threat. In addition, LDAR and LLP data sets from 1993 have been used to quantify the lightning threat relative to the center and edges of LDAR discharge patterns. Software has been written to overlay and display the various data sets as color imagery. However, human intervention is required to configure the data sets for proper intercomparison. Future efforts will involve additional software development to automate the data set intercomparisons, to display multiple overlay combinations in a windows format, and to allow for animation of the imagery. The software package will then be used as a tool to examine more fully the current cases and to explore additional cases in a timely manner. This will enable the formulation of more general and reliable forecasting guidelines and rules.
New Cloud and Precipitation Research Avenues Enabled by low-cost Phased-array Radar Technology
NASA Astrophysics Data System (ADS)
Kollias, P.; Oue, M.; Fridlind, A. M.; Matsui, T.; McLaughlin, D. J.
2017-12-01
For over half a century, radars operating in a wide range of frequencies have been the primary source of observational insights of clouds and precipitation microphysics and dynamics and contributed to numerous significant advancements in the field of cloud and precipitation physics. The development of multi-wavelength and polarization diversity techniques has further strengthened the quality of microphysical and dynamical retrievals from radars and has assisted in overcoming some of the limitations imposed by the physics of scattering. Atmospheric radars have historically employed a mechanically-scanning dish antenna and their ability to point to, survey, and revisit specific points or regions in the atmosphere is limited by mechanical inertia. Electronically scanned, or phased-array, radars capable of high-speed, inertialess beam steering, have been available for several decades, but the cost of this technology has limited its use to military applications. During the last 10 years, lower power and lower-cost versions of electronically scanning radars have been developed, and this presents an attractive and affordable new tool for the atmospheric sciences. The operational and research communities are currently exploring phased array advantages in signal processing (i.e. beam multiplexing, improved clutter rejection, cross beam wind estimation, adaptive sensing) and science applications (i.e. tornadic storm morphology studies). Here, we will present some areas of atmospheric research where inertia-less radars with ability to provide rapid volume imaging offers the potential to advance cloud and precipitation research. We will discuss the added value of single phased-array radars as well as networks of these radars for several problems including: multi-Doppler wind retrieval techniques, cloud lifetime studies and aerosol-convection interactions. The performance of current (dish) and future (e-scan) radar systems for these atmospheric studies will be evaluated using numerical model output and a sophisticated radar simulator package.
A Cloud and Precipitation Radar System Concept for the ACE Mission
NASA Technical Reports Server (NTRS)
Durden, S. L.; Tanelli, S.; Epp, L.; Jamnejad, V.; Perez, R.; Prata, A.; Samoska, L.; Long, E; Fang, H.; Esteban-Fernandez, D.;
2011-01-01
One of the instruments recommended for deployment on the Aerosol/Cloud/Ecosystems (ACE) mission is a new advanced cloud profiling radar. In this paper, we describe such a radar design, called ACERAD, which has 35- and 94-GHz channels, each having Doppler and dual-polarization capabilities. ACERAD will scan at Ka-band and will be nadir-looking at W-band. To get a swath of 25-30 km, considered the minimum useful for Ka-band, ACERAD needs to scan at least 2 degrees off nadir; this is at least 20 beamwidths, which is quite large for a typical parabolic reflector. This problem is being solved with a Dragonian design; a scaled prototype of the antenna is being fabricated and will be tested on an antenna range. ACERAD also uses a quasi-optical transmission line at W-band to connect the transmitter to the antenna and antenna to the receiver. A design for this has been completed and is being laboratory tested. This paper describes the current ACERAD design and status.
NASA Astrophysics Data System (ADS)
Pfitzenmaier, Lukas; Unal, Christine M. H.; Dufournet, Yann; Russchenberg, Herman W. J.
2018-06-01
The growth of ice crystals in presence of supercooled liquid droplets represents the most important process for precipitation formation in the mid-latitudes. However, such mixed-phase interaction processes remain relatively unknown, as capturing the complexity in cloud dynamics and microphysical variabilities turns to be a real observational challenge. Ground-based radar systems equipped with fully polarimetric and Doppler capabilities in high temporal and spatial resolutions such as the S-band transportable atmospheric radar (TARA) are best suited to observe mixed-phase growth processes. In this paper, measurements are taken with the TARA radar during the ACCEPT campaign (analysis of the composition of clouds with extended polarization techniques). Besides the common radar observables, the 3-D wind field is also retrieved due to TARA unique three beam configuration. The novelty of this paper is to combine all these observations with a particle evolution detection algorithm based on a new fall streak retrieval technique in order to study ice particle growth within complex precipitating mixed-phased cloud systems. In the presented cases, three different growth processes of ice crystals, plate-like crystals, and needles are detected and related to the presence of supercooled liquid water. Moreover, TARA observed signatures are assessed with co-located measurements obtained from a cloud radar and radiosondes. This paper shows that it is possible to observe ice particle growth processes within complex systems taking advantage of adequate technology and state of the art retrieval algorithms. A significant improvement is made towards a conclusive interpretation of ice particle growth processes and their contribution to rain production using fall streak rearranged radar data.
Diagnosing turbulence for research aircraft safety using open source toolkits
NASA Astrophysics Data System (ADS)
Lang, T. J.; Guy, N.
Open source software toolkits have been developed and applied to diagnose in-cloud turbulence in the vicinity of Earth science research aircraft, via analysis of ground-based Doppler radar data. Based on multiple retrospective analyses, these toolkits show promise for detecting significant turbulence well prior to cloud penetrations by research aircraft. A pilot study demonstrated the ability to provide mission scientists turbulence estimates in near real time during an actual field campaign, and thus these toolkits are recommended for usage in future cloud-penetrating aircraft field campaigns.
A technique for determining cloud free versus cloud contaminated pixels in satellite imagery
NASA Technical Reports Server (NTRS)
Wohlman, Richard A.
1994-01-01
Weather forecasting has been called the second oldest profession. To do so accurately and with some consistency requires an ability to understand the processes which create the clouds, drive the winds, and produce the ever changing atmospheric conditions. Measurement of basic parameters such as temperature, water vapor content, pressure, windspeed and wind direction throughout the three dimensional atmosphere form the foundation upon which a modern forecast is created. Doppler radar, and space borne remote sensing have provided forecasters the new tools with which to ply their trade.
Coherent Doppler Laser Radar: Technology Development and Applications
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Arnold, James E. (Technical Monitor)
2000-01-01
NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through headwind minimization. In addition to the airborne and space platforms, a coherent Doppler laser radar system in an unmanned aerial vehicle (UAV) could provide battlefield weather and target identification.
The Next Generation Airborne Polarimetric Doppler Radar
NASA Astrophysics Data System (ADS)
Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.
2013-04-01
NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130 aircraft in its fleet for airborne atmospheric measurements, including dropsonde, and in situ sampling and remote sensing of clouds, chemistry and aerosols. Therefore, the addition of a precipitation radar to the NSF/NCAR C-130 platform will produce transformational change in its mission. This new design can be cloned for C-130s operated by a number of agencies, including NOAA and the Air Force hurricane reconnaissance fleet. This paper presents a possible configuration of a novel, airborne phased array radar (APAR) to be installed on the NSF/NCAR C-130 aircraft with improved spatial resolution and polarimetric capability to meet or exceed that of ELDORA. The preliminary design, an update of the APAR project, and a future plan will be presented. References: Bell, M. M. , M. T. Montgomery, 2008: Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Monthly Weather Review, Vol. 136, Issue 6, pp. 2023-2046. Hildebrand, P. H., W.-C. Lee, C. A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, and A. LeCornec, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Metoro. Soc., 77, 213-232 Howard B. Bluestein, Roger M. Wakimoto, 2003: Mobile Radar Observations of Severe Convective Storms re Convective Storms. Meteorological Monographs, Vol. 30, Issue 52, pp. 105-105. Montgomery, M. T., M. M. Bell, S. D. Aberson, M. L. Black, 2006: Hurricane Isabel (2003): New Insights into the Physics of Intense Storms. Part I: Mean Vortex Structure and Maximum Intensity Estimates. Bull. of the American Meteorl. Soc., Vol. 87, Issue 10, pp. 1335-1347.
NASA Astrophysics Data System (ADS)
DeHart, J.; Houze, R.
2016-12-01
Airborne radar data and numerical simulations are employed to investigate the structure of Hurricane Karl (2010). Karl peaked in intensity as a major hurricane in the Gulf of Mexico before making landfall on the mountainous coast of Veracruz, Mexico. Multiple aircraft extensively sampled Karl during the NASA GRIP campaign, including NASA's DC-8 aircraft instrumented with the Advanced Precipitation Radar 2 (APR-2), which is a high-resolution, dual-frequency Doppler radar. Data from APR-2 provide a unique opportunity to characterize the precipitation structure of Karl as it underwent orographic modification. As Karl made landfall on 17 September 2010, the vertical structure of the precipitation echo varied spatially around the Mexican terrain. The precipitation variation was linked to several factors: landfall, orientation of flow relative to the topographic features, and differing characteristics inherent to the eyewall and rainbands. Despite the differences in the reflectivity intensity across the storm, we show that low-level reflectivity enhancement occurred only where upslope flow was favorable. The radar data indicate that the processes initially contributing to the reflectivity enhancement were warm-cloud processes, either through collection of orographically-generated cloud water or shallow convection. But as Karl weakened, the low-level enhancement processes were overshadowed by deep convection that developed along the terrain. Analysis of the radar data is complemented by a series of numerical simulations, which reasonably reproduce the track, intensity and structure of Karl. The simulated thermodynamic and kinematic patterns provide a holistic view of Karl's evolution during landfall. We use terrain modification experiments to examine the sensitivity of the orographic enhancement processes to the three-dimensional terrain and land surface characteristics. Consistent with the radar analysis, warm-cloud enhancement processes are visible in the spatial pattern of hydrometeor mixing ratios and in a shift towards greater mixing ratios. We link changes in the microphysical patterns with the thermodynamic and kinematic environments in which the patterns are embedded. We also examine the relative contributions of intense convection and forced ascent to the precipitation totals.
Detecting High Ice Water Content Cloud Regions Using Airborne and Satellite Observations
NASA Astrophysics Data System (ADS)
Kheyrollah Pour, H.; Korolev, A.; Barker, H.; Wolde, M.; Heckman, I.; Duguay, C. R.
2016-12-01
Tropical mesoscale convective systems (MCS) have significant impacts on local and global hydrological cycles and radiation budgets. Moreover, high ice water content (HIWC) found inside MCS clouds at altitudes above 7 km have been identified as hazardous for aviation safety. The environment inside HIWC cloud regions may cause icing of aircraft engines resulting in uncontrolled engine power loss or damage. This phenomenon is known as ice crystal icing (ICI). International aviation regulatory agencies are now attempting to define techniques that enable prediction and detection of potential ICI environments. Such techniques range from on-board HIWC detection to nowcasting of ice crystal weather using satellite data and numerical weather prediction models. The most practical way to monitor continuously for areas of HIWC is by remote sensing with passive radiometers on geostationary satellites. Establishing correlations between HIWC cloud regions and radiances is, however, a challenging problem. This is because regions of HIWC can occur several kilometers below cloud top, while passive satellite radiometers response mainly to the upper kilometers of MCS clouds. The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaigns in Cayenne, French Guiana collected a rich dataset from aboard the Canadian NRC Convair-580 that was equipped with a suite of in-situ microphysical instruments and Dopplerized W- and X-band radars with vertically- and horizontally-directed antenna. This paper aims to describe an algorithm that has been developed to establish relationships between satellite radiances and locations of HIWC regions identified from in-situ measurements of microphysical properties, Doppler velocities, and vertical and horizontal radar reflectivity.
Fourth Airborne Geoscience Workshop
NASA Technical Reports Server (NTRS)
1991-01-01
The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.
HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2
NASA Technical Reports Server (NTRS)
Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin
2011-01-01
The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at high-altitudes using low peak power transmitters and pulse compression. The hardware will be described along with the methods and concepts for the system design. Finally, we will present recent preliminary results from flights on the NASA Global Hawk in support of the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign, and on the NASA ER-2 as fixed nadir pointing mode for the NASA Global Precipitation Measurement (GPM) ground validation (GV) mission - Midlatitude Continental Convective Cloud Experiment (MC3E)
NASA Astrophysics Data System (ADS)
Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald
2017-04-01
This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.
T-28 data acquisition during COHMEX 1986
NASA Technical Reports Server (NTRS)
Musil, Dennis J.; Smith, Paul L.
1986-01-01
As part of the 1986 Cooperative Huntsville Meteorological Experiment (COHMEX) a cloud physics instrumented T-28 aircraft was used in conjunction with multiple ground based Doppler radars to characterize hydrometeors and updraft structure within developing summertime cumulus and cumulonimbus cloud systems near Huntsville, Alabama. Instrumentation aboard the aircraft included a Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP), a PMS 2D Cloud Probe and a PMS 2D Precipitation Probe, as well as a hail spectrometer and a foil impactor. Hydrometeor spectra were obtained in the interior of mature thunderstorms over the size range from cloud droplets through hailstones. In addition, vertical wind speed, temperature, Johnson-Williams (JW) liquid water content and electric field measurements were made. Significant microphysical differences exist between these clouds and summertime cumulonimbus clouds which develop over the Central Plains. One notable difference in clouds displaying similar radar reflectivities is that COHMEX hydrometeors are typically smaller and more numerous than those observed in the Central Plains. The COHMEX cloud microphysical measurements represent ground truth values for the remote sensing instrumentation which was flown over the cloud tops at altitudes between 60,000 and 70,000 ft aboard NASA U-2 and ER-2 aircraft. They are also being used jointly with a numerical cloud model to assist in understanding the development of summertime subtropical clouds.
Evaluation of meteorological airborne Doppler radar
NASA Technical Reports Server (NTRS)
Hildebrand, P. H.; Mueller, C. K.
1984-01-01
This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.
Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones
NASA Astrophysics Data System (ADS)
Lee, J. L.; Lee, W. C.; MacDonald, A. E.
2006-01-01
The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ming; Albrecht, Bruce A.; Ghate, Virendra P.
This study first illustrates the utility of using the Doppler spectrum width from millimetrewavelength radar to calculate the energy dissipation rate and then to use the energy dissipation rate to study turbulence structure in a continental stratocumulus cloud. It is shown that the turbulence kinetic energy dissipation rate calculated from the radar-measured Doppler spectrum width agrees well with that calculated from the Doppler velocity power spectrum. During the 16-h stratocumulus cloud event, the small-scale turbulence contributes 40%of the total velocity variance at cloud base, 50% at normalized cloud depth=0.8 and 70% at cloud top, which suggests that small-scale turbulence playsmore » a critical role near the cloud top where the entrainment and cloud-top radiative cooling act. The 16-h mean vertical integral length scale decreases from about 160 m at cloud base to 60 m at cloud top, and this signifies that the larger scale turbulence dominates around cloud base whereas the small-scale turbulence dominates around cloud top. The energy dissipation rate, total variance and squared spectrum width exhibit diurnal variations, but unlike marine stratocumulus they are high during the day and lowest around sunset at all levels; energy dissipation rates increase at night with the intensification of the cloud-top cooling. In the normalized coordinate system, the averaged coherent structure of updrafts is characterized by low energy dissipation rates in the updraft core and higher energy dissipation rates surround the updraft core at the top and along the edges. In contrast, the energy dissipation rate is higher inside the downdraft core indicating that the downdraft core is more turbulent. The turbulence around the updraft is weaker at night and stronger during the day; the opposite is true around the downdraft. This behaviour indicates that the turbulence in the downdraft has a diurnal cycle similar to that observed in marine stratocumuluswhereas the turbulence diurnal cycle in the updraft is reversed. For both updraft and downdraft, the maximum energy dissipation rate occurs at a cloud depth=0.8 where the maximum reflectivity and air acceleration or deceleration are observed. Resolved turbulence dominates near cloud base whereas unresolved turbulence dominates near cloud top. Similar to the unresolved turbulence, the resolved turbulence described by the radial velocity variance is higher in the downdraft than in the updraft. The impact of the surface heating on the resolved turbulence in the updraft decreases with height and diminishes around the cloud top. In both updrafts and downdrafts, the resolved turbulence increases with height and reaches a maximum at cloud depth=0.4 and then decreases to the cloud top; the resolved turbulence near cloud top, just as the unresolved turbulence, is mostly due to the cloud-top radiative cooling.« less
The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Peterson, Harold S.; Schultz, Elise V.; Matthee, Retha; Schultz, Christopher J.; Petersen, Walter A,; Bain, Lamont
2012-01-01
Objective: To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type (intracloud [IC] vs. cloud-to-ground [CG] ) and extent. Data and Methodology: a) NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TradeMark) (NLDN) observations following ordinary convective cells through their lifecycle. b) LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles (Koshak et al. 2012). c) LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler (DD) and polarimetric radar analyses of UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, Cband, polarimetric) and KHTX (S-band, Doppler).
Ground-based weather radar remote sensing of volcanic ash explosive eruptions
NASA Astrophysics Data System (ADS)
Marzano, F. S.; Marchiotto, S.; Barbieri, S.; Giuliani, G.; Textor, C.; Schneider, D. J.
2009-04-01
The explosive eruptions of active volcanoes with a consequent formation of ash clouds represent a severe threat in several regions of the urbanized world. During a Plinian or a sub-Plinian eruption the injection of large amounts of fine and coarse rock fragments and corrosive gases into the troposphere and lower stratosphere is usually followed by a long lasting ashfall which can cause a variety of damages. Volcanic ash clouds are an increasing hazard to aviation safety because of growing air traffic volumes that use more efficient and susceptible jet engines. Real-time and areal monitoring of a volcano eruption, in terms of its intensity and dynamics, is not always possible by conventional visual inspections, especially during worse visibility periods which are quite common during eruption activity. Remote sensing techniques both from ground and from space represent unique tools to be exploited. In this respect, microwave weather radars can gather three-dimensional information of atmospheric scattering volumes up several hundreds of kilometers, in all weather conditions, at a fairly high spatial resolution (less than a kilometer) and with a repetition cycle of few minutes. Ground-based radar systems represent one of the best methods for determining the height and volume of volcanic eruption clouds. Single-polarization Doppler radars can measure horizontally-polarized power echo and Doppler shift from which ash content and radial velocity can be, in principle, extracted. In spite of these potentials, there are still several open issues about microwave weather radar capabilities to detect and quantitatively retrieve ash cloud parameters. A major issue is related to the aggregation of volcanic ash particles within the eruption column of explosive eruptions which has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the "umbrella" cloud. Numerical experiments are helpful to explore processes occurring in the eruption column. In this study we use the plume model ATHAM (Active Tracer High Resolution Atmospheric Model) to investigate, in both time and space, processes leading to particle aggregation in the eruption column. In this work a set of numerical simulations of radar reflectivity is performed with the ATHAM model, under the same experimental conditions except for the initial size distribution, i.e. varying the radii of average mass of the two particle dimension modes. A sensitivity analysis is carried out to evaluate the possible impact of aggregate particles on microwave radar reflectivity. It is shown how dimension, composition, temperature and mass concentration are the main characteristics of eruptive cloud particles that contribute to determine different radar reflectivity responses. In order to evaluate Rayleigh scattering approximation accuracy, the ATHAM simulations of radar reflectivity are used to compare in a detailed way the Mie and Rayleigh scattering regimes at S-, C- and X-band. The relationship between radar reflectivity factor and ash concentration has been statistically derived for the various particle classes by applying a new radar reflectivity microphysical model, which was developed starting from results of numerical experiments performed with plume model ATHAM. The ash retrieval physical-statistical algorithm is based on the backscattering microphysical model of volcanic cloud particles, used within a Bayesian classification and optimal regression algorithm. In order to illustrate the potential of this microwave active remote sensing technique, the case study of the eruption of Augustine volcano in Alaska in January 2006 is described. This event was the first time that a significant volcanic eruption was observed within the nominal range of a WSR-88D. The radar data, in conjunction with pilot reports, proved to be crucial in analyzing the height and movement of volcanic ash clouds during and immediately following each eruptive event. This data greatly aided National Weather Service meteorologists in the issuance of timely and accurate warning and advisory products to aviation, public, and marine interests. An application of the retrieval technique has been shown, taking into consideration the eruption of the Augustine volcano. Volume scan data from the NEXRAD WSR-88D S-band radar, which are located 190 km from the volcano vent, are processed to identify and estimate the particles concentration in an automatic fashion. The evolution of the Augustine Vulcanian eruption is discussed in terms of radar measurements products, pointing out the unique features, the current limitations and future improvements of radar remote sensing of volcanic plumes.
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Tanelli, Simone; Chamberlain, Neil; Durden, Stephen; Fung, Andy; Sanchez-Barbetty, Mauricio; Thrivikraman, Tushar
2013-01-01
The National Resource Council’s Earth Science Decadal Survey” (NRCDS) has identified the Aerosol/Climate/Ecosystems (ACE) Mission as a priority mission for NASA Earth science. The NRC recommended the inclusion of "a cross-track scanning cloud radar with channels at 94 GHz and possibly 34 GHz for measurement of cloud droplet size, glaciation height, and cloud height". Several radar concepts have been proposed that meet some of the requirements of the proposed ACE mission but none have provided scanning capability at both 34 and 94 GHz due to the challenge of constructing scanning antennas at 94 GHz. In this paper, we will describe a radar design that leverages new developments in microwave monolithic integrated circuits (MMICs) and micro-machining to enable an electronically-scanned radar with both Ka-band (35 GHz) and W-band (94-GHz) channels. This system uses a dual-frequency linear active electronically-steered array (AESA) combined with a parabolic cylindrical reflector. This configuration provides a large aperture (3m x 5m) with electronic-steering but is much simpler than a two-dimension AESA of similar size. Still, the W-band frequency requires element spacing of approximately 2.5 mm, presenting significant challenges for signal routing and incorporation of MMICs. By combining (Gallium Nitride) GaN MMIC technology with micro-machined radiators and interconnects and silicon-germanium (SiGe) beamforming MMICs, we are able to meet all the performance and packaging requirements of the linear array feed and enable simultaneous scanning of Ka-band and W-band radars over swath of up to 100 km.
Delta 2 Explosion Plume Analysis Report
NASA Technical Reports Server (NTRS)
Evans, Randolph J.
2000-01-01
A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen
2010-01-01
This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.
Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.
2009-01-01
Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud characteristics. Each system provides a unique perspective. The WSR-88D operates in a surveillance mode, sampling cloud volumes of Rayleigh scatterers where reflectivity is proportional to the sixth moment of the size distribution of equivalent spheres. The CloudSat radar provides enhanced sensitivity to smaller cloud ice crystals aloft, as well as consistent vertical profiles along each orbit. However, CloudSat reflectivity signatures are complicated somewhat by resonant Mie scattering effects and significant attenuation in the presence of cloud or rain water. Here, both radar systems are applied to a case of light to moderate snowfall within the warm frontal zone of a cold season, synoptic scale storm. Radars allow for an evaluation of the accuracy of a single-moment scheme in replicating precipitation structures, based on the bulk statistical properties of precipitation as suggested by reflectivity signatures.
NASA Astrophysics Data System (ADS)
Yost, C. R.; Minnis, P.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Spangenberg, D.; Strapp, J. W.; Delanoë, J.; Protat, A.
2016-12-01
At least one hundred jet engine power loss events since the 1990s have been attributed to the phenomenon known as ice crystal icing (ICI). Ingestion of high concentrations of ice particles into aircraft engines is thought to cause these events, but it is clear that the use of current on-board weather radar systems alone is insufficient for detecting conditions that might cause ICI. Passive radiometers in geostationary orbit are valuable for monitoring systems that produce high ice water content (HIWC) and will play an important role in nowcasting, but are incapable of making vertically resolved measurements of ice particle concentration, i.e., ice water content (IWC). Combined radar, lidar, and in-situ measurements are essential for developing a skilled satellite-based HIWC nowcasting technique. The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaigns in Darwin, Australia, and Cayenne, French Guiana, have produced a valuable dataset of in-situ total water content (TWC) measurements with which to study conditions that produce HIWC. The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) was used to derive cloud physical and optical properties such cloud top height, temperature, optical depth, and ice water path from multi-spectral satellite imagery acquired throughout the HAIC-HIWC campaigns. These cloud properties were collocated with the in-situ TWC measurements in order to characterize cloud properties in the vicinity of HIWC. Additionally, a database of satellite-derived overshooting cloud top (OT) detections was used to identify TWC measurements in close proximity to convective cores likely producing large concentrations of ice crystals. Certain cloud properties show some sensitivity to increasing TWC and a multivariate probabilistic indicator of HIWC was developed from these datasets. This paper describes the algorithm development and demonstrates the HIWC indicator with imagery from the HAIC-HIWC campaigns. Vertically resolved IWC retrievals from active sensors such as the Cloud Profiling Radar (CPR) on CloudSat and the Doppler Radar System Airborne (RASTA) provide IWC profiles with which to validate and potentially enhance the satellite-based HIWC indicator.
NASA Astrophysics Data System (ADS)
Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.
2015-12-01
Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.
Micro-Doppler analysis of multiple frequency continuous wave radar signatures
NASA Astrophysics Data System (ADS)
Anderson, Michael G.; Rogers, Robert L.
2007-04-01
Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.
Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X- and W-Bands
NASA Technical Reports Server (NTRS)
Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.
2010-01-01
Simulated radar signatures within the melting layer in stratiform rain, namely the radar bright band, are checked by means of comparisons with simultaneous measurements of the bright band made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars during the CRYSTAL-FACE campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient-fast Fourier transform (CGFFT) numerical method for X and W bands, and expressing the fractional water content of melting particle as an exponential function in particle radius, it is found that at X band the simulated radar bright-band profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured bright-band profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by the comparisons of the radar profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can be estimated through the X- and W band Doppler velocity measurements. The bright-band model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the TRMM and GPM satellite missions.
Further Research on the Electrification of Pyrocumulus Clouds
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Laroche, Kendell; Baum, Bryan; Bateman, Monte; Mach, Douglas
2015-01-01
Past research on pyrocumulus electrification has demonstrated that a variety of lightning types can occur, including cloud-to-ground (CG) flashes, sometimes of dominant positive polarity, as well as small intra-cloud (IC) discharges in the upper levels of the pyro-cloud. In Colorado during summer 2012, the first combined polarimetric radar, multi-Doppler radar, and three-dimensional lightning mapping array (LMA) observations of lightning-producing pyrocumulus were obtained. These observations suggested that the National Lightning Detection Network (NLDN) was not sensitive enough to detect the small IC flashes that appear to be the dominant mode of lightning in these clouds. However, after an upgrade to the network in late 2012, the NLDN began detecting some of this pyrocumulus lightning. Multiple pyrocumulus clouds documented by the University of Wisconsin for various fires in 2013 and 2014 (including over the Rim, West Fork Complex, Yarnell Hill, Hardluck, and several other incidents) are examined and reported on here. This study exploits the increased-sensitivity NLDN as well as the new nationwide U.S. network of polarimetric Next-generation Radars (NEXRADs). These observations document the common occurrence of a polarimetric "dirty ice" signature - modest reflectivities (20-40+ dBZ), near-zero differential reflectivity, and reduced correlation coefficient (less than 0.9) - prior to the production of lightning. This signature is indicative of a mixture of ash and ice particles in the upper levels of the pyro-cloud (less than -20 C), with the ice interpreted as being necessary for pyro-cloud electrification. Pseudo-Geostationary Lightning Mapper (GLM) data will be produced from the 2012 LMA observations, and the ability of GLM to detect small pyrocumulus ICs will be assessed. The utility of lightning and polarimetric radar for documenting rapid wildfire growth, as well as for documenting pyrocumulus impacts on the composition of the upper troposphere/lower stratosphere (UTLS), will be discussed.
Eyeballing oscillators for pulsed Doppler radar
NASA Astrophysics Data System (ADS)
Goldman, S.
1985-03-01
The visibility of small targets to a Doppler radar system in the presence of large targets is limited by phase noise. Such limitations occur when an airborne radar searches the ground for a mobile vehicle. Under these conditions, the performance of the Doppler radar depends greatly on the specifications of its phased-locked oscillator. Goldman (1984) has discussed the steps required to evaluate the noise resulting from a pulsed Doppler radar system. In the present investigation, these techniques are applied in reverse to determine system specifications for oscillator noise. A 95-GHz pulsed Doppler radar system is used as an example of specifying system phase noise.
Development and Testing of the VAHIRR Radar Product
NASA Technical Reports Server (NTRS)
Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd
2008-01-01
Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.
Modulation of Precipitation in the Olympic Mountains by Trapped Gravity Waves
NASA Astrophysics Data System (ADS)
Heymsfield, G. M.; Tian, L.; Grecu, M.; McLinden, M.; Li, L.
2017-12-01
Precipitation over the Olympic Mountains was studied intensely with multiple aircraft and ground-based measurements during the Olympic Mountains Experiment (OLYMPEX) during the fall-winter season 2015-2016 as part of validation for the Global Precipitation Mission (GPM) (Houze et al. 2017) and the Radar Definition Experiment (RADEX) supported by the Aerosol Chemistry, Ecosystem (ACE) NASA Decadal Mission. This presentation focuses on observations of a broad frontal cloud system with strong flow over the mountains on 5 December 2015. Unique observations of trapped waves were obtained with in the three Goddard Space Flight Center nadir-looking, X- through W-band, Doppler radars on the NASA high-altitude ER-2: the High-altitude Wind and Rain Airborne Profiler (HIWRAP) at Ku and Ka-band, the W-band Cloud Radar System (CRS), and the ER-2 X-band Radar (EXRAD). Analysis of the aircraft measurements showed the presence of deep, trapped gravity waves on a scale ranging from 10-25 km in the nadir-looking Doppler and reflectivity observations. These waves cause localized vertical up/down motions on the order of 1-2 ms-1 and they are superimposed on the widespread south-southwest flow over the Olympic Mountains. While much of this widespread flow over the mountains produces copious amounts of snowfall, the gravity waves play an important role in modulating this precipitation indirectly through microphysical processes in the ice region. We will describe analyses of the interactions between the air motions and precipitation structure for this case and other cases we observed similar waves. We will present preliminary results from precipitation retrievals based on optimal estimation (Grecu et al. 2011).
SPACE/COHMEX data inventory document
NASA Technical Reports Server (NTRS)
Williams, S. F.; Goodman, H. M.; Knupp, K. R.; Arnold, J. E.
1987-01-01
During the period June to July 1986, NASA conducted the Satellite Precipitation and Cloud Experiment (SPACE) in the central Tennessee, northern Alabama, and northeastern Mississippi area. In addition to SPACE, the Microburst and Severe Thunderstorm (MIST) Program, sponsored by the National Science Foundation, and the FAA-Lincoln Laboratory Operational Weather Study (FLOWS) sponsored by the Federal Aviation Administration, operated concurrently under the acronym of COHMEX (Cooperative Huntsville Meteorological Experiment). The COHMEX field program incorporated measurements from remote sensors flown on high altitude aircraft (ER-2 and U-2), Doppler and conventional radars, rawinsondes, satellites, cloud physics research aircraft, and various surface observational systems.
NASA Astrophysics Data System (ADS)
Kneifel, S.; Battaglia, A.; Kollias, P.; Leinonen, J. S.; Maahn, M.; Kalesse, H.; Tridon, F.; Crewell, S.
2016-12-01
During the last years, an increasing number of microwave (MW) scattering databases and novel approximations for single particles, complex aggregates and even rimed and melting aggregates became available. While these developments are in general a great step forward, their evaluation with observations is a very necessary but also challenging task. Recently available multi-frequency radar observations which cover the Rayleigh up to the Mie scattering regime revealed characteristic signatures of rimed and unrimed aggregated particles. However, the observed signatures are still affected by both, the particle size distribution (PSD) and the single scattering properties of the particles which makes a clear evaluation of one or the other challenging. In this contribution we present a new approach which uses the radar Doppler spectra at three frequencies (X, Ka, and W-band) collected during a recent winter field campaign in Finland. We analyzed a snowfall event which includes rimed and unrimed snow aggregates. A large selection of spectra obtained from low-turbulence regions within the cloud reveals distinctly different signatures of the derived Doppler spectral ratios. Due to the third frequency, a characteristic curve can be derived which is almost independent of the underlying particle size distribution and velocity-size relation. The characteristics of the curves obtained for rimed and unrimed are distinctly different. The observed signatures were compared with scattering calculations obtained with discrete dipole approximation (DDA), self-similar Rayleigh-Gans approximation (SSRG), and with the classical soft spheroid (T-Matrix) method. While the DDA calculations of unrimed and rimed aggregates fit the observed signatures well, the T-Matrix results lie far outside the observed range. The SSRG approximations was found to be principally able to recover the main features but a better matching would need an adjustment of the published coefficients. Future campaigns, like the new German Collaborative Research Center Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)³, will provide combined airborne in-situ and remote sensing observations of mixed-phase clouds to further validate the results of the triple-frequency Doppler spectra approach.
NASA Technical Reports Server (NTRS)
Schultz, Chris; Carey, Larry; Schultz, Elise V.; Stano, Geoffrey; Gatlin, Patrick N.; Kozlowski, Danielle M.; Blakeslee, Rich J.; Goodman, Steve
2013-01-01
Key points this analysis will address: 1) What physically is going on in the cloud when there is a jump in lightning? -- Updraft variations, Ice fluxes 2) How do these processes fit in with severe storm conceptual models? 3) What would this information provide an end user? --Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi -Doppler derived physical relationships
The EarthCARE satellite payload
NASA Astrophysics Data System (ADS)
Wallace, Kotska; Perez-Albinana, Abelardo; Lemanczyk, Jerzy; Heliere, Arnaud; Wehr, Tobias; Eisinger, Michael; Lefebvre, Alain; Nakatsuka, Hirotaka; Tomita, Eiichi
2014-10-01
EarthCARE is ESA's third Earth Explorer Core Mission, with JAXA providing one instrument. The mission facilitates unique data product synergies, to improve understanding of atmospheric cloud-aerosol interactions and Earth radiative balance, towards enhancing climate and numerical weather prediction models. This paper will describe the payload, consisting of two active instruments: an ATmospheric LIDar (ATLID) and a Cloud Profiling Radar (CPR), and two passive instruments: a Multi Spectral Imager (MSI) and a Broad Band Radiometer (BBR). ATLID is a UV lidar providing atmospheric echoes, with a vertical resolution of 100 m, up to 40 km altitude. Using very high spectral resolution filtering the relative contributions of particle (aerosols) and Rayleigh (molecular) back scattering will be resolved, allowing cloud and aerosol optical depth to be deduced. Particle scatter co- and cross-polarisation measurements will provide information about the cloud and aerosol particles' physical characteristics. JAXA's 94.05 GHz Cloud Profiling Radar operates with a pulse width of 3.3 μm and repetition frequency 6100 to 7500 Hz. The 2.5 m aperture radar will retrieve data on clouds and precipitation. Doppler shift measurements in the backscatter signal will furthermore allow inference of the vertical motion of particles to an accuracy of about 1 m/s. MSI's 500 m pixel data will provide cloud and aerosol information and give context to the active instrument measurements for 3-D scene construction. Four solar channels and three thermal infrared channels cover 35 km on one side to 115 km on the other side of the other instrument's observations. BBR measures reflected solar and emitted thermal radiation from the scene. To reduce uncertainty in the radiance to flux conversion, three independent view angles are observed for each scene. The combined data allows more accurate flux calculations, which can be further improved using MSI data.
Merged and corrected 915 MHz Radar Wind Profiler moments
Jonathan Helmus,Virendra Ghate, Frederic Tridon
2014-06-25
The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.
NASA Astrophysics Data System (ADS)
Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.
2015-11-01
Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an important ingredient of monsoon dynamics.
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; ...
2016-06-10
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. As a result, this is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less
NASA Astrophysics Data System (ADS)
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward
2016-06-01
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty information on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.
Dual-Doppler Feasibility Study
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.
2012-01-01
When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any radar geometry issues at the NWS MLB radar, such as the "cone of silence" or beam blockage. In the event of a radar outage at one of the sites, the multi-radar algorithms would provide continuing coverage of the area through use of the data from the remaining operational radar sites. There are several options to collect, edit, synthesize and display dual-Doppler data sets. These options include commercial packages available for purchase and a variety of freeware packages available from the National Center for Atmospheric Research (NCAR) for processing raw radar data. However, evaluation of the freeware packages revealed that they do not have sufficient documentation and configuration control to be certified for 45 SW use. Additionally, a TI data line must be installed/leased from the NWS MLB office and CCAFS to enable the receipt of NWS MLB raw radar data to use in the dual-Doppler synthesis. Integration of the TI data line into the Eastern Range infrastructure that will meet the security requirements necessary for 45 SW use is time-consuming and costly. Overall evaluation indicates that establishment of the dual-Doppler capability using the existing operational radar systems is desirable and feasible with no technical concerns. Installation of such a system represents a significant enhancement to forecasting capabilities at the 45 WS and at NWS MLB. However, data security and cost considerations must be evaluated in light of current budgetary constraints. In any case, gaining the dual-Doppler capability will provide opportunities for better visualization of the wind field and better forecasting of the onset of convection and severe weather events to support space launch operations at KSC and CCAFS.
2014-09-30
for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations R. Michael Hardesty CIRES/University of Colorado/NOAA 325...the RV-Revell during legs 2 & 3 of the DYNAMO experiement to help characterize vertical transport through the boundary layer and to build statistics...obtained during DYNAMO , and to investigate whether cold pools that emanate from convection organize the interplay between humidity and convection and
Using doppler radar images to estimate aircraft navigational heading error
Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM
2012-07-03
A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.
NASA Technical Reports Server (NTRS)
Rust, W. D.; Macgorman, D. R.
1985-01-01
During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.
Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds
NASA Technical Reports Server (NTRS)
Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping
2008-01-01
Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.
Doppler-radar observation of the evolution of downdrafts in convective clouds
NASA Technical Reports Server (NTRS)
Motallebi, N.
1982-01-01
A detailed analysis of the 20 July 1977 thunderstorm complex which formed and evolve over the South Park region in Central Colorado is presented. The storm was extensively analyzed using multiple Doppler radar and surface mesonet data, developed within an environment having very weak wind shear. The storm owed its intensification to the strength of the downdraft, which was nearly coincident with the region where the cloud had grown. The noteworthy features of this storm were its motion to the right of the cloud-level winds, its multicellular nature and discrete propagation, its north-south orientation, and its relatively large storm size and high reflectivity factor (55 dBZ). This scenario accounts for the observed mesoscale and cloud-scale event. A line of convergence was generated at the interface between the easterly upslope winds and westerly winds. During stage II, the convergence line subsequently propagated down the slopes of the Mosquito Range, and was the main forcing mechanism for the development of updraft on the west flank of the storm. The formation of downdraft on the eastern side of updraft blacked surface inflow, and created a detectable gust front. As the original downdraft intensified, the accumulation of evaporatively-chilled air caused the intensification of the mesohigh, which likely destroyed the earlier convergence line and created a stronger convergence line to the east, which forced up-lifting of the moist, westerly inflow and caused the formation of updraft to the east. An organized downdraft circulation, apparently maintained by precipitation drag and evaporational cooling, was responsible in sustaining a well-defined gust front. The storm attained its highest intensity as a consequence of merging with a neighboring cloud. The interaction of downdrafts or gust fronts from two intense cells appeared to be the primary mechanism of this merging process as suggested by Simpson et al. (1980). The merging process coincided with more rain than occurred in unmerged echoes.
Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.
NASA Astrophysics Data System (ADS)
Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi
2015-04-01
Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa: Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] D. Wu, J. Tang, Z. Liu, and Y. Hu: Simulation of coherent doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 122(0), 79-86, 2013 [3] G.D Emmitt: CFLOS and cloud statistics from satellite and their impact on future space-based Doppler Wind Lidar development. Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 2008
NASA Astrophysics Data System (ADS)
Keat, W. J.; Westbrook, C. D.
2017-11-01
Pristine ice crystals typically have high aspect ratios (≫ 1), have a high density and tend to fall preferentially with their major axis aligned horizontally. Consequently, they can, in certain circumstances, be readily identified by measurements of differential reflectivity (ZDR), which is related to their average aspect ratio. However, because ZDR is reflectivity weighted, its interpretation becomes ambiguous in the presence of even a few, larger aggregates or irregular polycrystals. An example of this is in mixed-phase regions that are embedded within deeper ice cloud. Currently, our understanding of the microphysical processes within these regions is hindered by a lack of good observations. In this paper, a novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the copolar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and "intrinsic" ZDR (ZDRIP) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZDRIP values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in situ particle images from the Facility for Airborne Atmospheric Measurements BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.
Millimeter-wave micro-Doppler measurements of small UAVs
NASA Astrophysics Data System (ADS)
Rahman, Samiur; Robertson, Duncan A.
2017-05-01
This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.
Doppler Processing with Ultra-Wideband (UWB) Radar Revisited
2018-01-01
grating lobes as compared to the conventional Doppler processing counterpart. 15. SUBJECT TERMS Doppler radar, UWB radar, matched filter , ambiguity...maps by the matched filter method, illustrating the radar data support in (a) the frequency-slow time domain and (b) the ρ-u domain. The samples...example, obtained by the matched filter method, for a 1.2-s CPI centered at t = 1.5 s
Sun, Guanghao; Matsui, Takemi
2015-01-01
Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.
Development and Application of integrated monitoring platform for the Doppler Weather SA-BAND Radar
NASA Astrophysics Data System (ADS)
Zhang, Q.; Sun, J.; Zhao, C. C.; Chen, H. Y.
2017-10-01
The doppler weather SA-band radar is an important part of modern meteorological observation methods, monitoring the running status of radar and the data transmission is important.This paper introduced the composition of radar system and classification of radar data,analysed the characteristics and laws of the radar when is normal or abnormal. Using Macromedia Dreamweaver and PHP, developed the integrated monitoring platform for the doppler weather SA-band radar which could monitor the real-time radar system running status and important performance indicators such as radar power,status parameters and others on Web page,and when the status is abnormal it will trigger the audio alarm.
Clutter attenuation using the Doppler effect in standoff electromagnetic quantum sensing
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador
2016-05-01
In the context of traditional radar systems, the Doppler effect is crucial to detect and track moving targets in the presence of clutter. In the quantum radar context, however, most theoretical performance analyses to date have assumed static targets. In this paper we consider the Doppler effect at the single photon level. In particular, we describe how the Doppler effect produced by clutter and moving targets modifies the quantum distinguishability and the quantum radar error detection probability equations. Furthermore, we show that Doppler-based delayline cancelers can reduce the effects of clutter in the context of quantum radar, but only in the low-brightness regime. Thus, quantum radar may prove to be an important technology if the electronic battlefield requires stealthy tracking and detection of moving targets in the presence of clutter.
Estimation of physiological sub-millimeter displacement with CW Doppler radar.
Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga
2015-01-01
Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.
Facilities for meteorological research at NASA Goddard/Wallops Flight Facility
NASA Technical Reports Server (NTRS)
Gerlach, J. C.; Carr, R. E.
1984-01-01
The technical characteristics of the Atmospheric Sciences Research Facility, the improvements being made to the instrumentation there which will enhance its usefulness in atmospheric research, and several of the on-going research programs are described. Among the area of atmospheric research discussed are clouds and precipitation, lightning, ozone, wind, and storms. Meteorological instruments including Doppler radar, spectrophotometers, and ozone sensors are mentioned. Atmospheric research relevant to aircraft design and COMSTAR communication satellites is briefly discussed.
NASA Technical Reports Server (NTRS)
Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra
2015-01-01
Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Rutledge, Steven A.; Dolan, Brenda; Krehbiel, Paul; Rison, William; Lindsey, Daniel T.
2013-01-01
Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all occurred during summer 2012) electrified and produced small intracloud discharges whenever the smoke plumes grew to high altitudes (over 10 km above mean sea level, or MSL). This occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. In the Hewlett Gulch case, the fire growth led to increased updrafts within the plume, as inferred by multiple- Doppler radar syntheses, which led to the vertical development and subsequent electrification - a life cycle as short as 30 minutes. The lightning, detected by a threedimensional lightning mapping network, was favored in high-altitude regions (10 km MSL) containing modest reflectivities (25 dBZ and lower), 0 dB differential reflectivity, and reduced correlation coefficient (0.6-0.7). This indicated the likely presence of ice particles (crystals and aggregates, possibly rimed) mixed with ash. Though neither multiple-Doppler nor polarimetric observations were available during the electrification of the High Park and Waldo Canyon plumes, their NEXRAD observations showed reflectivity structures consistent with Hewlett Gulch. In addition, polarimetric and multiple-Doppler scanning of unelectrified High Park plumes indicated only irregularly shaped ash, and not ice, was present (i.e., reflectivities < 25 dBZ, differential reflectivity > 5 dB, correlation < 0.4), and there was no broaching of the 10 km altitude. Based on these results, the electrification likely was caused by ice-based processes that did not involve significant amounts of graupel. The results demonstrate the scientific value of multiple-Doppler and polarimetric radar observations of wildfire smoke plumes - including the ability to distinguish between regions of pure hydrometeors, regions of pure ash, and mixtures of both - and also suggest a possible new application for lightning data in monitoring wildfires.
Wind turbine generators with active radar signature control blades
NASA Astrophysics Data System (ADS)
Tennant, Alan; Chambers, Barry
2004-07-01
The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, however the Doppler shifts introduced by the WTG are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem that we are investigating is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the RCS of the blade return. The active blade can operate in one of two modes: firstly the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected: a second mode of operation is to introduce specific coding on to the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques that we have developed for active radar absorbers. Results of experimental work using a 10GHz Doppler radar and scale model WTG with active Doppler imparting blades are presented.
Signature management of radar returns from wind turbine generators
NASA Astrophysics Data System (ADS)
Tennant, A.; Chambers, B.
2006-04-01
The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, but the Doppler shifts introduced by the WTG blades are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the radar cross section (RCS) of the blade return. The active blade can operate in one of two modes: first the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected; a second mode of operation is to introduce specific coding onto the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques developed for active radar absorbers. Results of theoretical and experimental work using a 10 GHz Doppler radar and scale-model WTG are presented.
Cloudiness and Marine Boundary Layer Variability at the ARM Eastern North Atlantic Site
NASA Astrophysics Data System (ADS)
Remillard, J.; Kollias, P.; Zhou, X.; Luke, E. P.
2016-12-01
The US Department of Energy Atmospheric Radiation Measurement (ARM) program operates a fixed ground-based site at Graciosa Island in the Azores in the Eastern North Atlantic (ENA). The measurement record extends through two warm seasons where marine boundary layer (MBL) clouds prevail. Here, a plethora of ground-based observations from the ARM ENA site are used to characterize the vertical and horizontal variability of the MBL and associated cloudiness. In particular, the Doppler lidar observations along with thermodynamic information are used to determine the coupling or decoupling of the MBL. The horizontal variability of the sub-cloud layer is assessed via wavelet analysis and compared to the cloud scale, which is quantified by Fourier analysis of liquid water path (LWP) from microwave radiometer observations. The role of drizzle-induced evaporative cooling and moistening in modifying the MBL is examined using surface measurements, microwave radiometer, ceilometer, cloud radar and Doppler lidar observations. The MBL variability is categorized by the strength of drizzle and their relation is studied. Furthermore, the relationship between MBL cloudiness and subsidence is tested using reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Weather states from the International Satellite Cloud Climatology Project (ISCCP) put the results into a more general context, and provide an easy way to link them to the atmospheric situation surrounding the area.
A model for gravity-wave spectra observed by Doppler sounding systems
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1986-01-01
A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.
The Effect of Sea Surface Slicks on the Doppler Spectrum Width of a Backscattered Microwave Signal.
Karaev, Vladimir; Kanevsky, Mikhail; Meshkov, Eugeny
2008-06-06
The influence of a surface-active substance (SAS) film on the Doppler spectrum width at small incidence angles is theoretically investigated for the first time for microwave radars with narrow-beam and knife-beam antenna patterns. It is shown that the requirements specified for the antenna system depend on the radar motion velocity. A narrow-beam antenna pattern should be used to detect slicks by an immobile radar, whereas radar with a knife-beam antenna pattern is needed for diagnostics from a moving platform. The study has revealed that the slick contrast in the Doppler spectrum width increases as the radar wavelength diminishes, thus it is preferable to utilize wavelengths not larger than 2 cm for solving diagnostic problems. The contrast in the Doppler spectrum width is generally weaker than that in the radar backscattering cross section; however, spatial and temporal fluctuations of the Doppler spectrum width are much weaker than those of the reflected signal power. This enables one to consider the Doppler spectrum as a promising indicator of slicks on water surface.
Tangential velocity measurement using interferometric MTI radar
Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.
2006-01-03
Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.
Satellite-observed cloud-top height changes in tornadic thunderstorms
NASA Technical Reports Server (NTRS)
Adler, R. F.; Fenn, D. D.
1981-01-01
Eleven tornadic storms are evaluated with respect to cloud top temperature changes relative to tornado touchdown. Digital IR data from the SMS/GOES geosynchronous satellites were employed for 10 F2 and one F1 tornadoes. A rapid ascent of the cloud tops 30-45 min before tornado touchdown, a temperature decrease of 0.4 K/min, and an ascent rate of about 3 m/sec were observed. The presence of an operating Doppler radar for three of the sample storms allowed detection of a mesocyclone coincident with the rapid cloud top ascent. The intensification and descent of the vortex to form a tornado is concluded to be due to a weakening of the updraft, the formation of a downdraft, and a shift of the vortex to the updraft-downdraft boundary, leading to dominance of the tilting term in the generation of vorticity.
Multibeam synthetic aperture radar for global oceanography
NASA Technical Reports Server (NTRS)
Jain, A.
1979-01-01
A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.
NASA Astrophysics Data System (ADS)
Wang, Mingjun; Zhao, Kun; Xue, Ming; Zhang, Guifu; Liu, Su; Wen, Long; Chen, Gang
2016-10-01
The evolution of microphysical characteristics of a rainband in Typhoon Matmo (2014) over eastern China, through its onset, developing, mature, and dissipating stages, is documented using observations from an S band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD). The drop size distributions observed by the 2DVD and retrieved from the polarimetric radar measurements indicate that the convection in the rainband generally contains smaller drops and higher number concentrations than the typical maritime type convection described in Bringi et al. (2003). The average mass-weighted mean diameter (Dm) of convective precipitation in the rainband is about 1.41 mm, and the average logarithmic normalized intercept (Nw) is 4.67 log10 mm-1 m-3. To further investigate the dominant microphysical processes, the evolution of the vertical structures of polarimetric variables is examined. Results show that complex ice processes are involved above the freezing level, while it is most likely that the accretion and/or coalescence processes dominate below the freezing level throughout the rainband life cycle. A combined examination of the polarimetric measurements and profiles of estimated vertical liquid and ice water contents indicates that the conversion of cloud water into rainwater through cloud water accretion by raindrops plays a dominant role in producing heavy rainfall. The high estimated precipitation efficiency of 50% also suggests that cloud water accretion is the dominant mechanism for producing heavy rainfall. This study represents the first time that radar and 2DVD observations are used together to characterize the microphysical characteristics and precipitation efficiency for typhoon rainbands in China.
14 CFR 121.355 - Equipment for operations on which specialized means of navigation are used.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (a) No certificate holder may conduct an operation— (1) Using Doppler Radar or an Inertial Navigation... approved in accordance with appendix G to this part; or (2) Using Doppler Radar or an Inertial Navigation... authorized for the particular operation. (b) Notwithstanding paragraph (a) of this section, Doppler Radar and...
14 CFR 121.355 - Equipment for operations on which specialized means of navigation are used.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (a) No certificate holder may conduct an operation— (1) Using Doppler Radar or an Inertial Navigation... approved in accordance with appendix G to this part; or (2) Using Doppler Radar or an Inertial Navigation... authorized for the particular operation. (b) Notwithstanding paragraph (a) of this section, Doppler Radar and...
Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga
2007-01-01
This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.
14 CFR 121.355 - Equipment for operations on which specialized means of navigation are used.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (a) No certificate holder may conduct an operation— (1) Using Doppler Radar or an Inertial Navigation... approved in accordance with appendix G to this part; or (2) Using Doppler Radar or an Inertial Navigation... authorized for the particular operation. (b) Notwithstanding paragraph (a) of this section, Doppler Radar and...
14 CFR 121.355 - Equipment for operations on which specialized means of navigation are used.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (a) No certificate holder may conduct an operation— (1) Using Doppler Radar or an Inertial Navigation... approved in accordance with appendix G to this part; or (2) Using Doppler Radar or an Inertial Navigation... authorized for the particular operation. (b) Notwithstanding paragraph (a) of this section, Doppler Radar and...
14 CFR 121.355 - Equipment for operations on which specialized means of navigation are used.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (a) No certificate holder may conduct an operation— (1) Using Doppler Radar or an Inertial Navigation... approved in accordance with appendix G to this part; or (2) Using Doppler Radar or an Inertial Navigation... authorized for the particular operation. (b) Notwithstanding paragraph (a) of this section, Doppler Radar and...
Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.
2013-01-01
A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.
Abstracts of papers presented at the Eleventh International Laser Radar Conference
NASA Technical Reports Server (NTRS)
1982-01-01
Abstracts of 39 papers discuss measurements of properties from the Earth's ocean surface to the mesosphere, made with techniques ranging from elastic and inelastic scattering to Doppler shifts and differential absorption. Topics covered include: (1) middle atmospheric measurements; (2) meteorological parameters: temperature, density, humidity; (3) trace gases by Raman and DIAL techniques; (4) techniques and technology; (5) plume dispersion; (6) boundary layer dynamics; (7) wind measurements; visibility and aerosol properties; and (9) multiple scattering, clouds, and hydrometers.
NASA Astrophysics Data System (ADS)
Mereu, Luigi; Marzano, Frank; Mori, Saverio; Montopoli, Mario; Cimini, Domenico; Martucci, Giovanni
2013-04-01
The detection and quantitative retrieval of volcanic ash clouds is of significant interest due to its environmental, climatic and socio-economic effects. Real-time monitoring of such phenomena is crucial, also for the initialization of dispersion models. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low level eruptions. Their imagery is available every 15-30 minutes and suffers from a relatively poor spatial resolution. Moreover, the field-of-view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and their overall utility is reduced at night. Ground-based microwave radars may represent an important tool to detect and, to a certain extent, mitigate the hazard from the ash clouds. Ground-based weather radar systems can provide data for determining the ash volume, total mass and height of eruption clouds. Methodological studies have recently investigated the possibility of using ground-based single-polarization and dual-polarization radar system for the remote sensing of volcanic ash cloud. A microphysical characterization of volcanic ash was carried out in terms of dielectric properties, size distribution and terminal fall speed, assuming spherically-shaped particles. A prototype of volcanic ash radar retrieval (VARR) algorithm for single-polarization systems was proposed and applied to S-band and C-band weather radar data. The sensitivity of the ground-based radar measurements decreases as the ash cloud is farther so that for distances greater than about 50 kilometers fine ash might be not detected anymore by microwave radars. In this respect, radar observations can be complementary to satellite, lidar and aircraft observations. Active remote sensing retrieval from ground, in terms of detection, estimation and sensitivity, of volcanic ash plumes is not only dependent on the sensor specifications, but also on the range and ash cloud distribution. The minimum detectable signal can be increased, for a given system and ash plume scenario, by decreasing the observation range and increasing the operational frequency using a multi-sensor approach, but also exploiting possible polarimetric capabilities. In particular, multi-wavelengths lidars can be complementary systems useful to integrate radar-based ash particle measurement. This work, starting from the results of a previous study and from above mentioned issues, is aimed at quantitatively assessing the optimal choices for microwave and millimeter-wave radar systems with a dual-polarization capability for real-time ash cloud remote sensing to be used in combination with an optical lidar. The physical-electromagnetic model of ash particle distributions is systematically reviewed and extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena. The radar and lidar scattering and absorption response is simulated and analyzed in terms of self-consistent polarimetric signatures for ash classification purposes and correlation with ash concentration and mean diameter for quantitative retrieval aims. A sensitivity analysis to ash concentration, as a function of sensor specifications, range and ash category, is carried out trying to assess the expected multi-sensor multi-spectral system performances and limitations. The multi-sensor multi-wavelength polarimetric model-based approach can be used within a particle classification and estimation scheme, based on the VARR Bayesian metrics. As an application, the ground-based observation of the Eyjafjallajökull volcanic ash plume on 15-16 May 2010, carried out at the Atmospheric Research Station at Mace Head, Carna (Ireland) with MIRA36 35-GHz Ka-Band Doppler cloud radar and CHM15K lidar/ceilometer at 1064-nm wavelength, has been considered. Results are discussed in terms of retrievals and intercomparison with other ground-based and satellite-based sensors.
NASA Astrophysics Data System (ADS)
Poret, M.; Corradini, S.; Merucci, L.; Costa, A.; Andronico, D.; Montopoli, M.; Vulpiani, G.; Scollo, S.; Freret-Lorgeril, V.
2017-12-01
On the 23rd November 2013, Etna erupted giving one of the most intense lava fountain recorded. The eruption produced a buoyant plume that rose higher than 10 km a.s.l. from which two volcanic clouds were observed from satellite at two different atmospheric levels. A Previous study described one of the two clouds as mainly composed by ash making use of remote sensing instruments. Besides, the second cloud is made of ice/SO2 droplets and is not measurable in terms of ash mass. Both clouds spread out under north-easterly winds transporting the tephra from Etna towards the Puglia region. The untypical meteorological conditions permit to collect tephra samples in proximal areas to the Etna emission source as well as far away in the Calabria region. The eruption was observed by satellite (MSG-SEVIRI, MODIS) and ground-based (X-band weather radar, VIS/IR cameras and L-band Doppler radar) remote sensing systems. This study uses the FALL3D code to model the evolution of the plume and the tephra deposition by constraining the simulation results with remote sensing products for volcanic cloud (cloud height, fine ash Mass - Ma, Aerosol Optical Depth at 0.55 mm - AOD). Among the input parameters, the Total Grain-Size Distribution (TGSD) is reconstructed by integrating field deposits with estimations from the X-band radar data. The optimal TGSD was selected through an inverse problem method that best-fits both the field deposits and airborne measurements. The results of the simulations capture the main behavior of the two volcanic clouds at their altitudes. The best agreement between the simulated Ma and AOD and the SEVIRI retrievals indicates a PM20 fraction of 3.4 %. The total erupted mass is estimated at 1.6 × 109 kg in consistency with the estimations made from remote sensing data (3.0 × 109 kg) and ground deposit (1.3 × 109 kg).
Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar)
NASA Astrophysics Data System (ADS)
Kneifel, Stefan; Maahn, Maximilian; Peters, Gerhard; Simmer, Clemens
2011-06-01
Quantifying snowfall intensity especially under arctic conditions is a challenge because wind and snow drift deteriorate estimates obtained from both ground-based gauges and disdrometers. Ground-based remote sensing with active instruments might be a solution because they can measure well above drifting snow and do not suffer from flow distortions by the instrument. Clear disadvantages are, however, the dependency of e.g. radar returns on snow habit which might lead to similar large uncertainties. Moreover, high sensitivity radars are still far too costly to operate in a network and under harsh conditions. In this paper we compare returns from a low-cost, low-power vertically pointing FM-CW radar (Micro Rain Radar, MRR) operating at 24.1 GHz with returns from a 35.5 GHz cloud radar (MIRA36) for dry snowfall during a 6-month observation period at an Alpine station (Environmental Research Station Schneefernerhaus, UFS) at 2,650 m height above sea level. The goal was to quantify the potential and limitations of the MRR in relation to what is achievable by a cloud radar. The operational MRR procedures to derive standard radar variables like effective reflectivity factor ( Z e) or the mean Doppler velocity ( W) had to be modified for snowfall since the MRR was originally designed for rain observations. Since the radar returns from snowfall are weaker than from comparable rainfall, the behavior of the MRR close to its detection threshold has been analyzed and a method is proposed to quantify the noise level of the MRR based on clear sky observations. By converting the resulting MRR- Z e into 35.5 GHz equivalent Z e values, a remaining difference below 1 dBz with slightly higher values close to the noise threshold could be obtained. Due to the much higher sensitivity of MIRA36, the transition of the MRR from the true signal to noise can be observed, which agrees well with the independent clear sky noise estimate. The mean Doppler velocity differences between both radars are below 0.3 ms-1. The distribution of Z e values from MIRA36 are finally used to estimate the uncertainty of retrieved snowfall and snow accumulation with the MRR. At UFS low snowfall rates missed by the MRR are negligible when comparing snow accumulation, which were mainly caused by intensities between 0.1 and 0.8 mm h-1. The MRR overestimates the total snow accumulation by about 7%. This error is much smaller than the error caused by uncertain Z e-snowfall rate relations, which would affect the MIRA36 estimated to a similar degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, A. C.; Zipser, Edward J.; Fridlind, Ann
2014-12-27
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.« less
2010-09-01
Electra Doppler Radar (ELDORA), dropwindsonde capability, a Doppler wind lidar , and the ability to collect flight-level data] flew aircraft research...ELDORA Electra Doppler Radar ECMWF European Center for Medium-range Weather Prediction Forecasts ER Equatorial Rossby ERA-40 ECMWF Reanalysis Data...2006) use Dual Doppler radar and rain gauge data to evaluate the performance of the TRMM TMI V6 rainfall algorithm. They 23 conclude that: “In
Micro-Doppler classification of riders and riderless horses
NASA Astrophysics Data System (ADS)
Tahmoush, David
2014-05-01
Micro-range Micro-Doppler can be used to isolate particular parts of the radar signature, and in this case we demonstrate the differences in the signature between a walking horse versus a walking horse with a rider. Using micro-range micro-Doppler, we can distinguish the radar returns from the rider as separate from the radar returns of the horse.
Doppler characteristics of sea clutter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Ann Marie; Doerry, Armin Walter
2010-06-01
Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristicsmore » of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.« less
NASA Technical Reports Server (NTRS)
Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.
1986-01-01
The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.
Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.
2000-01-01
During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.
NASA Astrophysics Data System (ADS)
Wang, Haijiang; Yang, Ling
2014-12-01
In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.
Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets
NASA Technical Reports Server (NTRS)
Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.
2005-01-01
The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.
Polarimetric and Multi-Doppler Radar Observations of Sprite-producing Storms
NASA Technical Reports Server (NTRS)
Lang, TImothy J.; Lyons, Walter A.; Rutledge, Steven A.; Dolan, Brenda; Cummer, Steven A.; Krehbiel, Paul; Rison, William
2014-01-01
Sprites are caused by luminous electrical breakdown of the upper atmosphere, and frequently occur over large mesoscale precipitation systems. Two sprite-producing storms (on 8 and 25 June) were observed in Colorado during the summer of 2012. Unlike most past studies of sprites, these storms were observed by a polarimetric radar - the CSU-CHILL facility - which provided both PPI and RHI scans of the cases. Also available were multiple-Doppler syntheses from CSU-CHILL, local NEXRAD radars, and the CSU-Pawnee radar; as well as data from the Colorado Lightning Mapping Array (COLMA), high speed cameras, and other lightning-detection instrumentation. This unique dataset provided an unprecedented look at the detailed kinematic and microphysical structures of the thunderstorms as they produced sprites, including electrical alignment signatures in the immediate location of the charge layers neutralized by sprite-parent positive cloud-to-ground lightning strokes. One of the sprite-producing cases (25 June) featured an anomalous charge structure and may serve as a model for how sprites can be produced over convection rather than the more typical stratiform regions. Also to be presented will be evidence for advection of charge into a common stratiform precipitation region (on 8 June), which was then tapped by lightning originating from multiple different convective cores to produce sprites. Depending on the outcome of the 2013 convective season, polarimetric data from additional storms that produce sprites and other transient luminous events (TLEs) may be presented.
NASA Astrophysics Data System (ADS)
Shand, B. A.; Lester, M.; Yeoman, T. K.
1996-08-01
A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.
WSR-88D doppler radar detection of corn earworm moth migration
USDA-ARS?s Scientific Manuscript database
Flying insects, birds, and bats contribute to radar reflectivity and radial velocity measured by Doppler weather radars. A study was conducted in the Lower Rio Grande Valley of Texas to determine the capability of Weather Service Radar (version 88D) (WSR-88D) to monitor migratory flights of corn ea...
The NOAA Big Data Project: NEXRAD on the Cloud
NASA Astrophysics Data System (ADS)
Sundwall, Jed; Bouffler, Brendan
2016-04-01
Last year, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.
The NOAA Big Data Project: NEXRAD on the Cloud
NASA Astrophysics Data System (ADS)
Gold, A.; Weber, J.
2015-12-01
This past April, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.
NASA Astrophysics Data System (ADS)
Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.
2016-12-01
A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal cloud seeding deployment, it is essential that these convergence zones are detected before clouds are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and cloud radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can strengthen convergent flows already existing in the region of interest, thus amplifying convection and precipitation. We expect that this method can be successfully applied in regions with pre-existing land-surface heterogeneity and orography such as coastal areas with land-sea breezes and the Al Hajar Mountain range.
NASA Astrophysics Data System (ADS)
Nelson, E.; L'Ecuyer, T. S.; Wood, N.; Smalley, M.; Kulie, M.; Hahn, W.
2017-12-01
Global models exhibit substantial biases in the frequency, intensity, duration, and spatial scales of precipitation systems. Much of this uncertainty stems from an inadequate representation of the processes by which water is cycled between the surface and atmosphere and, in particular, those that govern the formation and maintenance of cloud systems and their propensity to form the precipitation. Progress toward improving precipitation process models requires observing systems capable of quantifying the coupling between the ice content, vertical mass fluxes, and precipitation yield of precipitating cloud systems. Spaceborne multi-frequency, Doppler radar offers a unique opportunity to address this need but the effectiveness of such a mission is heavily dependent on its ability to actually observe the processes of interest in the widest possible range of systems. Planning for a next generation precipitation process observing system should, therefore, start with a fundamental evaluation of the trade-offs between sensitivity, resolution, sampling, cost, and the overall potential scientific yield of the mission. Here we provide an initial assessment of the scientific and economic trade-space by evaluating hypothetical spaceborne multi-frequency radars using a combination of current real-world and model-derived synthetic observations. Specifically, we alter the field of view, vertical resolution, and sensitivity of a hypothetical Ka- and W-band radar system and propagate those changes through precipitation detection and intensity retrievals. The results suggest that sampling biases introduced by reducing sensitivity disproportionately affect the light rainfall and frozen precipitation regimes that are critical for warm cloud feedbacks and ice sheet mass balance, respectively. Coarser spatial resolution observations introduce regime-dependent biases in both precipitation occurrence and intensity that depend on cloud regime, with even the sign of the bias varying within a single storm system. It is suggested that the next generation spaceborne radar have a minimum sensitivity of -5 dBZ and spatial resolution of at least 3 km at all frequencies to adequately sample liquid and ice phase precipitation processes globally.
NASA Astrophysics Data System (ADS)
Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.
2016-07-01
Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km deep. Clouds tend to precipitate when the cloud is thicker than 500-600 m. Distributions of cloud field characteristics (depth, radar reflectivity, Doppler velocity, precipitation) were well identified in the reflectivity-velocity diagram from the cloud radar observations. Two types of precipitation features were observed for shallow marine cumulus clouds that may impact boundary layer differently: first, a classic cloud-base precipitation where precipitation shafts were observed to emanate from the cloud base; second, cloud-top precipitation where precipitation shafts emanated mainly near the cloud tops, sometimes accompanied by precipitation near the cloud base. The second type of precipitation was more frequently observed during the experiment. Only 42-44 % of the clouds sampled were non-precipitating throughout the entire cloud layer and the rest of the clouds showed precipitation somewhere in the cloud, predominantly closer to the cloud top.
Comments on Doppler radar applications
NASA Technical Reports Server (NTRS)
Kessler, E.
1969-01-01
The application of Doppler methods to theoretical or meteorological problems is discussed. Research for using radar to study and monitor severe thunderstorms, turbulence, and tornadoes is recommended.
NASA Technical Reports Server (NTRS)
Lee, Jonggil
1990-01-01
High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.
High-resolution Doppler model of the human gait
NASA Astrophysics Data System (ADS)
Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.
2002-07-01
A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.
Efficient transfer of weather information to the pilot in flight
NASA Technical Reports Server (NTRS)
Mcfarland, R. H.
1982-01-01
Efficient methods for providing weather information to the pilot in flight are summarized. Use of discrete communications channels in the aeronautical, VHF band or subcarriers in the VOR navigation band are considered the best possibilities. Data rates can be provided such that inputs to the ground based transmitters from 2400 band telephone lines are easily accommodated together with additional data. The crucial weather data considered for uplinking are identified as radar reflectivity patterns relating to precipitation, spherics data, hourly sequences, nowcasts, forecasts, cloud top heights with freezing and icing conditions, the critical weather map and satellite maps. NEXRAD, the ground based, Doppler weather radar which will produce an improved weather product also encourages use of an uplink to fully utilize its capability to improve air safety.
NEXRAD-In-Space: A Geostationary Orbiting Doppler Radar for Hurricane Monitoring and Studies
NASA Technical Reports Server (NTRS)
Im, Eastwood; Durden, Stephen L.; Tanelli, Simone; Fang, Houfei; Rahmat-Samii, Yahya
2011-01-01
Under NASA's Earth Science Technology Program, a novel mission concept has been developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit: "NEXRAD in Space" (NIS). By operating in the Geostationary Earth Orbit (GEO), NIS would enable rapid-update sampling (less than or equal to 1 hour cadence) of three dimenional fields of 35 GHz (Ka-band) radar reflectivity factor (Z) and line-of-sight Doppler velocity (VD) profiles, at mesoscale horizontal resolutions (approx. 10 km) over a circular Earth region of approximately 5300 km in diameter (equivalent to much of an oceanic basin, such as the Atlantic). NIS GEO-radar concept was chosen as one of only four potential post-2020 missions for the Weather Focus area in the 2007-2016 NASA Science Mission Directorate (SMD) Science Plan. The results of the first project aiming at developing the NIS concept highlighted the enormous potential of such mission, and the technological challenges presented by it. In essence, it is because of its rapid-cadence capability that NIS science planning is focusing on hurricane monitoring and prediction. Hurricanes, or generically tropical cyclones (TCs), have always been among the most devastating natural phenomena. This has been painfully reiterated in recent years with a number of powerful TCs landfalling in North America and elsewhere. In April 2007, the first NIS Science Workshop was convened at the University of Miami to galvanize the scientific community's interest in NIS's measurement capabilities for improved TC monitoring and prediction. The general consensus of the workshop was that a GEO Doppler radar would provide a major breakthrough in regards to the observation of TCs, and, when combined with cloud-resolving numerical weather prediction (NWP) models. This paper presents brief summaries of the instrument concept, the current technology status, the anticipated impacts on hurricane monitoring and model prediction, and the future science and technology roadmap.
Doppler-radar wind-speed measurements in tornadoes: A comparison of real and simulated spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; LaDue, J.G.; Stein, H.
1993-03-01
Bluestein and Unruh have discussed the advantages of using a portable doppler radar to map the wind field in tornadoes. during the spring of 1991 a storm-intercept team from the University of Oklahoma (OU) collected data near five supercell tornadoes in Oklahoma and Kansas. Details about the 1-W, 3-cm, 5-deg half-power beamwidth, CW/FM-CW Doppler radar we used and the methods of data collection and analysis are found in Bluestein and Unruh and Bluestein et al. Using the portable radar, we approximately doubled in only one year the number of tornado spectra that had been collected over a period of almostmore » 20 years by NSSL`s fixed-site Doppler radar. In this paper we will compare observed tornado wind spectra with simulated wind spectra (Zmic and Doviak 1975) in order to learn more about tornado structure.« less
Doppler-radar wind-speed measurements in tornadoes: A comparison of real and simulated spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; LaDue, J.G.; Stein, H.
1993-01-01
Bluestein and Unruh have discussed the advantages of using a portable doppler radar to map the wind field in tornadoes. during the spring of 1991 a storm-intercept team from the University of Oklahoma (OU) collected data near five supercell tornadoes in Oklahoma and Kansas. Details about the 1-W, 3-cm, 5-deg half-power beamwidth, CW/FM-CW Doppler radar we used and the methods of data collection and analysis are found in Bluestein and Unruh and Bluestein et al. Using the portable radar, we approximately doubled in only one year the number of tornado spectra that had been collected over a period of almostmore » 20 years by NSSL's fixed-site Doppler radar. In this paper we will compare observed tornado wind spectra with simulated wind spectra (Zmic and Doviak 1975) in order to learn more about tornado structure.« less
Non-contact physiological signal detection using continuous wave Doppler radar.
Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye
2014-01-01
The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Gerald G.
What has made the ASR program unique is the amount of information that is available. The suite of recently deployed instruments significantly expands the scope of the program (Mather and Voyles, 2013). The breadth of this information allows us to pose sophisticated process-level questions. Our ASR project, now entering its third year, has been about developing algorithms that use this information in ways that fully exploit the new capacity of the ARM data streams. Using optimal estimation (OE) and Markov Chain Monte Carlo (MCMC) inversion techniques, we have developed methodologies that allow us to use multiple radar frequency Doppler spectramore » along with lidar and passive constraints where data streams can be added or subtracted efficiently and algorithms can be reformulated for various combinations of hydrometeors by exchanging sets of empirical coefficients. These methodologies have been applied to boundary layer clouds, mixed phase snow cloud systems, and cirrus.« less
Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency
NASA Astrophysics Data System (ADS)
Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang
2013-02-01
ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the vertical structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based vertical profile of reflectivity correction approach in improving NEXRAD-based QPE.
A Single-Radar Technique for Estimating the Winds in Tropical Cyclones.
NASA Astrophysics Data System (ADS)
Tuttle, John; Gall, Robert
1999-04-01
A method for determining horizontal wind speeds in hurricanes using ground-based radars is presented and evaluated. The method makes use of the tracking reflectivity echos by correlation (TREC) method where individual features in radar reflectivity are tracked, from radar sweeps several minutes apart, by finding the maxima in the cross-correlation function between the two times. This method has been applied successfully in determining motions within the clear boundary layer where reflectors are insects and refractive index variations, but it generally has failed when applied to determining air motions by tracking precipitation elements in strong environmental shear. It appears to work in the lower few kilometers of the hurricane where the vertical wind shear is relatively weak.Examples are presented where the TREC algorithm is applied to three landfalling hurricanes: Hurricanes Hugo and Erin in the United States and Typhoon Herb in Taiwan. The results from Hugo, where the radar data were provided by a WSR-57, were compared to in situ wind measurements by the National Oceanic and Atmospheric Administration P-3 research aircraft. In Erin and Herb, Doppler radar data are available and the radial winds (with respect to the radar) computed by TREC could be compared.The results were very promising. In Hugo, the agreement between the TREC analysis and the aircraft winds was generally to within 10%. In Erin and Herb less than 20% of the difference between radial-Doppler wind estimations by TREC and the actual Doppler wind measurements was greater than 5 m s-1. When Herb was closer to the radar, however, the error rates were much higher due to the interference of ground clutter.TREC promises to provide a quick and reasonably accurate method for continuously computing fully two-dimensional winds from land-based radars as hurricanes approach the coast. Such information would complement that provided by Doppler radars where it could estimate the tangential component to the radar that is not observed using Doppler radar techniques, and it can provide useful wind information from reflectivity beyond the more limited range where the Doppler velocities can be determined. It can also retrieve wind information in hurricanes from conventional radar data.
Mesoscale variability of free tropospheric humidity near San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
White, A. B.; Fairall, C. W.; Thomson, D. W.
1990-01-01
Humidity variability at the top of the marine boundary layer (MBL) and in the free troposphere was examined using a variety of measurements taken on and around San Nicolas Island (SNI) during the FIRE IFO in July, 1987. Doppler wind profiler reflectivity recorded at two minute time resolution has provided the most continuous record and detail of small scale humidity fluctuations. Rawinsonde data were available from both an island site and the research vessel Point Sur. The information extractable from these sources is somewhat limited due to the frequency of launches (3 to 4/day at SNI and 6/day on the Point Sur). Some additional data were available from instrumented aircraft although scheduling flights in the neighborhood of the island was difficult due to restrictions on the air space. Other relevant data were collected at SNI near the radar and rawinsonde launch sites. A continuous record of cloud base altitude was logged by a ceilometer. Doppler acoustic sounder (sodar) reflectivity data provided a good record of inversion height. The sodar also monitored turbulent temperature fluctuations in the MBL. A small ground station recorded hourly averages of solar irradiance and downward longwave irradiance. The analysis in progress of the various data sets for two adjacent two day periods from 11 July to 14 July is described. The earlier period was chosen because the marine inversion was unusually high and there was increased frequency of rawinsonde launches at SNI. The later period was chosen because of the significant descent with time of an elevated inversion indicated by the radar data. Throughout the four day period, but especially in the first half, the turbulent humidity structure calculated from Doppler radar reflectivity shows excellent agreement with humidity profiles evaluated from rawinsonde data.
Development of a Low-Cost UAV Doppler Radar Data System
NASA Technical Reports Server (NTRS)
Knuble, Joseph; Li, Lihua; Heymsfield, Gerry
2005-01-01
A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.
EarthCARE mission, overview, implementation approach and development status
NASA Astrophysics Data System (ADS)
Lefebvre, Alain; Hélière, Arnaud; Pérez Albiñana, Abelardo; Wallace, Kotska; Maeusli, Damien; Lemanczyk, Jerzy; Lusteau, Cyrille; Nakatsuka, Hirotaka; Tomita, Eiichi
2016-05-01
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere in order to include them correctly and reliably in climate and numerical weather prediction models. The satellite will be placed in a Sun-Synchronous Orbit at about 400 Km altitude and14h00 mean local solar time. The payload consisting of a High Spectral Resolution UV Atmospheric LIDar (ATLID), a 94GHz Cloud Profiling Radar (CPR) with Doppler capability, a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer will provide information on cloud and aerosol vertical structure of the atmosphere along the satellite track as well as information about the horizontal structures of clouds and radiant flux from sub-satellite cells. The presentation will cover the configuration of the satellite with its four instruments, the mission implementation approach, an overview of the ground segment and the overall mission development status.
Software For Clear-Air Doppler-Radar Display
NASA Technical Reports Server (NTRS)
Johnston, Bruce W.
1990-01-01
System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.
Radar research on thunderstorms and lightning
NASA Technical Reports Server (NTRS)
Rust, W. D.; Doviak, R. J.
1982-01-01
Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized lightning paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation predictions based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, lightning and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.
AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar
NASA Astrophysics Data System (ADS)
Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff
2017-09-01
For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.
Remote rainfall sensing for landslide hazard analysis
Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay
2001-01-01
Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.
ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng
It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model outputmore » and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP wherever possible. The ARM simulator is written in Fortran 90, just as is the COSP. It is incorporated into COSP to facilitate use by the climate modeling community. In order to evaluate simulator output, the observational counterpart of the simulator output, radar reflectivity-height histograms (CFAD) is also generated from the ARM observations. This report includes an overview of the ARM cloud radar simulator VAP and the required simulator-oriented ARM radar data product (radarCFAD) for validating simulator output, as well as a user guide for operating the ARM radar simulator VAP.« less
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-01-01
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-04-29
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar
NASA Technical Reports Server (NTRS)
Constaninides, N. J.; Bicknell, T. J. (Inventor)
1980-01-01
A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.
The first observed cloud echoes and microphysical parameter retrievals by China's 94-GHz cloud radar
NASA Astrophysics Data System (ADS)
Wu, Juxiu; Wei, Ming; Hang, Xin; Zhou, Jie; Zhang, Peichang; Li, Nan
2014-06-01
By using the cloud echoes first successfully observed by China's indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar reflectivity factor is larger (over -10 dBZ). (3) The radar's sensitivity is comparatively higher because the minimum radar reflectivity factor is about -35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle effective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar reflectivity factor.
Singh, Aditya; Lubecke, Victor
2010-01-01
A harmonic radar employing the use of harmonic passive RF tags can be successfully used to isolate the human respiration from environmental clutter. This paper describes the successful use of heterodyne receiver architecture with Doppler radar to track the heart-rate of a human being using passive body-worn harmonic tags in presence of a controlled noise generator at distances up to 120 cm. The heterodyne system results have been compared with those of a conventional Doppler radar for cardiopulmonary monitoring that fails to isolate the noise from heart-rate in presence of a noise source.
Use of speckle for determining the response characteristics of Doppler imaging radars
NASA Technical Reports Server (NTRS)
Tilley, D. G.
1986-01-01
An optical model is developed for imaging optical radars such as the SAR on Seasat and the Shuttle Imaging Radar (SIR-B) by analyzing the Doppler shift of individual speckles in the image. The signal received at the spacecraft is treated in terms of a Fresnel-Kirchhoff integration over all backscattered radiation within a Huygen aperture at the earth. Account is taken of the movement of the spacecraft along the orbital path between emission and reception. The individual points are described by integration of the point source amplitude with a Green's function scattering kernel. Doppler data at each point furnishes the coordinates for visual representations. A Rayleigh-Poisson model of the surface scattering characteristics is used with Monte Carlo methods to generate simulations of Doppler radar speckle that compare well with Seasat SAR data SIR-B data.
An airport wind shear detection and warning system using Doppler radar: A feasibility study
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Blick, E. F.; Elmore, K. L.
1981-01-01
A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path.
NASA Astrophysics Data System (ADS)
Yang, Qi; Deng, Bin; Wang, Hongqiang; Zhang, Ye; Qin, Yuliang
2018-01-01
Imaging, classification, and recognition techniques of ballistic targets in midcourse have always been the focus of research in the radar field for military applications. However, the high velocity translation of ballistic targets will subject range profile and Doppler to translation, slope, and fold, which are especially severe in the terahertz region. Therefore, a two-step translation compensation method based on envelope alignment is presented. The rough compensation is based on the traditional envelope alignment algorithm in inverse synthetic aperture radar imaging, and the fine compensation is supported by distance fitting. Then, a wideband imaging radar system with a carrier frequency of 0.32 THz is introduced, and an experiment on a precession missile model is carried out. After translation compensation with the method proposed in this paper, the range profile and the micro-Doppler distributions unaffected by translation are obtained, providing an important foundation for the high-resolution imaging and micro-Doppler extraction of the terahertz radar.
NASA Astrophysics Data System (ADS)
Hirsikko, Anne; Brus, David; O'Connor, Ewan J.; Filioglou, Maria; Komppula, Mika; Romakkaniemi, Sami
2017-04-01
In the high and mid latitudes super-cooled liquid water layers are frequently observed on top of clouds. These layers are difficult to forecast with numerical weather prediction models, even though, they have strong influence on atmospheric radiative properties, cloud microphysical properties, and subsequently, precipitation. This work investigates properties of super-cooled liquid water layer topped sub-arctic clouds and precipitation observed with ground-based in-situ (cloud probes) and remote-sensing (a cloud radar, Doppler and multi-wavelength lidars) instrumentation during two-month long Pallas Cloud Experiment (PaCE 2015) in autumn 2015. Analysis is based on standard Cloudnet scheme supplemented with new retrieval products of the specific clouds and their properties. Combination of two scales of observation provides new information on properties of clouds and precipitation in the sub-arctic Pallas region. Current status of results will be presented during the conference. The authors acknowledge financial support by the Academy of Finland (Centre of Excellence Programme, grant no 272041; and ICINA project, grant no 285068), the ACTRIS2 - European Union's Horizon 2020 research and innovation programme under grant agreement No 654109, the KONE foundation, and the EU FP7 project BACCHUS (grant no 603445).
Radar Doppler Processing with Nonuniform Sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
2017-07-01
Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.
NASA Astrophysics Data System (ADS)
Argemí, O.; Bech, J.; Pineda, N.; Rigo, T.
2009-09-01
Remote sensing observing systems of the Meteorological Service of Catalonia (SMC) have been upgraded during the last years with newer technologies and enhancements. Recent changes on the weather radar network have been motivated to improve precipitation estimates by radar as well as meteorological surveillance in the area of Catalonia. This region has approximately 32,000 square kilometres and is located in the NE of Spain, limited by the Pyrenees to the North (with mountains exceeding 3000 m) and by the Mediterranean Sea to the East and South. In the case of the total lightning (intra-cloud and cloud-to-ground lightning) detection system, the current upgrades will assure a better lightning detection efficiency and location accuracy. Both upgraded systems help to enhance the tracking and the study of thunderstorm events. Initially, the weather radar network was designed to cover the complex topography of Catalonia and surrounding areas to support the regional administration, which includes civil protection and water authorities. The weather radar network was upgraded in 2008 with the addition of a new C-band Doppler radar system, which is located in the top of La Miranda Mountain (Tivissa) in the southern part of Catalonia enhancing the coverage, particularly to the South and South-West. Technically the new radar is very similar to the last one installed in 2003 (Creu del Vent radar), using a 4 m antenna (i.e., 1 degree beam width), a Vaisala-Sigmet RVP-8 digital receiver and processor and a low power transmitter using a Travelling Wave Tube (TWT) amplifier. This design allows using pulse-compression techniques to enhance radial resolution and sensitivity. Currently, the SMC is upgrading its total lightning detection system, operational since 2003. While a fourth sensor (Amposta) was added last year to enlarge the system coverage, all sensors and central processor will be upgraded this year to the new Vaisala’s total lightning location technology. The new LS8000 sensor configuration integrates two lightning detection technologies: VHF interferometry technology provides high performance in detection of cloud lightning, while LF combined magnetic direction finding and time-of-arrival technology offers a highest detection efficiency and accurate location for cloud-to-ground lightning strokes. The presentation describes in some detail all this innovation in remote sensing observing networks and also reports some examples over Catalonia which is frequently affected by different types of convective events, including severe weather (large hail, tornadic events, etc.) and heavy rainfall episodes.
Ice fall streaks in a warm front . An S-band polarimetric radar study
NASA Astrophysics Data System (ADS)
Keppas, Stavros; Crosier, Jonathan; Choularton, Thomas; Bower, Keith
2017-04-01
On 21st January 2009, a maturing low pressure system approached the UK along with several associated systems. An observational research flight (part of the APPRAISE-Clouds project) took place in southern England, sampling the leading warm front of this system. During the flight, the Warm Conveyor Belt (WCB) was well depicted by the radar Doppler velocity parameter. Simultaneously, extensive ice fall streaks appeared on ZDR RHI scans as long slanted zones of high ZDR. It seems that there is a connection between the WCB activity and the formation and structure of the ice fall streaks. The Kelvin-Helmholtz instability caused by the WCB played a key role on their formation. Moreover, in-situ measurements showed that the ice fall streaks had a very specific substance and they can affect the surface precipitation.
NASA Astrophysics Data System (ADS)
Lamer, K.; Fridlind, A. M.; Luke, E. P.; Tselioudis, G.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.
2016-12-01
The presence of supercooled liquid in clouds affects surface radiative and hydrological budgets, especially at high latitudes. Capturing these effects is crucial to properly quantifying climate sensitivity. Currently, a number of CGMs disagree on the distribution of cloud phase. Adding to the challenge is a general lack of observations on the continuum of clouds, from high to low-level and from warm to cold. In the current study, continuous observations from 2011 to 2014 are used to evaluate all clouds produced by the GISS ModelE GCM over the ARM North Slope of Alaska site. The International Satellite Cloud Climatology Project (ISCCP) Global Weather State (GWS) approach reveals that fair-weather (GWS 7, 32% occurrence rate), as well as mid-level storm related (GWS 5, 28%) and polar (GWS 4, 14%) clouds, dominate the large-scale cloud patterns at this high latitude site. At higher spatial and temporal resolutions, ground-based cloud radar observations reveal a majority of single layer cloud vertical structures (CVS). While clear sky and low-level clouds dominate (each with 30% occurrence rate) a fair amount of shallow ( 10%) to deep ( 5%) convection are observed. Cloud radar Doppler spectra are used along with depolarization lidar observations in a neural network approach to detect the presence, layering and inhomogeneity of supercooled liquid layers. Preliminary analyses indicate that most of the low-level clouds sampled contain one or more supercooled liquid layers. Furthermore, the relationship between CVS and the presence of supercooled liquid is established, as is the relationship between the presence of supercool liquid and precipitation susceptibility. Two approaches are explored to bridge the gap between large footprint GCM simulations and high-resolution ground-based observations. The first approach consists of comparing model output and ground-based observations that exhibit the same column CVS type (i.e. same cloud depth, height and layering). Alternatively, the second approach consists of comparing model output and ground-based observations that exhibit the same large-scale GWS type (i.e. same cloud top pressure and optical depth patterns) where ground-based observations are associated to large-scale GWS every 3 hours using the closest satellite overpass.
NASA Astrophysics Data System (ADS)
Roberto, N.; Baldini, L.; Facheris, L.; Chandrasekar, V.
2014-07-01
Several satellite missions employing X-band synthetic aperture radar (SAR) have been activated to provide high-resolution images of normalized radar cross-sections (NRCS) on land and ocean for numerous applications. Rainfall and wind affect the sea surface roughness and consequently the NRCS from the combined effects of corrugation due to impinging raindrops and surface wind. X-band frequencies are sensitive to precipitation: intense convective cells result in irregularly bright and dark patches in SAR images, masking changes in surface NRCS. Several works have modeled SAR images of intense precipitation over land; less adequately investigated is the precipitation effect over the sea surface. These images are analyzed in this study by modeling both the scattering and attenuation of radiation by hydrometeors in the rain cells and the NRCS surface changes using weather radar precipitation estimates as input. The reconstruction of X-band SAR returns in precipitating clouds is obtained by the joint utilization of volume reflectivity and attenuation, the latter estimated by coupling ground-based radar measurements and an electromagnetic model to predict the sea surface NRCS. Radar signatures of rain cells were investigated using X-band SAR images collected from the COSMO-SkyMed constellation of the Italian Space Agency. Two case studies were analyzed. The first occurred over the sea off the coast of Louisiana (USA) in summer 2010 with COSMO-SkyMed (CSK®) ScanSar mode monitoring of the Deepwater Horizon oil spill. Simultaneously, the NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the same portion of ocean. The second case study occurred in Liguria (Italy) on November 4, 2011, during an extraordinary flood event. The same events were observed by the Bric della Croce C-band dual polarization radar located close to Turin (Italy). The polarimetric capability of the ground radars utilized allows discrimination of the composition of the precipitation volume, in particular distinguishing ice from rain. Results shows that for space-borne SAR at X-band, effects due to precipitation on water surfaces can be modeled using coincident ground-based weather radar measurements.
Helicopter discrimination apparatus for the murine radar
Webb, Jr., John G.; Gray, Roger M.
1977-01-01
A helicopter discrimination apparatus for a radar utilizing doppler filtering to discriminate between a missile and ground clutter. The short duration of the doppler filter pulses which are emitted by helicopter rotor blades are processed to prevent false alarms, thus allowing the radar-protected helicopter to operate in formation with other helicopters while maintaining protection against infra-red-seeking missiles.
Coordinated Radar and Aircraft Observations of Turbulence.
1981-05-26
VELOCITY (il/) Jig. 10. Spectrum at two points having excessive radar c / 23 ACKNOWLEDGMENr The direction and support of Mr. 1. Goldman of the FAA...of Doppler Weather Radar to Turbulence Measure- ments Which Affect Aircraft," FAA Report RD-77-145 (March 1977). 2. R. T. Strauch, "Applications of...Meteorological Doppler Radar for Weather- Surveillance Near Air Terminals", IEEE Trans. Geosci. Electron., G15-17, 4 (1979). 3. P. B. MacCready
Feasibility assessment of Doppler radar long-term physiological measurements.
Massagram, Wansuree; Lubecke, Victor M; Boric-Lubecke, Olga
2011-01-01
In this paper we examine the feasibility of applying doppler radar technique for a long-term health monitoring. Doppler radar was used to detect and eliminate periods of significant motion. This technique was verified using a human study on 17 subjects, and it was determined that for 15 out of 17 subjects there was no significant motion for over 85% of the measurement interval in supine positions. Majority of subjects exhibited significantly less motion in supine position, which is promising for sleep monitoring, and monitoring of hospitalized patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, Adam; Zipser, Edward J.; Fridlind, Ann M.
2014-12-18
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Making snow mass more realistically proportional to D2 rather than D3 eliminates unrealistically large snow reflectivities over 40 dBZ in some simulations. Graupel, unlike snow, produces high biased reflectivity in all simulations, which is partly a result of parameterized microphysics, but also partly a result of overly intense simulated updrafts. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of liquid condensate, often rain, lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. The strongest simulated updraft cores are nearly undiluted, with some of the strongest showing supercell characteristics during the multicellular (pre-squall) stage of the event. Decreasing horizontal grid spacing from 900 to 100 meters slightly weakens deep updraft vertical velocity and moderately decreases the amount of condensate aloft, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may additionally be a product of unrealistic interactions between convective dynamics, parameterized microphysics, and the large-scale model forcing that promote different convective strengths than observed.« less
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.
2017-12-01
It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the projected area is concentrated at larger sizes. Simulations across the parameter space are also compared with MODIS collection 6 retrievals and forward simulations of cloud radar reflectivity and mean Doppler velocity. Results motivate further in situ and laboratory measurements to narrow parameter uncertainties in models.
Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Curlander, John C.
1991-01-01
Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.
Directional ocean wave measurements in a coastal setting using a focused array imaging radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frasier, S.J.; Liu, Y.; Moller, D.
1995-03-01
A unique focused array imaging Doppler radar was used to measure directional spectra of ocean surface waves in a nearshore experiment performed on the North Carolina Outer Banks. Radar images of the ocean surface`s Doppler velocity were used to generate two dimensional spectra of the radial component of the ocean surface velocity field. These are compared to simultaneous in-situ measurements made by a nearby array of submerged pressure sensors. Analysis of the resulting two-dimensional spectra include comparisons of dominant wave lengths, wave directions, and wave energy accounting for relative differences in water depth at the measurement locations. Limited estimates ofmore » the two-dimensional surface displacement spectrum are derived from the radar data. The radar measurements are analogous to those of interferometric synthetic aperture radars (INSAR), and the equivalent INSAR parameters are shown. The agreement between the remote and in-situ measurements suggests that an imaging Doppler radar is effective for these wave measurements at near grazing incidence angles.« less
Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2
NASA Astrophysics Data System (ADS)
Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.
2017-12-01
The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.
C-band radar pulse Doppler error: Its discovery, modeling, and elimination
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Dempsey, D. J.
1978-01-01
The discovery of a C Band radar pulse Doppler error is discussed and use of the GEOS 3 satellite's coherent transponder to isolate the error source is described. An analysis of the pulse Doppler tracking loop is presented and a mathematical model for the error was developed. Error correction techniques were developed and are described including implementation details.
Doppler Feature Based Classification of Wind Profiler Data
NASA Astrophysics Data System (ADS)
Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary
2017-01-01
Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.
Raman lidars for a better understanding of pollution in the Arctic System (PARCS)
NASA Astrophysics Data System (ADS)
Patrick, Chazette; Jean-Christophe, Raut; Julien, Totems; Xiaoxia, Shang; Christophe, Caudoux; Julien, Delanoë; Kathy, Law
2018-04-01
The development of oil and gas drilling and the opening of new shipping routes, in the Barents and Norway seas, poses new challenges for the Arctic environment due to the impact of air pollution emissions on climate and air quality. To improve our knowledge of the interactions between aerosols, water vapor and cloud cover, within the French PARCS (Pollution in the ARCtic System) project, Raman lidar observations were performed from the ground and from an ultra-light aircraft near the North Cape in northern Norway, and coupled with measurements from a 95 GHz ground-based Doppler radar.
On the Electrification of Pyrocumulus Clouds
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Rutledge, Steven A.; Dolan, Brenda; Krehbiel, Paul; Rison, William; Lindsey, Daniel T.
2013-01-01
The electrification (or lack thereof) of pyrocumulus clouds is examined for several different wildfires that occurred during 2012-2013. For example, pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all occurred during summer 2012) electrified and produced small intracloud discharges whenever the smoke plumes grew to high altitudes (over 10 km above mean sea level, or MSL). This occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. In the Hewlett Gulch case, the fire growth led to increased updrafts within the plume, as inferred by multiple-Doppler radar syntheses, which led to the vertical development and subsequent electrification - a life cycle as short as 30 minutes. The lightning, detected by a three-dimensional lightning mapping network, was favored in high-altitude regions (10 km MSL) containing modest reflectivities (25 dBZ and lower), 0 dB differential reflectivity, and reduced correlation coefficient (0.6-0.7). This indicated the likely presence of ice particles (crystals and aggregates, possibly rimed) mixed with ash. Though neither multiple-Doppler nor polarimetric observations were available during the electrification of the High Park and Waldo Canyon plumes, their NEXRAD observations showed reflectivity structures consistent with Hewlett Gulch. In addition, polarimetric and multiple-Doppler scanning of unelectrified High Park plumes indicated only irregularly shaped ash, and not ice, was present (i.e., reflectivities < 25 dBZ, differential reflectivity > 5 dB, correlation < 0.4), and there was no broaching of the 10 km altitude. Based on these results, the electrification likely was caused by ice-based processes that did not involve significant amounts of graupel. Results for pyrocumulus clouds above notable 2013 wildfires that also experienced rapid growth (e.g., Black Forest, Yarnell Hill, West Fork, Tres Lagunas, etc.) will be compared against the 2012 cases, with special emphasis on polarimetric NEXRAD and available lightning measurements, in order to better understand the physical processes responsible for pyrocumulus electrification.
X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform
NASA Technical Reports Server (NTRS)
Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon
2007-01-01
The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar modified from a marine radar transceiver. It is capable of measuring vertical reflectivity and velocity profile while being a lower-cost, smaller size, and lighter weight version of the NASA ER-2 Doppler Radar (EDOP), which has flown during many NASA field campaigns and has provided valuable scientific information on hurricanes and weather phenomena. Unfortunately, EDOP is too large and heavy for most UAV platforms, but the experience gained with this instrument provided us with the heritage to build a new low-cost, light-weight, smaller system that will be capable of flying on UAVs. The scanning subsystem uses a TWT transmitter and provides measurements of 3D reflectivity/wind fields in-clouds. Conical scanning of the radar beam at a 35 deg. incidence angle will also provide information of surface wind speed and direction derived from the surface return over a single 360 deg. sweep. URAD data system will be Linux based with the capability of autonomous operation. It will utilize cutting edge digital receiver and FPGA technologies to carry out the data acquisition and processing tasks. High speed navigation data from the aircraft will also be captured and saved along with radar data for 3D measurement field reconstruction and aircraft motion correction. There is a tremendous potential for UAVs to carry down-looking weather radars for measurements of reflectivity, horizontal and vertical winds from tropical storms. With operation from HUAV platforms, the dual beam X-band radar under development promises to provide greatly needed information for tropical storm research.
The EDOP radar system on the high-altitude NASA ER-2 aircraft
Heymsfield, G.M.; Bidwell, S.W.; Caylor, I.J.; Ameen, S.; Nicholson, S.; Boncyk, W.; Miller, L.; Vandemark, D.; Racette, P.E.; Dod, L.R.
1996-01-01
The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-2 Doppler radar (EDOP) has been developed and flown on the ER-2 aircraft. EDOP is a fully coherent Doppler weather radar with fixed nadir and forward pointing (33?? off nadir) beams that map out Doppler winds and reflectivities in the vertical plane along the aircraft motion vector. Doppler winds from the two beams can be used to derive vertical and along-track air motions. In addition, the forward beam provides linear depolarization measurements that are useful in discriminating microphysical characteristics of the precipitation. This paper deals with a general description of the EDOP instrument including the measurement concept, the system configuration and hardware, and recently obtained data examples from the instrument. The combined remote sensing package on the ER-2, along with EDOP, provides a unique platform for simulating spaceborne remote sensing of precipitation.
NASA Technical Reports Server (NTRS)
Lee, Jean T.
1987-01-01
As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.
NASA Technical Reports Server (NTRS)
Kessinger, C. J.; Wilson, J. W.; Weisman, M.; Klemp, J.
1984-01-01
Data from three NCAR radars are used in both single and dual Doppler analyses to trace the evolution of a June 30, 1982 Colorado convective storm containing downburst-type winds and strong vortices 1-2 km in diameter. The analyses show that a series of small circulations formed along a persistent cyclonic shear boundary; at times as many as three misocyclones were present with vertical vorticity values as large as 0.1/s using a 0.25 km grid interval. The strength of the circulations suggests the possibility of accompanying tornadoes or funnels, although none were observed. Dual-Doppler analyses show that strong, small-scale downdrafts develop in close proximity to the misocyclones. A midlevel mesocyclone formed in the same general region of the storm where the misocylones later developed. The observations are compared with numerical simulations from a three-dimensional cloud model initialized with sounding data from the same day.
Airborne Doppler radar detection of low altitude windshear
NASA Technical Reports Server (NTRS)
Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.
1990-01-01
As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...
2017-03-29
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment.
NASA Astrophysics Data System (ADS)
Silverman, Bernard A.; Sukarnjanaset, Wathana
2000-07-01
A randomized, warm-rain enhancement experiment was carried out during 1995-98 in the Bhumibol catchment area in northwestern Thailand. The experiment was conducted in accordance with a randomized, floating single-target design. The seeding targets were semi-isolated, warm convective clouds, contained within a well-defined experimental unit, that, upon qualification, were selected for seeding or not seeding with calcium chloride particles in a random manner. The seeding was done by dispensing the calcium chloride particles at an average rate of 21 kg km1 per seeding pass into the updrafts of growing warm convective clouds (about 1-2 km above cloud base) that have not yet developed or, at most, have just started to develop a precipitation radar echo. The experiment was carried out by the Bureau of Royal Rainmaking and Agricultural Aviation (BRRAA) of the Ministry of Agriculture and Cooperatives as part of its Applied Atmospheric Resources Research Program, Phase 2.During the 4 yr of the experiment, a total of 67 experimental units (34 seeded and 33 nonseeded units) were qualified in accordance with the experimental design. Volume-scan data from a 10-cm Doppler radar at 5-min intervals were used to track each experimental unit, from which various radar-estimated properties of the experimental units were obtained. The statistical evaluation of the experiment was based on a rerandomization analysis of the single ratio of seeded to unseeded experimental unit lifetime properties. In 1997, the BRRAA acquired two sophisticated King Air 350 cloud-physics aircraft, providing the opportunity to obtain physical measurements of the aerosol characteristics of the environment in which the warm clouds grow, of the hydrometeor characteristics of seeded and unseeded clouds, and of the calcium chloride seeding plume dimensions and particle size distribution-information directly related to the effectiveness of the seeding conceptual model that was not directly available up to then.The evaluation of the Thailand warm-rain enhancement experiment has provided statistically significant evidence and supporting physical evidence that the seeding of warm convective clouds with calcium chloride particles produced more rain than was produced by their unseeded counterparts. An exploratory analysis of the time evolution of the seeding effects resulted in a significant revision to the seeding conceptual model.
Non-contact multi-radar smart probing of body orientation based on micro-Doppler signatures.
Li, Yiran; Pal, Ranadip; Li, Changzhi
2014-01-01
Micro-Doppler signatures carry useful information about body movements and have been widely applied to different applications such as human activity recognition and gait analysis. In this paper, micro-Doppler signatures are used to identify body orientation. Four AC-coupled continuous-wave (CW) smart radar sensors were used to form a multiple-radar network to carry out the experiments in this paper. 162 tests were performed in total. The experiment results showed a 100% accuracy in recognizing eight body orientations, i.e., facing north, northeast, east, southeast, south, southwest, west, and northwest.
Occhipinti, Giovanni; Aden-Antoniow, Florent; Bablet, Aurélien; Molinie, Jean-Philippe; Farges, Thomas
2018-01-24
Surface waves emitted after large earthquakes are known to induce atmospheric infrasonic waves detectable at ionospheric heights using a variety of techniques, such as high frequency (HF) Doppler, global positioning system (GPS), and recently over-the-horizon (OTH) radar. The HF Doppler and OTH radar are particularly sensitive to the ionospheric signature of Rayleigh waves and are used here to show ionospheric perturbations consistent with the propagation of Rayleigh waves related to 28 and 10 events, with a magnitude larger than 6.2, detected by HF Doppler and OTH radar respectively. A transfer function is introduced to convert the ionospheric measurement into the correspondent ground displacement in order to compare it with classic seismometers. The ground vertical displacement, measured at the ground by seismometers, and measured at the ionospheric altitude by HF Doppler and OTH radar, is used here to compute surface wave magnitude. The ionospheric surface wave magnitude (M s iono ) proposed here introduces a new way to characterize earthquakes observing the signature of surface Rayleigh waves in the ionosphere. This work proves that ionospheric observations are useful seismological data to better cover the Earth and to explore the seismology of the Solar system bodies observing the ionosphere of other planets.
A monitoring study of the 1998 rainstorm along the Yangtze River of China by using TIPEX data
NASA Astrophysics Data System (ADS)
Wang, Jizhi; Yang, Yuanqin; Xu, Xiangde; Zhang, Guangzhi
2003-05-01
By using data from the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998, including enhanced soundings, surface observations, data from captive balloons, remote sensing, and Doppler radar (China and Japan cooperative study of GAME/ Tibet), a monitoring study on the generation and moving track of the cumulus convective systems over the Tibetan Plateau is made, and the relationship between the evolution of cloud systems over the Tibetan Plateau and 1998 flooding in China is studied. The results are as follows. 1) Analyzing the image animation and Hovmoller diagram of satellite TBB data shows that the rainstorms for the Yangtze River in the last ten days of July 1998 can be tracked regionally to the Tibetan Plateau. 2) For the period of cloud clusters passing through the Amdo station (18 19 July), monitoring observations by Doppler radar is made. The monitoring of radar echoes shows that the developing, eastward motion, and strengthening of the echoes can be frequently observed in the middle of the Tibetan Plateau. An integrated analysis and tracking of the generation, disappearance, development, and eastward motion of these convective systems by using multiple instruments is very valuable for diagnosing and predicting the influence of the plateau systems on the downstream weather situation. 3) The integrated analysis of space-time cross sections of the enhanced upper air and surface observations from TIPEX during the intensified observation period shows that the frequent development of convective clouds over the Tibetan Plateau is related with the quasi-stationary convergence of surface winds. The dynamic convergence of surface winds, the vertical shear in the upper air, and transportation of water vapor due to increasing humidity over the Tibetan Plateau played an important role in the developing and strengthening of rainstorms over the Yangtze River in 1998. 4) Meso-sale filtration analysis of the vertical distribution of water vapor over the Tibetan Plateau indicates that alternating changes of high and low water vapor distribution over the Tibetan Plateau reveals clearly that the sub-synoptic scale waves exist, whose lifetime is on the order of the hours. The revelation of the eastward motion of mesoscale waves from the Tibetan Plateau indicates that the plateau systems obviously influenced the rainstorms over the Yangtze River valley in 1998.
Cloud-to-Ground Lightning Characteristics of a Major Tropical Cyclone Tornado Outbreak
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven J.
1999-01-01
A comprehensive analysis has been conducted of the cloud-to-ground lightning activity occurring within a landfalling tropical cyclone that produced an outbreak of strong and damaging tornadoes. Radar data indicate that 12 convective cells were responsible for 29 tornadoes, several of which received an F3 intensity rating, in the southeastern United States on 16 August 1994 within the remnants of Tropical Storm Beryl. Of these 12 tornadic storms, the most active cell produced 315 flashes over a 5.5 hour period, while the other storms were less active. Three tornadic storms failed to produce any CG lightning at all. In general, the tornadic storms were more active electrically than other non-tornadic cells within Beryl's remnants, although the flash rates were rather modest by comparison with significant midlatitude severe storm events. Very few positive polarity flashes were found in the Beryl outbreak. During some of the stronger tornadoes, CG flash rates in the parent storms showed sharp transient decreases. Doppler radar data suggest the stronger tornadic storms were small supercells, and the lightning data indicate these storms exhibited lightning characteristics similar to those found in heavy-precipitation supercell storms.
Mercuri, Marco; Liu, Yao-Hong; Lorato, Ilde; Torfs, Tom; Bourdoux, Andre; Van Hoof, Chris
2017-06-01
A Doppler radar operating as a Phase-Locked-Loop (PLL) in frequency demodulator configuration is presented and discussed. The proposed radar presents a unique architecture, using a single channel mixer, and allows to detect contactless vital signs parameters while solving the null point issue and without requiring the small angle approximation condition. Spectral analysis, simulations, and experimental results are presented and detailed to demonstrate the feasibility and the operational principle of the proposed radar architecture.
Assimilation of Cloud Information in Numerical Weather Prediction Model in Southwest China
NASA Astrophysics Data System (ADS)
HENG, Z.
2016-12-01
Based on the ARPS Data Analysis System (ADAS), Weather Research and Forecasting (WRF) model, simulation experiments from July 1st 2015 to August 1st 2015 are conducted in the region of Southwest China. In the assimilation experiment (EXP), datasets from surface observations are assimilated, cloud information from weather Doppler radar, Fengyun-2E (FY-2E) geostationary satellite are retrieved by using the complex cloud analysis scheme in the ADAS, to insert microphysical variables and adjust the humility structure in the initial condition. As a control run (CTL), datasets from surface observations are assimilated, but no cloud information is used in the ADAS. The simulation result of a rainstorm caused by the Southwest Vortex during 14-15 July 2015 shows that, the EXP run has a better capability in representing the shape and intensity of precipitation, especially the center of rainstorm. The one-month inter-comparison of the initial and prediction results between the EXP and CTL runs reveled that, EXP runs can present a more reasonable phenomenon of rain and get a higher score in the rain prediction. Keywords: NWP, rainstorm, Data assimilation
Characteristics of Moderately Deep Tropical Convection Observed by Dual-Polarimetric Radar
NASA Astrophysics Data System (ADS)
Powell, Scott
2017-04-01
Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct observational analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite vertical profiles of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating composite radial velocity profiles within isolated convection is made. When the mean flow (determined from sounding data) is subtracted, a clear picture of radial velocities inside a composite representation of convection is obtained. As expected, Doppler radar data shows convergence in the lowest 1-2 km of isolated convective elements and divergence in the upper portions of the clouds. The composite velocity profiles can be used to compute crude profiles of horizontal divergence. Because the analysis uses data along radar rays (with gate size of 150 m) instead of data interpolated to a Cartesian grid, features in composited clouds can be observed at high vertical and horizontal resolution.
Monitoring water phase dynamics in winter clouds
NASA Astrophysics Data System (ADS)
Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.
Monitoring water phase dynamics in winter clouds
Campos, Edwin F.; Ware, Randolph; Joe, Paul; ...
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener–Bergeron–Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central Highmore » Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and now casting the evolution of supercooled droplets in winter clouds.« less
A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data
NASA Astrophysics Data System (ADS)
Norin, L.
2015-02-01
In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in the radar line of sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on 6 years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. It is shown that this in part can be explained by detection by the radar sidelobes and by scattering off increased levels of dust and turbulence. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. It is shown that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced for all spectral moments.
A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data
NASA Astrophysics Data System (ADS)
Norin, L.
2014-08-01
In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in radar line-of-sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind- and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on six years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. We show that this is partly explained by changes in the atmospheric refractive index, bending the radar beams closer to the ground. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. We show that when weather echoes give rise to higher reflectivity values than that of the wind farm, the negative impact of the wind turbines disappears for all spectral moments.
Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake.
Shariff, Karim
2016-12-01
Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.
Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake
NASA Technical Reports Server (NTRS)
Shariff, Karim
2016-01-01
Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.
Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake
Shariff, Karim
2017-01-01
Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR. PMID:28804200
NASA Astrophysics Data System (ADS)
Majurec, Ninoslav
In the spring of 2001 the Microwave Remote Sensing Laboratory (MIRSL) at the University of Massachusetts began the development of an advanced Multi-Frequency Radar (AMFR) system for studying clouds and precipitation. This mobile radar was designed to consist of three polarimetric Doppler subsystems operating at Ku-band (13.4 GHz), Ka-band (35.6 GHz) and W-band (94.92 GHz). This combination of frequency bands allows a measurement of a wide range of atmospheric targets ranging from weakly reflecting clouds to strong precipitation. The antenna beamwidths at each frequency were intentionally matched, ensuring consistent sampling volume. Multi-frequency radar remote sensing techniques are not widely used because few multi-frequency radars are available to the science community. One exception is the 33 GHz/95 GHz UMass Cloud Profiling Radar System (CPRS), which AMFR is intended to replace. AMFR's multi-parameter capabilities are designed for characterizing the complex microphysics of layer clouds and precipitation processes in winter storms. AMFR will also play an important role in developing algorithms and validating measurements for an upcoming generation of space-borne radars. The frequency bands selected for AMFR match those of several sensors that have been deployed or are under development. These include the Japanese Aerospace Exploration Agencies (JAXA's) Tropical Rainfall Measuring Mission (TRMM) satellite Ku-band (13 GHz) radar, the CloudSat W-band (95 GHz) radar, and the Global Precipitation Mission (GPM) satellite radars at Ku-band and Ka-band. This dissertation describes the AMFR hardware design and development. Compared to CPRS, the addition of one extra frequency band (Ku) will extend AMFR's measurement capabilities towards the larger particle sizes (precipitation). AMFR's design is based around high-power klystron amplifiers. This ensures complete coherency (CPRS uses magnetrons and coherent-on-receive technique). The partial loss in sensitivity due to lower output power of klystron amplifiers (comparing to magnetrons) is compensated by use of pulse compression (linear FM). The problem of range sidelobes (pulse compression artifacts) has been solved by using appropriate windowing functions in the receiver. Satisfactory sidelobe suppression level of 45 dB has been demonstrated in the lab. The currently best achievable range resolution of the AMFR system is 30 m (corresponds to 5 MHz receiver BW, set by the sampling rate of the Analog-to-Digital card). During the design stage, various polarization schemes have been investigated. The polarization scheme analysis showed the switching polarization scheme to be the best suited for the AMFR system. The AMFR subsystems were partially finished in the winter of 2005. Some preliminary tests were conducted in January 2006. Antenna platform was fabricated in summer 2006. The final assembly took place in the fall of 2006. Early results are presented in the dissertation. These results were helpful in revealing of certain problems in the radar system (i.e. immediate processing computer synchronization) that needed to be addressed during system development. Stratiform rain event occurred on December 18 2006 has been analyzed in detail. A number of commonly used theoretical particle size distributions is presented. Furthermore, it is shown that a fully calibrated multi-frequency radar system has capability of separating scattering and attenuation effects. This was accomplished by fitting the theoretical models into the measured data. An alternative method of estimating rain rate that relies on the dual wavelength ratios is also presented. Although not as powerful as theoretical model fitting, it has its merits for off-zenith observations. During January 2007, AMFR system participated in the C3VP experiment (Canadian CloudSat/CALIPSO Validation Project) in south Ontario, Canada. Some of the data obtained during C3VP experiment has been analyzed and presented. Analysis of these two weather events resulted in the development of the initial multi-frequency particle size distribution retrieval algorithm.
Performance assessment techniques for Doppler radar physiological sensors.
Hafner, Noah; Lubecke, Victor
2009-01-01
This paper presents a technique for assessing the performance of continuous wave Doppler radar systems for physiological sensing. The technique includes an artificial target for testing physiological sensing radar systems with motion analogous to human heart movement and software algorithms leveraging the capabilities of this target to simply test radar system performance. The mechanical target provides simple to complex patterns of motion that are stable and repeatable. Details of radar system performance can be assessed and the effects of configuration changes that might not appear with a human target can be observed when using this mechanical target.
Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.
Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang
2017-12-26
Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.
Enhancement of orographic precipitation in Jeju Island during the passage of Typhoon Khanun (2012)
NASA Astrophysics Data System (ADS)
Lee, Jung-Tae; Ko, Kyeong-Yeon; Lee, Dong-In; You, Cheol-Hwan; Liou, Yu-Chieng
2018-03-01
Typhoon Khanun caused over 226 mm of accumulated rainfall for 6 h (0700 to 1300 UTC), localized around the summit of Mt. Halla (height 1950 m), with a slanted rainfall pattern to the northeast. In this study, we investigated the enhancement mechanism for precipitation near the mountains as the typhoon passed over Jeju Island via dual-Doppler radar analysis and simple trajectory of passive tracers using a retrieved wind field. The analysis of vertical profiles of the mountain region show marked features matching the geophysical conditions. In the central mountain region, a strong wind (≥ 7 m s- 1) helps to lift low-level air up the mountain. The time taken for lifting is longer than the theoretical time required for raindrop growth via condensation. The falling particles (seeder) from the upper cloud were also one of the reasons for an increase in rainfall via the accretion process from uplifted cloud water (feeder). The lifted air and falling particles both contributed to the heavy rainfall in the central region. In contrast, on the leeward side, the seeder-feeder mechanism was important in the formation of strong radar reflectivity. The snow particles (above 5 km) were accelerated by strong downward winds (≤-6 m s- 1). Meanwhile, the nonlinear jumping flow (hydraulic jump) raised feeders (shifted from the windward side) to the upper level where particles fall. To support these development processes, a numerical simulation using cloud-resolving model theoretically carried out. The accreting of hydrometeors may be one of the key reasons why the lee side has strong radar reflectivity, and a lee side weighted rainfall pattern even though lee side includes no strong upward air motion.
NASA Technical Reports Server (NTRS)
1975-01-01
Results are discussed of a study to define a radar and antenna system which best suits the space shuttle rendezvous requirements. Topics considered include antenna characteristics and antenna size tradeoffs, fundamental sources of measurement errors inherent in the target itself, backscattering crosssection models of the target and three basic candidate radar types. Antennas up to 1.5 meters in diameter are within specified installation constraints, however, a 1 meter diameter paraboloid and a folding, four slot backfeed on a two gimbal mount implemented for a spiral acquisition scan is recommended. The candidate radar types discussed are: (1) noncoherent pulse radar (2) coherent pulse radar and (3) pulse Doppler radar with linear FM ranging. The radar type recommended is a pulse Doppler with linear FM ranging. Block diagrams of each radar system are shown.
Pi, Yiming
2017-01-01
The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar. PMID:29267249
Zhou, Zhi; Cao, Zongjie; Pi, Yiming
2017-12-21
The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.
Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution
NASA Astrophysics Data System (ADS)
Wang, Jianming; Liu, Lihua; Yu, Hua
2015-12-01
The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
NASA Astrophysics Data System (ADS)
Kamaljit, Ray; Kannan, B. A. M.; Stella, S.; Sen, Bikram; Sharma, Pradip; Thampi, S. B.
2016-05-01
During the Northeast monsoon season, India receives about 11% of its annual rainfall. Many districts in South Peninsula receive 30-60% of their annual rainfall. Coastal Tamil Nadu receives 60% of its annual rainfall and interior districts about 40-50 %. During the month of November, 2015, three synoptic scale weather systems affected Tamil Nadu and Pondicherry causing extensive rainfall activity over the region. Extremely heavy rains occurred over districts of Chennai, Thiruvallur and Kancheepuram, due to which these 3 districts were fully inundated. 122 people in Tamil Nadu were reported to have died due to the flooding, while over 70,000 people had been rescued. State government reported flood damage of the order of around Rs 8481 Crores. The rainfall received in Chennai district during 1.11.2015 to 5.12.2015 was 1416.8 mm against the normal of 408.4 mm. The extremely heavy rains were found to be associated with strong wind surges at lower tropospheric levels, which brought in lot of moisture flux over Chennai and adjoining area. The subtropical westerly trough at mid-tropospheric levels extended much southwards than its normal latitude, producing favorable environment for sustained rising motions ahead of approaching trough over coastal Tamil Nadu. Generated strong upward velocities in the clouds lifted the cloud tops to very high levels forming deep convective clouds. These clouds provided very heavy rainfall of the order of 150-200 mm/hour. In this paper we have used radar data to examine and substantiate the cloud burst that led to these torrential rains over Chennai and adjoining areas during the Northeast Monsoon period, 2015.
Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes
NASA Technical Reports Server (NTRS)
Mccaul, Eugene W., Jr.; Buechler, Dennis E.; Goodman, Steven J.; Cammarata, Michael
2004-01-01
Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.
An automatic fall detection framework using data fusion of Doppler radar and motion sensor network.
Liu, Liang; Popescu, Mihail; Skubic, Marjorie; Rantz, Marilyn
2014-01-01
This paper describes the ongoing work of detecting falls in independent living senior apartments. We have developed a fall detection system with Doppler radar sensor and implemented ceiling radar in real senior apartments. However, the detection accuracy on real world data is affected by false alarms inherent in the real living environment, such as motions from visitors. To solve this issue, this paper proposes an improved framework by fusing the Doppler radar sensor result with a motion sensor network. As a result, performance is significantly improved after the data fusion by discarding the false alarms generated by visitors. The improvement of this new method is tested on one week of continuous data from an actual elderly person who frequently falls while living in her senior home.
Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry
NASA Astrophysics Data System (ADS)
Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.
2017-06-01
Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.
Noise considerations for remote detection of life signs with microwave Doppler radar.
Nguyen, Dung; Yamada, Shuhei; Park, Byung-Kwon; Lubecke, Victor; Boric-Lubecke, Olga; Host-Madsen, Anders
2007-01-01
This paper describes and quantifies three main sources of baseband noise affecting physiological signals in a direct conversion microwave Doppler radar for life signs detection. They are thermal noise, residual phase noise, and Flicker noise. In order to increase the SNR of physiological signals at baseband, the noise floor, in which the Flicker noise is the most dominant factor, needs to be minimized. This paper shows that with the consideration of the noise factor in our Doppler radar, Flicker noise canceling techniques may drastically reduce the power requirement for heart rate signal detection by as much as a factor of 100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney
2014-05-16
To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective cloudsmore » and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.« less
Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) Cost-Benefit Analysis
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2008-01-01
Lightning Launch Commit Criteria (LLCC) are designed to prevent space launch vehicles from flight through environments conducive to natural or triggered lightning and are used for all U.S. government and commercial launches at government and civilian ranges. They are maintained by a committee known as the NASA/USAF Lightning Advisory Panel (LAP). The previous LLCC for anvil cloud, meant to avoid triggered lightning, have been shown to be overly restrictive. Some of these rules have had such high safety margins that they prohibited flight under conditions that are now thought to be safe 90% of the time, leading to costly launch delays and scrubs. The LLCC for anvil clouds was upgraded in the summer of 2005 to incorporate results from the Airborne Field Mill (ABFM) experiment at the Eastern Range (ER). Numerous combinations of parameters were considered to develop the best correlation of operational weather observations to in-cloud electric fields capable of rocket triggered lightning in anvil clouds. The Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) was the best metric found. Dr. Harry Koons of Aerospace Corporation conducted a risk analysis of the VAHIRR product. The results indicated that the LLCC based on the VAHIRR product would pose a negligible risk of flying through hazardous electric fields. Based on these findings, the Kennedy Space Center Weather Office is considering seeking funding for development of an automated VAHIRR algorithm for the new ER 45th Weather Squadron (45 WS) RadTec 431250 weather radar and Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Before developing an automated algorithm, the Applied Meteorology Unit (AMU) was tasked to determine the frequency with which VAHIRR would have allowed a launch to safely proceed during weather conditions otherwise deemed "red" by the Launch Weather Officer. To do this, the AMU manually calculated VAHIRR values based on candidate cases from past launches with known anvil cloud LLCC violations. An automated algorithm may be developed if the analyses from past launches show VAHIRR would have provided a significant cost benefit by allowing a launch to proceed. The 45 WS at the ER and 30th Weather Squadron (30 WS) at the Western Range provided the AMU with launch weather summaries from past launches that were impacted by LLCC. The 45 WS provided summaries from 14 launch attempts and the 30 WS fkom 5. The launch attempts occurred between December 2001 and June 2007. These summaries helped the AMU determine when the LLCC were "red" due to anvil cloud. The AMU collected WSR-88D radar reflectivity, cloud-to-ground lightning strikes, soundings and satellite imagery. The AMU used step-by-step instructions for calculating VAHIRR manually as provided by the 45 WS. These instructions were used for all of the candidate cases when anvil cloud caused an LLCC violation identified in the launch weather summaries. The AMU evaluated several software programs capable of visualizing radar data so that VAHIRR could be calculated and chose GR2Analyst from Gibson Ridge Software, LLC. Data availability and lack of detail from some launch weather summaries permitted analysis of six launch attempts from the ER and none from the WR. The AMU did not take into account whether or not other weather LCC violations were occurring at the same time as the anvil cloud LLCC since the goal of this task was to determine how often VAHIRR provided relief to the anvil cloud LLCC at any time during several previous launch attempts. Therefore, in the statistics presented in this report, it is possible that even though VAHIRR provided relief to the anvil cloud LLCC, other weather LCC could have been violated not permitting the launch to proceed. The results of this cost-benefit analysis indicated VAHIRR provided relief from the anvil cloud LLCC between about 15% and 18% of the time for varying 5-minute time periods based on summaries fkom six launch attempts and would have allowed launch to proceed that were otherwise "NO GO" due to the anvil cloud LLCC if the T-0 time occurred during the anvil cloud LLCC violations.
Navigator alignment using radar scan
Doerry, Armin W.; Marquette, Brandeis
2016-04-05
The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.
Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.
2004-01-01
The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.
Fall, Veronica M; Cao, Qing; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.
Fall, Veronica M.; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424
Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration
2014-06-01
Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE
NASA Astrophysics Data System (ADS)
Ewald, Florian; Gross, Silke; Hagen, Martin; Hirsch, Lutz; Delanoë, Julien
2017-04-01
Clouds play an important role in the climate system since they have a profound influence on Earth's radiation budget and the water cycle. Uncertainties associated with their spatial characteristics as well as their microphysics still introduce large uncertainties in climate change predictions. In recent years, our understanding of the inner workings of clouds has been greatly advanced by the deployment of cloud profiling microwave radars from ground as well as from space like CloudSat or the upcoming EarthCARE satellite mission. In order to validate and assess the limitations of these spaceborne missions, a well-calibrated, airborne cloud radar with known sensitivity to clouds is indispensable. Within this context, the German research aircraft HALO was equipped with the high-power (30kW peak power) cloud radar operating at 35 GHz and a high spectral resolution lidar (HSRL) system at 532 nm. During a number of flight experiments over Europe and over the tropical and extra-tropical North-Atlantic, several radar calibration efforts have been made using the ocean surface backscatter. Moreover, CloudSat underflights have been conducted to compare the radar reflectivity and measurement sensitivity between the air- and spaceborne instruments. Additionally, the influence of different radar wavelengths was explored with joint flights of HALO and the French Falcon 20 aircraft, which was equipped with the RASTA cloud radar at 94 GHz and a HSRL at 355 nm. In this presentation, we will give an overview of lessons learned from different calibration strategies using the ocean surface backscatter. Additional measurements of signal linearity and signal saturation will complement this characterization. Furthermore, we will focus on the coordinated airborne measurements regarding the different sensitivity for clouds at 35 GHz and 94 GHz. By using the highly sensitive lidar signals, we show if the high-power cloud radar at 35 GHz can be used to validate spaceborne and airborne measurements at 94 GHz and which differences are to be expected. Furthermore, the coordinated measurements are used to explore the reflectivity cut-offs of CloudSat and future spaceborne constellations and compare them to ground-based systems.
Characterizing the Relationships Among Lightning and Storm Parameters: Lightning as a Proxy Variable
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Raghavan, R.; William, E.; Weber, M.; Boldi, B.; Matlin, A.; Wolfson, M.; Hodanish, S.; Sharp. D.
1997-01-01
We have gained important insights from prior studies that have suggested relationships between lightning and storm growth, decay, convective rain flux, vertical distribution of storm mass and echo volume in the region, and storm energetics. A study was initiated in the Summer of 1996 to determine how total (in-cloud plus ground) lightning observations might provide added knowledge to the forecaster in the determination and identification of severe thunderstorms and weather hazards in real-time. The Melbourne Weather Office was selected as a primary site to conduct this study because Melbourne is the only site in the world with continuous and open access to total lightning (LDAR) data and a Doppler (WSR-88D) radar. A Lightning Imaging Sensor Data Applications Demonstration (LISDAD) system was integrated into the forecaster's workstation during the Summer 1996 to allow the forecaster to interact in real-time with the multi-sensor data being displayed. LISDAD currently ingests LDAR data, the cloud-to-ground National Lightning Detection Network (NLDN) data, and the Melbourne radar data in f real-time. The interactive features provide the duty forecaster the ability to perform quick diagnostics on storm cells of interest. Upon selection of a storm cell, a pop-up box appears displaying the time-history of various storm parameters (e.g., maximum radar reflectivity, height of maximum reflectivity, echo-top height, NLDN and LDAR lightning flash rates, storm-based vertically integrated liquid water content). This product is archived to aid on detailed post-analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S
2016-02-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns aremore » analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.« less
NASA Astrophysics Data System (ADS)
Snodgrass, E. R.; di Girolamo, L.; Rauber, R.; Zhao, G.
2005-12-01
During the RICO field campaign, the EOS Terra Spacecraft and NCAR's S-POLKa radar collected coincident high-resolution visible and near-IR satellite data and dual-polarized S-band and Ka-band radar reflectivity data to understand trade wind cumuli cloud distribution and precipitation. In this paper, the comparison of the trade wind cloud field's satellite-derived cloud properties and radar-derived precipitation characteristics are presented. Specifically, these results focus on the relationship between radar reflectivity and derived rain rate to the satellite visible radiance, cloud fraction, height and thickness. Also results concerning the relationship between cloud area estimated by satellite and cloud boundary estimated by radar Bragg and Rayleigh scattering will be presented. The resolution effects between visible satellite data from the ASTER instrument at 15m ground-resolution and the S-POLKa radar data will be reviewed. The potential applications of these results to the estimation of trade wind cumuli's role in returning water to the ocean through precipitation, and to cloud and climate model parameterization will be discussed.
Radar Evaluation of Optical Cloud Constraints to Space Launch Operations
NASA Technical Reports Server (NTRS)
Merceret, Francis J.; Short, David A.; Ward, Jennifer G.
2005-01-01
Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.
Report on the Radar/PIREP Cloud Top Discrepancy Study
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.
1997-01-01
This report documents the results of the Applied Meteorology Unit's (AMU) investigation of inconsistencies between pilot reported cloud top heights and weather radar indicated echo top heights (assumed to be cloud tops) as identified by the 45 Weather Squadron (45WS). The objective for this study is to document and understand the differences in echo top characteristics as displayed on both the WSR-88D and WSR-74C radars and cloud top heights reported by the contract weather aircraft in support of space launch operations at Cape Canaveral Air Station (CCAS), Florida. These inconsistencies are of operational concern since various Launch Commit Criteria (LCC) and Flight Rules (FR) in part describe safe and unsafe conditions as a function of cloud thickness. Some background radar information was presented. Scan strategies for the WSR-74C and WSR-88D were reviewed along with a description of normal radar beam propagation influenced by the Effective Earth Radius Model. Atmospheric conditions prior to and leading up to both launch operations were detailed. Through the analysis of rawinsonde and radar data, atmospheric refraction or bending of the radar beam was identified as the cause of the discrepancies between reported cloud top heights by the contract weather aircraft and those as identified by both radars. The atmospheric refraction caused the radar beam to be further bent toward the Earth than normal. This radar beam bending causes the radar target to be displayed erroneously, with higher cloud top heights and a very blocky or skewed appearance.
NASA Astrophysics Data System (ADS)
Tripoli, G. J.; Chandrasekar, V.; Chen, S. S.; Holland, G. J.; Im, E.; Kakar, R.; Lewis, W. E.; Marks, F. D.; Smith, E. A.; Tanelli, S.
2007-12-01
Last April the first Nexrad in Space (NIS) workshop was held in Miami, Florida to discuss the value and requirements for a possible satellite mission featuring a Doppler radar in geostationary orbit capable of measuring the internal structure of tropical cyclones over a circular scan area 50 degrees latitude in diameter. The proposed NIS technology, based on the PR2 radar design developed at JPL and an innovative deployable antenna design developed at UCLA would be capable of 3D volume sampling with 12 km horizontal and 300 m vertical resolution and 1 hour scan period. The workshop participants consisted of the JPL and UCLA design teams and cross section of tropical cyclone forecasters, researchers and modelers who could potentially benefit from this technology. The consensus of the workshop included: (a) the NIS technology would provide observations to benefit hurricane forecasters, real time weather prediction models and model researchers, (b) the most important feature of NIS was its high frequency coverage together with its 3D observation capability. These features were found to fill a data gap, now developing within cloud resolving analysis and prediction systems for which there is no other proposed solution, particularly over the oceans where TCs form. Closing this data gap is important to the improvement of TC intensity prediction. A complete description of the potential benefits and recommended goals for this technology concluded by the workshop participants will be given at the oral presentation.
2006-12-01
KENNEDY SPACE CENTER, FLA. -- Radar operator Scott Peabody tests the X-band radar array installed on the solid rocket booster retrieval ship Liberty before launch of Space Shuttle Discovery. It is one of two Weibel Continuous Pulse Doppler X-band radars located on each of the two SRB retrieval ships. This one will be located downrange of the launch site. It is one of two Weibel Continuous Pulse Doppler X-band radars located on each of the two SRB retrieval ships. This one will be located downrange of the launch site. Working with the land-based C-band radar, the X-band radars provide velocity and differential shuttle/debris motion information during launch. The radar data will be sent from the ships via satellite link and analyzed at the C-band radar site located on north Kennedy Space Center. Photo credit: NASA/George Shelton
2006-12-01
KENNEDY SPACE CENTER, FLA. -- Radar operator Scott Peabody tests the X-band radar array installed on the solid rocket booster retrieval ship Liberty before launch of Space Shuttle Discovery. It is one of two Weibel Continuous Pulse Doppler X-band radars located on each of the two SRB retrieval ships. This one will be located downrange of the launch site. It is one of two Weibel Continuous Pulse Doppler X-band radars located on each of the two SRB retrieval ships. This one will be located downrange of the launch site. Working with the land-based C-band radar, the X-band radars provide velocity and differential shuttle/debris motion information during launch. The radar data will be sent from the ships via satellite link and analyzed at the C-band radar site located on north Kennedy Space Center. Photo credit: NASA/George Shelton
Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.
Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun
2018-04-01
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.
Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors
Lee, Jeong-Yun; Kim, Jeong-Geun
2018-01-01
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor. PMID:29614777
Low-cost mm-wave Doppler/FMCW transceivers for ground surveillance applications
NASA Astrophysics Data System (ADS)
Hansen, H. J.; Lindop, R. W.; Majstorovic, D.
2005-12-01
A 35 GHz Doppler CW/FMCW transceiver (Equivalent Radiated Power ERP=30dBm) has been assembled and its operation described. Both instantaneous beat signals (relating to range in FMCW mode) and Doppler signals (relating to targets moving at ~1.5 ms -1) exhibit audio frequencies. Consequently, the radar processing is provided by laptop PC using its inbuilt video-audio media system with appropriate MathWorks software. The implications of radar-on-chip developments are addressed.
Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment
Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.
2014-01-01
In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566
Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.
Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E
2014-09-01
In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.
NASA Technical Reports Server (NTRS)
Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang;
1999-01-01
A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.
Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven; Cammarata, Michael
2003-01-01
Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine in detail the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Several other tornadic cells also exhibited great longevity, with cell lifetimes greater than ever previously documented in a landfalling tropical cyclone tornado event, and comparable to those found in major midlatitude tornadic supercell outbreaks. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D radar. In addition, cloud-to-ground (CG) lightning data are examined for the outbreak, the most intense tropical cyclone tornado event studied thus far. Although the tornadic cells were responsible for most of Beryl's CG lightning, flash rates were only weak to moderate, even in the most intense supercells, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. In the stronger cells, there is some evidence that CG lightning rates decreased during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Surprisingly, both peak currents and positive flash percentages were larger in Beryl s nontornadic storms than in the tornadic ones. Despite some intriguing patterns, the CG lightning behavior in this outbreak remains mostly inconsistent and ambiguous, and offers only secondary value for warning guidance. The present findings argue in favor of the implementation of observing systems capable of continuous monitoring of total lightning activity in storms.
Doppler radar sensor positioning in a fall detection system.
Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn
2012-01-01
Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.
Doppler radar fall activity detection using the wavelet transform.
Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie
2015-03-01
We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.
Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny
2015-01-01
To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.
Analysis of Doppler radar windshear data
NASA Technical Reports Server (NTRS)
Williams, F.; Mckinney, P.; Ozmen, F.
1989-01-01
The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.
Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar
NASA Astrophysics Data System (ADS)
Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan
2016-09-01
A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.
A bistatic pulse-Doppler intruder-detection radar
NASA Astrophysics Data System (ADS)
Walker, B. C.; Callahan, M. W.
The U.S. Air Force's Aircraft Security Radar (ASR) is a small pulse-Doppler radar designed to detect intruders on the ground near parked aircraft, with a moving target detection effectiveness that encompasses high speed vehicles and intruders moving at as little as 2 cm/sec. The ASR is comparatively insensitive to weather, and will be affected only by severe wind and rain storms. Five ASRs are typically used around an aircraft, in order to reduce the area of coverage. Attention is given to the ASR's theory of operation, radar parameters, and both intruder and nuisance alarm test results.
Synergistic Measurement of Ice Cloud Microphysics using C- and Ka-Band Radars
NASA Astrophysics Data System (ADS)
Ewald, F.; Gross, S.; Hagen, M.; Li, Q.; Zinner, T.
2017-12-01
Ice clouds play an essential role in the climate system since they have a large effect on the Earth's radiation budget. Uncertainties associated with their spatial and temporal distribution as well as their optical and microphysical properties still account for large uncertainties in climate change predictions. Substantial improvement of our understanding of ice clouds was achieved with the advent of cloud radars into the field of ice cloud remote sensing. Here, highly variable ice crystal size distributions are one of the key issues remaining to be resolved. With radar reflectivity scaling with the sixth moment of the particle size, the assumed ice crystal size distribution has a large impact on the results of microphysical retrievals. Different ice crystal sizes distributions can, however, be distinguished, when cloud radars of different wavelength are used simultaneously.For this study, synchronous RHI scans were performed for a common measurement range of about 30 km between two radar instruments using different wavelengths: the dual-polarization C-band radar POLDIRAD operated at DLR and the Mira-36 Ka-band cloud radar operated at the University of Munich. For a measurement period over several months, the overlapping region for ice clouds turned out to be quite large. This gives evidence on the presence of moderate-sized ice crystals for which the backscatter is sufficient high to be visible in the C-band as well. In the range between -10 to +10 dBz, reflectivity measurements from both radars agreed quite well indicating the absence of large ice crystals. For reflectivities above +10 dBz, we observed differences with smaller values at the Ka-band due to Mie scattering effects at larger ice crystals.In this presentation, we will show how this differential reflectivity can be used to gain insight into ice cloud microphysics on the basis of electromagnetic scattering calculations. We will further explore ice cloud microphysics using the full polarization agility of the C-band radar and compare the results to simultaneous linear depolarization measurements with the Ka-band radar. In summary, we will explore if the scientific understanding of ice cloud microphysics can be advanced by the combination of C- and Ka-band radars.
NASA Astrophysics Data System (ADS)
Voyles, J.; Mather, J. H.
2010-12-01
The ARM Climate Research Facility is a Department of Energy national scientific user facility. Research sites include fixed and mobile facilities, which collect research quality data for climate research. Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy’s Office of Science allocated $60 million to the ARM Climate Research Facility for the purchase of instruments and improvement of research sites. With these funds, ARM is in the process of deploying a broad variety of new instruments that will greatly enhance the measurement capabilities of the facility. New instruments being purchased include dual-frequency scanning cloud radars, scanning precipitation radars, Doppler lidars, a mobile Aerosol Observing System and many others. A list of instruments being purchased is available at http://www.arm.gov/about/recovery-act. Orders for all instruments have now been placed and activities are underway to integrate these new systems with our research sites. The overarching goal is to provide instantaneous and statistical measurements of the climate that can be used to advance the physical understanding and predictive performance of climate models. The Recovery Act investments enable the ARM Climate Research Facility to enhance existing and add new measurements, which enable a more complete understanding of the 3-dimensional evolution of cloud processes and related atmospheric properties. Understanding cloud processes are important globally, to reduce climate-modeling uncertainties and help improve our nation’s ability to manage climate impacts. Domer Plot of W-Band Reflectivity
Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Koenig, George G.
2004-01-01
NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.
An interactive Doppler velocity dealiasing scheme
NASA Astrophysics Data System (ADS)
Pan, Jiawen; Chen, Qi; Wei, Ming; Gao, Li
2009-10-01
Doppler weather radars are capable of providing high quality wind data at a high spatial and temporal resolution. However, operational application of Doppler velocity data from weather radars is hampered by the infamous limitation of the velocity ambiguity. This paper reviews the cause of velocity folding and presents the unfolding method recently implemented for the CINRAD systems. A simple interactive method for velocity data, which corrects de-aliasing errors, has been developed and tested. It is concluded that the algorithm is very efficient and produces high quality velocity data.
NASA Technical Reports Server (NTRS)
Jamora, Dennis A.
1993-01-01
Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.
Study of the microdoppler signature of a bicyclist for different directions of approach
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2015-05-01
The successful implementation of autonomous driving in an urban setting depends on the ability of the environment perception system to correctly classify vulnerable road users such as pedestrians and bicyclists in dense, complex scenarios. Self-driving vehicles include sensor systems such as cameras, lidars, and radars to enable decision making. Among these systems, radars are particularly relevant due to their operational robustness under adverse weather and night light conditions. Classification of pedestrian and car in urban settings using automotive radar has been widely investigated, suggesting that micro-Doppler signatures are useful for target discrimination. Our objective is to analyze and study the micro-Doppler signature of bicyclists approaching a vehicle from different directions in order to establish the basis of a classification criterion to distinguish bicycles from other targets including clutter. The micro-Doppler signature is obtained by grouping individual reflecting points using a clustering algorithm and observing the evolution of all the points belonging to an object in the Doppler domain over time. A comparison is then made with simulated data that uses a kinematic model of bicyclists' movement. The suitability of the micro-Doppler bicyclist signature as a classification feature is determined by comparing it to those belonging to cars and pedestrians approaching the automotive radar system.
Ghate, Virendra P.; Albrecht, Bruce A.; Miller, Mark A.; ...
2014-01-13
Observations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130 W m 22; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was -9.04 K h -1 in coupled conditions and -3.85 K h -1 in decoupled conditions. Thismore » is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. Finally, the coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~0.5.« less
NASA Astrophysics Data System (ADS)
Huang, C.; Chen, S.; Liang, Z.; Hu, B.
2017-12-01
ABSTRACT: On the afternoon of June 23, 2016, Yancheng city in eastern China was hit by a severe thunderstorm that produced a devastating tornado. This tornado was ranked as an EF4 on the Enhanced Fujita scale by China Meteorological Administration, and killed at least 99 people and injured 846 others (152 seriously). This study evaluates rainfall estimates from ground radar network and four satellite algorithms with a relatively dense rain gauge network over eastern China including Jiangsu province and its adjacent regions for the Yancheng June 23 Tornado extreme convective storm in different spatiotemporal scales (from 0.04° to 0.1° and hourly to event total accumulation). The radar network is composed of about 6 S-band Doppler weather radars. Satellite precipitation products include Integrated Multi-satellitE Retrievals for GPM (IMERG), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), and Global Satellite Mapping of Precipitation (GSMap). Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of these precipitation products.
Petlevich, Walter J.; Sverdrup, Edward F.
1978-01-01
A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.
Interferometric millimeter wave and THz wave doppler radar
Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas
2015-08-11
A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.
Experimental study of dual polarized radar return from the sea surface
NASA Astrophysics Data System (ADS)
Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.
2017-10-01
Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.
W-band spaceborne radar observations of atmospheric river events
NASA Astrophysics Data System (ADS)
Matrosov, S. Y.
2010-12-01
While the main objective of the world first W-band radar aboard the CloudSat satellite is to provide vertically resolved information on clouds, it proved to be a valuable tool for observing precipitation. The CloudSat radar is generally able to resolve precipitating cloud systems in their vertical entirety. Although measurements from the liquid hydrometer layer containing rainfall are strongly attenuated, special retrieval approaches can be used to estimate rainfall parameters. These approaches are based on vertical gradients of observed radar reflectivity factor rather than on absolute estimates of reflectivity. Concurrent independent estimations of ice cloud parameters in the same vertical column allow characterization of precipitating systems and provide information on coupling between clouds and rainfall they produce. The potential of CloudSat for observations atmospheric river events affecting the West Coast of North America is evaluated. It is shown that spaceborne radar measurements can provide high resolution information on the height of the freezing level thus separating areas of rainfall and snowfall. CloudSat precipitation rate estimates complement information from the surface-based radars. Observations of atmospheric rivers at different locations above the ocean and during landfall help to understand evolutions of atmospheric rivers and their structures.
Numerical RCS and micro-Doppler investigations of a consumer UAV
NASA Astrophysics Data System (ADS)
Schröder, Arne; Aulenbacher, Uwe; Renker, Matthias; Böniger, Urs; Oechslin, Roland; Murk, Axel; Wellig, Peter
2016-10-01
This contribution gives an overview of recent investigations regarding the detection of a consumer market unmanned aerial vehicles (UAV). The steadily increasing number of such drones gives rise to the threat of UAVs interfering civil air traffic. Technologies for monitoring UAVs which are flying in restricted air space, i. e. close to airports or even over airports, are desperately needed. One promising way for tracking drones is to employ radar systems. For the detection and classification of UAVs, the knowledge about their radar cross section (RCS) and micro-Doppler signature is of particular importance. We have carried out numerical and experimental studies of the RCS and the micro-Doppler of an example commercial drone in order to study its detectability with radar systems.
NASA Astrophysics Data System (ADS)
Gorodetskaya, Irina; Maahn, Maximilan; Gallée, Hubert; Souverijns, Niels; Gossart, Alexandra; Kneifel, Stefan; Crewell, Susanne; Van Lipzig, Nicole
2017-04-01
Occasional very intense snowfall events over Dronning Maud Land (DML) region in East Antarctica, contributed significantly to the entire Antarctic ice sheet surface mass balance (SMB) during the last years. The meteorological-cloud-precipitation observatory running at the Princess Elisabeth station (PE) in the DML escarpment zone since 2009 (HYDRANT/AEROCLOUD projects), provides unique opportunity to estimate contribution of precipitation to the local snow accumulation and new data for evaluating precipitation in climate models. Our previous work using PE measurements showed that occasional intense precipitation events determine the total local yearly SMB and account for its large interannual variability. Here we use radar measurements to evaluate precipitation in a regional climate model with a special focus on intense precipitation events together with the large-scale atmospheric dynamics responsible for these events. The coupled snow-atmosphere regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB in DML at 5-km horizontal resolution during 2012 using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. Two evaluation approaches are used: observations-to-model and model-to-observations. In the first approach, snowfall rate (S) is derived from the MRR (vertically profiling 24-GHz precipitation radar) effective reflectivity factor (Ze) at 400 m agl using various Ze-S relationships for dry snow. The uncertainty in Ze-S relationships is constrained using snow particle size distribution from Snow Video Imager - Precipitation Imaging Package (SVI/PIP) and information about particle shapes. For the second approach we apply the Passive and Active Microwave radiative TRAnsfer model (PAMTRA), which allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar Ze and Doppler velocity. In MAR, the mass and terminal velocity of snow particles are defined as for the graupel-like snowflakes of hexagonal type, determining single scattering properties for snow hydrometeors used as input (along with cloud particle properties and atmospheric parameters) into PAMTRA. MAR simulates well the timing of major synoptic-scale precipitation events, while overestimating snowfall rate during the intense precipitation events beyond the Ze-S relationship uncertainty. This bias is also evident in significantly longer tail of the frequency distribution towards high values for MAR synthetic Ze near the surface compared to PE radar. This bias can be related to the differences both in the amount and type of snowflakes reaching the surface. The most intense precipitation event contributing almost 50% to the local yearly SMB occurred on 6 November 2012 and was associated with an atmospheric river. MAR model produced more than twice as much precipitation compared to PE radar measurements on this event. Reasons for this high bias are investigated by looking at the moisture transports, cloud properties (ice/liquid occurrence and cloud vertical structure), and precipitation formation efficiency especially related to the mixed-phase clouds (the Bergeron-Findeisen process).
Contemplating Synergistic Algorithms for the NASA ACE Mission
NASA Technical Reports Server (NTRS)
Mace, Gerald G.; Starr, David O.; Marchand, Roger; Ackerman, Steven A.; Platnick, Steven E.; Fridlind, Ann; Cooper, Steven; Vane, Deborah G.; Stephens, Graeme L.
2013-01-01
ACE is a proposed Tier 2 NASA Decadal Survey mission that will focus on clouds, aerosols, and precipitation as well as ocean ecosystems. The primary objective of the clouds component of this mission is to advance our ability to predict changes to the Earth's hydrological cycle and energy balance in response to climate forcings by generating observational constraints on future science questions, especially those associated with the effects of aerosol on clouds and precipitation. ACE will continue and extend the measurement heritage that began with the A-Train and that will continue through Earthcare. ACE planning efforts have identified several data streams that can contribute significantly to characterizing the properties of clouds and precipitation and the physical processes that force these properties. These include dual frequency Doppler radar, high spectral resolution lidar, polarimetric visible imagers, passive microwave and submillimeter wave radiometry. While all these data streams are technologically feasible, their total cost is substantial and likely prohibitive. It is, therefore, necessary to critically evaluate their contributions to the ACE science goals. We have begun developing algorithms to explore this trade space. Specifically, we will describe our early exploratory algorithms that take as input the set of potential ACE-like data streams and evaluate critically to what extent each data stream influences the error in a specific cloud quantity retrieval.
Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler
NASA Technical Reports Server (NTRS)
Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin
2011-01-01
The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.
A new method for blood velocity measurements using ultrasound FMCW signals.
Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro
2010-05-01
The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.
Non-contact Doppler radar monitoring of cardiorespiratory motion for Siberian sturgeon.
Hafner, Noah; Massagram, Wansuree; Lubecke, Victor
2012-01-01
This paper presents the first reported use of Doppler radar to remotely sense heart and ventilation rates of fish. The Radar reported 35 to 40 BPM heart rate and 115 to 145 BPM ventilation rates for Siberian Sturgeon, with agreement from a video reference. Conventional fish vital signs measurements require invasive surgery and human handling--these are problematic for large scale monitoring, for measuring deep sea fish, and other situations which preclude human interaction with each individual subject. These results show a useful application of radar to augment existing cardiovascular and ventilatory activity sensing techniques and enable monitoring in a wider range of situations.
The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng; Klein, Stephen A.
Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the conceptmore » of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are difficult for the CloudSat radar to detect due to surface contamination (Mace et al. 2007; Marchand et al. 2008). Therefore, the ARM ground-based cloud observations can provide important observations of clouds that complement measurements from space.« less
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.
2009-03-01
A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.
An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP
Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin
2015-01-01
In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755
Cloud-to-ground lightning in a tornadic storm on 8 May 1986
NASA Technical Reports Server (NTRS)
Macgorman, Donald R.; Nielsen, Kurt E.
1991-01-01
The National Severe Storms Laboratory (NSSL) gathered Doppler radar and lightning ground strike data on a supercell storm that produced three tornadoes, including an F3 tornado in Edmond, Oklahoma, approximately 40 km north of NSSL. The Edmond storm formed 30 km ahead of a storm complex and developed its first and most damaging tornado just as the storm complex started to overtake it from the west. Lightning strike locations tended to concentrate just north of the mesocyclone, close to and inside a 50 dBZ reflectivity core. Positive ground flashes began just prior to the storm becoming tornadic, and positive flash rates peaked during the tornadic stage of the storm.
First observations of tracking clouds using scanning ARM cloud radars
Borque, Paloma; Giangrande, Scott; Kollias, Pavlos
2014-12-01
Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less
First observations of tracking clouds using scanning ARM cloud radars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borque, Paloma; Giangrande, Scott; Kollias, Pavlos
Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less
1988-01-01
Severe Local Strms, Tulsa, Amer. Meteor. Soc., 261-264. Chong, M., F. Rous, and J. Testud , 1980: A New Filtering and * Interpolating Method for Processing...Mesoscale Studies. Tellus, 27, 157-167. Roux, F., J. Testud , M. Payen, and B. Pinty, 1984: Pressure and Temperature Fields Retrieved from Dual-Doppler Radar
Radar channel balancing with commutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
2014-02-01
When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2004-01-01
Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar. Error model modifications for non-raining situations will be required, however. Sampling error appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non-representativeness of cloud-resolving model simulated profiles supporting the algorithm.
Mincey, John S.; Silva-Martinez, Jose; Karsilayan, AydinIlker; ...
2017-03-17
In this study, a coherent subsampling digitizer for pulsed Doppler radar systems is proposed. Prior to transmission, the radar system modulates the RF pulse with a known pseudorandom binary phase shift keying (BPSK) sequence. Upon reception, the radar digitizer uses a programmable sample-and-hold circuit to multiply the received waveform by a properly time-delayed version of the known a priori BPSK sequence. This operation demodulates the desired echo signal while suppressing the spectrum of all in-band noncorrelated interferers, making them appear as noise in the frequency domain. The resulting demodulated narrowband Doppler waveform is then subsampled at the IF frequency bymore » a delta-sigma modulator. Because the digitization bandwidth within the delta-sigma feedback loop is much less than the input bandwidth to the digitizer, the thermal noise outside of the Doppler bandwidth is effectively filtered prior to quantization, providing an increase in signal-to-noise ratio (SNR) at the digitizer's output compared with the input SNR. In this demonstration, a delta-sigma correlation digitizer is fabricated in a 0.18-μm CMOS technology. The digitizer has a power consumption of 1.12 mW with an IIP3 of 7.5 dBm. The digitizer is able to recover Doppler tones in the presence of blockers up to 40 dBm greater than the Doppler tone.« less
van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R.; North, Kirk; Kollias, Pavlos; Posselt, Derek J.
2017-01-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase (KDP) observed above the melting level are associated with deep convection updraft cells, so-called “KDP columns” are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR KDP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity (ZDR). Results indicate strong correlations of KDP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of KDP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of ZDR to KDP shows commonalities in information content of each, as well as potential problems with ZDR associated with observational artifacts. PMID:29503466
van Lier-Walqui, Marcus; Fridlind, Ann M; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J
2016-02-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase ( K DP ) observed above the melting level are associated with deep convection updraft cells, so-called " K DP columns" are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR K DP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity ( Z DR ). Results indicate strong correlations of K DP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of K DP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of Z DR to K DP shows commonalities in information content of each, as well as potential problems with Z DR associated with observational artifacts.
Detailed flow, hydrometeor and lightning characteristics of an isolated thunderstorm during COPS
NASA Astrophysics Data System (ADS)
Schmidt, K.; Hagen, M.; Höller, H.; Richard, E.; Volkert, H.
2012-04-01
The three-hour life-cycle of the isolated thunderstorm on 15 July 2007 during the Convective and Orographically-induced Precipitation Study (COPS) is documented in detail, with a special emphasis on the rapid develpment and mature phases. Remote sensing techniques as 5-minute rapid scans from geostationary satellites, combined Doppler-retrievals from up to four Doppler-radars, the polarimetric determination of hydrometeors and spatio-temporal occurrences of lightning strokes are employed to arrive at a synoptic quantification of the physical parameters of this, for the COPS period, rare event. Inner cloud flow fields are available, gridded on a 500-m-mesh, at four consecutive times separated by 15 minute-intervals (14:35, 14:50, 15:05, 15:20). They contain horizontal winds of up to 15 m/s and updrafts exceeding 4 m/s, the latter collocated with lightning strokes. Profiles of flow and hydrometeor statistics over the entire cloud volume provide reference data for high-resolution, real-world, episode-type numerical weather predicition runs in research mode. Exemplary results are obtained by applying the Meso-NH modelling system in a four-fold nested configuration with a horizontal mesh-size of 500 m. The study embarks from two multi-channel time-lapse movie-loops from geostationary satellite imagery, which provide an intuitive distinction of six phases making up the entire life-cycle of the tunderstorm. It concludes with a triple image-loop, juxtaposing a close-up of the cloud motion seen by Meteosat, simulated brightness temperatures (as a proxy for clouds seen by the infrared satellite channel), and a perspective view on the model generated system of cloud cells. By employing the motion-geared human visual system, such multiple image loops provide a high, and as yet hardly utilised potential for a well-grounded selection of further sensitivity experiments in the modelling community.
Fpga based L-band pulse doppler radar design and implementation
NASA Astrophysics Data System (ADS)
Savci, Kubilay
As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed point arithmetic operations as it is fast and facilitates source requirement as it consumes less hardware than floating point arithmetic operations. The software uses floating point arithmetic operations, which ensure precision in processing at the expense of speed. The functionality of the radar system has been tested for experimental validation in the field with a moving car and the validation of submodules are tested with synthetic data simulated on MATLAB.
Comparison of radar data versus rainfall data
Espinosa, B.; Hromadka, T.V.; Perez, R.
2015-01-01
Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for “ground-truthing” of radar data, and•possible errors due to topographic interference. PMID:26649276
NASA Astrophysics Data System (ADS)
Spaleta, J.; Bristow, W. A.
2013-12-01
SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral content pulse sequence consists of twice as many pulses and five times as many distinct lags over which to calculate the auto correlation function. This additional spectral information makes it possible to use spectral estimator techniques, that are robust against aperiodic time series data, to calculate the existence of multiple scatter modes in the signal. A comparison of the operation of the traditional SuperDARN pulse sequence and high spectral content pulse sequence will be presented for both synthetic examples and real SuperDARN radar mixed scatter situation.
Doppler radar echoes of lightning and precipitation at vertical incidence
NASA Technical Reports Server (NTRS)
Zrnic, D. S.; Rust, W. D.; Taylor, W. L.
1982-01-01
Digital time series data at 16 heights within two storms were collected at vertical incidence with a 10-cm Doppler radar. On several occasions during data collection, lightning echoes were observed as increased reflectivity on an oscilloscope display. Simultaneously, lightning signals from nearby electric field change antennas were recorded on an analog recorder together with the radar echoes. Reflectivity, mean velocity, and Doppler spectra were examined by means of time series analysis for times during and after lightning discharges. Spectra from locations where lightning occurred show peaks, due to the motion of the lightning channel at the air speed. These peaks are considerably narrower than the ones due to precipitation. Besides indicating the vertical air velocity that can then be used to estimate hydrometeor-size distribution, the lightning spectra provide a convenient means to estimate the radar cross section of the channel. Subsequent to one discharge, we deduce that a rapid change in the orientation of hydrometeors occurred within the resolution volume.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa
2018-01-01
Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.
Observing convection with satellite, radar, and lightning measurements
NASA Astrophysics Data System (ADS)
Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs
2015-04-01
Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by Mecikalski et al. (2010) are used to identify convectively active regions. Additionally, retrieved physical cloud properties of state-of-the-art cloud remote sensing algorithms such as the cloud top height, multilayer flags, cloud phase, optical depth and effective radius are employed. As soon as larger particles form, radar observations complement the satellite ones. Radar datasets are used in particular to observe the precipitation intensity and type, the vertical extension and structure of the convective cells. In the mature stage convective cells might start to produce lightning. The relation between the different observables and their suitability as predictors for the further convective development are discussed, e.g. strong updrafts in the developing phase are often followed by fast anvil spreading and intense precipitation in the mature phase. Threads and hazards due to heavy precipitation, hail, and wind gusts are estimated. Hering, A. M., Germann, U., Boscacci, M., Sénési, S., 2008: Operational nowcasting of thunderstorms in the Alps during MAP D-PHASE. In Proceedings of 5th European Conference on Radar in Meteorology and Hydrology (ERAD), 30 June - 4 July 2008, Helsinki, Finland. 1-5. Copernicus: Göttingen, Germany. Hilker, N., Badoux, A., Hegg, C., 2010: Unwetterschäden in der Schweiz im Jahre 2009. Wasser Energ. Luft 102: 1-6 (in German). Mecikalski, J. R., Mackenzie, W. M., König, M., Muller, S. 2010: Use of Meteosat Second Generation infrared data in 0-1 hour convective initiation nowcasting. Part 1. Infrared fields. J. Appl. Meteorol. 49: 521-534. Nisi, L., Ambrosetti, P., Clementi, L., 2014: Nowcasting severe convection in the Alpine region: the COALITION approach. QJRMT, 140, 682, 1684-1699, DOI: 10.1002/qj.2249
Heavy rain forecasts in mesoscale convective system in July 2016 in Belarus
NASA Astrophysics Data System (ADS)
Lapo, Palina; Barodka, Siarhei; Krasouski, Aliaksandr
2017-04-01
During the last decade, the frequency of severe weather phenomena, such as heavy precipitation, hail and squalls, over Europe is observed to increase, which is attributed to climate change in the region. Such hazardous weather events over the territory of Belarus every year, having significant economic and social effects. Of special interest for further studies are mesoscale convective systems, which can be described as long-lived cloud complexes including groups of cumulonimbus clouds and squall lines. Passage of such systems is accompanied with intense thunderstorms, showers and squally wind. In this study, we investigate a case of Mesoscale Convective System (MCS) passage over the territory of Belarus, which occurred 13 July 2016. During this Mesoscale Convective Complex passage, heavy precipitation (up to 43 mm), squally winds and intense thunderstorms have been observed. Another feature of this MCS was the hook-shaped weather radar signature known as a "hook echo", seen on the Doppler weather radar Minsk-2. Tornadoes and powerful mesocyclones are often characterized by the presence of a hook echo on radar. Also we have performed simulations of the convective complex passage with the WRF-ARW mesoscale atmospheric modelling system using 6 different microphysics parameterizations. Our main objectives are to study the conditions of this Mesoscale Convective Systems (MCSs) development, to consider the microphysical structure of clouds in the MCS, and to identify which microphysics package provides the best forecast of precipitation for this case of MCS in terms of its geographical distribution and precipitation amount in towns and cities where highest levels of precipitation have been observed. We present analysis of microphysical structure of this MCS along with evaluation of precipitation forecasts obtained with different microphysics parametrizations as compared to real observational data. In particular, we may note that results of almost all microphysics simulations indicate underestimation of precipitation areas in the region of interest.
A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar
NASA Technical Reports Server (NTRS)
Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete;
2016-01-01
Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.
Impact of Eclipse of 21 August 2017 ON the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Knupp, K.
2017-12-01
The (total) solar eclipse of 21 August 2017 presents a prodigious opportunity to improve our understanding of the physical response of decreases in turbulence within the ABL produced by a rapid reduction in solar radiation, since the transition in this eclipse case, close to local solar noon, is more rapid than at natural sunset. A mesoscale network of three UAH atmospheric profiling systems will be set up around Clarksville, TN, and Hopkinsville, KY, to document the details of the physical response of the ABL to the rapid decrease in solar radiation. The region offers a heterogeneous surface, including expansive agricultural and forested regions. Data from the following mobile systems will be examined: Mobile Integrated Profiling System (MIPS) with a 915 MHz Doppler wind profiler, X-band Profiling Radar (XPR), Microwave Profiling Radiometer (MPR), lidar ceilometer, and Doppler mini-sodar, Rapidly Deployable Atmospheric Profiling System (RaDAPS) with a 915 MHz Doppler wind profiler, MPR, lidar ceilometer, Doppler mini-sodar, Mobile Doppler Lidar and Sounding system (MoDLS) with a Doppler Wind Lidar and MPR. A tethered balloon will provide high temporal and vertical resolution in situ sampling of the surface layer temperature and humidity vertical profiles over the lowest 120 m AGL. Two of the profiling systems (MIPS and MoDLS) will include 20 Hz sonic anemometer measurements for documentation of velocity component (u, v, w) variance, buoyancy flux, and momentum flux. The Mobile Alabama X-band (MAX) dual polarization radar will be paired with the Ft. Campbell WSR-88D radar, located 29 km east of the MAX, to provide dual Doppler radar coverage of flow within the ABL over the profiler domain. The measurements during this eclipse will also provide information on the response of insects to rapidly changing lighting conditions. During the natural afternoon-to-evening transition, daytime insect concentrations decrease rapidly, and stronger-flying nighttime flyers emerge rapidly following sunset. We hypothesize that a similar transition will occur on a limited basis: nighttime flyers will emerge, but the daytime flyers will not rapidly disappear due to the short time scale of the darkness. This insect transition will be measured with the radar wind profilers and the MAX and WSR-88D dual polarization radars.
The Re-Intensification of Typhoon Sinlaku (2008)
2010-06-01
Tropical Cyclones, TCS-08, T- PARC , Extratropical Transition, Airborne Dual Doppler Radar , ELDORA, Axisymmetrization, Mesoscale Vortices, Mesoscale...observed by multiple aircraft as part of the TCS-08 and T- PARC field programs. Airborne dual-Doppler radar , dropwindsondes, and flight-level...typhoon southwest of Japan. The evolution of the tropical cyclone (TC) structure was observed by multiple aircraft as part of the TCS-08 and T- PARC
ARM KAZR-ARSCL Value Added Product
Jensen, Michael
2012-09-28
The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.
The HD(CP)2 Observational Prototype Experiment (HOPE) - an overview
NASA Astrophysics Data System (ADS)
Macke, Andreas; Seifert, Patric; Baars, Holger; Barthlott, Christian; Beekmans, Christoph; Behrendt, Andreas; Bohn, Birger; Brueck, Matthias; Bühl, Johannes; Crewell, Susanne; Damian, Thomas; Deneke, Hartwig; Düsing, Sebastian; Foth, Andreas; Di Girolamo, Paolo; Hammann, Eva; Heinze, Rieke; Hirsikko, Anne; Kalisch, John; Kalthoff, Norbert; Kinne, Stefan; Kohler, Martin; Löhnert, Ulrich; Lakshmi Madhavan, Bomidi; Maurer, Vera; Muppa, Shravan Kumar; Schween, Jan; Serikov, Ilya; Siebert, Holger; Simmer, Clemens; Späth, Florian; Steinke, Sandra; Träumner, Katja; Trömel, Silke; Wehner, Birgit; Wieser, Andreas; Wulfmeyer, Volker; Xie, Xinxin
2017-04-01
The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal. First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.
Estimation of Cloud Fraction Profile in Shallow Convection Using a Scanning Cloud Radar
Oue, Mariko; Kollias, Pavlos; North, Kirk W.; ...
2016-10-18
Large spatial heterogeneities in shallow convection result in uncertainties in estimations of domain-averaged cloud fraction profiles (CFP). This issue is addressed using large eddy simulations of shallow convection over land coupled with a radar simulator. Results indicate that zenith profiling observations are inadequate to provide reliable CFP estimates. Use of Scanning Cloud Radar (SCR), performing a sequence of cross-wind horizon-to-horizon scans, is not straightforward due to the strong dependence of radar sensitivity to target distance. An objective method for estimating domain-averaged CFP is proposed that uses observed statistics of SCR hydrometeor detection with height to estimate optimum sampling regions. Thismore » method shows good agreement with the model CFP. Results indicate that CFP estimates require more than 35 min of SCR scans to converge on the model domain average. Lastly, the proposed technique is expected to improve our ability to compare model output with cloud radar observations in shallow cumulus cloud conditions.« less
Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review
Gu, Changzhan
2016-01-01
Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW) radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends. PMID:27472330
NASA Astrophysics Data System (ADS)
Remillard, J.
2015-12-01
Two low-cloud periods from the CAP-MBL deployment of the ARM Mobile Facility at the Azores are selected through a cluster analysis of ISCCP cloud property matrices, so as to represent two low-cloud weather states that the GISS GCM severely underpredicts not only in that region but also globally. The two cases represent (1) shallow cumulus clouds occurring in a cold-air outbreak behind a cold front, and (2) stratocumulus clouds occurring when the region was dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) and single-column model (SCM) simulations. The LES captures the major differences in horizontal structure between the two low-cloud fields, but there are unconstrained uncertainties in cloud microphysics and challenges in reproducing W-band Doppler radar moments. The SCM run on the vertical grid used for CMIP-5 runs of the GCM does a poor job of representing the shallow cumulus case and is unable to maintain an overcast deck in the stratocumulus case, providing some clues regarding problems with low-cloud representation in the GCM. SCM sensitivity tests with a finer vertical grid in the boundary layer show substantial improvement in the representation of cloud amount for both cases. GCM simulations with CMIP-5 versus finer vertical gridding in the boundary layer are compared with observations. The adoption of a two-moment cloud microphysics scheme in the GCM is also tested in this framework. The methodology followed in this study, with the process-based examination of different time and space scales in both models and observations, represents a prototype for GCM cloud parameterization improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collis, Scott; Protat, Alain; May, Peter T.
2013-08-01
Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less
Space Radar Image of Maui, Hawaii
1999-04-15
This spaceborne radar image shows the Valley Island of Maui, Hawaii. The cloud-penetrating capabilities of radar provide a rare view of many parts of the island, since the higher elevations are frequently shrouded in clouds.
NASA Astrophysics Data System (ADS)
Silvio Marzano, Frank; Baldini, Luca; Picciotti, Errico; Colantonio, Matteo; Barbieri, Stefano; Di Fabio, Saverio; Montopoli, Mario; Vulpiani, Gianfranco; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Anagnostou, Marios N.; Kalogiros, John; Anagnostou, Emmanouil N.; Ferretti, Rossella; Gatlin, Patrick.; Wingo, Matt; Petersen, Walt
2013-04-01
The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. The capability to predict such high-impact events remains weak because of the contribution of very fine-scale processes and their non-linear interactions with the larger scale processes. These societal and science issues motivate the HyMeX (Hydrological cycle in the Mediterranean Experiment, http://www.hymex.org/) experimental programme. HyMeX aims at a better quantification and understanding of the water cycle in the Mediterranean with emphasis on intense events. The observation strategy of HyMEX is organized in a long-term (4 years) Enhanced Observation Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). HyMEX has identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE). Within each target area several hydrometeorological sites for heavy rainfall and flash flooding have been set up. The hydrometeorological site in Central Italy (CI) is interested by both western and eastern fronts coming from the Atlantic Ocean and Siberia, respectively. Orographic precipitations play an important role due to the central Apennine range, which reaches nearly 3000 m (Gran Sasso peak). Moreover, convective systems commonly develop in CI during late summer and beginning of autumn, often causing localized hailstorms with cluster organized cells. Western fronts may heavily hit the Tiber basin crossing large urban areas (Rome), whereas eastern fronts can cause flash floods along the Adriatic coastline. Two major basins are involved within CI region: Tiber basin (1000 km long) and its tributary Aniene and the Aterno-Pescara basin (300 km long). The first HyMeX SOP1.1 was carried out from Sept. till Nov. 2012 in the NW target area. The Italian SOP1.1 was coordinated by the Centre of Excellence CETEMPS, University of L'Aquila, a city located in the CI heart. The CI area was covered by a uniquely dense meteorological instrumentation thanks to a synergy between Italian institutions and NASA-GSFC. The following RADARs were operated: a Doppler single-polarization C-band radar located at Mt. Midia; the Polar 55C Doppler dual-polarization C-band radar located in Rome; a Doppler C-band polarimetric radar located at Il Monte (Abruzzo); a polarimetric X-band mini-radar in L'Aquila; a polarimetric X-band portable mini-radar in Rome; a single-polarization X-band mini-radar in Rome. DISDROMETERs were also deployed: 4 Parsivel optical disdrometers in Rome (at Sapienza, CNR-ISAC and CNR-INSEAN); 1 2D-video disdrometer in Rome; 3 Parsivels optical disdrometer respectively in L'Aquila (Abruzzo), Avezzano (Abruzzo) and Pescara (Abruzzo). Other INSTRUMENTS were available: 1 K-band vertically-pointing micro rain-radar (MRR), 2 Pludix X-band disdrometers, 1 VLF lightining sensor, 1 microwave radiometer at 23-31 GHz in Rome (at Sapienza); the raingauge network with more than 200 stations in Central Italy. Three overpasses in CI were also performed by the Falcon 20 aircraft equipped with the 95GHz cloud radar RASTA. Analysis of the SOP1.1 main events in CI will be described by focusing on the raindrop size distribution statistics and its geographical variability. Intercomparison of rainfall estimates from disdrometers, raingauges and radars will be illustrated with the aim to provide a quality-controlled and physically consistent rainfall dataset for meteorological modeling validation and assimilation purposes.
NASA Technical Reports Server (NTRS)
Gatlin, Patrick; Wingo, Matt; Petersen, Walt; Marzano, Frank Silvio; Baldini, Luca; Picciotti, Errico; Colantonio, Matteo; Barbieri, Stefano; Di Fabio, Saverio; Montopoli, Mario;
2013-01-01
The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. The capability to predict such high-impact events remains weak because of the contribution of very fine-scale processes and their non-linear interactions with the larger scale processes. These societal and science issues motivate the HyMeX (Hydrological cycle in the Mediterranean Experiment, http://www.hymex.orgl) experimental programme. HyMeX aims at a better quantification and understanding of the water cycle in the Mediterranean with emphasis on intense events. The observation strategy of HyMEX is organized in a long-term (4 years) Enhanced Observation Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). HyMEX has identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE). Within each target area several hydrometeorological sites for heavy rainfall and flash flooding have been set up. The hydrometeorological sire in Central Italy (CI) is interested by both western and eastern fronts coming from the Atlantic Ocean and Siberia, respectively. Orographic precipitations play an important role due to the central Apennine range, which reaches nearly 3000 m (Gran Sasso peak). Moreover, convective systems commonly develop in CI during late summer and beginning of autumn, often causing localized hailstorms with cluster organized cells. Western fronts may heavily hit the Tiber basin crossing large urban areas (Rome), whereas eastern fronts can cause flash floods along the Adriatic coastline. Two major basins are involved within Cl region: Tiber basin (1000 km long) and its tributary Aniene and the Aterno-Pescara basin (300 km long). The first HyMeX SOP1.1 was carried out from Sept. till Nov. 2012 in the NW target area The Italian SOP1.1 was coordinated by the Centre of Excellence CETEMPS, University of L'Aquila, a city located in the CI heart. The CI area was covered by a uniquely dense meteorological instrumentation thanks to a synergy between Italian institutions and NASA-GSFC. The following RADARs were operated: a Doppler single-polarization C-band radar located at Mt Midia; the Polar 55C Doppler dual-polarization C-band radar located in Rome; a Doppler C-hand polarimetric radar located at Il Monte (Abnazo); a polarimetric X-band mini-radar in L' Aquila; a polarimetric X-hand portable mini-radar in Rome; a single-polarization X-band mini-radar in Rome. DISDROMETERs were also deployed: 4 Parsivel optical disdrometers in Rome (at Sapienza, CNR-ISAC and CNR-INSEAN); 1 2D-video disdrometer in Rome; 3 Parsivels optical disdrometer respectively in L'Aquila (Abnazo), Avezzano (Abruzzo) and Pescara (Abnazo). Other INSTRUMENTS were available: 1 K-band vertically-pointing micro rain-radar (MRR), 2 Pludix X-band disdrometers, 1 VLF lightning sensor, 1 microwave radiometer at 23-31 GHz in Rome (at Sapienza); the raingauge network with more than 200 stations in Central Italy. Three overpasses in CI were also performed by the Falcon 20 aircraft equipped with the 950Hz cloud radar RASTA Analysis of the SOP1.1 main events in CI will be described by focusing on the raindrop size distribution statistics and its geographical variability. Intercomparison of rainfall estimates from disdrometers, raingauges and radars will be illustrated with the aim to provide a quality-controlled and physically consistent rainfall dataset for meteorological modeling validation and assimilation purposes.
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT.
Pang, Cunsuo; Han, Yan; Hou, Huiling; Liu, Shengheng; Zhang, Nan
2016-09-24
This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT's performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated) pulse radar, SAR (Synthetic aperture radar), or ISAR (Inverse synthetic aperture radar), for improving the probability of target recognition.
Nocturnal bird migration in opaque clouds
NASA Technical Reports Server (NTRS)
Griffin, D. R.
1972-01-01
The use of a tracking radar to measure the flight paths of migrating birds on nights with opaque clouds is discussed. The effects of wind and lack of visual references are examined. The limitations of the radar observations are described, and samples of tracks obtained during radar observations are included. It is concluded that nonvisual mechanisms of orientation make it possible for birds to migrate in opaque clouds, but the exact nature of the sensory information cannot be determined by radar observations.
NASA Technical Reports Server (NTRS)
Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.
2004-01-01
Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.
NASA Technical Reports Server (NTRS)
Evans, James E.
1988-01-01
The program focuses on providing real-time information on hazardous aviation weather to end users such as air traffic control and pilots. Existing systems will soon be replaced by a Next Generation Weather Radar (NEXRAD), which will be concerned with detecting such hazards as heavy rain and hail, turbulence, low-altitude wind shear, and mesocyclones and tornadoes. Other systems in process are the Central Weather Processor (CWP), and the terminal Doppler weather radar (TDWR). Weather measurements near Memphis are central to ongoing work, especially in the area of microbursts and wind shear.
Separation of Doppler radar-based respiratory signatures.
Lee, Yee Siong; Pathirana, Pubudu N; Evans, Robin J; Steinfort, Christopher L
2016-08-01
Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings.
NASA Technical Reports Server (NTRS)
Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina
1999-01-01
A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.
NASA Technical Reports Server (NTRS)
Durden, S.; Haddad, Z.
1998-01-01
Observations of Doppler velocity of hydrometeors form airborne Doppler weather radars normally contains a component due to the aircraft motion. Accurate hydrometeor velocity measurements thus require correction by subtracting this velocity from the observed velocity.
NASA Astrophysics Data System (ADS)
Pokharel, Binod
This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud. Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent in individual WCR reflectivity transects downwind of the silver iodide (AgI) generators, and that the natural trends in the precipitation over short timescales can easily overwhelm any seeding-induced change. Therefore the ASCII experimental design included a control region, upwind of the AgI generators. The three case studies generally show an increase in surface snow particle concentration in the target region during the seeding period. Frequency-by-altitude displays of all WCR reflectivity data collected during the flights show slightly higher reflectivity values during seeding near the ground, at least when compared to the control region, in all three cases. This also applies to the two other radar systems (MRR and DOW), both with their own sampling strategy and target/control regions. An examination of all ASCII cases combined (the "composite" analysis) also shows a positive trend in low-level reflectivity relative to the control region, both in convective and in stratiform cases. Also, convective cells sampled at flight level downwind of the AgI generators contain a higher concentration of small ice crystals during seeding. A word of caution is warranted: both the magnitude and the sign of the change in the target region, compared to that in the control region, varies from case to case in the composite, and amongst the three radar systems (WCR, DOW and MRR). We speculate that this variation is only partly driven by different responses of orographic clouds to glaciogenic seeding, related to factors such as cloud base and cloud top temperature, cloud liquid water content, and snow growth mechanism. Instead, most of this variation probably relates to non-homogenous natural trends across the mountain range, and/or to sample unrepresentativeness, especially for the (relative small) control region, in other words to the sampling methods. The impact of natural variability and sampling aliasing can only be overcome by a storm sample size much larger than that collected in ASCII. As such, the ASCII sample size is not adequate either to quantify the magnitude of the seeding impact on snowfall, or to identify the conditions most suitable for ground-based seeding. This study is an exploration of cloud microphysical evidence linking AgI cloud seeding to snowfall. It is not a statistical study. The preponderance of evidence from different radars and ground-based and airborne particle probes deployed in ASCII, in three case studies and in the composite analysis, points to the ability of ground-based glaciogenic seeding to increase the snowfall rate in orographic clouds..
High-Resolution Radar Imagery of Mars
NASA Astrophysics Data System (ADS)
Harmon, John K.; Nolan, M. C.
2009-09-01
We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.
Description and availability of airborne Doppler radar data
NASA Technical Reports Server (NTRS)
Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.
1993-01-01
An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.
Evaluation of wind field statistics near and inside clouds using a coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Lottman, Brian Todd
1998-09-01
This work proposes advanced techniques for measuring the spatial wind field statistics near and inside clouds using a vertically pointing solid state coherent Doppler lidar on a fixed ground based platform. The coherent Doppler lidar is an ideal instrument for high spatial and temporal resolution velocity estimates. The basic parameters of lidar are discussed, including a complete statistical description of the Doppler lidar signal. This description is extended to cases with simple functional forms for aerosol backscatter and velocity. An estimate for the mean velocity over a sensing volume is produced by estimating the mean spectra. There are many traditional spectral estimators, which are useful for conditions with slowly varying velocity and backscatter. A new class of estimators (novel) is introduced that produces reliable velocity estimates for conditions with large variations in aerosol backscatter and velocity with range, such as cloud conditions. Performance of traditional and novel estimators is computed for a variety of deterministic atmospheric conditions using computer simulated data. Wind field statistics are produced for actual data for a cloud deck, and for multi- layer clouds. Unique results include detection of possible spectral signatures for rain, estimates for the structure function inside a cloud deck, reliable velocity estimation techniques near and inside thin clouds, and estimates for simple wind field statistics between cloud layers.
NASA Technical Reports Server (NTRS)
Divinskaya, B. S.; Salman, Y. M.
1975-01-01
Peculiarities of the radar information about clouds are examined in comparison with visual data. An objective radar classification is presented and the relation of it to the meteorological classification is shown. The advisability of storage and summarization of the primary radar data for regime purposes is substantiated.
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-01
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-20
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watermann, J.; McNamara, A.G.; Sofko, G.J.
Some 7,700 radio aurora spectra obtained from a six link 50-MHz CW radar network set up on the Canadian prairies were analyzed with respect to the distributions of mean Doppler shift, spectral width and skewness. A comparison with recently published SABRE results obtained at 153 MHz shows substantial differences in the distributions which are probably due to different experimental and geophysical conditions. The spectra are mostly broad with mean Doppler shifts close to zero (type II spectra). The typical groupings of type I and type III spectra are clearly identified. All types appear to be in general much more symmetricmore » than those recorded with SABRE, and the skewness is only weakly dependent on the sign of the mean Doppler shift. Its distribution peaks near zero and shows a weak positive correlation with the type II Doppler shifts while the mostly positive type I Doppler shifts are slightly negatively correlated with the skewness.« less
NASA Technical Reports Server (NTRS)
Taylor, W. L.; Rust, W. D.; Macgorman, D. R.; Brandes, E. A.
1983-01-01
Space time mapping of very high frequencies (VHF) sources reveals lightning processes for cloud to ground (CG) and for large intracloud (IC) flashes are confined to an altitude below about 10 km and closely associated with the central high reflectivity region of a storm. Another class of IC flashes was identified that produces a splattering of small sources within the main electrically active volume of a storm and also within a large divergent wind canopy at the top of a storm. There is no apparent temporal association between the small high altitude IC flashes occurring almost continuously and the large IC and CG flashes sporadically occurring in the lower portions of storms.
An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements
NASA Astrophysics Data System (ADS)
Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.
2015-12-01
As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.
Detecting and mitigating wind turbine clutter for airspace radar systems.
Wang, Wen-Qin
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.
Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880
Description and Performance Evaluation of the Moving Target Detector
1977-03-08
Precipitation spectrum at azimuth of 330 . 170 1701 A-8 SGP doppler spectra of angels (probably solitary soaring 172 seagulls ). A-9 SGP doppler...spectra of angels (probably multiple soaring 173 seagulls ). A-10 Airliner approaching radar at traffic pattern speed. 174 A-lI Airliner approaching radar...frequented by soaring seagulls . The three periodograms in Figure A-8 each show a single rather narrow peak. These are believed to be returns from solitary
2010-03-01
in this paper. Velocity sensing can be accomplished in the optical domain with laser Doppler radar (i.e. LIDAR ), through RF band or ultrasonic... Doppler radar. Reference [34] discusses an example of a LIDAR based velocimeter, used to furnish landing speed information for spacecraft terminal descent...in military (and commercial) capabilities: the Ring Laser Gyro (since ~1975), Fiber Optic Gyros (since ~1985), and MEMS (since ~1995). RLGs enabled
A preliminary investigation of bird classification by Doppler radar
NASA Technical Reports Server (NTRS)
Martinson, L. W.
1973-01-01
A preliminary study of the application of Doppler radar to the classification of birds is reported. The desirability for improvements in bird classification stems primarily from the hazards they present to jet aircraft in flight and in the vicinity of airports. A secondary need exists in the study of bird migration. The wing body and tail motion of a bird in flight reflect signals which, when analyzed properly present a signature of wing beat pattern which is unique for each bird species. Although the results of this investigation did not validate the feasibility of classifying bird species, they do indicate that a more thorough investigation is warranted. Certain gross characteristics such as wing beat rates, multiple bird patterns, and bird maneuverability, were indicated clearly in the results. Large birds with slow wing beat rates appear to be the most optimum subject for further study with the X-band Doppler radar used in this investigation.
NASA Astrophysics Data System (ADS)
Hashimoto, Osamu; Mizokami, Osamu
The method for measuring radar cross section (RCS) based on Range-Doppler Imaging is discussed. In this method, the measured targets are rotated and the Doppler frequencies caused by each scattering element along the targets are analyzed by FFT. Using this method, each scattered power peak along the flying model is measured. It is found that each part of the RCS of a flying model can be measured and its RCS of a main wing (about 46 dB/sq cm) is greater than of its body (about 20-30 dB/sq cm).
Raffo, Antonio; Costanzo, Sandra; Di Massa, Giuseppe
2017-01-08
A vibration sensor based on the use of a Software-Defined Radio (SDR) platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Wang, Bingyun; Wei, Ming; Hua, Wei; Zhang, Yongli; Wen, Xiaohang; Zheng, Jiafeng; Li, Nan; Li, Han; Wu, Yu; Zhu, Jie; Zhang, Mingjun
2017-06-01
To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we investigate the evolutionary characteristics and possible formation mechanisms for severe storms in the rainbands of Typhoon Mujigae, which occurred during 2-5 October 2015, based on the NCEP-NCAR reanalysis data, conventional observations, and Doppler radar data. For the rainbands far from the inner core (eye and eyewall) of Mujigae (distance of approximately 70-800 km), wind speed first increased with the radius expanding from the inner core, and then decreased as the radius continued to expand. The Rankine Vortex Model was used to explore such variations in wind speed. The areas of strong stormy rainbands were mainly located in the northeast quadrant of Mujigae, and overlapped with the areas of high winds within approximately 300-550 km away from the inner core, where the strong winds were conducive to the development of strong storms. A severe convective cell in the rainbands developed into waterspout at approximately 500 km to the northeast of the inner core, when Mujigae was strengthening before it made landfall. Two severe convective cells in the rainbands developed into two tornadoes at approximately 350 km to the northeast of the inner core after Mujigae made landfall. The radar echo bands enhanced to 60 dBZ when mesocyclones occurred in the rainbands and induced tornadoes. The radar echoes gradually weakened after the mesocyclones weakened. The tops of parent clouds of the mesocyclones elevated at first, and then suddenly dropped about 20 min before the tornadoes appeared. Thereby, the cloud top variation has the potential to be used as an early warning of tornado occurrence.
Nostradamus: The radar that wanted to be a seismometer
NASA Astrophysics Data System (ADS)
Occhipinti, Giovanni; Dorey, Philippe; Farges, Thomas; Lognonné, Philippe
2010-09-01
Surface waves emitted after large earthquakes are known to induce, by dynamic coupling, atmospheric infrasonic waves propagating upward through the neutral and ionized atmosphere. Those waves have been detected in the past at ionospheric heights using a variety of techniques, such as HF Doppler sounding or GPS receivers. The HF Doppler technique, particularly sensitive to the ionospheric signature of Rayleigh waves is used here to show ionospheric perturbations consistent with the propagation of Rayleigh wave phases R1 and R2 following the Sumatra earthquake on the 28 March 2005 (M = 8.6). This is in our knowledge the first time that the phase R2 is detected by ionospheric sounding. In addition, we prove here that the ionospheric signature of R2 is also observed by over-the-horizon (OTH) Radar. The latter was never used before to detect seismic signature in the ionosphere. Adding the OTH Radar to the list of the “ionospheric seismometers” we discuss and compare the performances of the three different instruments mentioned above, namely HF Doppler sounding, GPS receivers and OTH radar.
Linear prediction data extrapolation superresolution radar imaging
NASA Astrophysics Data System (ADS)
Zhu, Zhaoda; Ye, Zhenru; Wu, Xiaoqing
1993-05-01
Range resolution and cross-range resolution of range-doppler imaging radars are related to the effective bandwidth of transmitted signal and the angle through which the object rotates relatively to the radar line of sight (RLOS) during the coherent processing time, respectively. In this paper, linear prediction data extrapolation discrete Fourier transform (LPDEDFT) superresolution imaging method is investigated for the purpose of surpassing the limitation imposed by the conventional FFT range-doppler processing and improving the resolution capability of range-doppler imaging radar. The LPDEDFT superresolution imaging method, which is conceptually simple, consists of extrapolating observed data beyond the observation windows by means of linear prediction, and then performing the conventional IDFT of the extrapolated data. The live data of a metalized scale model B-52 aircraft mounted on a rotating platform in a microwave anechoic chamber and a flying Boeing-727 aircraft were processed. It is concluded that, compared to the conventional Fourier method, either higher resolution for the same effective bandwidth of transmitted signals and total rotation angle of the object or equal-quality images from smaller bandwidth and total angle may be obtained by LPDEDFT.
An observation of sea-spray microphysics by airborne Doppler radar
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Pezoa, S.; Moran, K.; Wolfe, D.
2014-05-01
This paper describes observations and analysis of Doppler radar data from a down-looking 94 GHz (W-Band) system operated from a NOAA WP-3 Orion research aircraft in Tropical Storm (TS) Karen. The flight took place on 5 October 2013; Karen had weakened with maximum winds around 20 m s-1. Doppler spectral moments from the radar were processed to retrieve sea-spray microphysical properties (drop size and liquid water mass concentration) profiles in the height range 75-300 m above the sea surface. In the high wind speed regions of TS Karen (U10 > 15 m s-1), sea spray was observed with a nominal mass-mode radius of about 40 µm, a radar-weighted gravitational fall velocity of about 1 m s-1, and a mass concentration of about 10-3 gm-3 at 75 m. Spray-drop mass concentration declined with height to values of about 10-4 gm-3 at 300 m. Drop mass decreased slightly more slowly with increasing height than predicted by surface-layer similarity theory for a balance of turbulent diffusion vs fall velocity.
Use of radars to monitor stream discharge by noncontact methods
Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.
2006-01-01
Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods. Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.
A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16
NASA Astrophysics Data System (ADS)
Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien
2015-04-01
The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to begin with. There were two flights on 26 October and thus RASTA data were assimilated at 2+2 consecutive analysis times (06, 09, 12, and 15 UTC). This task involved a preliminary step to convert the original data into vertical profiles that are suitable for assimilation: the data were averaged to remove noise and match the model's resolution, they were converted to appropriate physical quantities and in a format that is readable by the DA system, etc.). The presentation will show the impact of RASTA data on Arome-WMed analyses and forecasts, both with respect to RASTA data and to independent data (either also assimilated or not).
NASA Astrophysics Data System (ADS)
Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion
2017-04-01
Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic structure of the atmosphere is obtained from long-term radiosonde launches. In addition, continuous vertical profiles of temperature and humidity are provided by the microwave radiometer HATPRO. A set of active remote sensing instruments performs cloud observations at Ny-Ålesund: a ceilometer and a Doppler lidar operating since 2011 and 2013, respectively, are now complemented with a novel 94 GHz FMCW cloud radar. As a first step, the CLOUDNET algorithms, including a target categorization and classification, are applied to the observations. In this study, we will present a first analysis of cloud properties at Ny-Ålesund including for example cloud occurrence, cloud geometry (cloud base, cloud top, and thickness) and cloud type (liquid, ice, mixed-phase). The different types of clouds are set into context to the environmental conditions such as temperature, amount of water vapour, and liquid water. We also expect that the cloud properties strongly depend on the wind direction. The first results of this analysis will be also shown.
Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping
NASA Technical Reports Server (NTRS)
Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas
2010-01-01
During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.
DC coupled Doppler radar physiological monitor.
Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga
2011-01-01
One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.
Coupling Between Doppler Radar Signatures and Tornado Damage Tracks
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank
2011-01-01
On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and isolate the "debris ball" from precipitation signatures in the dual polarization radar data has been developed and verified using the NASA damage track data.
NASA Astrophysics Data System (ADS)
Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James
2017-04-01
The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document, airflow studies and antenna aperture simulations We will further outline the next steps needed to bring this exceptional tool into full operation.
CloudSat Profiles Tropical Storm Andrea
2007-05-10
CloudSat's Cloud Profiling Radar captured a profile across Tropical Storm Andrea on Wednesday, May 9, 2007, near the South Carolina/Georgia/Florida Atlantic coast. The upper image shows an infrared view of Tropical Storm Andrea from the Moderate Resolution Imaging Spectroradiometer instrument on NASA's Aqua satellite, with CloudSat's ground track shown as a red line. The lower image is the vertical cross section of radar reflectivity along this path, where the colors indicate the intensity of the reflected radar energy. CloudSat orbits approximately one minute behind Aqua in a satellite formation known as the A-Train. http://photojournal.jpl.nasa.gov/catalog/PIA09379
Multi-Antenna Radar Systems for Doppler Rain Measurements
NASA Technical Reports Server (NTRS)
Durden, Stephen; Tanelli, Simone; Siqueira, Paul
2007-01-01
Use of multiple-antenna radar systems aboard moving high-altitude platforms has been proposed for measuring rainfall. The basic principle of the proposed systems is a variant of that of along-track interferometric synthetic-aperture radar systems used previously to measure ocean waves and currents.
Doppler radar detection of vortex hazard indicators
NASA Technical Reports Server (NTRS)
Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.
1994-01-01
Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.
NASA Technical Reports Server (NTRS)
Usry, J. W.; Dunham, R. E., Jr.; Lee, J. T.
1985-01-01
As a part of the NASA Storm Hazards Program, the wind velocity in several thunderstorms was measured by an F-106B instrumented airplane and a ground-based Doppler radar. The results of five airplane penetrations of two storms in 1980 and six penetrations of one storm in 1981 are given. Comparisons were made between the radial wind velocity components measured by the radar and the airplane. The correlation coefficients for the 1980 data and part of the 1981 data were 0.88 and 0.78, respectively. It is suggested that larger values for these coefficients may be obtained by improving the experimental technique and in particular by slaving the radar to track the airplane during such tests.
Examples of mesoscale structures and short-term wind variations detected by VHF Doppler radar
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1986-01-01
The first of three wind profilers planned for operation in central and western Pennsylvania began full-time, high-quality operation during July 1985. It is located about 20 km south-southeast of University Park and operates at 50 MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the next few months, to complete a mesoscale triangle with sides of 120 to 160 km. During the period since early July, a number of weather systems have passed over the wind profiler. Those accompanied by thunderstorms caused data losses either because the Department computer system lost power or because power went out at the profiler site. A backup power supply and an automatic re-start program will be added to the profiler system to minimize such future losses. Data have normally been averaged over a one-hour period, although there have been some investigations of shorter-period averaging. In each case, preliminary examinations reveal that the profiler winds are indicative of meteorological phenomena. The only occasions of bad or missing data are obtained when airplane noise is occasionally experienced and when the returned power is nearly at the noise level, at the upper few gates, where a consensus wind cannot be determined. Jets streams, clouds, and diurnal variations of winds are discussed.
Micro-Doppler extraction of a small UAV in a non-line-of-sight urban scenario
NASA Astrophysics Data System (ADS)
Gustavsson, Magnus; Andersson, Åsa; Johansson, Tommy; Jonsson, Rolf; Karlsson, Nils; Nilsson, Stefan
2017-05-01
The appearance of small UAVs on the commercial market poses a real threat to both civilian safety and to military operations. In open terrain a radar can detect and track even small UAVs at long distances. In an urban environment with limited line-of-sight and strong static and non-static background, this capability can be severely reduced. The radar cross section of these UAVs are normally small compared to the background. However, the rotors of the UAVs produce a characteristic micro-Doppler signature that can be exploited for detection and classification. In this paper, we investigate in an experimental set-up whether it is possible in the radar non-line-of-sight to retrieve the micro-Doppler signature of the UAV rotors. This is done by exploring up to three multipath bounces in the measured signal. The measurements were made with a semi-monostatic single receiver-transmitter radar system operating at X-band in a pulsed single frequency mode. The radar response of the UAV, with plastic and metallic rotors, was measured at several positions inside a 4 m wide corridor with metallic walls. In this paper, data from one line-of-sight and two non-line-ofsight positions are presented. Results show that we are able to detect the micro-Doppler of the rotors and to retrieve the number of revolutions per minute, for both rotor types. Free space Finite-Difference Time-Domain calculations have also been performed on a CAD-model of the UAV rotor to determine the optimal choice of polarization and the short-time Fourier transform filter length.
Performance Evaluation of a Radar by Computer
1992-09-01
spatial-resolution map (0.25 nmi x 2.80 ) is employed to select the appropriate threshold values for the ground clutter; a doppler weighting that...seconds with approximately 16 mi’ x 3-Doppler-bin resolution. The second filter integrates over 5 seconds and covers within 20 miles of radar and within 3...also includes receiver matching loss , beamshape loss , and the signal processing loss. D, can be written as D,=D, (n) MLL,= -f- (3.2) where x
Signature analysis of ballistic missile warhead with micro-nutation in terahertz band
NASA Astrophysics Data System (ADS)
Li, Ming; Jiang, Yue-song
2013-08-01
In recent years, the micro-Doppler effect has been proposed as a new technique for signature analysis and extraction of radar targets. The ballistic missile is known as a typical radar target and has been paid many attentions for the complexities of its motions in current researches. The trajectory of a ballistic missile can be generally divided into three stages: boost phase, midcourse phase and terminal phase. The midcourse phase is the most important phase for radar target recognition and interception. In this stage, the warhead forms a typical micro-motion called micro-nutation which consists of three basic micro-motions: spinning, coning and wiggle. This paper addresses the issue of signature analysis of ballistic missile warhead in terahertz band via discussing the micro-Doppler effect. We establish a simplified model (cone-shaped) for the missile warhead followed by the micro-motion models including of spinning, coning and wiggle. Based on the basic formulas of these typical micro-motions, we first derive the theoretical formula of micro-nutation which is the main micro-motion of the missile warhead. Then, we calculate the micro-Doppler frequency in both X band and terahertz band via these micro-Doppler formulas. The simulations are given to show the superiority of our proposed method for the recognition and detection of radar micro targets in terahertz band.
A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1989-01-01
Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.
NASA Technical Reports Server (NTRS)
Uttal, Taneil; Frisch, Shelby; Wang, Xuan-Ji; Key, Jeff; Schweiger, Axel; Sun-Mack, Sunny; Minnis, Patrick
2005-01-01
A one year comparison is made of mean monthly values of cloud fraction and cloud optical depth over Barrow, Alaska (71 deg 19.378 min North, 156 deg 36.934 min West) between 35 GHz radar-based retrievals, the TOVS Pathfinder Path-P product, the AVHRR APP-X product, and a MODIS based cloud retrieval product from the CERES-Team. The data sets represent largely disparate spatial and temporal scales, however, in this paper, the focus is to provide a preliminary analysis of how the mean monthly values derived from these different data sets compare, and determine how they can best be used separately, and in combination to provide reliable estimates of long-term trends of changing cloud properties. The radar and satellite data sets described here incorporate Arctic specific modifications that account for cloud detection challenges specific to the Arctic environment. The year 2000 was chosen for this initial comparison because the cloud radar data was particularly continuous and reliable that year, and all of the satellite retrievals of interest were also available for the year 2000. Cloud fraction was chosen as a comparison variable as accurate detection of cloud is the primary product that is necessary for any other cloud property retrievals. Cloud optical depth was additionally selected as it is likely the single cloud property that is most closely correlated to cloud influences on surface radiation budgets.
Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenz, Ronald; Dong, Xiquan; Xi, Baike
To address significant gaps in ground-based radar coverage and rain gauge networks in the U.S., geostationary satellite quantitative precipitation estimates (QPEs) such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can be used to fill in both the spatial and temporal gaps of ground-based measurements. Additionally, with the launch of GOES-R, the temporal resolution of satellite QPEs may be comparable to that of Weather Service Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every five minutes. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations particularly during convective events. Deep Convective Systemsmore » (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little/no precipitation) cannot be distinguished from rain-cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth (τ) has been found to reduce overestimates of precipitation in anvil regions (Stenz et al. 2014). A new rain mask algorithm incorporating both τ and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. (2012) classification algorithm. SCaMPR estimates with the new rain mask applied benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores.« less
Performance of the Colorado wind-profiling network, part 1.5A
NASA Technical Reports Server (NTRS)
Strauch, R. G.; Earnshaw, K. B.; Merritt, D. A.; Moran, K. P.; Vandekamp, D. W.
1984-01-01
The Wave Propagation Laboratory (WPL) has operated a network of radar wind Profilers in Colorado for about 1 year. The network consists of four VHF (50-MHz) radars and a UHF (915-MHz) radar. The Platteville VHF radar was developed by the Aeronomy Laboratory (AL) and has been operated jointly by WPL and AL for several years. The other radars were installed between February and May 1983. Experiences with these radars and some general aspects of tropospheric wind measurements with Doppler radar are discussed.
Radar Observations of Convective Systems from a High-Altitude Aircraft
NASA Technical Reports Server (NTRS)
Heymsfield, G.; Geerts, B.; Tian, L.
1999-01-01
Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations. Both TEFLUN-A and B were amply supported by surface data, in particular a dense raingauge network, a polarization radar, wind profilers, a mobile radiosonde system, a cloud physics aircraft penetrating the overflown storms, and a network of 10 cm Doppler radars(WSR-88D). This presentation will show some preliminary comparisons between TRMM, EDOP, and WSR-88D reflectivity fields in the case of an MCS, a hurricane, and less organized convection in central Florida. A validation of TRMM reflectivity is important, because TRMM's primary objective is to estimate the rainfall climatology with 35 degrees of the equator. Rainfall is estimated from the radar reflectivity, as well from TRMM's Microwave Imager, which measures at 10.7, 19.4, 21.3, 37, and 85.5 GHz over a broader swath (78 km). While the experiments lasted about three months the cumulative period of near simultaneous observations of storms by ground-based, airborne and space borne radars is only about an hour long. Therefore the comparison is case-study-based, not climatological. We will highlight fundamental differences in the typical reflectivity profiles in stratiform regions of MCS's, Florida convection and hurricanes and will explain why Z-R relationships based on ground-based radar data for convective systems over land should be different from those for hurricanes. These catastrophically intense rainfall from hurricane Georges in Hispaniola and from Mitch in Honduras highlights the importance of accurate Z-R relationships, It will be shown that a Z-R relationship that uses the entire reflectivity profile (rather than just a 1 level) works much better in a variety of cases, making an adjustment of the constants for different precipitation system categories redundant.
A 10 cm Dual Frequency Doppler Weather Radar. Part I. The Radar System.
1982-10-25
Evaluation System ( RAMCES )". The step attenuator required for this calibration can be programmed remotely, has low power and temperature coefficients, and...Control and Evaluation System". The Quality Assurance/Fault Location Network makes use of fault location techniques at critical locations in the radar and...quasi-con- tinuous monitoring of radar performance. The Radar Monitor, Control and Evaluation System provides for automated system calibration and
NASA Astrophysics Data System (ADS)
Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.
2018-02-01
The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.
Modelling and extraction technique for micro-doppler signature of aircraft rotor blades
NASA Astrophysics Data System (ADS)
Praveen, N.; Valarmathi, J.
2017-11-01
The process of detecting and distinguishing between different aircrafts has been a major point of interest in Defence applications. Micro-Doppler effect is one such phenomenon unique for aircrafts with different rotor dynamics and design. In this paper, we focus on deducing a mathematical model for micro-Doppler signature, of aircraft rotor blades assumed to be rotating in a plane perpendicular to the flying direction, induced on the incident radar signal. Also, we use the Wigner-Ville Distribution (WVD) to extract this signature from the radar return. This mathematical model is compared with the simulation results obtained from MATLAB, to validate the results and show the accurateness of the developed model.
NASA Technical Reports Server (NTRS)
1975-01-01
The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.
Polarimetric radar and aircraft observations of saggy bright bands during MC3E
Matthew R. Kumjian; Giangrande, Scott E.; Mishra, Subashree; ...
2016-03-19
Polarimetric radar observations increasingly are used to understand cloud microphysical processes, which is critical for improving their representation in cloud and climate models. In particular, there has been recent focus on improving representations of ice collection processes (e.g., aggregation, riming), as these influence precipitation rate, heating profiles, and ultimately cloud life cycles. However, distinguishing these processes using conventional polarimetric radar observations is difficult, as they produce similar fingerprints. This necessitates improved analysis techniques and integration of complementary data sources. Furthermore, the Midlatitude Continental Convective Clouds Experiment (MC3E) provided such an opportunity.
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood
2004-01-01
Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.
ERIC Educational Resources Information Center
Matrix Research Co., Alexandria, VA.
The handbook covers a comprehensive series of Job-Task Performance Tests for the Doppler Radar (AN/APN) and its Associated Computer (AN/ASN-35). The test series has been developed to measure job performance of the electronic technician. These tests encompass all phases of day-to-day preventative and corrective maintenance that technicians are…
Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals
NASA Astrophysics Data System (ADS)
Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan
2015-03-01
Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.
Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a)
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2011-01-01
The NASA Engineering and Safety Center (NESC) received a request from the, NASA Technical Fellow for Flight Mechanics at Langley Research Center (LaRC), to develop a database from multiple Doppler radar wind profiler (DRWP) sources and develop data processing algorithms to construct high temporal resolution DRWP wind profiles for day-of-launch (DOL) vehicle assessment. This document contains the outcome of Phase 1a of the assessment including Findings, Observations, NESC Recommendations, and Lessons Learned.
The new Adelaide medium frequency Doppler radar
NASA Astrophysics Data System (ADS)
Reid, I. M.; Vandepeer, B. G. W.; Dillon, S.; Fuller, B.
1993-08-01
The Buckland Park Aerial Array (35 deg S, 138 deg E) is situated about 40 km north of Adelaide on a flat coastal plain. It was designed by Basil Briggs and Graham Elford, and constructed between 1965 and 1968. The first results were published in the late 1960's. Some aspects of the history of the array are described in Briggs (1993). A new MF Doppler Radar utilizing the array has been developed. This paper describes some of the technical details of this new facility.
Measurement needs guided by synthetic radar scans in high-resolution model output
NASA Astrophysics Data System (ADS)
Varble, A.; Nesbitt, S. W.; Borque, P.
2017-12-01
Microphysical and dynamical process interactions within deep convective clouds are not well understood, partly because measurement strategies often focus on statistics of cloud state rather than cloud processes. While processes cannot be directly measured, they can be inferred with sufficiently frequent and detailed scanning radar measurements focused on the life cycleof individual cloud regions. This is a primary goal of the 2018-19 DOE ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) and NSF Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaigns in central Argentina, where orographic deep convective initiation is frequent with some high-impact systems growing into the tallest and largest in the world. An array of fixed and mobile scanning multi-wavelength dual-polarization radars will be coupled with surface observations, sounding systems, multi-wavelength vertical profilers, and aircraft in situ measurements to characterize convective cloud life cycles and their relationship with environmental conditions. While detailed cloud processes are an observational target, the radar scan patterns that are most ideal for observing them are unclear. They depend on the locations and scales of key microphysical and dynamical processes operating within the cloud. High-resolution simulations of clouds, while imperfect, can provide information on these locations and scales that guide radar measurement needs. Radar locations are set in the model domain based on planned experiment locations, and simulatedorographic deep convective initiation and upscale growth are sampled using a number of different scans involving RHIs or PPIs with predefined elevation and azimuthal angles that approximately conform with radar range and beam width specifications. Each full scan pattern is applied to output atsingle model time steps with time step intervals that depend on the length of time required to complete each scan in the real world. The ability of different scans to detect key processes within the convective cloud life cycle are examined in connection with previous and subsequent dynamical and microphysical transitions. This work will guide strategic scan patterns that will be used during CACTI and RELAMPAGO.
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Petersen, W. A.; Giangrande, S.; Heymsfield, G. M.; Kollias, P.; Rutledge, S. A.; Schwaller, M.; Zipser, E. J.
2011-12-01
The Midlatitude Continental Convective Clouds Experiment (MC3E) took place from 22 April through 6 June 2011 centered at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility in north-central Oklahoma. This campaign was a joint effort between the ARM and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement mission Ground Validation program. It was the first major field campaign to take advantage of numerous new radars and other remote sensing instrumentation purchased through the American Recovery and Reinvestment Act of 2009. The measurement strategy for this field campaign was to provide a well-defined forcing dataset for modeling efforts coupled with detailed observations of cloud/precipitation dynamics and microphysics within the domain highlighted by advanced multi-scale, multi-frequency radar remote sensing. These observations are aimed at providing important insights into eight different components of convective simulation and microphysical parameterization: (1) pre-convective environment, (2) convective initiation, (3) updraft/downdraft dynamics, (4) condensate transport/detrainment/entrainment, (5) precipitation and cloud microphysics, (6) influence on the environment, (7) influence on radiation, and (8) large-scale forcing. In order to obtain the necessary dataset, the MC3E surface-based observational network included six radiosonde launch sites each launching 4-8 sondes per day, three X-band scanning ARM precipitation radars, a C-band scanning ARM precipitation radar, the NASA N-Pol (S-band) scanning radar, the NASA D3R Ka/Ku-band radar, the Ka/W-band scanning ARM cloud radar, vertically pointing radar systems at Ka-, S- and UHF band, a network of over 20 disdrometers and rain gauges and the full complement of radiation, cloud and atmospheric state observations available at the ARM facility. This surface-based network was complemented by aircraft measurements by the NASA ER-2 high altitude aircraft which included a radar system (Ka/Ku band) and multiple passive microwave radiometers (10-183 GHz) and the University of North Dakota Citation which included a full suite of in situ microphysics instruments. The campaign was successful in providing observations over a wide variety of convective cloud types, from shallow non-precipitating cloud fields to shallow-to-deep transitions to mature deep convective systems some of which included severe weather. We will present an overview of the convective cloud conditions that were observed, the status MC3E datastreams and a summary of some of the preliminary results.
NASA Technical Reports Server (NTRS)
Proctor, Fred H.
1994-01-01
On 8 July 1989, a very strong microburst was detected by the Low-Level Windshear Alert system (LLWAS), within the approach corridor just north of Denver Stapleton Airport. The microburst was encountered by a Boeing 737-200 in a 'go-around' configuration which was reported to have lost considerable air speed and altitude during penetration. Data from LLWAS revealed a pulsating microburst with an estimated peak velocity change of 48 m/s. Wilson et al. reported that the microburst was accompanied by no apparent visible clues such as rain or virga, although blowing dust was present. Weather service hourly reports indicated virga in all quadrants near the time of the event. A National Center for Atmospheric Research (NCAR) research Doppler radar was operating; but according to Wilson et al., meaningful velocity could not be measured within the microburst due to low radar-reflectivity factor and poor siting for windshear detection at Stapleton. This paper presents results from the three-dimensional numerical simulation of this event, using the Terminal Area Simulation System (TASS) model. The TASS model is a three-dimensional nonhydrostatic cloud model that includes parameterizations for both liquid and ice phase microphysics, and has been used in investigations of both wet and dry microburst case studies. The focus of this paper is the pulsating characteristic and the very-low radar reflectivity of this event. Most of the surface outflow contained no precipitation. Such an event may be difficult to detect by radar.
Research on Radar Micro-Doppler Feature Parameter Estimation of Propeller Aircraft
NASA Astrophysics Data System (ADS)
He, Zhihua; Tao, Feixiang; Duan, Jia; Luo, Jingsheng
2018-01-01
The micro-motion modulation effect of the rotated propellers to radar echo can be a steady feature for aircraft target recognition. Thus, micro-Doppler feature parameter estimation is a key to accurate target recognition. In this paper, the radar echo of rotated propellers is modelled and simulated. Based on which, the distribution characteristics of the micro-motion modulation energy in time, frequency and time-frequency domain are analyzed. The micro-motion modulation energy produced by the scattering points of rotating propellers is accumulated using the Inverse-Radon (I-Radon) transform, which can be used to accomplish the estimation of micro-modulation parameter. Finally, it is proved that the proposed parameter estimation method is effective with measured data. The micro-motion parameters of aircraft can be used as the features of radar target recognition.
NASA Astrophysics Data System (ADS)
Lamer, K.; Luke, E. P.; Kollias, P.; Oue, M.; Wang, J.
2017-12-01
The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates a fixed observatory in the Eastern North Atlantic (ENA) on Graciosa Island in the Azores. Straddling the tropics and extratropics, the Azores receive air transported from North America, the Arctic and sometimes Europe. At the ARM ENA site, marine boundary layer clouds are frequently observed all year round. Estimates of drizzle mass flux from the surface to cloud base height are documented using a combination of high sensitivity profiling 35-GHz radar and ceilometer observations. Three years of drizzle mass flux retrievals reveal that statistically, directly over the ENA site, marine boundary layer cloud drizzle rates tend to be weak with few heavy drizzle events. In the summer of 2017, this site hosted the first phase of the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign, which is motivated by the need for comprehensive in situ characterization of boundary layer structure, low clouds and aerosols. During this phase, the 35-GHz scanning ARM cloud radar was operated as a surveillance radar, providing regional context for the profiling observations. While less sensitive, the scanning radar measurements document a larger number of heavier drizzle events and provide domain-representative estimates of shallow precipitation. A best estimate, domain averaged, shallow precipitation rate for the region around the ARM ENA site is presented. The methodology optimally combines the ability of the profiling observations to detect the weak but frequently occurring drizzle events with the scanning cloud radar's ability to capture the less frequent heavier drizzle events. The technique is also evaluated using high resolution model output and a sophisticated forward radar operator.
An UGS radar with micro-Doppler capabilities for wide area persistent surveillance
NASA Astrophysics Data System (ADS)
Tahmoush, Dave; Silvious, Jerry; Clark, John
2010-04-01
Detecting humans and distinguishing them from natural fauna is an important issue in security applications to reduce false alarm rates. In particular, it is important to detect and classify people who are walking in remote locations and transmit back detections over extended periods at a low cost and with minimal maintenance. The ability to discriminate men versus animals and vehicles at long range would give a distinct sensor advantage. The reduction in false positive detections due to animals would increase the usefulness of detections, while dismount identification could reduce friendly-fire. We developed and demonstrate a compact radar technology that is scalable to a variety of ultra-lightweight and low-power platforms for wide area persistent surveillance as an unattended, unmanned, and man-portable ground sensor. The radar uses micro-Doppler processing to characterize the tracks of moving targets and to then eliminate unimportant detections due to animals or civilian activity. This paper presents the system and data on humans, vehicles, and animals at multiple angles and directions of motion, demonstrates the signal processing approach that makes the targets visually recognizable, and verifies that the UGS radar has enough micro-Doppler capability to distinguish between humans, vehicles, and animals.
The influences on radar-based rainfall estimation due to complex terrain
NASA Astrophysics Data System (ADS)
Craciun, Cristian; Stefan, Sabina
2017-04-01
One of the concerns regarding radar-based quantitative precipitation estimation (QPE) is the level of reliability of radar data, on which the forecaster should trust when he must issue warnings regarding weather phenomena that might put human lives and good in danger. The aim of the current study is to evaluate, by objective means, the difference between radar estimated and gauge measured precipitation over an area with complex terrain. Radar data supplied for the study comes from an S-band, single polarization, Doppler weather system, Weather Surveillance Radar 98 Doppler (WSR-98D), that is located in center part of Romania. Gage measurements are supplied by a net of 27 weather stations, located within the coverage area of the radar. The approach consists in a few steps. In the first one the field of reflectivity data is converted into rain rate, using the radar's native Z-R relationship, and the rain rate field is then transformed into rain accumulation over certain time intervals. In the next step were investigated the differences between radar and gauge rainfall accumulations by using four objective functions: mean bias between radar estimations and ground measurements, root mean square factor, and Spearman and Pearson correlations. The results shows that the differences and the correlations between radar-based accumulations and rain gauge amounts have rather local significance than general relevance over the studied area.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.
2017-12-01
Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534
An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.
2003-01-01
An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.
Modified linear predictive coding approach for moving target tracking by Doppler radar
NASA Astrophysics Data System (ADS)
Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao
2016-07-01
Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.
NASA Astrophysics Data System (ADS)
Bateman, M.; Mach, D.; Lewis, S.; Dye, J.; Defer, E.; Grainger, C.; Willis, P.; Christian, H.; Merceret, F.
2003-12-01
Airborne measurements of electric fields and particle microphysics were made during a field program at NASA's Kennedy Space Center. The aircraft, a Cessna Citation II jet operated by the University of North Dakota, carried six rotating-vane style electric field mills, several microphysics instruments, and thermodynamic instruments. In addition to the aircraft measurements, we also have data from both the Eastern Test Range WSR-74C (Patrick AFB) and the U.S. National Weather Service WSR-88D radars (primarily Melbourne, FL). One specific goal of this program was to try to develop a radar-based rule for estimating the hazard that an in-cloud electric field would present to a vehicle launched into the cloud. Based on past experience, and our desire to quantify the mixed-phase region of the cloud in question, we have assessed several algorithms for integrating radar reflectivity data in and above the mixed-phase region as a proxy for electric field. A successful radar proxy is one that can accurately predict the presence or absence of significant electric fields. We have compared various proxies with the measured in-cloud electric field strength in an attempt to develop a radar rule for assessing launch hazard. Assessment of the best proxy is presented.
AMF3 CloudSat Overpasses Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matrosov, Sergey; Hardin, Joseph; De Boer, Gijs
Synergy between ground-based and satellite radar observations of clouds and precipitation is important for refining the algorithms to retrieve hydrometeor microphysical parameters, improvements in the retrieval accuracy, and better understanding the advantages and limitations of different retrieval approaches. The new dual-frequency (Ka- and W-band, 35 GHz and 94 GHz) fully polarimetric scanning U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility cloud radars (SACRs-2) are advanced sensors aimed to significantly enhance remote sensing capabilities (Kollias et al. 2016). One of these radars was deployed as part of the third ARM Mobile Facility (AMF3) at Oliktok Point, Alaska (70.495omore » N, 149.886oW). The National Aeronautics and Space Administration (NASA) CloudSat satellite, which is part of the polar-orbiting A-train satellite constellation, passes over the vicinity of the AMF3 location (typically within 0-7 km depending on a particular overpass) on a descending orbit every 16 days at approximately 13:21 UTC. The nadir pointing W-band CloudSat cloud profiling radar (CPR) provides vertical profiles of reflectivity that are then used for retrievals of hydrometeor parameters (Tanelli et al. 2008). The main objective of the AMF3 CloudSat overpasses intensive operating period (IOP) campaign was to collect approximately collocated in space and time radar data from the SACR-2 and the CloudSat CPR measurements for subsequent joint analysis of radar variables and microphysical retrievals of cloud and precipitation parameters. Providing the reference for the SACR-2 absolute calibration from the well-calibrated CloudSat CPR was another objective of this IOP. The IOP objectives were achieved by conducting seven special SACR-2 scans during the 10.5-min period centered at the exact time of the CloudSat overpass over the AMF3 (~1321 UTC) on six dates of the CloudSat overpasses during the three-month period allocated to this IOP. These six days were March 5 and 21, April 6 and 22, and May 8 and 24.« less
Cloud Type Classification (cldtype) Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Donna; Shi, Yan; Lim, K-S
The Cloud Type (cldtype) value-added product (VAP) provides an automated cloud type classification based on macrophysical quantities derived from vertically pointing lidar and radar. Up to 10 layers of clouds are classified into seven cloud types based on predetermined and site-specific thresholds of cloud top, base and thickness. Examples of thresholds for selected U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility sites are provided in Tables 1 and 2. Inputs for the cldtype VAP include lidar and radar cloud boundaries obtained from the Active Remotely Sensed Cloud Location (ARSCL) and Surface Meteorological Systems (MET) data. Rainmore » rates from MET are used to determine when radar signal attenuation precludes accurate cloud detection. Temporal resolution and vertical resolution for cldtype are 1 minute and 30 m respectively and match the resolution of ARSCL. The cldtype classification is an initial step for further categorization of clouds. It was developed for use by the Shallow Cumulus VAP to identify potential periods of interest to the LASSO model and is intended to find clouds of interest for a variety of users.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhien
2010-06-29
The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processesmore » is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.« less
New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images
NASA Astrophysics Data System (ADS)
Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas
2016-10-01
Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay-Doppler images.This work was supported by NASA Ames, NVIDIA, Autodesk and the SETI Institute as part of the NASA Frontier Development Lab program.
NASA Technical Reports Server (NTRS)
Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.
1986-01-01
A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.
An Observational Study of a Prefrontal Convective Rainband Using Tamex Single-and Dual-Doppler Data
1991-01-01
integration from the surface. Other Doppler studies, e.g., Chong and Testud (1983), Lin et al. 37 (1986), etc, also showed similiar results. 4.3 Variational...Atmos. Sci., 39, 258- 279. Chong, M., and J. Testud , 1983: Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part III: The Boundary
Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data
NASA Technical Reports Server (NTRS)
Eide, Michael C.; Mathews, Bruce
1992-01-01
Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler radar product with signal and data processing algorithms which detect realistic microburst hazards and has demonstrated those algorithms produce no false alerts (or nuisance alerts) in urban airport ground moving vehicle (GMTI) and/or clutter environments.
On the potential use of radar-derived information in operational numerical weather prediction
NASA Technical Reports Server (NTRS)
Mcpherson, R. D.
1986-01-01
Estimates of requirements likely to be levied on a new observing system for mesoscale meteonology are given. Potential observing systems for mesoscale numerical weather prediction are discussed. Thermodynamic profiler radiometers, infrared radiometer atmospheric sounders, Doppler radar wind profilers and surveillance radar, and moisture profilers are among the instruments described.
Localization and Mapping Using Only a Rotating FMCW Radar Sensor
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-01-01
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523
Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.
Gu, Changzhan; Li, Changzhi
2015-03-16
Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.
Localization and mapping using only a rotating FMCW radar sensor.
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-04-08
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.
Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System
Gu, Changzhan; Li, Changzhi
2015-01-01
Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310
Comparison of cloud boundaries measured with 8.6 mm radar and 10.6 micrometer lidar
NASA Technical Reports Server (NTRS)
Uttal, Taneil; Intrieri, Janet M.
1993-01-01
One of the most basic cloud properties is location; the height of cloud base and the height of cloud top. The glossary of meteorology defines cloud base (top) as follows: 'For a given cloud or cloud layer, that lowest (highest) level in the atmosphere at which the air contains a perceptible quantity of cloud particles.' Our studies show that for a 8.66 mm radar, and a 10.6 micrometer lidar, the level at which cloud hydrometers become 'perceptible' can vary significantly as a function of the different wavelengths, powers, beamwidths and sampling rates of the two remote sensors.
A time-frequency classifier for human gait recognition
NASA Astrophysics Data System (ADS)
Mobasseri, Bijan G.; Amin, Moeness G.
2009-05-01
Radar has established itself as an effective all-weather, day or night sensor. Radar signals can penetrate walls and provide information on moving targets. Recently, radar has been used as an effective biometric sensor for classification of gait. The return from a coherent radar system contains a frequency offset in the carrier frequency, known as the Doppler Effect. The movements of arms and legs give rise to micro Doppler which can be clearly detailed in the time-frequency domain using traditional or modern time-frequency signal representation. In this paper we propose a gait classifier based on subspace learning using principal components analysis(PCA). The training set consists of feature vectors defined as either time or frequency snapshots taken from the spectrogram of radar backscatter. We show that gait signature is captured effectively in feature vectors. Feature vectors are then used in training a minimum distance classifier based on Mahalanobis distance metric. Results show that gait classification with high accuracy and short observation window is achievable using the proposed classifier.
NASA ER-2 Doppler radar reflectivity calibration for the CAMEX project
NASA Technical Reports Server (NTRS)
Caylor, I. J.; Heymsfield, G. M.; Bidwell, S. W.; Ameen, S.
1994-01-01
The NASA ER-2 Doppler radar (EDOP) was flown aboard the ER-2 high-altitude aircraft in September and October 1993 for the Convection and Moisture Experiment. During these flights, the first reliable reflectivity observations were performed with the EDOP instrument. This report details the procedure used to convert real-time engineering data into calibrated radar reflectivity. Application of the calibration results produces good agreement between the EDOP nadir pointing reflectivity and ground truth provided by a National Weather Service WSR-88D radar. The rms deviation between WSR-88D and EDOP is 6.9 dB, while measurements of the ocean surface backscatter coefficient are less than 3 dB from reported scatterometer coefficients. After an initial 30-minute period required for the instrument to reach thermal equilibrium, the radar is stable to better than 0.25 dB during flight. The range performance of EDOP shows excellent agreement with aircraft altimeter and meteorological sounding data.
Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar.
Hu, Xikun; Jin, Tian
2016-11-30
The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB) radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD) and a vital sign separation method based on the continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-noise ratio (SNR) in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dong; Schwartz, Stephen E.; Yu, Dantong
Clouds are a central focus of the U.S. Department of Energy (DOE)’s Atmospheric System Research (ASR) program and Atmospheric Radiation Measurement (ARM) Climate Research Facility, and more broadly are the subject of much investigation because of their important effects on atmospheric radiation and, through feedbacks, on climate sensitivity. Significant progress has been made by moving from a vertically pointing (“soda-straw”) to a three-dimensional (3D) view of clouds by investing in scanning cloud radars through the American Recovery and Reinvestment Act of 2009. Yet, because of the physical nature of radars, there are key gaps in ARM's cloud observational capabilities. Formore » example, cloud radars often fail to detect small shallow cumulus and thin cirrus clouds that are nonetheless radiatively important. Furthermore, it takes five to twenty minutes for a cloud radar to complete a 3D volume scan and clouds can evolve substantially during this period. Ground-based stereo-imaging is a promising technique to complement existing ARM cloud observation capabilities. It enables the estimation of cloud coverage, height, horizontal motion, morphology, and spatial arrangement over an extended area of up to 30 by 30 km at refresh rates greater than 1 Hz (Peng et al. 2015). With fine spatial and temporal resolution of modern sky cameras, the stereo-imaging technique allows for the tracking of a small cumulus cloud or a thin cirrus cloud that cannot be detected by a cloud radar. With support from the DOE SunShot Initiative, the Principal Investigator (PI)’s team at Brookhaven National Laboratory (BNL) has developed some initial capability for cloud tracking using multiple distinctly located hemispheric cameras (Peng et al. 2015). To validate the ground-based cloud stereo-imaging technique, the cloud stereo-imaging field campaign was conducted at the ARM Facility’s Southern Great Plains (SGP) site in Oklahoma from July 15 to December 24. As shown in Figure 1, the cloud stereo-imaging system consisted of two inexpensive high-definition (HD) hemispheric cameras (each cost less than $1,500) and ARM’s Total Sky Imager (TSI). Together with other co-located ARM instrumentation, the campaign provides a promising opportunity to validate stereo-imaging-based cloud base height and, more importantly, to examine the feasibility of cloud thickness retrieval for low-view-angle clouds.« less
ARM Radar Contoured Frequency by Altitude Diagram (CFAD) Data Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying
2017-03-10
To compare with ARM cloud radar simulator outputs, observational reflectivity-height joint histograms, i.e., CFADs, are constructed from the operational ARM Active Remote Sensing of CLouds (ARSCL) Value-Added Product.
NASA Astrophysics Data System (ADS)
Sekelsky, Stephen Michael
1995-11-01
The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of drizzle, which were collected in July, 1993 during the system's first field test in Lincoln, NE. The dissertation also presents cirrus cloud and other measurements collected during the DOE-sponsored Remote Cloud Sensing Intensive Operations Period (RCS-IOP) experiment in April, 1994. Zenith-pointing cirrus measurements show small differences in 33 GHz and 95 GHz reflectivity, as models have predicted (2). Depolarization was also detected in a few cases when ice crystals precipitated from the base of a cloud. On May 29, 1994 CPRS observed a convective storm that produced a cirrus anvil cloud and hail. These storms are one 'engine' producing cirrus clouds and are currently a topic of intensive research by climatologists. Both zenith-pointing and range-height data formats are presented. Measurements of depolarization above the melting/layer are compared to in situ observations of particle size and shape. The RCS-IOP experiment also provided a first opportunity to verify our calibration with aircraft in situ measurements, and to compare our cloud measurements to those collected by other remote sensors. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Xiong, Xingting; Qu, Xinghua; Zhang, Fumin
2018-01-01
We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.
The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent
NASA Technical Reports Server (NTRS)
Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont
2012-01-01
The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multicell) and 6 July 2007 (non-severe multi-cell) over Northern Alabama. The LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby Doppler radar network, including the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR, C-band, polarimetric). The LNOM estimated SAD and lightning NOx production profiles are placed in the context of radar derived profiles of vertical motion, precipitation types and amounts. Finally, these analyses are used to determine if storm integrated flash channel extent is as well correlated to volumetric updraft and precipitation ice characteristics in the mixed phase region as flash rate for these individual convective cells.
Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill
2018-01-01
Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708
Potential use of weather radar to study movements of wintering waterfowl
Randall, Lori A.; Diehl, Robert H.; Wilson, Barry C.; Barrow, Wylie C.; Jeske, Clinton W.
2011-01-01
To protect and restore wintering waterfowl habitat, managers require knowledge of routine wintering waterfowl movements and habitat use. During preliminary screening of Doppler weather radar data we observed biological movements consistent with routine foraging flights of wintering waterfowl known to occur near Lacassine National Wildlife Refuge (NWR), Louisiana. During the winters of 2004–2005 and 2005–2006, we conducted field surveys to identify the source of the radar echoes emanating from Lacassine NWR. We compared field data to weather radar reflectivity data. Spatial and temporal patterns consistent with foraging flight movements appeared in weather radar data on all dates of field surveys. Dabbling ducks were the dominant taxa flying within the radar beam during the foraging flight period. Using linear regression, we found a positive log-linear relationship between average radar reflectivity (Z) and number of birds detected over the study area (P r2 = 0.62, n = 40). Ground observations and the statistically significant relationship between radar data and field data confirm that Doppler weather radar recorded the foraging flights of dabbling ducks. Weather radars may be effective tools for wintering waterfowl management because they provide broad-scale views of both diurnal and nocturnal movements. In addition, an extensive data archive enables the study of wintering waterfowl response to habitat loss, agricultural practices, wetland restoration, and other research questions that require multiple years of data.
Investigation of Surface Waves in Deep and Shallow Water using Coherent Radars at Grazing Incidence
NASA Astrophysics Data System (ADS)
Buckley, M.; Horstmann, J.; Carrasco, R.; Seemann, J.; Stresser, M.
2016-02-01
Coherent microwave radars operating at X-band near grazing incidence are utilized to measure the backscatter intensity and Doppler velocity from the small-scale surface roughness of the ocean. The radar backscatter is dependent on the wind and strongly modulated by the surface waves and therefore enables to retrieve the surface wind as well as surface waves. The radar measured Doppler velocities are also modulated by contributions from the wind, current and waves and allow getting additional information on these parameters. In addition coherent marine radars allow to observe breaking waves, which lead to a increase in radar backscatter as well as a strong change of the Doppler speed.Within this presentation we will introduce and validate new methods to measure spectral wave properties such as wave directions, periods and significant wave height from coherent marine radars. The methods have been applied in deep and shallow water and validated to measurements of directional wave riders as well as an Acoustic Wave and Current Profiler. These comparisons show an overall excellent performance of coherent radars for the retrieval of spectral wave properties (e.g. Hs rms of 0.2 m). Furthermore, new methodologies will be presented that enable to observe and quantify wave breaking in deep water as well as in the littoral zone. The above mentioned methods have been applied to investigate the influence of Offshore Wind Farms (OWF) on the wave field with respect to the spectral properties as well as the amount of wave breaking. We will present the results obtained during a cruise in May 2015 within and around the OWF Dantysk in the German Bight of the North Sea, which consist of eighty 3.5 MW wind turbines. In addition we will present our initial results on the investigation of wave dissipation in the littoral zone at the coast of the island Sylt using marine radars, pressure gauges as well as directional wave riders.
The relation of radar to cloud area-time integrals and implications for rain measurements from space
NASA Technical Reports Server (NTRS)
Atlas, David; Bell, Thomas L.
1992-01-01
The relationships between satellite-based and radar-measured area-time integrals (ATI) for convective storms are determined, and both are shown to depend on the climatological conditional mean rain rate and the ratio of the measured cloud area to the actual rain area of the storms. The GOES precipitation index of Arkin (1986) for convective storms, an area-time integral for satellite cloud areas, is shown to be related to the ATI for radar-observed rain areas. The quality of GPI-based rainfall estimates depends on how well the cloud area is related to the rain area and the size of the sampling domain. It is also noted that the use of a GOES cloud ATI in conjunction with the radar area-time integral will improve the accuracy of rainfall estimates and allow such estimates to be made in much smaller space-time domains than the 1-month and 5-deg boxes anticipated for the Tropical Rainfall Measuring Mission.
Remote sensing of cirrus cloud vertical size profile using MODIS data
NASA Astrophysics Data System (ADS)
Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.
2009-05-01
This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.
The behavior of the radar parameters of cumulonimbus clouds during cloud seeding with AgI
NASA Astrophysics Data System (ADS)
Vujović, D.; Protić, M.
2017-06-01
Deep convection yielding severe weather phenomena (hail, flash floods, thunder) is frequent in Serbia during the warmer part of the year, i.e. April to September. As an effort to mitigate any potential damage to material goods, agricultural crops and vegetation from larger hailstones, cloud seeding is performed. In this paper, we analyzed 29 severe hailstorms seeded by silver iodide. From these, we chose five intense summer thunderstorm cells to analyze in detail the influence of silver-iodide cloud seeding on the radar parameters. Four of them were seeded and one was not. We also used data from firing stations (hail fall occurrence, the size of the hailstones). The most sensitive radar parameter in seeding was the height where maximum reflectivity in the cloud was observed. Its cascade appeared in every case of seeding, but was absent from the non-seeded case. In the case of the supercell, increase and decrease of the height where maximum reflectivity in the cloud was observed occurred in almost regular intervals, 12 to 15 min. The most inert parameter in seeding was maximum radar reflectivity. It changed one to two dBz during one cycle. The height of the top of the cloud and the height of the zone exhibiting enhanced radar echo both had similar behavior. It seems that both increased after seeding due to a dynamic effect: upward currents increasing due to the release of latent heat during the freezing of supercooled droplets. Mean values of the height where maximum reflectivity in the cloud was observed, the height of the top of the cloud and the height of the zone exhibiting enhanced radar echo during seeded period were greater than during unseeded period in 75.9%, 72.4% and 79.3% cases, respectively. This is because the values of the chosen storm parameters were higher when the seeding started, and then those values decreased after the seeded was conducted.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... inputs to semiautomatic self-contained dead reckoning navigation systems which were not continuously... Doppler sensor equipment that provides inputs to dead reckoning navigation systems obsolete. On August 18...
Real-data tests of a single-Doppler radar assimilation system
NASA Astrophysics Data System (ADS)
Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.
1994-06-01
Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.
Compressed Sensing in On-Grid MIMO Radar.
Minner, Michael F
2015-01-01
The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on the ℓ 1-squared Nonnegative Regularization method.
NASA Astrophysics Data System (ADS)
Yang, Qi; Deng, Bin; Wang, Hongqiang; Qin, Yuliang
2017-07-01
Rotation is one of the typical micro-motions of radar targets. In many cases, rotation of the targets is always accompanied with vibrating interference, and it will significantly affect the parameter estimation and imaging, especially in the terahertz band. In this paper, we propose a parameter estimation method and an image reconstruction method based on the inverse Radon transform, the time-frequency analysis, and its inverse. The method can separate and estimate the rotating Doppler and the vibrating Doppler simultaneously and can obtain high-quality reconstructed images after vibration compensation. In addition, a 322-GHz radar system and a 25-GHz commercial radar are introduced and experiments on rotating corner reflectors are carried out in this paper. The results of the simulation and experiments verify the validity of the methods, which lay a foundation for the practical processing of the terahertz radar.
Radar velocity determination using direction of arrival measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.
The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis.more » This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.« less
SuperDARN elevation angle calibration using HAARP-induced backscatter
NASA Astrophysics Data System (ADS)
Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.
2017-12-01
SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.
Laser cooling of nuclear spin 0 alkali 78Rb
NASA Astrophysics Data System (ADS)
Behr, J. A.; Gorelov, A.; Anholm, M.
2015-05-01
The textbook example for sub-Doppler cooling is a J = 1/2 I = 0 alkali atom in lin ⊥ lin molasses. In the σ+ σ- configuration of a standard MOT, the main sub-Doppler cooling mechanism relies on changing alignment (MF2 population) with the summed linear polarization orientation, but there is no such variation in AC Stark shift for F = 1/2. We have nevertheless looked for signs of sub-Doppler cooling by trapping I = 0 78Rb in a standard MOT and measuring the cloud size as a function of laser detuning and intensity. The 78Rb cloud size does not change significantly with lowered intensity, and expands slightly with detuning, consistent with minimal to no sub-Doppler cooling. Our geometry does show the well-known substantially smaller cloud size with detuning and intensity for I = 3/2 87Rb. Maintaining an I = 0 alkali cloud size with lowered intensity will help our planned β- ν correlation experiments in 38mK decay by suppressing possible production of photoassisted dimers. Supported by NSERC and NRC Canada through TRIUMF.
Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air
NASA Technical Reports Server (NTRS)
Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki L. H.; Myers, Theodore
1997-01-01
This report documents a high risk, high pay-off experiment with the objective of detecting, for the first time, the presence of aircraft wake vortices in clear air using X-band Doppler radar. Field experiments were conducted in January 1995 at the Wallops Flight Facility (WFF) to demonstrate the capability of the 9.33 GHz (I=3 cm) radar, which was assembled using an existing nine-meter parabolic antenna reflector at VVTT and the receiver/transmitter from the NASA Airborne Windshear Radar-Program. A C-130-aircraft, equipped with wingtip smoke generators, created visually marked wake vortices, which were recorded by video cameras. A C-band radar also observed the wake vortices during detection attempts with the X-band radar. Rawinsonde data was used to calculate vertical soundings of wake vortex decay time, cross aircraft bearing wind speed, and water vapor mixing ratio for aircraft passes over the radar measurement range. This experiment was a pathfinder in predicting, in real time, the location and persistence of C-130 vortices, and in setting the flight path of the aircraft to optimize X-band radar measurement of the wake vortex core in real time. This experiment was conducted in support of the NASA Aircraft Vortex Spacing System (AVOSS).
Nowcasting Convective Storm Evolution in East-Central Florida Using Satellite and Doppler Radar Data
1994-01-01
Carbone, 1984: Nowcasting with Doppler radar: The Forecaster- Computer Relationship. Nowcasting I, ed. K.A. Browning, European Space Agency , 177-186...20503. (0 _ . AGENCY USE ONLY (Leave blink) j 2. REPORT DATE j 3. REPORT TYPE AND DATES COVERED N4ý4tTLE AN U STaTL. S5 4 e,,a. FUNDING NUMBERS WA...REPORT NUMBER 9. SPONSORING/ MONITORING AGENCY NAME(S AND ADORE 10. SPONSORING/ MONITORING DEPARTMENT OF THE AIR FORCE T AGENCY REPORT NUMBERAFIT1¢Cl
NASA Technical Reports Server (NTRS)
1972-01-01
System studies, equipment simulation, hardware development and flight tests which were conducted during the development of aircraft collision hazard warning system are discussed. The system uses a cooperative, continuous wave Doppler radar principle with pseudo-random frequency modulation. The report presents a description of the system operation and deals at length with the use of pseudo-random coding techniques. In addition, the use of mathematical modeling and computer simulation to determine the alarm statistics and system saturation characteristics in terminal area traffic of variable density is discussed.
Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.
Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga
2016-08-01
Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.
A second look at the CloudSat/TRMM intersect data
NASA Astrophysics Data System (ADS)
Haddad, Z.; Kuo, K.; Smith, E. A.; Kiang, D.; Turk, F. J.
2010-12-01
The original objective motivating the creation of the CloudSat+TRMM intersect products (by E.A. Smith, K.-S. Kuo et al) was to provide new opportunities in research related to precipitating clouds. The data products consist of near-coincident CloudSat Cloud Profiling Radar calibrated 94-GHz reflectivity factors and detection flag, sampled every 240 m in elevation, and the TRMM Precipitation Radar calibrated 13.8-GHz reflectivity factors, attenuation-adjusted reflectivity factors and rain rate estimates, sampled every 250 m in elevation, in the TRMM beam whose footprint encompasses the CloudSat beam footprint. Because retrieving precipitation distributions from single-frequency radar measurements is a very under-constrained proposition, we decided to restrict our analyses to CloudSat data that were taken within 3 minutes of a TRMM pass. We ended up with over 5000 beams of nearly simultaneous observations of precipitation, and proceeded in two different ways: 1) we attempted to perform retrievals based on simultaneous radar reflectivity measurements at Ku and W bands. At low precipitation rates, the Ku-band radar does not detect much of the rain. At higher precipitation rates, the W-band radar incurs high attenuation, and this makes “Hitschfeld-Bordan” retrievals (from the top of the column down toward the surface) diverge because of numerical instability. The main question for this portion of the analysis was to determine if these two extremes are indeed extremes that still afford us a significant number of “in-between” cases, on which we can apply a careful dual-frequency retrieval algorithm; 2) we also attempted to quantify the ability of the Ku-band measurements to provide complementary information to the W-band estimates outside their overlap region, and vice versa. Specifically, instead of looking at the admittedly small vertical region where both radars detect precipitation and where their measurements are unambiguously related to the underlying physics (unaffected by multiple scattering), we considered the TRMM estimates in the rain below the freezing level, and tried to infer the joint behavior of the overlying CloudSat measurements above the freezing level as a function of the rain - and, conversely, we considered the vertical variability of the CloudSat estimates in the above-freezing region, and derived the joint behavior of the TRMM measurements in the rain as a function of the CloudSat estimates. The results are compiled in databases that should allow users of less-sensitive lower-frequency radars to infer some quantitative information about the storm structure above the precipitating core in the absence of higher-frequency measurements, just as it will allow users of too-sensitive higher-frequency radars to infer some quantitative information about the precipitation closer to the surface in the absence of lower-frequency measurements.
NASA Astrophysics Data System (ADS)
Gorodetskaya, Irina V.; Maahn, Maximilian; Gallée, Hubert; Kneifel, Stefan; Souverijns, Niels; Gossart, Alexandra; Crewell, Susanne; Van Lipzig, Nicole P. M.
2016-04-01
Large interannual variability has been found in surface mass balance (SMB) over the East Antarctic ice sheet coastal and escarpment zones, with the total yearly SMB strongly depending on occasional intense precipitation events. Thus for correct prediction of the ice sheet climate and SMB, climate models should be capable to represent such events. Not less importantly, models should also correctly represent the relevant mechanisms behind. The coupled land-atmosphere non-hydrostatic regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB of Dronning Maud Land (DML), East Antarctica. DML has shown a significant increase in SMB during the last years attributed to only few occasional very intense snowfall events. MAR is run at 5km horizontal resolution using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. The MAR microphysical scheme predicts the evolution of the mixing ratios of five water species: specific humidity, cloud droplets and ice crystals, raindrops and snow particles. Additional prognostic equation describes the number concentration of cloud ice crystals. The mass and terminal velocity of snow particles are defined as for the graupel-like snowflakes of hexagonal type. These definitions are important to determine single scattering properties for snow hydrometeors used as input (along with cloud particle properties and atmospheric parameters) into the Passive and Active Microwave radiative TRAnsfer model (PAMTRA). PAMTRA allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar reflectivity and Doppler velocity for particular precipitation events. The comparison is based on the measurements from the vertically profiling 24-GHz MRR radar operating as part of the cloud-precipitation-meteorological observatory at Princess Elisabeth (PE) base in DML escarpment zone, from 2010 through now. Preliminary results show that MAR simulates well the timing of major synoptic-scale precipitation events, while a bias exists towards higher radar reflectivities using MAR snowfall properties compared to PE MRR measurements. This bias can be related to the differences both in the amount and type of snowflakes reaching the surface. The spatial extent of precipitation also matters as PE provides only vertical profiling. PAMTRA is used to evaluate specific intense snowfall events at PE-centered grid, while MAR-simulated atmospheric fields are further analyzed for understanding the large- and meso-scale atmospheric circulation and moisture transport patterns, together with cloud properties responsible for these events. PE measurements showed that the most intense precipitation events at PE (up to 30 mm water equivalent per day) have been associated with atmospheric rivers, where enhanced tropospheric integrated water vapor amounts are concentrated in narrow long bands stretching from subtropical latitudes to the East Antarctic coast. We analyze representation of such events in MAR, including their extent, intensity, as well as time and location of where such moisture bands are reaching the Antarctic coast.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.
2009-01-01
Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. The combination of reliable cloud microphysics and radar reflectivity may constrain radiative transfer models used in satellite simulators during future missions, including EarthCARE and the NASA Global Precipitation Measurement. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a mid latitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of CloudSat reflectivity is performed by adopting the discrete-dipole parameterizations and databases provided in literature, and demonstrate an improved capability in simulating radar reflectivity at W-band versus Mie scattering assumptions.
Configuration and Evaluation of a Dual-Doppler 3-D Wind Field System
NASA Technical Reports Server (NTRS)
Crawford, Winifred C.
2014-01-01
Current LSP, GSDO, and SLS space vehicle operations are halted when wind speeds from specific directions exceed defined thresholds and when lightning is a threat. Strong winds and lightning are difficult parameters for the 45th Weather Squadron (45 WS) to forecast, yet are important in the protection of customer vehicle operations and the personnel that conduct them. A display of the low-level horizontal wind field to reveal areas of high winds or convergence would be a valuable tool for forecasters in assessing the timing of high winds, or convection initiation and subsequent lightning occurrence. This is especially important for areas where no weather observation platforms exist. Developing a dual-Doppler radar capability would provide such a display to assist forecasters in predicting high winds and convection initiation. The wind fields can also be used to initialize a local mesoscale numerical weather prediction model to help improve the model forecast winds, convection initiation, and other phenomena. The 45 WS and NWS MLB tasked the Applied Meteorology Unit (AMU) to develop a dual- Doppler wind field display using data from the 45th Space Wing radar, known as the Weather Surveillance Radar (WSR), NWS MLB Weather Surveillance Radar 1988 Doppler (KMLB), and the Orlando International Airport Terminal Doppler Weather Radar (KMCO). They also stipulated that the software used should be freely available. The AMU evaluated two software packages and, with concurrence from NWS MLB and the 45 WS, chose the Warning Decision Support System-Integrated Information (WDSS-II). The AMU collected data from two significant weather cases: a tornadic event on 14 April 2013 and a severe wind and hail event on 12 February 2014. For the 14 April case, the data were from WSR and KMLB. For the 12 February case, the data were from KMCO and KMLB. The AMU installed WDSS-II on a Linux PC, then processed and quality controlled the radar data for display and analysis using WDSS-II tools. Because of issues with de-aliasing the WSR velocity field, the AMU did not use data from this radar in this study and only analyzed the 12 February case. Merging the data to create the dual-Doppler analysis involved several steps. The AMU used instructions from the WDSS-II website and discussion forum to determine the correct tools to use for the analysis, and was successful in creating a merged reflectivity field, which was critical to the success of creating a merged velocity field. However, the AMU was unable to create a merged velocity field. The AMU researched the WDSS-II forum for discussions on similar issues, asked questions on the forum, and tested different options and values in the merger tool with no success. Developing a dual-Doppler wind field was the main goal of this task, but that was not accomplished. It could be an issue of not using the correct options or the correct value for the options used, or there could be issues with the radar data. There is a follow-on AMU task to install the operational version of WDSS-II in the NWS MLB office. This will provide more opportunities to try different options and input values in order to create a merged wind field from KMCO and KMLB.
Doerry, Armin W.
2004-07-20
Movement of a GMTI radar during a coherent processing interval over which a set of radar pulses are processed may cause defocusing of a range-Doppler map in the video signal. This problem may be compensated by varying waveform or sampling parameters of each pulse to compensate for distortions caused by variations in viewing angles from the radar to the target.
NASA Technical Reports Server (NTRS)
McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.
2003-01-01
In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.
Total Lightning Characteristics with Respect to Radar-Derived Mesocyclone Strength
NASA Technical Reports Server (NTRS)
Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.
2015-01-01
Recent work investigating the microphysical and kinematic relationship between a storm's updraft, its total lightning production, and manifestations of severe weather has resulted in development of tools for improved nowcasting of storm intensity. The total lightning jump algorithm, which identifies rapid increases in total lightning flash rate that often precede severe events, has shown particular potential to benefit warning operations. Maximizing this capability of total lightning and its operational implementation via the lightning jump may best be done through its fusion with radar and radar-derived intensity metrics. Identification of a mesocyclone, or quasi-steady rotating updraft, in Doppler velocity is the predominant radar-inferred early indicator of severe potential in a convective storm. Fused lightning-radar tools that capitalize on the most robust intensity indicators would allow enhanced situational awareness for increased warning confidence. A foundational step toward such tools comes from a better understanding of the updraft-centric relationship between intensification of total lightning production and mesocyclone development and strength. The work presented here utilizes a sample of supercell case studies representing a spectrum of severity. These storms are analyzed with respect to total lightning flash rate and the lightning jump alongside mesocyclone strength derived objectively from the National Severe Storms Laboratory (NSSL) Mesocyclone Detection Algorithm (MDA) and maximum azimuthal shear through a layer. Early results indicate that temporal similarities exist in the trends between total lightning flash rate and low- to mid-level rotation in supercells. Other characteristics such as polarimetric signatures of rotation, flash size, and cloud-to-ground flash ratio are explored for added insight into the significance of these trends with respect to the updraft and related processes of severe weather production.
What are the associated parameters and temporal coverage?
Atmospheric Science Data Center
2014-12-08
... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...
Advances in Doppler recognition for ground moving target indication
NASA Astrophysics Data System (ADS)
Kealey, Paul G.; Jahangir, Mohammed
2006-05-01
Ground Moving Target Indication (GMTI) radar provides a day/night, all-weather, wide-area surveillance capability to detect moving vehicles and personnel. Current GMTI radar sensors are limited to only detecting and tracking targets. The exploitation of GMTI data would be greatly enhanced by a capability to recognize accurately the detections as significant classes of target. Doppler classification exploits the differential internal motion of targets, e.g. due to the tracks, limbs and rotors. Recently, the QinetiQ Bayesian Doppler classifier has been extended to include a helicopter class in addition to wheeled, tracked and personnel classes. This paper presents the performance for these four classes using a traditional low-resolution GMTI surveillance waveform with an experimental radar system. We have determined the utility of an "unknown output decision" for enhancing the accuracy of the declared target classes. A confidence method has been derived, using a threshold of the difference in certainties, to assign uncertain classifications into an "unknown class". The trade-off between fraction of targets declared and accuracy of the classifier has been measured. To determine the operating envelope of a Doppler classification algorithm requires a detailed understanding of the Signal-to-Noise Ratio (SNR) performance of the algorithm. In this study the SNR dependence of the QinetiQ classifier has been determined.
Coherent Doppler lidar for measurements of wind fields
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Hardesty, R. Michael
1989-01-01
The signal-processing techniques for obtaining the velocity estimates and the fundamental factors that influence coherent lidar performance are considered. The similarities and distinctions between Doppler lidar and Doppler radars are discussed. The capability of coherent Doppler lidars for mapping wind fields over selected regions in the lower atmosphere and greatly enhancing the capability to visualize flow patterns in real time is discussed, and examples are given. Salient features of a concept for an earth-orbiting Doppler lidar to be launched in the late 1990s are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carletta, Nicholas D.; Mullendore, Gretchen L.; Starzec, Mariusz
Convective mass transport is the transport of mass from near the surface up to the upper troposphere and lower stratosphere (UTLS) by a deep convective updraft. This transport can alter the chemical makeup and water vapor balance of the UTLS, which affects cloud formation and the radiative properties of the atmosphere. It is therefore important to understand the exact altitudes at which mass is detrained from convection. The purpose of this study was to improve upon previously published methodologies for estimating the level of maximum detrainment (LMD) within convection using data from a single ground-based radar. Four methods were usedmore » to identify the LMD and validated against dual-Doppler derived vertical mass divergence fields for six cases with a variety of storm types. The best method for locating the LMD was determined to be the method that used a reflectivity texture technique to determine convective cores and a multi-layer echo identification to determine anvil locations. Although an improvement over previously published methods, the new methodology still produced unreliable results in certain regimes. The methodology worked best when applied to mature updrafts, as the anvil needs time to grow to a detectable size. Thus, radar reflectivity is found to be valuable in estimating the LMD, but storm maturity must also be considered for best results.« less
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-02-16
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m −2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m −2.« less
NASA Technical Reports Server (NTRS)
Vincent, R. A.
1984-01-01
The Doppler, spaced-antenna and interferometric methods of measuring wind velocities all use the same basic information, the Doppler shifts imposed on backscattered radio waves, but they process it in different ways. The Doppler technique is most commonly used at VHF since the narrow radar beams are readily available. However, the spaced antenna (SA) method has been successfully used with the SOUSY and Adelaide radars. At MF/HF the spaced antenna method is widely used since the large antenna arrays (diameter 1 km) required to generate narrow beams are expensive to construct. Where such arrays of this size are available then the Doppler method has been successfully used (e.g., Adelaide and Brisbane). In principle, the factors which influence the choice of beam pointing angle, the optimum antenna spacing will be the same whether operation is at MF or VHF. Many of the parameters which govern the efficient use of wind measuring systems have been discussed at previous MST workshops. Some of the points raised by these workshops are summarized.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawerence D.; Schultz, Elise V.; Stano, Geoffery T.; Kozlowski, Danielle M.; Goodman, Steven
2012-01-01
Key points that this analysis will begin to address are: 1)What physically is going on in the cloud when there is a jump in lightning? - Updraft variations, ice fluxes. 2)How do these processes fit in with severe storm conceptual models? 3)What would this information provide an end user (i.e., the forecaster)? - Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi-Doppler derived physical relationships 4) How do we best transistionthis algorithm into the warning decision process. The known relationship between lightning updraft strength/volume and precipitation ice mass production can be extended to the concept of the lightning jump. Examination of the first lightning jump times from 329 storms in Schultz et al. shows an increase in the mean reflectivity profile and mixed phase echo volume during the 10 minutes prior to the lightning jump. Limited dual-Doppler results show that the largest lightning jumps are well correlated in time with increases in updraft strength/volume and precipitation ice mass production; however, the smaller magnitude lightning jumps appear to have more subtle relationships to updraft and ice mass characteristics.
Development of Spaceborne Radar Simulator by NICT and JAXA using JMA Cloud-resolving Model
NASA Astrophysics Data System (ADS)
Kubota, T.; Eito, H.; Aonashi, K.; Hashimoto, A.; Iguchi, T.; Hanado, H.; Shimizu, S.; Yoshida, N.; Oki, R.
2009-12-01
We are developing synthetic spaceborne radar data toward a simulation of the Dual-frequency Precipitation Radar (DPR) aboard the Global Precipitation Measurement (GPM) core-satellite. Our purposes are a production of test-bed data for higher level DPR algorithm developers, in addition to a diagnosis of a cloud resolving model (CRM). To make the synthetic data, we utilize the CRM by the Japan Meteorological Agency (JMA-NHM) (Ikawa and Saito 1991, Saito et al. 2006, 2007), and the spaceborne radar simulation algorithm by the National Institute of Information and Communications Technology (NICT) and the Japan Aerospace Exploration Agency (JAXA) named as the Integrated Satellite Observation Simulator for Radar (ISOSIM-Radar). The ISOSIM-Radar simulates received power data in a field of view of the spaceborne radar with consideration to a scan angle of the radar (Oouchi et al. 2002, Kubota et al. 2009). The received power data are computed with gaseous and hydrometeor attenuations taken into account. The backscattering and extinction coefficients are calculated assuming the Mie approximation for all species. The dielectric constants for solid particles are computed by the Maxwell-Garnett model (Bohren and Battan 1982). Drop size distributions are treated in accordance with those of the JMA-NHM. We assume a spherical sea surface, a Gaussian antenna pattern, and 49 antenna beam directions for scan angles from -17 to 17 deg. in the PR. In this study, we report the diagnosis of the JMA-NHM with reference to the TRMM Precipitation Radar (PR) and CloudSat Cloud Profiling Radar (CPR) using the ISOSIM-Radar from the view of comparisons in cloud microphysics schemes of the JMA-NHM. We tested three kinds of explicit bulk microphysics schemes based on Lin et al. (1983), that is, three-ice 1-moment scheme, three-ice 2-moment scheme (Eito and Aonashi 2009), and newly developed four-ice full 2-moment scheme (Hashimoto 2008). The hydrometeor species considered here are rain, graupel, snow, cloud water, cloud ice and hail (4-ice scheme only). We examined a case of an intersection with the TRMM PR and the CloudSat CPR on 6th April 2008 over sea surface in the south of Kyushu Island of Japan. In this work, observed rainfall systems are simulated with one-way double nested domains having horizontal grid sizes of 5 km (outer) and 2 km (inner). Data used here are from the inner domain only. Results of the PR indicated better performances of 2-moment bulk schemes. It suggests that prognostic number concentrations of frozen hydrometeors are more effective in high altitudes and constant number concentrations can lead to the overestimation of the snow there. For three-ice schemes, simulated received power data overestimated above freezing levels with reference to the observed data. In contrast, the overestimation of frozen particles was heavily reduced for the four-ice scheme.
Seeing Which Way the Wind Blows: New Doppler Radar Takes Flight on This Summer's HS3 Mission
2017-12-08
Most aircraft carrying Doppler radar look like they’ve grown a tail, developed a dorsal fin, or sprouted a giant pancake on their backs. But when the unmanned Global Hawk carries a radar system this summer, its cargo will be hard to see. The autonomous and compact High-altitude Imaging Wind and Rain Profiler, or HIWRAP, a dual-frequency conical-scanning Doppler radar, will hang under the aircraft’s belly as it flies above hurricanes to measure wind and rain and to test a new method for retrieving wind data. HIWRAP is one of the instruments that will fly in this summer's mission to explore Atlantic Ocean hurricanes. NASA's Hurricane and Severe Storm Sentinel, or HS3, airborne mission will investigate tropical cyclones using a number of instruments and two Global Hawks. The HS3 mission will operate between Aug. 20 and Sept. 23. Read more: 1.usa.gov/18TYPt7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Microwave and millimeter-wave Doppler radar heart sensing
NASA Astrophysics Data System (ADS)
Boric-Lubecke, Olga; Lin, Jenshan; Lubecke, Victor M.; Host-Madsen, Anders; Sizer, Tod
2007-04-01
Technology that can be used to unobtrusively detect and monitor the presence of human subjects from a distance and through barriers can be a powerful tool for meeting new security challenges, including asymmetric battlefield threats abroad and defense infrastructure needs back home. Our team is developing mobile remote sensing technology for battle-space awareness and warfighter protection, based on microwave and millimeter-wave Doppler radar motion sensing devices that detect human presence. This technology will help overcome a shortfall of current see-through-thewall (STTW) systems, which is, the poor detection of stationary personnel. By detecting the minute Doppler shifts induced by a subject's cardiopulmonary related chest motion, the technology will allow users to detect personnel that are completely stationary more effectively. This personnel detection technique can also have an extremely low probability of intercept since the signals used can be those from everyday communications. The software and hardware developments and challenges for personnel detection and count at a distance will be discussed, including a 2.4 GHz quadrature radar single-chip silicon CMOS implementation, a low-power double side-band Ka-band transmission radar, and phase demodulation and heart rate extraction algorithms. In addition, the application of MIMO techniques for determining the number of subjects will be discussed.
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2014-05-01
In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.
Using microwave Doppler radar in automated manufacturing applications
NASA Astrophysics Data System (ADS)
Smith, Gregory C.
Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help stimulate future growth in industrial productivity, which also promises to fuel economic growth and promote economic stability. The study also benefits the Department of Industrial Technology at Iowa State University and the field of Industrial Technology by contributing to the ongoing "smart" machine research program within the Department of Industrial Technology and by stimulating research into new sensor technologies within the University and within the field of Industrial Technology.
Finnish Meteorological Institute Doppler Lidar
Ewan OConnor
2015-03-27
This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.
NASA Astrophysics Data System (ADS)
Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor
2017-03-01
Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.
Improving the Representation of Snow Crystal Properties with a Single-Moment Mircophysics Scheme
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Demek, Scott R.
2010-01-01
Single-moment microphysics schemes are utilized in an increasing number of applications and are widely available within numerical modeling packages, often executed in near real-time to aid in the issuance of weather forecasts and advisories. In order to simulate cloud microphysical and precipitation processes, a number of assumptions are made within these schemes. Snow crystals are often assumed to be spherical and of uniform density, and their size distribution intercept may be fixed to simplify calculation of the remaining parameters. Recently, the Canadian CloudSat/CALIPSO Validation Project (C3VP) provided aircraft observations of snow crystal size distributions and environmental state variables, sampling widespread snowfall associated with a passing extratropical cyclone on 22 January 2007. Aircraft instrumentation was supplemented by comparable surface estimations and sampling by two radars: the C-band, dual-polarimetric radar in King City, Ontario and the NASA CloudSat 94 GHz Cloud Profiling Radar. As radar systems respond to both hydrometeor mass and size distribution, they provide value when assessing the accuracy of cloud characteristics as simulated by a forecast model. However, simulation of the 94 GHz radar signal requires special attention, as radar backscatter is sensitive to the assumed crystal shape. Observations obtained during the 22 January 2007 event are used to validate assumptions of density and size distribution within the NASA Goddard six-class single-moment microphysics scheme. Two high resolution forecasts are performed on a 9-3-1 km grid, with C3VP-based alternative parameterizations incorporated and examined for improvement. In order to apply the CloudSat 94 GHz radar to model validation, the single scattering characteristics of various crystal types are used and demonstrate that the assumption of Mie spheres is insufficient for representing CloudSat reflectivity derived from winter precipitation. Furthermore, snow density and size distribution characteristics are allowed to vary with height, based upon direct aircraft estimates obtained from C3VP data. These combinations improve the representation of modeled clouds versus their radar-observed counterparts, based on profiles and vertical distributions of reflectivity. These meteorological events are commonplace within the mid-latitude cold season and present a challenge to operational forecasters. This study focuses on one event, likely representative of others during the winter season, and aims to improve the representation of snow for use in future operational forecasts.
The HD(CP)2 Observational Prototype Experiment HOPE - Overview and Examples
NASA Astrophysics Data System (ADS)
Macke, Andreas
2017-04-01
The "HD(CP)2 Observational Prototype Experiment" (HOPE) was executed as a major 2-month field experiment in Jülich, Germany, performed in April and May 2013, followed by a smaller campaign in Melpitz, Germany in September 2013. HOPE has been designed to provide information on land-surface-atmospheric boundary layer exchange, aerosol, cloud and precipitation pattern for process studies and model evaluation with a focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars,1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 4 Sun photometers operated in synergy at different supersites. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and ballon-based in-situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds and precipitation with high spatial and temporal resolution within a cube of approximately 10 x 10 x 10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets are made available through the Standardized Atmospheric Measurement Data SAMD archive at https://icdc.cen.uni-hamburg.de/index.php?id=samd. The presentation is based on an overview paper in ACP where results published in an ACP HOPE special issue are summarized, see http://www.atmos-chem-phys.net/special_issue366.html. Citation: Macke, A., Seifert, P., Baars, H., Beekmans, C., Behrendt, A., Bohn, B., Bühl, J., Crewell, S., Damian, T., Deneke, H., Düsing, S., Foth, A., Di Girolamo, P., Hammann, E., Heinze, R., Hirsikko, A., Kalisch, J., Kalthoff, N., Kinne, S., Kohler, M., Löhnert, U., Madhavan, B. L., Maurer, V., Muppa, S. K., Schween, J., Serikov, I., Siebert, H., Simmer, C., Späth, F., Steinke, S., Träumner, K., Wehner, B., Wieser, A., Wulfmeyer, V., and Xie, X.: The HD(CP)2 Observational Prototype Experiment HOPE - An Overview, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-990, in review, 2016.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
Polarimetric Radar images of the Moon at 6-meter Wavelength
NASA Astrophysics Data System (ADS)
Vierinen, J.
2017-12-01
We present new range-Doppler images of the Moon using 6-meterwavelength. The radar images were obtained using the Jicamarca RadioObservatory 49.92 MHz radar. The observations were performed usingcircular polarization on transmit and two orthogonal linearpolarizations on receive, allowing scattering images to be obtainedwith the polarization matched to the transmitted wave (polarized), andat a polarization orthogonal to the transmitted wave (depolarized).Due to the long wavelength that penetrates efficiently into thesubsurface of the Moon, the radar images are especially useful forstudies of subsurface composition. Two antenna interferometry onreceive was used to remove the Doppler north-south ambiguity. Theimages have approximately 10 km resolution in range 20 km resolutionin Doppler, allowing many large scale features, including maria,terrae, and impact craters to be identified. Strong depolarized returnis observed from relatively new larger impact craters with largebreccia and shallow regolith. Terrae regions with less lossy surfacematerial also appear brighter in both depolarized and polarizedimages. A large region in the area near the Mare Orientale impactbasin has overall higher than mean radar backscatter in both polarizedand depolaried returns, indicating higher than average presence ofrelatively newly formed large breccia in this region. Mare regions arecharacterized by lower polarized and depolarized return, indicatingthat there is higher loss of the radio wave in the subsurface,reducing the echo. We also report unexpected low polarized anddepolarized backscatter from an old impact basin in theSchiller-Schickard region, as well as from the region poleward fromMare Imbrium.
Radar echo from a flat conducting plate - near and far
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C.S.
1982-01-01
Over certain types of terrain, a radar fuze (or altimeter), by virtue of the horizontal component of its velocity, is likely to pass over various flat objects of limited size. The echo from such objects could have a duration less than that of one Doppler cycle, where the Doppler frequency is due to the vertical component of the velocity. If the terrain is principally made up of such objects, their echoes are in most cases entirely uncorrelated with each other. Hence, the total echo after mixing at the radar with the delayed transmitted wave would have a noise-like spectrum notmore » at all confined to the Doppler-frequency band where the desired echo signal is expected. This would seriously degrade the performance of a radar that utilizes correlation. This work shows that the echo from a square flat plate will be of duration greater than the time it takes to pass over the plate if the height h above it satisfies h > a/sup 2//lambda where a is the plate-edge dimension and lambda is the radar wavelength. The results presented here can be used to determine the spatial region wherein the echo exists, and the magnitude and phase of the echo from such a plate. I infer from these results that the case where the signal has a noise-like spectrum is not impossible but it is unlikely for the applications with which I am familiar.« less
NASA Astrophysics Data System (ADS)
Fairchild, Dustin P.; Narayanan, Ram M.
2012-06-01
The ability to identify human movements can be an important tool in many different applications such as surveillance, military combat situations, search and rescue operations, and patient monitoring in hospitals. This information can provide soldiers, security personnel, and search and rescue workers with critical knowledge that can be used to potentially save lives and/or avoid a dangerous situation. Most research involving human activity recognition is focused on using the Short-Time Fourier Transform (STFT) as a method of analyzing the micro-Doppler signatures. Because of the time-frequency resolution limitations of the STFT and because Fourier transform-based methods are not well-suited for use with non-stationary and nonlinear signals, we have chosen a different approach. Empirical Mode Decomposition (EMD) has been shown to be a valuable time-frequency method for processing non-stationary and nonlinear data such as micro-Doppler signatures and EMD readily provides a feature vector that can be utilized for classification. For classification, the method of a Support Vector Machine (SVMs) was chosen. SVMs have been widely used as a method of pattern recognition due to their ability to generalize well and also because of their moderately simple implementation. In this paper, we discuss the ability of these methods to accurately identify human movements based on their micro-Doppler signatures obtained from S-band and millimeter-wave radar systems. Comparisons will also be made based on experimental results from each of these radar systems. Furthermore, we will present simulations of micro-Doppler movements for stationary subjects that will enable us to compare our experimental Doppler data to what we would expect from an "ideal" movement.
Mathematical Models for Doppler Measurements
NASA Technical Reports Server (NTRS)
Lear, William M.
1987-01-01
Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.
The microburst - Hazard to aircraft
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Serafin, R.
1984-01-01
In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.
Measuring ionospheric movements using totally reflected radio waves
NASA Astrophysics Data System (ADS)
Sadler, Elaine M.; Whitehead, J. D.; From, W. R.
1988-02-01
It is shown that for radio waves of a particular frequency reflected totally from the ionosphere the effect of refraction as well as reflection can be simulated by an effective reflecting surface. This mirror-like surface will give the correct angle of arrival and Doppler shift for all radars operating at this frequency. It is theoretically possible for the effective reflecting surface to be folded back on itself, but this is unlikely except for F-region echoes refracted by sporadic E-clouds. If the surface is not folded and exists everywhere, it is always possible to describe its motion and change in terms of wave undulations. Experimental data for F-region echoes show that these wave undulations are very dispersive. However, the matching between the best fitting model and the experimental data is worse than expected for reasons we do not understand.
Measuring ionospheric movements using totally reflected radio waves
NASA Astrophysics Data System (ADS)
From, W. R.; Sadler, Elaine M.; Whitehead, J. D.
1988-02-01
It is shown that for radio waves of a particular frequency reflected totally from the ionosphere the effect of refraction as well as reflection can be simulated by an effective reflecting surface. This mirrorlike surface will give the correct angle of arrival and Doppler shift for all radars operating at this frequency. It is theoretically possible for the effective reflecting surface to be folded back on itself, but this is unlikely except for F-region echoes refracted by sporadic E-clouds. If the surface is not folded and exists everywhere, it is always possible to describe its motion and change in terms of wave undulations. Experimental data for F-region echoes show that these wave undulations are very dispersive. However, the matching between the best fitting model and the experimental data is worse than expected for reasons we do not understand.
Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchand, Roger
Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) programmore » sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.« less
Cloud Properties and Radiative Heating Rates for TWP
Comstock, Jennifer
2013-11-07
A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.
Laser Doppler velocimeter aerial spray measurements
NASA Technical Reports Server (NTRS)
Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.
1978-01-01
An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.
Wave Field Characterization Using Dual-Polarized Pulse-Doppler X-Band Radar
2012-06-01
spectrum (frequencies higher than that associated with the wind wave peak) are similar for the buoy and Doppler, and likewise for the ultrasound array and...values of the RCS and ultrasound array relative to the buoy and Doppler are due to the formers’ larger energy levels at high frequencies. NSWCCD-50-TR...pp. 199- 203, 2008. [II] W. J. Plant, W. C. Keller, A. B. Reeves, E. A. Uliana, and J. W. Johnson, " Airborne microwave Doppler measurements of
NASA Technical Reports Server (NTRS)
Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald
2009-01-01
Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94 percent of the time during the ER-2 flights. One to three cloud layers were common, with the average calculated at 2.03 layers per profile. The upper troposphere had a cloud frequency generally over 30%, reaching 42 percent near 13 km during the study. There were regional differences. The Caribbean was much clearer than the Pacific regions. Land had a much higher frequency of high clouds than ocean areas. One region just south and west of Panama had a high probability of clouds below 15 km altitude with the frequency never dropping below 25% and reaching a maximum of 60% at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for TC4 scientists as they try to understand the complexities of the tropical atmosphere.