Sample records for cloud red giants

  1. Ages of intermediate-age Magellanic Cloud star clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1984-01-01

    Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.

  2. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  3. The Optical Gravitational Lensing Experiment. Small Amplitude Variable Red Giants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-06-01

    We present analysis of the large sample of variable red giants from the Large and Small Magellanic Clouds detected during the second phase of the Optical Gravitational Lensing Experiment (OGLE-II) and supplemented with OGLE-III photometry. Comparing pulsation properties of detected objects we find that they constitute two groups with clearly distinct features. In this paper we analyze in detail small amplitude variable red giants (about 15400 and 3000 objects in the LMC and SMC, respectively). The vast majority of these objects are multi-periodic. At least 30% of them exhibit two modes closely spaced in the power spectrum, what likely indicates non-radial oscillations. About 50% exhibit additional so called Long Secondary Period. To distinguish between AGB and RGB red giants we compare PL diagrams of multi-periodic red giants located above and below the tip of the Red Giant Branch (TRGB). The giants above the TRGB form four parallel ridges in the PL diagram. Among much more numerous sample of giants below the TRGB we find objects located on the low luminosity extensions of these ridges, but most of the stars are located on the ridges slightly shifted in log P. We interpret the former as the second ascent AGB red giants and the latter as the first ascent RGB objects. Thus, we empirically show that the pulsating red giants fainter than the TRGB are a mixture of RGB and AGB giants. Finally, we compare the Petersen diagrams of the LMC, SMC and Galactic bulge variable red giants and find that they are basically identical indicating that the variable red giants in all these different stellar environments share similar pulsation properties.

  4. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    Observational data on CNO abundance ratios in red giants and the interstellar medium (ISM) are analyzed for the implications for the production and distribution of CNO nuclides. The data included isotope abundance measurements for the atmospheres and recent ejecta of cool giants, e.g., carbon stars, S-type stars, red supergiants and oxygen-rich giants beginning an ascent of the giant branch. The contribution of intermediate-mass stars to galactic nuclear evolution is discussed after comparing red giant abundances with ISM abundances, particularly the isotopes O-16, -17 and -18. The O-12/O-18 ratios of red giants are distinctly different from those in interstellar molecular clouds. The CNO values also vary widely from the values found in the solar system.

  5. The Optical Gravitational Lensing Experiment. Ellipsoidal Variability of Red Giants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.; Dziembowski, W. A.

    2004-12-01

    We used the OGLE-II and OGLE-III photometry of red giants in the Large Magellanic Cloud to select and study objects revealing ellipsoidal variability. We detected 1546 candidates for long period ellipsoidal variables and 121 eclipsing binary systems with clear ellipsoidal modulation. The ellipsoidal red giants follow a period--luminosity (PL) relationship (sequence E), and the scatter of the relation is correlated with the amplitude of variability: the larger the amplitude, the smaller the scatter. We note that some of the ellipsoidal candidates exhibit simultaneously OGLE Small Amplitude Red Giants pulsations. Thus, in some cases the Long Secondary Period (LSP) phenomenon can be explained by the ellipsoidal modulation. We also select about 1600 red giants with distinct LSP, which are not ellipsoidal variables. We discover that besides the sequence D in the PL diagram known before, the LSP giants form additional less numerous sequence for longer periods. We notice that the PL sequence of the ellipsoidal candidates is a direct continuation of the LSP sequence toward fainter stars, what might suggest that the LSP phenomenon is related to binarity but there are strong arguments against such a possibility. About 10% of the presented light curves reveal clear deformation by the eccentricity of the system orbits. The largest estimated eccentricity in our sample is about 0.4. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.

  6. Symbiotic stars

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  7. The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.

    2018-05-01

    We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.

  8. EVIDENCE FOR MASS EJECTION ASSOCIATED WITH LONG SECONDARY PERIODS IN RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, P. R.; Nicholls, C. P., E-mail: wood@mso.anu.edu.a, E-mail: nicholls@mso.anu.edu.a

    2009-12-10

    Approximately 30% of luminous red giants exhibit a long secondary period (LSP) of variation in their light curves in addition to a shorter primary period of oscillation. The cause of the LSP has so far defied explanation: leading possibilities are binarity and a nonradial mode of oscillation. Here, large samples of red giants in the Large Magellanic Cloud both with and without LSPs are examined for evidence of an 8 or 24 mum mid-IR excess caused by circumstellar dust. It is found that stars with LSPs show a significant mid-IR excess compared to stars without LSPs. Furthermore, the near-IR Jmore » - K color seems unaffected by the presence of the 24 mum excess. These findings indicate that LSPs cause mass ejection from red giants and that the lost mass and circumstellar dust is most likely in either a clumpy or a disk-like configuration. The underlying cause of the LSP and the mass ejection remains unknown.« less

  9. Star formation and extinct radioactivities

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1984-01-01

    An assessment is made of the evidence for the existence of now-extinct radioactivities in primitive solar system material, giving attention to implications for the early stages of sun and solar system formation. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed, with emphasis on these disturbances able to generate fresh radioactivities. A one-solar mass red giant star on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system.

  10. Studies of Evolved Star Mass Loss: GRAMS Modeling of Red Supergiant and Asymptotic Giant Branch Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Riebel, D.; Boyer, M.; Meixner, M.

    2012-01-01

    As proposed in our NASA Astrophysics Data Analysis Program (ADAP) proposal, my colleagues and I are studying mass loss from evolved stars. Such stars lose their own mass in their dying stages, and in their expelled winds they form stardust. To model mass loss from these evolved stars, my colleagues and I have constructed GRAMS: the Grid of Red supergiant and Asymptotic giant branch star ModelS. These GRAMS radiative transfer models are fit to optical through mid-infrared photometry of red supergiant (RSG) stars and asymptotic giant branch (AGB) stars. I will discuss our current studies of mass loss from AGB and RSG stars in the Small Magellanic Cloud (SMC), fitting GRAMS models to the photometry of SMC evolved star candidates identified from the SAGE-SMC (PI: K. Gordon) Spitzer Space Telescope Legacy survey. This work will be briefly compared to similar work we have done for the LMC. I will also discuss Spitzer Infrared Spectrograph (IRS) studies of the dust produced by AGB and RSG stars in the LMC. BAS is grateful for support from the NASA-ADAP grant NNX11AB06G.

  11. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, Daniel P.; Reynolds, Ray T.

    1989-01-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  12. A Brief Glossary of Commonly Used Astronomical Terms.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    A glossary of 50 astronimical terms is presented. Among terms included are: Asteroid; Big Bang; Binary Star; Black Hole; Comet; Constellation; Eclipse; Equinox; Galaxy; Globular Cluster; Local Group; Magellanic Clouds; Nebula; Neutron Star; Nova; Parsec; Quasar; Radio Astronomy; Red Giant; Red Shift; S.E.T.I.; Solstice; Supernova; and White Dwarf.…

  13. Best Color Image of Jupiter's Little Red Spot

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This amazing color portrait of Jupiter's 'Little Red Spot' (LRS) combines high-resolution images from the New Horizons Long Range Reconnaissance Imager (LORRI), taken at 03:12 UT on February 27, 2007, with color images taken nearly simultaneously by the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope. The LORRI images provide details as fine as 9 miles across (15 kilometers), which is approximately 10 times better than Hubble can provide on its own. The improved resolution is possible because New Horizons was only 1.9 million miles (3 million kilometers) away from Jupiter when LORRI snapped its pictures, while Hubble was more than 500 million miles (800 million kilometers) away from the Gas Giant planet.

    The Little Red Spot is the second largest storm on Jupiter, roughly 70% the size of the Earth, and it started turning red in late-2005. The clouds in the Little Red Spot rotate counterclockwise, or in the anticyclonic direction, because it is a high-pressure region. In that sense, the Little Red Spot is the opposite of a hurricane on Earth, which is a low-pressure region - and, of course, the Little Red Spot is far larger than any hurricane on Earth.

    Scientists don't know exactly how or why the Little Red Spot turned red, though they speculate that the change could stem from a surge of exotic compounds from deep within Jupiter, caused by an intensification of the storm system. In particular, sulfur-bearing cloud droplets might have been propelled about 50 kilometers into the upper level of ammonia clouds, where brighter sunlight bathing the cloud tops released the red-hued sulfur embedded in the droplets, causing the storm to turn red. A similar mechanism has been proposed for the Little Red Spot's 'older brother,' the Great Red Spot, a massive energetic storm system that has persisted for over a century.

    New Horizons is providing an opportunity to examine an 'infant' red storm system in detail, which may help scientists understand better how these giant weather patterns form and evolve.

  14. OGLE-ing the Magellanic system: stellar populations in the Magellanic Bridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skowron, D. M.; Jacyszyn, A. M.; Udalski, A.

    We report the discovery of a young stellar bridge that forms a continuous connection between the Magellanic Clouds. This finding is based on number density maps for stellar populations found in data gathered by OGLE-IV that fully cover over 270 deg{sup 2} of the sky in the Magellanic Bridge area. This is the most extensive optical survey of this region to date. We find that the young population is present mainly in the western half of the MBR, which, together with the newly discovered young population in the eastern Bridge, form a continuous stream of stars connecting both galaxies alongmore » δ ∼ –73.5 deg. The young population distribution is clumped, with one of the major densities close to the SMC and the other fairly isolated and located approximately mid-way between the Clouds, which we call the OGLE island. These overdensities are well matched by H I surface density contours, although the newly found young population in the eastern Bridge is offset by ∼2 deg north from the highest H I density contour. We observe a continuity of red clump stars between the Magellanic Clouds which represent an intermediate-age population. Red clump stars are present mainly in the southern and central parts of the Magellanic Bridge, below its gaseous part, and their presence is reflected by a strong deviation from the radial density profiles of the two galaxies. This may indicate either a tidal stream of stars, or that the stellar halos of the two galaxies overlap. On the other hand, we do not observe such an overlap within an intermediate-age population represented by the top of the red giant branch and the asymptotic giant branch stars. We also see only minor mixing of the old populations of the Clouds in the southern part of the Bridge, represented by the lowest part of the red giant branch.« less

  15. THE ARAUCARIA PROJECT: ON THE TIP OF THE RED GIANT BRANCH DISTANCE DETERMINATION TO THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Górski, Marek; Gieren, Wolfgang; Catelan, Márcio

    2016-06-01

    We present a precise optical and near-infrared determination of the tip of the red giant branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively, LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRGB lead to an overestimation of the distance to the LMC and SMC in the K band, and an underestimation of the distance in the optical I band for both galaxies. Reported discrepancies are at the level of 0.2 mag, with respect to the very accurate distance determinations to both MCs based on late-type eclipsing binaries. The differential distances between themore » LMC and SMC obtained in the J and K bands, and for the bolometric brightness are consistent with each other, and with the results obtained from eclipsing binaries and other distance indicators.« less

  16. Ring of Stellar Death

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star.

    The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space.

    In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars.

    This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  17. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  18. Mapping Milky Way Halo Structure with Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Martin, Charles; Newberg, Heidi Jo; Carlin, Jeffrey L.

    2017-01-01

    The use of blue horizontal brach (BHB) and red giant branch stars as tracers of stellar debris streams is a common practice and has been useful in the confirmation of kinematic properties of previously identified streams. This work explores less common ways of untangling the velocity signatures of streams traveling radially to our line of sight, and to peer toward the higher density region of the Galactic Center using data from the Sloan Digital Sky Survey (SDSS). Using spectra of BHB stars, we are able to kinematically distinguish moving groups in the Milky Way halo. The results of this thesis advance our knowledge of the following stellar halo substructures: the Pisces Stellar Stream, the Hercules-Aquila Cloud, the Hercules Halo Stream, and the Hermus Stream. A study of red giant stars led to the kinematic discovery of the Pisces Stellar Stream. Red giant stars were also examined to determine that the previously identified velocity signature that was suggested for the Hercules-Aquila Cloud was due to disk star contamination and errors in preliminary SDSS velocities. The Hercules Halo Stream is a previously unidentified structure that could be related to the Hercules-Aquila Cloud, and was discovered as a velocity excess of SDSS BHB stars. We identify a group of 10 stars with similar velocities that are spatially coincident with the Hermus Stream. An orbit is fit to the Hermus Stream that rules out a connection with the Phoenix Stream.This work was supported by NSF grants AST 09-37523, 14-09421, 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  19. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  20. Juno Close Look at the Little Red Spot

    NASA Image and Video Library

    2017-01-25

    The JunoCam imager on NASA's Juno spacecraft snapped this shot of Jupiter's northern latitudes on Dec. 11, 2016 at 8:47 a.m. PST (11:47 a.m. EST), as the spacecraft performed a close flyby of the gas giant planet. The spacecraft was at an altitude of 10,300 miles (16,600 kilometers) above Jupiter's cloud tops. This stunning view of the high north temperate latitudes fortuitously shows NN-LRS-1, a giant storm known as the Little Red Spot (lower left). This storm is the third largest anticyclonic reddish oval on the planet, which Earth-based observers have tracked for the last 23 years. An anticyclone is a weather phenomenon with large-scale circulation of winds around a central region of high atmospheric pressure. They rotate clockwise in the northern hemisphere, and counterclockwise in the southern hemisphere. The Little Red Spot shows very little color, just a pale brown smudge in the center. The color is very similar to the surroundings, making it difficult to see as it blends in with the clouds nearby. Citizen scientists Gerald Eichstaedt and John Rogers processed the image and drafted the caption. http://photojournal.jpl.nasa.gov/catalog/PIA21378

  1. Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)

    NASA Astrophysics Data System (ADS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2018-03-01

    Here we present our recent studies on the color and spectral reflectance changes induced by ∼0.9 MeV proton irradiation of ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. Ultraviolet-visible spectroscopy was used to observe and identify reaction products in the ice sample and digital photography was used to document the corresponding color changes at 10-160 K. Our experiments clearly show that the resulting color of the sample depends not only on the irradiation dose but also the irradiation temperature. Furthermore, unlike in our most recent studies of irradiation of NH4SH at 120 K, which showed that higher irradiation doses caused the sample to appear green, the lower temperature studies now show that the sample becomes red after irradiation. However, comparison of these lower temperature spectra over the entire spectral range observed by HST shows that even though the color and spectrum resemble the color and spectrum of the GRS, there is still enough difference to suggest that another component may be needed to adequately fit spectra of the GRS and other red regions of Jupiter's clouds. Regardless, the presence of NH4SH in the atmosphere of Jupiter and other gas giants, combined with this compound's clear alteration via radiolysis, suggests that its contribution to the ultraviolet-visible spectra of any of these object's clouds is significant.

  2. Large Magellanic Cloud Distance and Structure from Near-Infrared Red Clump Observations

    NASA Astrophysics Data System (ADS)

    Koerwer, Joel F.

    2009-07-01

    We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, phi, have little dependence on the assumed RC absolute magnitude; we find i = 23fdg5 ± 0fdg4 and phi = 154fdg6 ± 1fdg2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.

  3. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  4. VizieR Online Data Catalog: JHK lightcurves of red giants in the SMC (Takayama+, 2015)

    NASA Astrophysics Data System (ADS)

    Takayama, M.; Wood, P. R.; Ita, Y.

    2017-11-01

    This is JHK light curves of 7 oxygen rich stars and 14 carbon stars which show the variability of prominent long secondary periods (LSPs). Those stars are cross-identified with OGLE LSP variables in the Small Magellanic Cloud (Soszynski et al. 2011, J/AcA/61/217). A long-term multiband near-IR photometric survey for variable stars in the Large and Small Magellanic Clouds has been carried out at the South African Astronomical Observatory at Sutherland (Ita et al., in preparation). The SIRIUS camera attached to the IRSF 1.4 m telescope was used for this survey and more than 10 yr of observations in the near-IR bands J(1.25 μm), H(1.63 μm) and KS(2.14 μm) band were obtained. In this work, we select the SMC stars from the SIRIUS data base. We obtained the V- and I-band time series of SMC red giants from the OGLE project (Soszynski et al. 2011, J/AcA/61/217). (2 data files).

  5. Formation history of open clusters constrained by detailed asteroseismology of red giant stars observed by Kepler

    NASA Astrophysics Data System (ADS)

    Corsaro, Enrico; Lee, Yueh-Ning; García, Rafael A.; Hennebelle, Patrick; Mathur, Savita; Beck, Paul G.; Mathis, Stephane; Stello, Dennis; Bouvier, Jérôme

    2017-10-01

    Stars originate by the gravitational collapse of a turbulent molecular cloud of a diffuse medium, and are often observed to form clusters. Stellar clusters therefore play an important role in our understanding of star formation and of the dynamical processes at play. However, investigating the cluster formation is diffcult because the density of the molecular cloud undergoes a change of many orders of magnitude. Hierarchical-step approaches to decompose the problem into different stages are therefore required, as well as reliable assumptions on the initial conditions in the clouds. We report for the first time the use of the full potential of NASA Kepler asteroseismic observations coupled with 3D numerical simulations, to put strong constraints on the early formation stages of open clusters. Thanks to a Bayesian peak bagging analysis of about 50 red giant members of NGC 6791 and NGC 6819, the two most populated open clusters observed in the nominal Kepler mission, we derive a complete set of detailed oscillation mode properties for each star, with thousands of oscillation modes characterized. We therefore show how these asteroseismic properties lead us to a discovery about the rotation history of stellar clusters. Finally, our observational findings will be compared with hydrodynamical simulations for stellar cluster formation to constrain the physical processes of turbulence, rotation, and magnetic fields that are in action during the collapse of the progenitor cloud into a proto-cluster.

  6. New Asteroseismic Scaling Relations Based on the Hayashi Track Relation Applied to Red Giant Branch Stars in NGC 6791 and NGC 6819

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (\\sqrt{T_eff} \\sim g^pR^q) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - νmax relation for red giant branch stars.

  7. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, T.; Li, Y.; Hekker, S., E-mail: wutao@ynao.ac.cn, E-mail: ly@ynao.ac.cn, E-mail: hekker@mps.mpg.de

    2014-01-20

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on amore » relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.« less

  8. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. BACKGROUND: PLANETARY NEBULAE When Sun-like stars get old, they become cooler and redder, increasing their sizes and energy output tremendously: they are called red giants. Most of the carbon (the basis of life) and particulate matter (crucial building blocks of solar systems like ours) in the universe is manufactured and dispersed by red giant stars. When the red giant star has ejected all of its outer layers, the ultraviolet radiation from the exposed hot stellar core makes the surrounding cloud of matter created during the red giant phase glow: the object becomes a planetary nebula. A long-standing puzzle is how planetary nebulae acquire their complex shapes and symmetries, since red giants and the gas/dust clouds surrounding them are mostly round. Hubble's ability to see very fine structural details (usually blurred beyond recognition in ground-based images) enables us to look for clues to this puzzle. CREDITS: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  9. From K giants to G dwarfs: stellar lifetime effects on metallicity distributions derived from red giants

    NASA Astrophysics Data System (ADS)

    Manning, Ellen M.; Cole, Andrew A.

    2017-11-01

    We examine the biases inherent to chemical abundance distributions when targets are selected from the red giant branch (RGB), using simulated giant branches created from isochrones. We find that even when stars are chosen from the entire colour range of RGB stars and over a broad range of magnitudes, the relative numbers of stars of different ages and metallicities, integrated over all stellar types, are not accurately represented in the giant branch sample. The result is that metallicity distribution functions derived from RGB star samples require a correction before they can be fitted by chemical evolution models. We derive simple correction factors for over- and under-represented populations for the limiting cases of single-age populations with a broad range of metallicities and of continuous star formation at constant metallicity; an important general conclusion is that intermediate-age populations (≈1-4 Gyr) are over-represented in RGB samples. We apply our models to the case of the Large Magellanic Cloud bar and show that the observed metallicity distribution underestimates the true number of metal-poor stars by more than 25 per cent; as a result, the inferred importance of gas flows in chemical evolution models could potentially be overestimated. The age- and metallicity-dependences of RGB lifetimes require careful modelling if they are not to lead to spurious conclusions about the chemical enrichment history of galaxies.

  10. Infrared Studies of the Variability and Mass Loss of Dusty Asymptotic Giant Branch Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Groenewegen, M. A. T.

    2018-01-01

    The asymptotic giant branch (AGB) phase is one of the last phases of a star's life. AGB stars lose mass in an outflow in which dust condenses and is pushed away from the star. Extreme AGB stars are so named because their very red colors suggest very large amounts of dust, which in turn suggests extremely high mass loss rates. AGB stars also vary in brightness, and studies show that extreme AGB stars tend to have longer periods than other AGB stars and are more likely to be fundamental mode pulsators than other AGB stars. Extreme AGB stars are difficult to study, as their colors are so red due to their copious amounts of circumstellar dust that they are often not detected at optical wavelengths. Therefore, they must be observed at infrared wavelengths to explore their variability. Using the Spitzer Space Telescope, my team and I have observed a sample of extreme AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) over Cycles 9 through 12 during the Warm Spitzer mission. For each cycle, we typically observed a set of extreme AGB stars at both 3.6 and 4.5 microns wavelength approximately monthly for most of a year. These observations reveal a wide range of variability properties. I present results from our analysis of the data obtained from these Spitzer variability programs, including light curve analyses and comparison to period-luminosity diagrams. Funding is acknowledged from JPL RSA # 1561703.

  11. False Color Mosaic Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    False color representation of Jupiter's Great Red Spot (GRS) taken through three different near-infrared filters of the Galileo imaging system and processed to reveal cloud top height. Images taken through Galileo's near-infrared filters record sunlight beyond the visible range that penetrates to different depths in Jupiter's atmosphere before being reflected by clouds. The Great Red Spot appears pink and the surrounding region blue because of the particular color coding used in this representation. Light reflected by Jupiter at a wavelength (886 nm) where methane strongly absorbs is shown in red. Due to this absorption, only high clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (732 nm) where methane absorbs less strongly is shown in green. Lower clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere is shown in blue: This light is reflected from the deepest clouds. Thus, the color of a cloud in this image indicates its height. Blue or black areas are deep clouds; pink areas are high, thin hazes; white areas are high, thick clouds. This image shows the Great Red Spot to be relatively high, as are some smaller clouds to the northeast and northwest that are surprisingly like towering thunderstorms found on Earth. The deepest clouds are in the collar surrounding the Great Red Spot, and also just to the northwest of the high (bright) cloud in the northwest corner of the image. Preliminary modeling shows these cloud heights vary over 30 km in altitude. This mosaic, of eighteen images (6 in each filter) taken over a 6 minute interval during the second GRS observing sequence on June 26, 1996, has been map-projected to a uniform grid of latitude and longitude. North is at the top.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  12. Chromospheric dust formation, stellar masers and mass loss

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1986-01-01

    A multistep scenario which describes a plausible mass loss mechanism associated with red giant and related stars is outlined. The process involves triggering a condensation instability in an extended chromosphere, leading to the formation of cool, dense clouds which are conducive to the formation of molecules and dust grains. Once formed, the dust can be driven away from the star by radiation pressure. Consistency with various observed phenomena is discussed.

  13. Comparative Studies of the Dust around Red Supergiant and Oxygen-Rich Asymptotic Giant Branch Stars in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sargent, B. A.; Srinivasan, S.; Speck, A.; Volk, K.; Kemper, F.; Reach, W.; Lagadec, E.; Bernard, J.-P.; McDonald, I.; Meixner, M.; Sloan, G. C.; Jones, O.

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  14. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, R. D.; Srinivasan, S.; Kemper, F.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amountsmore » of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.« less

  15. The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-Infrared Observations of Cepheids

    NASA Technical Reports Server (NTRS)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andy; Persson, S. E.; Rich, Jeff; Seibert, Mark; Rigby, Jane R.

    2016-01-01

    Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the Small Magellanic Cloud (SMC) to be18.96 +/- 0.01 stat +/- 0.03sys mag (corresponding to 62+/- 0.3kpc), which is 0.48 +/- 0.01 mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid-infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.

  16. Mass Loss from Dusty AGB and Red Supergiant Stars in the Magellanic Clouds and in the Galaxy

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel

    2016-01-01

    Asymptotic giant branch (AGB) and red supergiant (RSG) stars are evolved stars that eject large parts of their mass in outflows of dust and gas. As part of an ongoing effort to measure mass loss from evolved stars in our Galaxy and in the Magellanic Clouds, we are modeling mass loss from AGB and RSG stars in these galaxies. Our approach is twofold. We pursue radiative transfer modeling of the spectral energy distributions (SEDs) of AGB and RSG stars in the Large Magellanic Cloud (LMC), in the Small Magellanic Cloud (SMC), and in the Galactic bulge and in globular clusters of the Milky Way. We are also constructing detailed dust opacity models of AGB and RSG stars in these galaxies for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). Our sample of infrared spectra largely comes from Spitzer-IRS observations. The detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs. We seek to determine how mass loss from these evolved stars depends upon the metallicity of their host environments. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  17. Time Evolution of the Giant Molecular Cloud Mass Functions across Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-Ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-01-01

    We formulate and conduct the time-integration of time evolution equation for the giant molecular cloud mass function (GMCMF) including the cloud-cloud collision (CCC) effect. Our results show that the CCC effect is only limited in the massive-end of the GMCMF and indicate that future high resolution and sensitivity radio observations may constrain giant molecular cloud (GMC) timescales by observing the GMCMF slope in the lower mass regime.

  18. Deep learning classification in asteroseismology

    NASA Astrophysics Data System (ADS)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2017-08-01

    In the power spectra of oscillating red giants, there are visually distinct features defining stars ascending the red giant branch from those that have commenced helium core burning. We train a 1D convolutional neural network by supervised learning to automatically learn these visual features from images of folded oscillation spectra. By training and testing on Kepler red giants, we achieve an accuracy of up to 99 per cent in separating helium-burning red giants from those ascending the red giant branch. The convolutional neural network additionally shows capability in accurately predicting the evolutionary states of 5379 previously unclassified Kepler red giants, by which we now have greatly increased the number of classified stars.

  19. Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Bhure, Sakhee; Sankar, Ramanakumar; Hadland, Nathan; Palotai, Csaba J.; Le Beau, Raymond P.; Koutas, Nikko

    2017-10-01

    Observations of ice giant planets in our Solar System have shown several large-scale dark spots with varying lifespans. Some of these features were directly observed, others were diagnosed from their orographic companion clouds. Historically, numerical simulations have been able to model certain characteristics of these storms such as the shape variability of the Neptune Great Dark Spot (GDS-89) (Deng and Le Beau, 2006), but have not been able to match observed drift rates and lifespans using the standard zonal wind profiles (Hammel et al. 2009). Common amongst these studies has been the lack of condensable species in the atmosphere and an explicit treatment of cloud microphysics. Yet, observations show that dark spots can affect neighboring cloud features, such as in the case of bright companion clouds or the “Berg” on Uranus. An analysis of the cloud structure is therefore required to gain a better understanding of the underlying atmospheric physics and dynamics of these vortices.For our simulations, we use the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al. 1998, 2006) and adapt its jovian cloud microphysics module which successfully reproduced the cloud structure of jovian storms, such as the Great Red Spot and the Oval BA (Palotai and Dowling 2008, Palotai et al. 2014). EPIC was recently updated to account for the condensation of methane and hydrogen sulfide (Palotai et al. 2016), which allows us to account for both the high-altitude methane ice-cloud and the deep atmosphere hydrogen sulfide ice-cloud layers.In this work, we simulate large-scale vortices on Uranus and Neptune with varying cloud microphysical parameters such as the deep abundance and the ambient supersaturation. We examine the effect of cloud formation on their lifespan and drift rates to better understand the underlying processes which drive these storms.

  20. Comparative Studies of the Dust around Red Supergiant and Oxygen-Rich Asymptotic Giant Branch Stars in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Speck, Angela K.; Volk, Kevin; Kemper, Ciska; Reach, William; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret; Sloan, Greg; Jones, Olivia

    2015-08-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 μm emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  1. Hubble Catches Jupiter's Largest Moon Going to the 'Dark Side'

    NASA Image and Video Library

    2017-12-08

    Hubble Catches Jupiter's Largest Moon Going to the 'Dark Side' HST/WFPC2 Image of Jupiter and Ganymede Taken April 9, 2007 NASA's Hubble Space Telescope has caught Jupiter's moon Ganymede playing a game of "peek-a-boo." In this crisp Hubble image, Ganymede is shown just before it ducks behind the giant planet. Ganymede completes an orbit around Jupiter every seven days. Because Ganymede's orbit is tilted nearly edge-on to Earth, it routinely can be seen passing in front of and disappearing behind its giant host, only to reemerge later. Composed of rock and ice, Ganymede is the largest moon in our solar system. It is even larger than the planet Mercury. But Ganymede looks like a dirty snowball next to Jupiter, the largest planet in our solar system. Jupiter is so big that only part of its Southern Hemisphere can be seen in this image. Hubble's view is so sharp that astronomers can see features on Ganymede's surface, most notably the white impact crater, Tros, and its system of rays, bright streaks of material blasted from the crater. Tros and its ray system are roughly the width of Arizona. The image also shows Jupiter's Great Red Spot, the large eye-shaped feature at upper left. A storm the size of two Earths, the Great Red Spot has been raging for more than 300 years. Hubble's sharp view of the gas giant planet also reveals the texture of the clouds in the Jovian atmosphere as well as various other storms and vortices. Astronomers use these images to study Jupiter's upper atmosphere. As Ganymede passes behind the giant planet, it reflects sunlight, which then passes through Jupiter's atmosphere. Imprinted on that light is information about the gas giant's atmosphere, which yields clues about the properties of Jupiter's high-altitude haze above the cloud tops. This color image was made from three images taken on April 9, 2007, with the Wide Field Planetary Camera 2 in red, green, and blue filters. The image shows Jupiter and Ganymede in close to natural colors. For additional information go to: hubblesite.org/newscenter/archive/releases/2008/42/ Credit: NASA, ESA, and E. Karkoschka (University of Arizona) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan

    2018-02-01

    We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.

  3. The Near-infrared Tip of the Red Giant Branch. I. A Calibration in the Isolated Dwarf Galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Madore, Barry F.; Freedman, Wendy L.; Hatt, Dylan; Hoyt, Taylor J.; Monson, Andrew J.; Beaton, Rachael L.; Rich, Jeffrey A.; Jang, In Sung; Lee, Myung Gyoon; Scowcroft, Victoria; Seibert, Mark

    2018-05-01

    Based on observations from the FourStar near-infrared camera on the 6.5 m Baade-Magellan telescope at Las Campanas, Chile, we present calibrations of the JHK luminosities of stars defining the tip of the red giant branch (TRGB) in the halo of the Local Group dwarf galaxy IC 1613. We employ metallicity-independent (rectified) T-band magnitudes—constructed using J-, H-, and K-band magnitudes and both (J ‑ H) and (J ‑ K) colors to flatten the upward-sloping red giant branch tips as otherwise seen in their apparent color–magnitude diagrams. We describe and quantify the advantages of working at these particular near-infrared wavelengths, which are applicable to both the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST). We also note that these same wavelengths can be accessed from the ground for an eventual tie-in to Gaia for absolute astrometry and parallaxes to calibrate the intrinsic luminosity of the TRGB. Adopting the color terms derived from the IC 1613 data, as well as the zero points from a companion study of the Large Magellanic Cloud, whose distance is anchored to the geometric distances of detached eclipsing binaries, we find a true distance modulus of 24.32 ± 0.02 (statistical) ±0.05 mag (systematic) for IC 1613, which compares favorably with the recently published multi-wavelength, multi-method consensus modulus of 24.30 ± 0.05 mag by Hatt et al.

  4. Major substructure in the M31 outer halo: the South-West Cloud

    NASA Astrophysics Data System (ADS)

    Bate, N. F.; Conn, A. R.; McMonigal, B.; Lewis, G. F.; Martin, N. F.; McConnachie, A. W.; Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Ibata, R. A.; Irwin, M. J.; Fardal, M.; Huxor, A. P.; Babul, A.

    2014-02-01

    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ˜100 kpc from the centre of M31 and extends for at least ˜50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793^{+45}_{-45} kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 ± 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 ± 0.15. We measure a brightness for the Cloud of MV = -12.1 mag; this is ˜75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.

  5. Depth of a strong jovian jet from a planetary-scale disturbance driven by storms.

    PubMed

    Sánchez-Lavega, A; Orton, G S; Hueso, R; García-Melendo, E; Pérez-Hoyos, S; Simon-Miller, A; Rojas, J F; Gómez, J M; Yanamandra-Fisher, P; Fletcher, L; Joels, J; Kemerer, J; Hora, J; Karkoschka, E; de Pater, I; Wong, M H; Marcus, P S; Pinilla-Alonso, N; Carvalho, F; Go, C; Parker, D; Salway, M; Valimberti, M; Wesley, A; Pujic, Z

    2008-01-24

    The atmospheres of the gas giant planets (Jupiter and Saturn) contain jets that dominate the circulation at visible levels. The power source for these jets (solar radiation, internal heat, or both) and their vertical structure below the upper cloud are major open questions in the atmospheric circulation and meteorology of giant planets. Several observations and in situ measurements found intense winds at a depth of 24 bar, and have been interpreted as supporting an internal heat source. This issue remains controversial, in part because of effects from the local meteorology. Here we report observations and modelling of two plumes in Jupiter's atmosphere that erupted at the same latitude as the strongest jet (23 degrees N). The plumes reached a height of 30 km above the surrounding clouds, moved faster than any other feature (169 m s(-1)), and left in their wake a turbulent planetary-scale disturbance containing red aerosols. On the basis of dynamical modelling, we conclude that the data are consistent only with a wind that extends well below the level where solar radiation is deposited.

  6. The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. IV. Construction and Validation of a Grid of Models for Oxygen-rich AGB Stars, Red Supergiants, and Extreme AGB Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.

    2011-02-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the "Grid of Red supergiant and Asymptotic giant branch star ModelS" (GRAMS). This model grid explores four parameters—stellar effective temperature from 2100 K to 4700 K luminosity from 103 to 106 L sun; dust shell inner radii of 3, 7, 11, and 15 R star; and 10.0 μm optical depth from 10-4 to 26. From an initial grid of ~1200 2Dust models, we create a larger grid of ~69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  7. DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Evan N.; Fu, Xiaoting; Deng, Licai

    2012-06-10

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-richmore » red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.« less

  8. Jupiter's Great Red Spot in Cassini image

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This true color image of Jupiter, taken by NASA's Cassini spacecraft, is composed of three images taken in the blue, green and red regions of the spectrum. All images were taken from a distance of 77.6 million kilometers (48.2 million miles) on Oct. 8, 2000.

    Different chemical compositions of the cloud particles lead to different colors. The cloud patterns reflect different physical conditions -- updrafts and downdrafts -- in which the clouds form. The bluish areas are believed to be regions devoid of clouds and covered by high haze.

    The Great Red Spot (below and to the right of center) is a giant atmospheric storm as wide as two Earths and over 300 years old, with peripheral winds of 483 kilometers per hour (300 miles per hour). This image shows that it is trailed to the north by a turbulent region, caused by atmospheric flow around the spot.

    The bright white spots in this region are lightning storms, which were seen by NASA's Galileo spacecraft when it photographed the night side of Jupiter. Cassini will track these lightning storms and measure their lifetimes and motions when it passes Jupiter in late December and looks back on the darkside of the planet. Cassini is currently en route to its ultimate destination, Saturn.

    The resolution is 466 kilometers (290 miles) per picture element.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  9. The nature of the central parsec of the Galaxy

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Townes, C. H.; Hollenbach, D. J.

    1982-01-01

    Observations of infrared fine-structure line emission from compact clouds of ionized gas in the galactic center have been reported by Lacy et al (1979, 1980). These observations suggest the existence of a central black hole of nearly 3,000,000 solar masses and require mechanisms to generate, ionize, and dispose of the gas clouds. It is found that the best model to fulfill these requirements involves cloud generation through disruption of red giants by stellar collisions, ionization by a population of stars which is affected either by enhanced metal abundances or the death of the most massive stars, and gas disposal by star formation. Although the existence of a massive black hole cannot be ruled out, it would play no necessary role in this model and may cause the tidal disruption of stars at a rate such that their accretion into the black hole would produce more radiation than is observed.

  10. Search for old neutron stars in molecular clouds: Cygnus rift and Cygnus OB7.

    NASA Astrophysics Data System (ADS)

    Belloni, T.; Zampieri, L.; Campana, S.

    1997-03-01

    We present the results of a systematic search for old isolated neutron stars (ONSs) in the direction of two giant molecular clouds in Cygnus (Rift and OB7). From theoretical calculations, we expect the detection of a large number of ONSs with the PSPC on board ROSAT. By analyzing the PSPC pointings in the direction of the clouds, we find four sources characterized by count rates (~10^-3^ct/s) and spectral properties consistent with the hypothesis that the X-ray radiation is produced by ONSs and also characterized by the absence of any measurable optical counterpart within their error circle in the digitized red plates of the Palomar All Sky Survey. The importance of follow-up deep observations in the direction of these ONS candidates is discussed. The observational and theoretical approach presented here could be fruitfully applied also to the systematic search for ONSs in other regions of the Galaxy.

  11. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less

  12. The Tip of the Red Giant Branch Distances to Type Ia Supernova Host Galaxies. IV. Color Dependence and Zero-point Calibration

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, Myung Gyoon

    2017-01-01

    We present a revised Tip of the Red Giant Branch (TRGB) calibration, accurate to 2.7% of distance. A modified TRGB magnitude corrected for its color dependence, the QT magnitude, is introduced for better measurement of the TRGB. We determine the color-magnitude relation of the TRGB from photometry of deep images of HST/ACS fields around eight nearby galaxies. The zero-point of the TRGB at the fiducial metallicity ([Fe/H] = -1.6 ({(V-I)}0,{TRGB}=1.5)) is obtained from photometry of two distance anchors, NGC 4258 (M106) and the Large Magellanic Cloud (LMC), to which precise geometric distances are known: MQT,TRGB = -4.023 ± 0.073 mag from NGC 4258 and MQT,TRGB = -4.004 ± 0.096 mag from the LMC. A weighted mean of the two zero-points is MQT,TRGB = -4.016 ± 0.058 mag. Quoted uncertainty is ˜2× smaller than those of previous calibrations. We compare the empirical TRGB calibration derived in this study with theoretical stellar models, finding that there are significant discrepancies, especially for red color ({({{F}}606{{W}}-{{F}}814{{W}})}0≳ 2.5). We provide the revised TRGB calibration in several magnitude systems for future studies.

  13. A Cloud Microphysics Model for the Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  14. Modeling Jupiter's Great Red Spot with an Active Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Palotai, C. J.; Dowling, T. E.; Morales-Juberías, R.

    2003-05-01

    We are studying the interaction of Jupiter's hydrological cycle with the formation and maintenance of its long-lived vortices and jet streams using numerical simulations. We are particularly interested in establishing the importance of the large convective storm system to the northwest of Jupiter's Great Red Spot (GRS). We have adapted into the EPIC model the cloud microphysics scheme used at Colorado State University (Fowler et al. 1996, J. Cli. 9, 489), which contains prognostic equations for vapor, liquid cloud, ice cloud, rain and snow. We are focussing on the role of water, but the EPIC model can also handle multiple species (water, ammonia, etc.). Processes that are currently working in the microphysics model include large-scale condensation/deposition, cloud evaporation, melting/freezing, and Bergeron-Findeisen diffusional growth of ice from supercooled liquid. The form of precipitation on gas giants is a major unknown. We are currently using a simple scheme for precipitation, but are studying the effect that processes known to be important in terrestrial models have on our results, including formation and accretion of rain and snow, preciptation evaporation, detrainment and cloud-top entrainment. We will present comparisons of ``dry'' and ``wet'' runs of a channel Jupiter EPIC simulation covering -40S to the equator that includes various initial water-vapor profiles and a GRS model. The effects of latent heating on the energy budget and vertical transport will be discussed. This research is funded by NASA's Planetary Atmospheres and EPSCoR Programs.

  15. Excitation and Disruption of a Giant Molecular Cloud by the Sepurnova Remnant 3C 391

    NASA Technical Reports Server (NTRS)

    Reach, W. T.; Rho, J.

    1998-01-01

    The ambient molecular gas at the distance of the remnant comprises a giant molecular cloud whose edge is closely parallel to a ridge of bright non-thermal radio continuum, which evidently delineates the blast-wave into the cloud.

  16. The merger of two giant anticyclones in the atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Orton, G. S.; Morales, R.; Lecacheux, J.; Colas, F.; Fisher, B.; Fukumura-Sawada, P.; Golisch, W.; Griep, D.; Kaminski, C.; Baines, K.; Rages, K.; West, R.

    2000-10-01

    Two giant ovals in Jupiter's southern atmosphere, vortices of counterclockwise-rotating winds, merged in a 3-week period, starting in March 2000. One of the ovals called FA was more than 60 years old; the other called BE was the product of two 60-year ovals (BC and DE) that merged in 1998 (Sanchez-Lavega et al., Icarus, Vol. 142, 116. 1999). Here we report the coordinated observations of the BE - FA merger obtained with different facilities: The 1 - m Pic-du-Midi telescope (visual wavelength range), the 3.5 m NASA - IRTF telescope (red and near infrared range) and the Hubble Space Telescope (visual range). The merger took place when the ovals were southeast of the Great Red Spot and after the disappearance of a smaller, clockwise-rotating oval midway between them. The interaction began when the high-altitude oval clouds showed counterclockwise rotation about each other, followed by coalescence and shrinking. The interaction in deeper clouds did not include mutual rotation, but there was evidence of complex cloud structure during the merger. After 60 years, these three vortices consolidate into a single vortex that could now either (1) merge with the large, axisymmetric high-albedo band from which the ovals were originally formed or (2) continue as a stable and long-lived vortex in Jupiter. If the new oval (BA) is long-lived, then it is tempting to speculate that the more than 300-year old Great Red Spot could have had a similar genesis. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." The US team was supported by NASA through grants to the Institute for Astronomy (U. Hawaii) and JPL. Some of the observations were made by the NASA-ESA Hubble Space Telescope, with support provided through grant GO-8148 from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronmy under NASA contract NAS5-26555. RM acknowledges a fellowship from Universidad Pais Vasco.

  17. What Makes Red Giants Tick? Linking Tidal Forces, Activity, and Solar-Like Oscillations via Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason

    2016-01-01

    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.

  18. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars.

    PubMed

    Bedding, Timothy R; Mosser, Benoit; Huber, Daniel; Montalbán, Josefina; Beck, Paul; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P; García, Rafael A; Miglio, Andrea; Stello, Dennis; White, Timothy R; De Ridder, Joris; Hekker, Saskia; Aerts, Conny; Barban, Caroline; Belkacem, Kevin; Broomhall, Anne-Marie; Brown, Timothy M; Buzasi, Derek L; Carrier, Fabien; Chaplin, William J; Di Mauro, Maria Pia; Dupret, Marc-Antoine; Frandsen, Søren; Gilliland, Ronald L; Goupil, Marie-Jo; Jenkins, Jon M; Kallinger, Thomas; Kawaler, Steven; Kjeldsen, Hans; Mathur, Savita; Noels, Arlette; Aguirre, Victor Silva; Ventura, Paolo

    2011-03-31

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼ 50 seconds) and those that are also burning helium (period spacing ∼ 100 to 300 seconds).

  19. ISO observations of obscured Asymptotic Giant Branch stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Trams, N. R.; van Loon, J. Th.; Waters, L. B. F. M.; Zijlstra, A. A.; Loup, C.; Whitelock, P. A.; Groenewegen, M. A. T.; Blommaert, J. A. D. L.; Siebenmorgen, R.; Heske, A.; Feast, M. W.

    1999-06-01

    We present ISO photometric and spectroscopic observations of a sample of 57 bright Asymptotic Giant Branch stars and red supergiants in the Large Magellanic Cloud, selected on the basis of IRAS colours indicative of high mass-loss rates. PHOT-P and PHOT-C photometry at 12, 25 and 60 mu m and CAM photometry at 12 mu m are used in combination with quasi-simultaneous ground-based near-IR photometry to construct colour-colour diagrams for all stars in our sample. PHOT-S and CAM-CVF spectra in the 3 to 14 mu m region are presented for 23 stars. From the colour-colour diagrams and the spectra, we establish the chemical types of the dust around 49 stars in this sample. Many stars have carbon-rich dust. The most luminous carbon star in the Magellanic Clouds has also a (minor) oxygen-rich component. OH/IR stars have silicate absorption with emission wings. The unique dataset presented here allows a detailed study of a representative sample of thermal-pulsing AGB stars with well-determined luminosities. This paper is based on observations with the Infrared Space Observatory (ISO). ISO is an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  20. Dust Production and Mass Loss in Cool Evolved Stars

    NASA Technical Reports Server (NTRS)

    Boyer, M. L.

    2013-01-01

    Following the red giant branch phase and the subsequent core He-burning phase, the low- to intermediate-mass stars (0.8

  1. High surface magnetic field in red giants as a new signature of planet engulfment?

    NASA Astrophysics Data System (ADS)

    Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A.; Bianda, Michele; Villaver, Eva; ud-Doula, Asif

    2016-09-01

    Context. Red giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims: We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of magnetic braking through stellar wind on the evolution of the surface velocity of the parent star. Methods: By studying rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduced the evolution of the surface magnetic field along the red giant branch. The effects of stellar wind magnetic braking were explored using a relation deduced from magnetohydrodynamics simulations. Results: The stellar evolution model of a red giant with 1.7 M⊙ without planet engulfment and with a time-averaged rotation velocity during the main sequence equal to 100 km s-1 shows a surface magnetic field triggered by convection that is stronger than 10 G only at the base of the red giant branch, that is, for gravities log g> 3. When a planet engulfment occurs, this magnetic field can also appear at much lower gravities, that is, at much higher luminosities along the red giant branch. The engulfment of a 15 MJ planet typically produces a dynamo-triggered magnetic field stronger than 10 G for gravities between 2.5 and 1.9. We show that for reasonable magnetic braking laws for the wind, the high surface velocity reached after a planet engulfment may be maintained sufficiently long to be observable. Conclusions: High surface magnetic fields for red giants in the upper part of the red giant branch are a strong indication of a planet engulfment or of an interaction with a companion. Our theory can be tested by observing fast-rotating red giants such as HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054-01204-1 and by determining whether they show magnetic fields.

  2. ARC-1979-AC79-0143-3

    NASA Image and Video Library

    1979-01-24

    Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9)

  3. SEISMIC DIAGNOSTICS OF RED GIANTS: FIRST COMPARISON WITH STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montalban, J.; Miglio, A.; Noels, A.

    2010-10-01

    The clear detection with CoRoT and KEPLER of radial and non-radial solar-like oscillations in many red giants paves the way for seismic inferences on the structure of such stars. We present an overview of the properties of the adiabatic frequencies and frequency separations of radial and non-radial oscillation modes for an extended grid of models. We highlight how their detection allows a deeper insight into the internal structure and evolutionary state of red giants. In particular, we find that the properties of dipole modes constitute a promising seismic diagnostic tool of the evolutionary state of red giant stars. We comparemore » our theoretical predictions with the first 34 days of KEPLER data and predict the frequency diagram expected for red giants in the CoRoT exofield in the galactic center direction.« less

  4. Giant aerosol observations with cloud radar: methodology and effects

    NASA Astrophysics Data System (ADS)

    Guma Claramunt, Pilar; Madonna, Fabio; Amodeo, Aldo; Bauer-Pfundstein, Matthias; Papagiannopoulos, Nikolaos; Pappalardo, Gelsomina

    2017-04-01

    Giant aerosol particles can act as Giant Cloud Condensation Nuclei (GCCN), and determine the droplet concentration at the cloud formation, the clouds albedo and lifetime, and the precipitation formation. In addition, depending on their composition, they can also act as IN. It is not yet clear if they can also expedite rain processes. The main techniques used nowadays in measuring aerosols, which are lidar and sun photometer, cannot retrieve aerosol microphysical properties for particles bigger than a few microns, which means that they do not account for giant aerosols. Therefore, the distribution and impact in the atmosphere and climate of these particles is not well known and the aerosol transport models largely underestimate them. Recent studies have demonstrated that cloud radars are able to detect ultragiant volcanic aerosols also at a large distance from the source. In this study, an innovative methodology for the observation of giant aerosols using the millimeter wavelength radar has been developed and applied to 6 years of measurements carried out at CNR-IMAA Atmospheric Observatory (CIAO), in Potenza, South Italy, finding more than 40 giant aerosol events per year and a good agreement with the aerosol climatologic data. Besides, the effects of giant aerosols in the local and regional meteorology have been studied by correlating several atmospheric variables in the time period following the observation of giant particles. The meteorological situation has been assessed through the data classification into cases characterized by different pressure vertical velocities at the upper atmosphere (400 hPa), Giant aerosols are correlated to lower values of the Cloud Optical Depth (COD) in presence of stable or unstable atmospheric conditions while higher values are found for an intermediate stability. The giant aerosols effects on the Liquid Water Path (LWP) are closely linked to those in the Aerosol Optical Thickness (AOD). The highest increases in the LWP occurs together with the increases of AOD. Finally, the effects of giant aerosols on precipitation at a regional scale have been studied. The observation of giant aerosols can be correlated to an enhancement of the accumulated precipitation, which is quite relevant in the first 12 hours after their observation, as well as of the maximum rain rate in presence of the unstable atmospheric conditions. The increase in the maximum rain rate is instead more remarkable in correlation with stable atmospheric conditions and mainly during the first 6 hours after their observations.

  5. CA II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. III. ABUNDANCES AND VELOCITIES FOR A SAMPLE OF 14 CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, M. C.; Clariá, J. J.; Marcionni, N.

    2015-05-15

    We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the Ca ii lines with FORS2 on the Very Large Telescope. We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km s{sup −1}, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authorsmore » are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at −1.1 and −0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from Ca ii triplet spectra of a large sample of field stars. This may be revealing possible differences in the chemical history of clusters and field stars. Our clusters show a significant dispersion of metallicities, whatever age is considered, which could be reflecting the lack of a unique age–metallicity relation in this galaxy. None of the chemical evolution models currently available in the literature satisfactorily represents the global chemical enrichment processes of SMC clusters.« less

  6. 76 FR 64425 - Union Pacific Railroad Company-Abandonment Exemption-in Pottawattamie County, IA; Iowa Interstate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... trackage rights and UP's overhead trackage rights, UP will sell the UP lines to a shipper, Red Giant Oil Company (Red Giant), subject to a permanent access easement over the UP lines for another shipper, Midwest Walnut Company of Iowa (Midwest Walnut). Red Giant and Midwest Walnut are the only shippers on the UP...

  7. The Dust Cloud TGU H1192 (LDN 1525) in Auriga. II

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, Robert; Straizys, Vytautas; Zdanavicius, Kazimieras; Maskoliunas, Marius; Kazlauskas, Algirdas

    2016-01-01

    The results of a new investigation of interstellar extinction in the direction of the emission nebulae Sh2-231 and Sh2-235 are presented. The investigation is based on CCD photometry and photometric MK classification in seven areas of 12' by 12' size in the Vilnius seven-color photometric system down to V = 19 mag. Additionally, for the same task we applied 519 red clump giants identified in the surrounding 1.5 deg. by 1.5 deg. area using the results of photometry in the 2MASS and WISE surveys. The dependence of the extinction run with distance allows determining distances to dust clouds and their extinctions. We comparethese new more detailed results with the preliminary results described in our previous paper (V. Straizys et al. 2010, Baltic Astronomy, 19, 169) and the AAS communication at the AAS Meeting No. 219 (Austin), 349.12. The relation of the TGU H1192 dust cloud with the Auriga OB1 association is discussed.

  8. Precipitating Condensation Clouds in Substellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  9. Rotating Jupiter With Great Red Spot, January 2017

    NASA Image and Video Library

    2017-06-30

    This video shows Jupiter as revealed by a powerful telescope and a mid-infrared filter sensitive to the giant planet's tropospheric temperatures and cloud thickness. It combines observations made on Jan. 14, 2017, using the Subaru Telescope in Hawaii. The filter used admits infrared light centered on a wavelength of 8.8 microns. The video includes interpolated frames for smoother apparent motion. The instrument used to take this image is Cooled Mid-Infrared Camera and Spectrometer (COMICS) of the National Astronomical Observatory of Japan's Subaru Telescope on the Maunakea volcano. Animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA21715

  10. WIYN Open Cluster Study. LXXVI. Li Evolution Among Stars of Low/Intermediate Mass: The Metal-deficient Open Cluster NGC 2506

    NASA Astrophysics Data System (ADS)

    Anthony-Twarog, Barbara J.; Lee-Brown, Donald B.; Deliyannis, Constantine P.; Twarog, Bruce A.

    2018-03-01

    HYDRA spectra of 287 stars in the field of NGC 2506 from the turnoff through the giant branch are analyzed. With previous data, 22 are identified as probable binaries; 90 more are classified as potential non-members. Spectroscopic analyses of ∼60 red giants and slowly rotating turnoff stars using line equivalent widths and a neural network approach lead to [Fe/H] = ‑0.27 ± 0.07 (s.d.) and [Fe/H] = ‑0.27 ± 0.06 (s.d.), respectively. Li abundances are derived for 145 probable single-star members, 44 being upper limits. Among turnoff stars outside the Li-dip, A(Li) = 3.04 ± 0.16 (s.d.), with no trend with color, luminosity, or rotation speed. Evolving from the turnoff across the subgiant branch, there is a well-delineated decline to A(Li) ∼1.25 at the giant branch base, coupled with the rotational spindown from between ∼20 and 70 km s‑1 to less than 20 km s‑1 for stars entering the subgiant branch and beyond. A(Li) remains effectively constant from the giant branch base to the red giant clump level. A new member above the clump redefines the path of the first-ascent red giant branch; its Li is 0.6 dex below the first-ascent red giants. With one exception, all post-He-flash stars have upper limits to A(Li), at or below the level of the brightest first-ascent red giant. The patterns are in excellent qualitative agreement with the model predictions for low/intermediate-mass stars which undergo rotation-induced mixing at the turnoff and subgiant branch, first dredge-up, and thermohaline mixing beyond the red giant bump.

  11. Surface activity and oscillation amplitudes of red giants in eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; Jackiewicz, J.; Appourchaux, T.

    2014-04-10

    Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, andmore » where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.« less

  12. Mass loss from red giants - Results from ultraviolet spectroscopy

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1985-01-01

    New instrumentation in space, primarily the IUE spacecraft, has enabled the application of ultraviolet spectroscopic techniques to the determination of physical properties and reliable mass loss rates for red giant winds. One important result is the determination of where in the H-R diagram are found stars with hot outer atmospheres and with cool winds. So far it appears that single cool stars, except perhaps the so-called hybrid stars, have either hot outer atmospheres or cool winds but not both. The C II resonance (1335 A) and intersystem (2325 A) multiplets have been used to derive temperatures, densities, and geometrical extents for the chromospheric portions of red giant winds, with the result that the red giants and the earlier giants with hot coronae have qualitatively different chromospheres. Mass loss rates can now be derived accurately from the analysis of asymmetric emission lines, such as the Mg II resonance lines, and from P Cygni profile lines of atoms in the dominant ionization stage when a hot star is available to probe the wind of a red giant. The Zeta Aur systems, consisting of a K-M supergiant and a main sequence B star are important systems for reliable mass loss rates for the red supergiant components are becoming available.

  13. The Contribution of Thermally-Pulsing Asymptotic Giant Branch and Red Supergiant Starts to the Luminosities of the Magellanic Clouds at 1-24 micrometers

    NASA Technical Reports Server (NTRS)

    Melbourne, J.; Boyer, Martha L.

    2013-01-01

    We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

  14. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud: Probing the LMC Disk

    NASA Astrophysics Data System (ADS)

    Alves, D. R.; Alcock, C.; Allsman, R. A.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration

    1998-12-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different age and metallicity stellar populations. Young LMC stellar populations are prominent in the 9M CMD. Of these, the red and blue supergiants are potentially useful probes of the late stages of evolution in intermediate mass stars. Old LMC stellar populations are also evident in the 9M CMD. These are used to reconstruct the evolution of the LMC during cosmologically interesting epochs. We first build a plausible model for the old LMC populations consistent with features observed in the 9M CMD. We choose the 1.5 Gyr old cluster NGC 411 and the ancient globular cluster M3, with metal abundances of [Fe/H] = -0.7 and -1.5 dex respectively, as good representations of the giant branch and horizontal branch (HB) stars. The evolved asymptotic giant branch appears bimodal, which supports a model of two discrete older populations in the LMC field. We conclude the old populations in the LMC bar are likely a mix similar to NGC 411 and M3. Next, we infer the old and low metallicity LMC field population has a red HB morphology, which implies this population formed ~ 2 Gyr after the truly ancient LMC clusters formed. We find the surface density profile of this old LMC field population (traced by RRab variable stars) is exponential, favoring a disk-like rather than spheroidal distribution. We conclude the LMC disk formed ~ 10 Gyr ago, at the same time the Milky Way disk formed.

  15. Mass-losing peculiar red giants - The comparison between theory and observations

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1989-01-01

    The mass loss from evolved red giants is considered. It seems that red giants on the Asymptotic Giant Branch (AGB) are losing between 0.0003 and 0.0006 solar mass/sq kpc yr in the solar neighborhood. If all the main sequence stars between 1 and 5 solar masses ultimately evolve into white dwarfs with masses of 0.7 solar mass, the predicted mass loss rate in the solar neighborhood from these stars is 0.0008 solar mass/sq kpc yr. Although there are still uncertainties, it appears that there is no strong disagreement between theory and observation.

  16. Chromospheres of two red giants in NGC 6752

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Harper, G. M.; Jordan, Carole; Rodgers, A. W.

    1990-01-01

    Two red giant stars, A31 and A59, in the globular cluster NGC 6752 exhibit Mg II (2800 A) emission with surface fluxes comparable to those observed among metal-deficient halo field giants, and among low-activity Population I giants. Optical echelle spectra of these cluster giants reveal emission in the core of the Ca II K (3933.7 A) line, and in the wing of the H-alpha (6562.8 A) profile. Asymmetries exist both in the emission profiles and the line cores. These observations demonstrate unequivocally the existence of chromospheres among old halo population giants, and the presence of mass outflow in their atmospheres. Maintenance of a relatively constant level of chromospheric activity on the red giant branch contrasts with the decay of magnetic dynamo activity exhibited by dwarf stars and younger giants. A purely hydrodynamic phenomenon may be responsible for heating the outer atmospheres of these stars, enhancing chromospheric emission, thus extending the atmospheres and facilitating mass loss.

  17. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    NASA Astrophysics Data System (ADS)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  18. Explosion of a supernova with a red giant companion

    NASA Technical Reports Server (NTRS)

    Livne, E.; Tuchman, Y.; Wheeler, J. C.

    1992-01-01

    Two-dimensional numerical simulations of the collision between spherical ejecta from a supernova and a red giant companion are presented. In contrast to previous numerical studies, in which the companion was a main-sequence star or a compact object, the collision consequences are found to have a dramatic impact upon the red giant. In most cases the red giant companion loses most of its envelope in a time scale of 10 exp 7 s with typical velocities about an order of magnitude less than those of the expanding velocity of the supernova shell. We confirm the conclusion of Chugai (1986) that the stripped hydrogen tends to come off as a low-velocity component interior to the supernova ejecta. Possible observational consequences of the results are discussed.

  19. Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9)

  20. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can bemore » derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.« less

  1. Probing Storm Activity on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists assume Jupiter's clouds are composed primarily of ammonia, but only about 1% of the cloud area displays the characteristic spectral fingerprint of ammonia. This composite of infrared images taken by the New Horizons Linear Etalon Infrared Spectral Imager (LEISA) captures several eruptions of this relatively rare breed of ammonia cloud and follows the evolution of the clouds over two Jovian days. (One day on Jupiter is approximately 10 hours, which is how long it takes Jupiter to make one complete rotation about its axis.)

    The New Horizons spacecraft was still closing in on the giant planet when it made these observations: Jupiter was 3.4 million kilometers (2.1 million miles) from the New Horizons spacecraft for the LEISA image taken at 19:35 Universal Time on February 26, 2007, and the distance decreased to 2.5 million kilometers (1.6 million miles) for the last image shown. LEISA's spatial resolution scale varied from approximately 210 kilometers (130 miles) for the first image to 160 kilometers (100 miles) for the last one.

    New Horizons scientists originally targeted the region slightly northwest (up and to the left) of the Great Red Spot to search for these special ammonia clouds because that's where they were most easily seen during infrared spectral observations made by the Galileo spacecraft. But unlike the churning, turbulent cloud structures seen near the Great Red Spot during the Galileo era, this region has been quieting down during the past several months and was unusually tranquil when New Horizons passed by. Nevertheless, LEISA managed to find other regions of fresh, upwelling ammonia clouds, and the temporal evolution of one such region is displayed in this figure. In the first image, a fresh ammonia cloud (the blue region) sprouts from between white clouds and a dark elongated region. This blue cloud subsequently stretches along the white-dark border in the next two images.

    These fresh ammonia clouds trace the strong upwelling of gases from the largely hidden depths of Jupiter to higher altitudes. Presumably, water is also being dragged up from below, and the subsequent condensation of that water, which is far more abundant than ammonia in Jupiter's atmosphere, into cloud droplets energizes the lower troposphere.

    LEISA produces images at infrared wavelengths, which is heat radiation that cannot be sensed by the human eye. These 'false color' images were produced by putting images of Jupiter at wavelengths of 1.99 micrometers, 1.94 micrometers and 2.04 micrometers into the red, green and blue channels, respectively, of the image display. Ammonia has an absorption feature at 1.99 microns, and when the colors are combined in this way the fresh ammonia clouds take on a bluish hue.

  2. GRAMS: A Grid of RSG and AGB Models

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Meixner, M.

    2011-09-01

    We present a grid of oxygen- and carbon-rich circumstellar dust radiative transfer models for asymptotic giant branch (AGB) and red supergiant (RSG) stars. The grid samples a large region of the relevant parameter space, and it allows for a quick calculation of bolometric fluxes and dust mass-loss rates from multi-wavelength photometry. This method of fitting observed spectral energy distributions (SEDs) is preferred over detailed radiative transfer calculations, especially for large data sets such as the SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Magellanic Clouds. The mass-loss rates calculated for SAGE data will allow us to quantify the dust returned to the interstellar medium (ISM) by the entire AGB population. The total injection rate provides an important constraint for models of galactic chemical evolution. Here, we discuss our carbon star models and compare the results to SAGE observations in the Large Magellanic Cloud (LMC).

  3. Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field

    NASA Astrophysics Data System (ADS)

    Triana, S. A.; Corsaro, E.; De Ridder, J.; Bonanno, A.; Pérez Hernández, F.; García, R. A.

    2017-06-01

    Context. The Kepler space telescope has provided time series of red giants of such unprecedented quality that a detailed asteroseismic analysis becomes possible. For a limited set of about a dozen red giants, the observed oscillation frequencies obtained by peak-bagging together with the most recent pulsation codes allowed us to reliably determine the core/envelope rotation ratio. The results so far show that the current models are unable to reproduce the rotation ratios, predicting higher values than what is observed and thus indicating that an efficient angular momentum transport mechanism should be at work. Here we provide an asteroseismic analysis of a sample of 13 low-luminosity low-mass red giant stars observed by Kepler during its first nominal mission. These targets form a subsample of the 19 red giants studied previously, which not only have a large number of extracted oscillation frequencies, but also unambiguous mode identifications. Aims: We aim to extend the sample of red giants for which internal rotation ratios obtained by theoretical modeling of peak-bagged frequencies are available. We also derive the rotation ratios using different methods, and compare the results of these methods with each other. Methods: We built seismic models using a grid search combined with a Nelder-Mead simplex algorithm and obtained rotation averages employing Bayesian inference and inversion methods. We compared these averages with those obtained using a previously developed model-independent method. Results: We find that the cores of the red giants in this sample are rotating 5 to 10 times faster than their envelopes, which is consistent with earlier results. The rotation rates computed from the different methods show good agreement for some targets, while some discrepancies exist for others.

  4. The fate of the earth in the red giant envelope of the sun

    NASA Technical Reports Server (NTRS)

    Goldstein, J.

    1987-01-01

    The effect on the earth of entering the red giant envelope of the future sun is studied. Employing a 30-zone red giant model, the earth orbital decay timescale, neglecting ablation/vaporization, is determined to be of the order of 200 years, rendering earth survival impossible. The effects of ablation/vaporization processes are found to increase the ballistic coefficient of earth, thereby setting the 200-year decay timescale as an upper limit.

  5. Deep learning classification in asteroseismology using an improved neural network: results on 15 000 Kepler red giants and applications to K2 and TESS data

    NASA Astrophysics Data System (ADS)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2018-05-01

    Deep learning in the form of 1D convolutional neural networks have previously been shown to be capable of efficiently classifying the evolutionary state of oscillating red giants into red giant branch stars and helium-core burning stars by recognizing visual features in their asteroseismic frequency spectra. We elaborate further on the deep learning method by developing an improved convolutional neural network classifier. To make our method useful for current and future space missions such as K2, TESS, and PLATO, we train classifiers that are able to classify the evolutionary states of lower frequency resolution spectra expected from these missions. Additionally, we provide new classifications for 8633 Kepler red giants, out of which 426 have previously not been classified using asteroseismology. This brings the total to 14983 Kepler red giants classified with our new neural network. We also verify that our classifiers are remarkably robust to suboptimal data, including low signal-to-noise and incorrect training truth labels.

  6. Energetic Aspects of Non-Radial Solar-Like Oscillations in Red Giants

    NASA Astrophysics Data System (ADS)

    Dupret, Marc-Antoine; Belkacem, Kévin

    The non-radial oscillations discovered by CoRoT (see e.g. de Ridder et al. (2009)) and by Kepler(see e.g. Bedding et al. (2010)) in thousands of red giants constitute a wonderful mine of information to determine their global characteristics and probe their internal structure. A. Miglio and J. Montalbán have presented in detail in this conference the seismic structure of red giants, the information hold by their oscillation frequencies, and how it can be used. An adiabatic analysis of the oscillations was sufficient at this level as the frequencies are mainly determined by the deep layers were the oscillatons are quasi-adiabatic. We consider here energetic aspects of non-radial oscillations in red-giants. Non-adiabatic models of solar-like oscillations are required to determine the theoretical amplitude and lifetimes of the modes. These parameters allow us to determine how power spectra are expected to look like, depending on the structure of the red giant. Comparison with the observed measures gives thus additional constraints on the models.

  7. Asteroseismic Diagram for Subgiants and Red Giants

    NASA Astrophysics Data System (ADS)

    Gai, Ning; Tang, Yanke; Yu, Peng; Dou, Xianghua

    2017-02-01

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ1-Δν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ1-Δν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M ⊙, the ΔΠ1-Δν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ, which indicate similar evolution states especially for similar mass stars, on the ΔΠ1-Δν diagram.

  8. Giant molecular clouds as regions of particle acceleration

    NASA Technical Reports Server (NTRS)

    Dogiel, V. A.; Gurevich, A. V.; Istomin, Y. N.; Zybin, K. A.

    1985-01-01

    One of the most interesting results of investigations carried out on the satellites SAS-II and COS-B is the discovery of unidentified discrete gamma sources. Possibly a considerable part of them may well be giant molecular clouds. Gamma emission from clouds is caused by the processes with participation of cosmic rays. The estimation of the cosmic ray density in clouds has shown that for the energy E approx. = I GeV their density can 10 to 1000 times exceed the one in intercloud space. We have made an attempt to determine the mechanism which could lead to the increase in the cosmic ray density in clouds.

  9. A search for soft X-ray emission from red-giant coronae

    NASA Technical Reports Server (NTRS)

    Margon, B.; Mason, K. O.; Sanford, P. W.

    1974-01-01

    Hills has pointed out that if red-giant coronae are weak sources of soft X-rays, then the problems of the identification of the local component of the soft X-ray background and the observed lack of gas in globular clusters may be simultaneously resolved. Using instrumentation aboard OAO Copernicus, we have searched unsuccessfully for emission in the 10-100 A band from four nearby red giants. In all cases, our upper limits are of the order of the minimum theoretically predicted fluxes.

  10. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  11. Lithium Abundance in M3 Red Giant

    NASA Astrophysics Data System (ADS)

    Givens, Rashad; Pilachowski, Catherine A.

    2015-01-01

    We present the abundance of lithium in the red giant star vZ 1050 (SK 291) in the globular cluster M3. A previous survey of giants in the cluster showed that like IV-101, vZ 1050 displays a prominent Li I 6707 Å feature. vZ 1050 lies on the blue side of the red giant branch about 1.3 magnitudes above the level of the horizontal branch, and may be an asymptotic giant branch star. A high resolution spectrum of M3 vZ1050 was obtained with the ARC 3.5m telescope and the ARC Echelle Spectrograph (ARCES). Atmospheric parameters were determined using Fe I and Fe II lines from the spectrum using the MOOG spectral analysis program, and the lithium abundance was determined using spectrum synthesis.

  12. Surface Compositions of Red Giant Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  13. The dependence of stellar age distributions on giant molecular cloud environment

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Pringle, J. E.; Naylor, T.

    2014-01-01

    In this Letter, we analyse the distributions of stellar ages in giant molecular clouds (GMCs) in spiral arms, interarm spurs and at large galactic radii, where the spiral arms are relatively weak. We use the results of numerical simulations of galaxies, which follow the evolution of GMCs and include star particles where star formation events occur. We find that GMCs in spiral arms tend to have predominantly young (<10 Myr) stars. By contrast, clouds which are the remainders of spiral arm giant molecular asssociations that have been sheared into interarm GMCs contain fewer young (<10 Myr) stars and more ˜20 Myr stars. We also show that clouds which form in the absence of spiral arms, due to local gravitational and thermal instabilities, contain preferentially young stars. We propose that the age distributions of stars in GMCs will be a useful diagnostic to test different cloud evolution scenarios, the origin of spiral arms and the success of numerical models of galactic star formation. We discuss the implications of our results in the context of Galactic and extragalactic molecular clouds.

  14. Photometric metallicity map of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Choudhury, S.; Subramaniam, A.; Cole, A. A.; Sohn, Y.-J.

    2018-04-01

    We have created an estimated metallicity map of the Small Magellanic Cloud (SMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of ˜2.5°. We identify the Red Giant Branch (RGB) in the V, (V - I) colour-magnitude diagrams of small sub-regions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a sub-region and calibrate the RGB slope to metallicity using available spectroscopic data for selected sub-regions. The average metallicity of the SMC is found to be [Fe/H] = -0.94 dex (σ[Fe/H] = 0.09) from OGLE III and [Fe/H] = -0.95 dex (σ[Fe/H] = 0.08) from MCPS. We confirm a shallow but significant metallicity gradient within the inner SMC up to a radius of 2.5° (-0.045 ± 0.004 to -0.067 ± 0.006 dex deg-1).

  15. The size-line width relation and the mass of molecular hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Issa, M.; Maclaren, I.; Wolfendale, A. W.

    Some difficulties associated with the problem of cloud definition are considered, with particular regard to the crowded distribution of clouds and the difficulty of choosing an appropriate boundary in such circumstances. A number of tests carried out on the original data suggest that the delta(v) - S relation found by Solomon et al. (1987) is not a genuine reflection of the dynamical state of Giant Molecular Clouds. The Solomon et al. parameters, are insensitive to the actual cloud properties and are unable to distinguish true clouds from the consequences of sampling any crowded region of emission down to a lowmore » threshold temperature. The overall effect of such problems is to overestimate both the masses of Giant Molecular Clouds and the number of very large clouds. 24 refs.« less

  16. Formation of massive clouds and dwarf galaxies during tidal encounters

    NASA Technical Reports Server (NTRS)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  17. On Lithium-rich Red Giants. I. Engulfment of Substellar Companions

    NASA Astrophysics Data System (ADS)

    Aguilera-Gómez, Claudia; Chanamé, Julio; Pinsonneault, Marc H.; Carlberg, Joleen K.

    2016-10-01

    A small fraction of red giants are known to be lithium (Li) rich, in contradiction with expectations from stellar evolutionary theory. A possible explanation for these atypical giants is the engulfment of an Li-rich planet or brown dwarf by the star. In this work, we model the evolution of Li abundance in canonical red giants including the accretion of a substellar mass companion. We consider a wide range of stellar and companion masses, Li abundances, stellar metallicities, and planetary orbital periods. Based on our calculations, companions with masses lower than 15 {M}J dissolve in the convective envelope and can induce Li enrichment in regimes where extra mixing does not operate. Our models indicate that the accretion of a substellar companion can explain abundances up to A(Li) ≈ 2.2, setting an upper limit for Li-rich giants formed by this mechanism. Giants with higher abundances need another mechanism to be explained. For reasonable planetary distributions, we predict the Li abundance distribution of low-mass giants undergoing planet engulfment, finding that between 1% and 3% of them should have {{A}}({Li})≥slant 1.5. We show that depending on the stellar mass range, this traditional definition of Li-rich giants is misleading, as isolated massive stars would be considered anomalous while giants engulfing a companion would be set aside, flagged as normal. We explore the detectability of companion engulfment, finding that planets with masses higher than ∼ 7 {M}J produce a distinct signature, and that descendants of stars originating in the Li dip and low-luminosity red giants are ideal tests of this channel.

  18. Water in dense molecular clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wannier, P.G.; Kuiper, T.B.H.; Frerking, M.A.

    1991-08-01

    The G.P. Kuiper Airborne Observatory (KAO) was used to make initial observations of the half-millimeter ground-state transition of water in seven giant molecular clouds and in two late-type stars. No significant detections were made, and the resulting upper limits are significantly below those expected from other, indirect observations and from several theoretical models. The implied interstellar H2O/CO abundance is less than 0.003 in the cores of three giant molecular clouds. This value is less than expected from cloud chemistry models and also than estimates based on HDO and H3O(+) observations. 78 refs.

  19. Pulsation Properties of Carbon and Oxygen Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Huang, D. J.

    2015-07-01

    We have used up to 12 decades of AAVSO visual observations, and the AAVSO VSTAR software package to determine new and/or improved periods of 5 pulsating biperiodic carbon (C-type) red giants, and 12 pulsating biperiodic oxygen (M-type) red giants. We have also determined improved periods for 43 additional C-type red giants, in part to search for more biperiodic C-type stars, and also for 46 M-type red giants. For a small sample of the biperiodic C-type and M-type stars, we have used wavelet analysis to determine the time scales of the cycles of amplitude increase and decrease. The C-type and M-type stars do not differ significantly in their period ratios (first overtone to fundamental). There is a marginal difference in the lengths of their amplitude cycles. The most important result of this study is that, because of the semiregularity of these stars, and the presence of alias, harmonic, and spurious periods, the periods which we and others derive for these stars—especially the smaller-amplitude ones—must be determined and interpreted with great care and caution. For instance: spurious periods of a year can produce an apparent excess of stars, at that period, in the period distribution.

  20. Effective temperatures of red giants in the APOKASC catalogue and the mixing length calibration in stellar models

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Cassisi, S.; Schiavon, R. P.; Pietrinferni, A.

    2018-04-01

    Red giants in the updated APOGEE-Kepler catalogue, with estimates of mass, chemical composition, surface gravity and effective temperature, have recently challenged stellar models computed under the standard assumption of solar calibrated mixing length. In this work, we critically reanalyse this sample of red giants, adopting our own stellar model calculations. Contrary to previous results, we find that the disagreement between the Teff scale of red giants and models with solar calibrated mixing length disappears when considering our models and the APOGEE-Kepler stars with scaled solar metal distribution. However, a discrepancy shows up when α-enhanced stars are included in the sample. We have found that assuming mass, chemical composition and effective temperature scale of the APOGEE-Kepler catalogue, stellar models generally underpredict the change of temperature of red giants caused by α-element enhancements at fixed [Fe/H]. A second important conclusion is that the choice of the outer boundary conditions employed in model calculations is critical. Effective temperature differences (metallicity dependent) between models with solar calibrated mixing length and observations appear for some choices of the boundary conditions, but this is not a general result.

  1. Asteroseismic Diagram for Subgiants and Red Giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Ning; Tang, Yanke; Yu, Peng

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models ofmore » subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.« less

  2. 77 FR 29871 - Establishment of Class E Airspace; Red Cloud, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Instrument Approach Procedures at Red Cloud Municipal Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the airport. DATES: Effective date... to accommodate new standard instrument approach procedures at Red Cloud Municipal Airport, Red Cloud...

  3. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    NASA Astrophysics Data System (ADS)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  4. A 'Moving' Jupiter Global Map (Animation)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons has acquired six global maps of Jupiter as the spacecraft approaches the giant planet for a close encounter at the end of February. The high-resolution camera acquired each of six observation 'sets' as a series of individual pictures taken one hour apart, covering a full 10-hour rotation of Jupiter. The LORRI team at the Johns Hopkins University Applied Physics Laboratory (APL) reduced the sets to form six individual maps in a simple rectangular projection. These six maps were then combined to make the movie.

    The table below shows the dates and the ranges from Jupiter at which these six sets of observations were acquired. Even for the latest set of images taken January 21-22, from 60.5 million kilometers (37.6 million miles), New Horizons was still farther from Jupiter than the average distance of Mercury from the Sun. At that distance from Jupiter, a single LORRI picture resolution element amounts to 300 kilometers (186 miles) on Jupiter.

    Many features seen in Jupiter's atmosphere are giant storm clouds. The Little Red Spot, which LORRI will image close-up on February 27, is the target-like feature located near 30 degrees South and 230 degrees West; this storm is larger than the Earth. The even larger Great Red Spot is seen near 20 degrees South and 320 degrees West. The counterclockwise rotation of the clouds within the Great Red Spot can be seen. The westward drift of the Great Red Spot is easily seen in the movie, as is the slower drift, in the opposite direction, of the Little Red Spot. The storms of Jupiter are not fixed in location relative to each other or relative to any solid surface below, because Jupiter is a fluid planet without a solid surface.

    Also, dramatic changes are seen in the series of bright plume-like clouds encircling the planet between 0 and 10 degrees North. Scientists believe these result from an enormous atmospheric wave with rising air, rich in ammonia that condenses to form the plume tails, and with falling air in the dark areas just to the east of each plume.

    The maps of Jupiter shown here do not include the polar regions, because those regions are not well seen by LORRI from its vantage point high above Jupiter's equatorial region. Shadows of Jupiter's moons (first of Io, then of Ganymede) appear in two of the maps. Name Dates Range from Jupiter [million km]

    Image resolution element [km] JobsATM1 Jan 8-9, 2007 81.2 402 JobsATM2 Jan 9-10, 2007 79.9 396 JobsATM3 Jan 14-15, 2007 71.9 356 JobsATM4 Jan 15, 2007 70.5 349 JobsATM5 Jan 20-21, 2007 61.8 306 JobsATM6 Jan 21-22, 2007 60.5 300

  5. GRANULATION IN RED GIANTS: OBSERVATIONS BY THE KEPLER MISSION AND THREE-DIMENSIONAL CONVECTION SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; Hekker, S.; Trampedach, R.

    2011-11-10

    The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones than the Sun, we cannot a priori assume that their granulation is a scaled version of solar granulation. Until now, neither observations nor one-dimensional analytical convection models could put constraints on granulation in red giants. With asteroseismology, this studymore » can now be performed. We analyze {approx}1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (timescale {tau}{sub gran} and power P{sub gran}). We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, {nu}{sub max}) as well as with stellar parameters (mass, radius, surface gravity (log g), and effective temperature (T{sub eff})). We show that {tau}{sub eff}{proportional_to}{nu}{sup -0.89}{sub max} and P{sub gran}{proportional_to}{nu}{sup -1.90}{sub max}, which is consistent with the theoretical predictions. We find that the granulation timescales of stars that belong to the red clump have similar values while the timescales of stars in the red giant branch are spread in a wider range. Finally, we show that realistic three-dimensional simulations of the surface convection in stars, spanning the (T{sub eff}, log g) range of our sample of red giants, match the Kepler observations well in terms of trends.« less

  6. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. Anmore » error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.« less

  7. Production of C-14 and neutrons in red giants

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Rose, W. K.

    1977-01-01

    We have examined the effects of mixing various amounts of hydrogen-rich material into the intershell convective region of red giants undergoing helium shell flashes. We find that significant amounts of C-14 can be produced via the N-14(n, p)C-14 reaction. If substantial portions of this intershell region are mixed out into the envelopes of red giants, then C-14 may be detectable in evolved stars. We find a neutron flux many orders of magnitude above the flux required for the classical s-process, and thus an intermediate neutron process (i-process) may operate in evolved red giants. In all cases studied we find substantial enhancements of O-17. These mixing models offer a plausible explanation of the observations of enhanced O-17 in the carbon star IRC 10216. For certain physical conditions we find significant enhancements of N-15 in the intershell region.

  8. Cannonballs Shoot from Star (Artist Concept)

    NASA Image and Video Library

    2016-10-06

    This four-panel graphic illustrates how the binary-star system V Hydrae is launching balls of plasma into space. Panel 1 shows the two stars orbiting each other. One of the stars is nearing the end of its life and has swelled in size, becoming a red giant. In panel 2, the smaller star's orbit carries the star into the red giant's expanded atmosphere. As the star moves through the atmosphere, it gobbles up material from the red giant that settles into a disk around the star. The buildup of material reaches a tipping point and is eventually ejected as blobs of hot plasma along the star's spin axis, as shown in panel 3. This ejection process is repeated every eight years, which is the time it takes for the orbiting star to make another pass through the bloated red giant's envelope, as shown in panel 4. http://photojournal.jpl.nasa.gov/catalog/PIA21071

  9. Carbon and nitrogen abundances in red giant stars in the globular cluster 47 Tucanae

    NASA Technical Reports Server (NTRS)

    Dickens, R. J.; Bell, R. A.; Gustafsson, B.

    1979-01-01

    The effects of changes in temperature, gravity, overall metal abundance, and carbon and nitrogen abundances have been investigated for model stellar spectra and colors representing globular-cluster giants of moderate metal deficiency. The results are presented in the form of spectral atlases and theoretical color-color diagrams. Using these results, approximate abundances of carbon and nitrogen have been derived for some red giant stars in 47 Tuc, from intermediate- and low-dispersion spectra and from intermediate- and narrow-band photometry. In all the normal giants studied, nitrogen is overabundant by up to about a factor of 5 (the precise value depends on the adopted carbon abundance), with different enhancements for different giants. The observational material is not sufficient to distinguish between a normal carbon abundance and a slight carbon depletion for the giant-branch stars, but carbon appears to be somewhat depleted in stars on the asymptotic giant branch. A most probable value of M/H = -0.8 for the overall cluster metal abundance is suggested from analysis of Stromgren photometry of red horizontal-branch stars.

  10. Chemical Abundances of Two Stars in the Large Magellanic Cloud Globular Cluster NGC 1718

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; McWilliam, Andrew; Wallerstein, George

    2017-05-01

    Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC 1718 are presented, based on high-resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC 1718 to be a fairly metal-rich cluster, with an average [Fe/H] ˜ -0.55 ± 0.01. The two red giants appear to have primordial O, Na, Mg and Al abundances, with no convincing signs of a composition difference between the two stars - hence, based on these two stars, NGC 1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC 1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxy's field stars. Similar to the field stars, NGC 1718 is found to be mildly deficient in explosive α-elements, but moderately to strongly deficient in O, Na, Mg, Al and Cu, elements that form during hydrostatic burning in massive stars. NGC 1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor asymptotic giant branch stars.

  11. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    NASA Astrophysics Data System (ADS)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  12. Extremely metal-deficient red giants. IV - Equivalent widths for 36 halo giants

    NASA Technical Reports Server (NTRS)

    Luck, R. E.; Bond, H. E.

    1985-01-01

    Further work on a study of 36 metal-poor field red giants is reported. Chemical abundances previously determined were based on model stellar atmosphere analyses of equivalent widths from photographic image-tube echelle spectrograms obtained with with 4-m reflectors at Kitt Peak and Cerro Tololo. A tabulation of the equivalent-width data (a total of 18, 275 equivalent widths) is presented.

  13. X-rays from accretion of red giant winds

    NASA Technical Reports Server (NTRS)

    Jura, M.; Helfand, D. J.

    1984-01-01

    X-ray observations of the late-type red giants Mira and R Aqr obtained with the Einstein Observatory are presented, and the general problems of white dwarf accretion from late-type giant winds is considered. The extremely low measured luminosities obtained for the two systems leads to the conclusion that the companions of Mira and R Aqr are most likely low-mass main sequence objects rather than white dwarfs as is usually assumed. The expected X-ray luminosities of true red giant/white dwarf systems are considered, and it is concluded that far too few have been detected if the canonical accretion scenario is adopted. A possible explanation of this situation in terms of grain-dominated Eddington-limited accretion is proposed.

  14. The evolution of the gut microbiota in the giant and the red pandas.

    PubMed

    Li, Ying; Guo, Wei; Han, Shushu; Kong, Fanli; Wang, Chengdong; Li, Desheng; Zhang, Heming; Yang, Mingyao; Xu, Huailiang; Zeng, Bo; Zhao, Jiangchao

    2015-05-18

    The independent dietary shift from carnivore to herbivore with over 90% being bamboo in the giant and the red pandas is of great interests to biologists. Although previous studies have shown convergent evolution of the giant and the red pandas at both morphological and molecular level, the evolution of the gut microbiota in these pandas remains largely unknown. The goal of this study was to determine whether the gut microbiota of the pandas converged due to the same diet, or diverged. We characterized the fecal microbiota from these two species by pyrosequencing the 16S V1-V3 hypervariable regions using the 454 GS FLX Titanium platform. We also included fecal samples from Asian black bears, a species phylogenetically closer to the giant panda, in our analyses. By analyzing the microbiota from these 3 species and those from other carnivores reported previously, we found the gut microbiotas of the giant pandas are distinct from those of the red pandas and clustered closer to those of the black bears. Our data suggests the divergent evolution of the gut microbiota in the pandas.

  15. The evolution of the gut microbiota in the giant and the red pandas

    PubMed Central

    Li, Ying; Guo, Wei; Han, Shushu; Kong, Fanli; Wang, Chengdong; Li, Desheng; Zhang, Heming; Yang, Mingyao; Xu, Huailiang; Zeng, Bo; Zhao, Jiangchao

    2015-01-01

    The independent dietary shift from carnivore to herbivore with over 90% being bamboo in the giant and the red pandas is of great interests to biologists. Although previous studies have shown convergent evolution of the giant and the red pandas at both morphological and molecular level, the evolution of the gut microbiota in these pandas remains largely unknown. The goal of this study was to determine whether the gut microbiota of the pandas converged due to the same diet, or diverged. We characterized the fecal microbiota from these two species by pyrosequencing the 16S V1–V3 hypervariable regions using the 454 GS FLX Titanium platform. We also included fecal samples from Asian black bears, a species phylogenetically closer to the giant panda, in our analyses. By analyzing the microbiota from these 3 species and those from other carnivores reported previously, we found the gut microbiotas of the giant pandas are distinct from those of the red pandas and clustered closer to those of the black bears. Our data suggests the divergent evolution of the gut microbiota in the pandas. PMID:25985413

  16. A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Gutermuth, Robert A.; Ali, Babar; Megeath, S. Thomas; Pipher, Judith; Myers, Philip C.; Fischer, William J.; Henning, Thomas; Wolk, Scott J.; Allen, Lori; Tobin, John J.

    2014-06-01

    We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We isolated the filaments and studied radial column density profile in this cloud.

  17. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1975-01-01

    The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.

  18. FIRST OBSERVATIONAL SIGNATURE OF ROTATIONAL DECELERATION IN A MASSIVE, INTERMEDIATE-AGE STAR CLUSTER IN THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaohan; Li, Chengyuan; De Grijs, Richard

    While the extended main-sequence turnoffs (eMSTOs) found in almost all 1–2 Gyr old star clusters in the Magellanic Clouds are often explained by postulating extended star formation histories (SFHs), the tight subgiant branches (SGBs) seen in some clusters challenge this popular scenario. Puzzlingly, the SGB of the eMSTO cluster NGC 419 is significantly broader at bluer than at redder colors. We carefully assess and confirm the reality of this observational trend. If we would assume that the widths of the features in color–magnitude space were entirely owing to a range in stellar ages, the SFHs of the eMSTO stars andmore » the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread. We show that rotational deceleration of a population of rapidly rotating stars, a currently hotly debated alternative scenario, naturally explains the observed trend along the SGB. Our analysis shows that a “converging” SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turnoff stars to red giants.« less

  19. Determining Mass-Loss Rates of Evolved Stars in the Galactic Bulge from Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Riley, Allyssa; Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2018-06-01

    To investigate the relationship between mass loss from evolved stars and host galaxy metallicity, we are computing the dust mass loss budget due to red supergiant (RSG) and asymptotic giant branch (AGB) stars in the Galactic Bulge and comparing this result to that previously obtained for the Magellanic Clouds. We construct spectral energy distributions (SEDs) for our candidate RSG and AGB stars using observations from various infrared surveys, including the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Because Robitaille et al (2008, AJ, 136, 2413) have already identified Intrinsically Red Objects from the GLIMPSE I and II surveys, we use their method as a starting point and expand the study by using the GLIMPSE 3D survey. Because AGB stars can be variable, we also match the GLIMPSE I, II, and 3D sources to other surveys, such as DEEP GLIMPSE, WISE, VVV, and DENIS, in order to characterize the variability across the spectral energy distribution (SED) of each source. This allows us to determine the source’s average SED over multiple epochs. We use extinction curves derived from Spitzer studies of extinction in the Galaxy to determine the extinction corrections for our sample. To establish mass-loss rates of evolved stars in the Bulge, we use the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS) of dust-enshrouded evolved stars (2011, A&A, 532, A54; 2011, ApJ, 728, 93). This allows us to determine the total mass return to the Bulge from these stars. This work has been supported by NASA ADAP grant 80NSSC17K0057.

  20. DISCOVERY OF RELATIVELY HYDROGEN-POOR GIANTS IN THE GALACTIC GLOBULAR CLUSTER ω CENTAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hema, B. P.; Pandey, Gajendra, E-mail: hema@iiap.res.in, E-mail: pandey@iiap.res.in

    2014-09-10

    In this Letter, the results of our low-resolution spectroscopic survey for identifying hydrogen-deficient stars in the red giant sample of the globular cluster ω Cen are reported. Spectral analyses were carried out on the basis of the strengths of the (0, 0) MgH band and the Mg b triplet. In our sample, four giants were identified with weak/absent MgH bands in their observed spectra, which was unexpected for their well determined stellar parameters. The Mg abundances for the program stars were determined from the subordinate lines of the MgH band to the blue of the Mg b triplet, using the spectral synthesis technique. Themore » derived Mg abundances for the program stars were as expected for the red giants of ω Cen, except for the four identified candidates. The determined Mg abundances of these four candidates are much lower than that expected for the red giants of ω Cen, and are unacceptable based on the strengths of the Mg b triplet in their observed spectra. Hence, a plausible explanation for the weak/absent MgH bands in the observed spectra of these stars is a relatively lower abundance of hydrogen in their atmospheres. These giants may belong to the group of helium-enriched red giants of ω Cen.« less

  1. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.

    2018-02-01

    We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

  2. NH4SH and cloud cover in the atmospheres of the giant planets

    NASA Astrophysics Data System (ADS)

    Ibragimov, K. Iu.; Solodovnik, A. A.

    1991-02-01

    The probability of the formation of NH4SH and (NH4)2S is examined on the basis of the Le Chatelier principle. It is shown that it is very doubtful if NH4SH can be created in the atmospheres of the giant planets in quantities sufficient for cloud formation. Thus (NH4)2S is considered as a more likely candidate for cloud formation in the atmospheres of these planets, inasmuch as the conditions for its production there are more favorable.

  3. Magnetic braking of stellar cores in red giants and supergiants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less

  4. Star-planet interactions. IV. Possibility of detecting the orbit-shrinking of a planet around a red giant

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Eggenberger, Patrick; Privitera, Giovanni; Georgy, Cyril; Ekström, Sylvia; Alibert, Yann; Lovis, Christophe

    2017-06-01

    The surface rotations of some red giants are so fast that they must have been spun up by tidal interaction with a close companion, either another star, a brown dwarf, or a planet. We focus here on the case of red giants that are spun up by tidal interaction with a planet. When the distance between the planet and the star decreases, the spin period of the star decreases, the orbital period of the planet decreases, and the reflex motion of the star increases. We study the change rate of these three quantities when the circular orbit of a planet of 15 MJ that initially orbits a 2 M⊙ star at 1 au shrinks under the action of tidal forces during the red giant phase. We use stellar evolution models coupled with computations of the orbital evolution of the planet, which allows us to follow the exchanges of angular momentum between the star and the orbit in a consistent way. We obtain that the reflex motion of the red giant star increases by more than 1 m s-1 per year in the last 40 yr before the planet engulfment. During this phase, the reflex motion of the star is between 660 and 710 m s-1. The spin period of the star increases by more than about 10 min per year in the last 3000 yr before engulfment. During this period, the spin period of the star is shorter than 0.7 yr. During this same period, the variation in orbital period, which is shorter than 0.18 yr, is on the same order of magnitude. Changes in reflex-motion and spin velocities are very small and thus most likely out of reach of being observed. The most promising way of detecting this effect is through observations of transiting planets, that is, through changes of the beginning or end of the transit. For the relatively long orbital periods expected around red giants, long observing runs of typically a few years are needed. Interesting star-planet systems that currently are in this stage of orbit-shrinking would be red giants with fast rotation (above typically 4-5 km s-1), a low surface gravity (log g lower than 2), and having a planet at a distance typically smaller than about 0.4-1 au, depending on log g. A space mission like PLATO might be of great interest for detecting planets that are on the verge of being engulfed by red giants. The discovery of a few systems, even only one, would provide very interesting clues about the physics of tidal interaction between a red giant and a planet.

  5. The Optical Gravitational Lensing Experiment: Red Clump Stars as a Distance Indicator.

    PubMed

    Udalski

    2000-03-01

    We present relation of the mean I-band brightness of red clump stars on metallicity. Red clump stars were proposed to be a very attractive standard candle for distance determination. The calibration is based on 284 nearby red giant stars whose high-quality spectra made it possible to determine accurate individual metal abundances. High-quality parallaxes (sigmapi&solm0;pi<10%) and photometry of these very bright stars come from Hipparcos measurements. Metallicity of the sample covers a large range: -0.6 dex<&sqbl0;Fe&solm0;H&sqbr0;<+0.2 dex. We find a weak dependence of the mean I-band brightness on metallicity ( approximately 0.13 mag dex-1). What is more important, the range of metallicity of the Hipparcos sample partially overlaps with metallicity of field giants in the LMC, thus making it possible to determine the distance to the LMC by almost direct comparison of brightness of the local Hipparcos red clump giants with that of LMC stars. Photometry of field red clump giants in nine low-extinction fields of the LMC halo collected during the OGLE II microlensing survey compared with the Hipparcos red clump stars data yields the distance modulus to the LMC: &parl0;m-M&parr0;LMC=18.24+/-0.08 mag.

  6. The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2018-01-01

    The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.

  7. Time evolution of giant molecular cloud mass functions with cloud-cloud collisions and gas resurrection in various environments

    NASA Astrophysics Data System (ADS)

    Kobayashi, M. I. N.; Inutsuka, S.; Kobayashi, H.; Hasegawa, K.

    We formulate the evolution equation for the giant molecular cloud (GMC) mass functions including self-growth of GMCs through the thermal instability, self-dispersal due to massive stars born in GMCs, cloud-cloud collisions (CCCs), and gas resurrection that replenishes the minimum-mass GMC population. The computed time evolutions obtained from this formulation suggest that the slope of GMC mass function in the mass range <105.5 Mȯ is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC process modifies only the massive end of the mass function. Our results also suggest that most of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60 per cent contributes in inter-arm regions.

  8. Ammonium hydrosulfide and clouds in the atmospheres of the giant planets.

    NASA Astrophysics Data System (ADS)

    Ibragimov, K. Yu.; Solodovnik, A. A.

    The physicochemical properties of two possible compounds - ammonium hydrosulfide (NH4SH) and ammonium sulfide (NH4)2S - that may be formed in a reaction of ammonia NH3 with hydrogen sulfide H2S are discussed, and the probability of their formation is analyzed on the basis of the Le Chatelier principle. It is shown that the conditions of their formation on the basis of available data on the concentration ratio of the reagents (NH3 and H2S) in the atmospheres of giant planets make the appearance of enough NH4SH for cloud formation highly problematic. Accordingly, the authors propose as an alternative candidate for a cloud-forming role ammonium sulfide (NH4)2S, for whose formation the conditions in the atmospheres of the giant planets are more favorable. The possible spatial localization of (NH4)2S clouds is estimated, and the result is used in an attempt to identify this compound as one of the chromophores.

  9. Atmospheric Dynamics of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets-Jupiter, Saturn, Uranus, and Neptune-are fluid objects. The winds are powered by absorbed sunlight, as on earth, and by internal heat left over from planetary formation. The main constituents of the atmospheres are hydrogen and helium. The clouds are made of ammonia, hydrogen sulphide, and water. All four giant planets are banded, with multiple zonal jet streams. Even Uranus, whose spin axis is tipped by 98deg relative to the orbit axis, shows latitudinal banding and zonal jets. Equator-to-pole temperature differences are close to zero. Wind speeds are larger than on earth and do not decrease with distance from the sun. Although the power/area at Neptune is only 1/20 that at Jupiter, the winds at Neptune are three times stronger. Stable vortices like the Great Red Spot of Jupiter and similar spots on Neptune come in all size ranges and exhibit a variety of behaviours including merging, orbiting, filament ejection, and oscillating in both shape and position. At least at cloud-top levels, 90% of the long-lived vortices are anticyclonic and sit in anticyclonic shear zones. Features in the cyclonic zones tend to be chaotic, with lifetimes of several days or less. These mesoscale eddies tend to have lightning in them, which suggests that they get their energy from moist convection. The rate of conversion of eddy kinetic energy into kinetic energy of the zonal jets is more than 10% of the power/area radiated by Jupiter. This fraction is more than an order of magnitude larger than on earth. Several lines of evidence now indicate that the winds at cloud-top levels are the surface manifestation of deep-rooted motions that extend into the interior and are presumably driven by internal heat.

  10. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation.

    PubMed

    Shan, Lei; Wu, Qi; Wang, Le; Zhang, Lei; Wei, Fuwen

    2018-03-01

    Taste 2 receptors (TAS2R) mediate bitterness perception in mammals, thus are called bitter taste receptors. It is believed that these genes evolved in response to species-specific diets. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens styani) in the order Carnivora are specialized herbivores with an almost exclusive bamboo diet (>90% bamboo). Because bamboo is full of bitter tasting compounds, we hypothesized that adaptive evolution has occurred at TAS2R genes in giant and red pandas throughout the course of their dietary shift. Here, we characterized 195 TAS2R genes in 9 Carnivora species and examined selective pressures on these genes. We found that both pandas harbor more putative functional TAS2R genes than other carnivores, and pseudogenized TAS2R genes in the giant panda are different from the red panda. The purifying selection on TAS2R1, TAS2R9 and TAS2R38 in the giant panda, and TAS2R62 in the red panda, has been strengthened throughout the course of adaptation to bamboo diet, while selective constraint on TAS2R4 and TAS2R38 in the red panda is relaxed. Remarkably, a few positively selected sites on TAS2R42 have been specifically detected in the giant panda. These results suggest an adaptive response in both pandas to a dietary shift from carnivory to herbivory, and TAS2R genes evolved independently in the 2 pandas. Our findings provide new insight into the molecular basis of mammalian sensory evolution and the process of adaptation to new ecological niches. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  11. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    NASA Astrophysics Data System (ADS)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  12. The Optical Gravitational Lensing Experiment. UBVI Photometry of Stars in Baade's Window

    NASA Astrophysics Data System (ADS)

    Paczynski, B.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Wozniak, P.; Zebrun, K.

    1999-09-01

    We present UBVI photometry for 8530 stars in Baade's Window obtained during the OGLE-II microlensing survey. Among these are over one thousand red clump giants. 1391 of them have photometry with errors smaller than 0.04, 0.06, 0.12, and 0.20 mag in the I, V, B, and U-band, respectively. We constructed a map of interstellar reddening. The corrected colors of the red clump giants: (U-B)_0, (B-V)_0, and (V-I)_0 are very well correlated, indicating that a single parameter determines the observed spread of their values, reaching almost 2 mag in the (U-B)_0. It seems most likely that heavy element content is the dominant parameter, but it is possible that another parameter: the age (or mass) of a star moves it along the same trajectory in the color-color diagram as the metallicity. The current ambiguity can be resolved with spectral analysis, and our catalog may be useful as a finding list of red clump giants. We point out that these K giants are more suitable for a fair determination of the distribution of metallicity than brighter M giants. We also present a compilation of UBVI data for 308 red clump giants near the Sun, for which Hipparcos parallaxes are more accurate than 10%. Spectral analysis of their metallicity may provide information about the local metallicity distribution as well as the extent to which mass (age) of these stars affects their colors. It is remarkable that in spite of a number of problems, stellar models agree with observations at the 0.1-0.2 mag level, making red clump giants not only the best calibrated but also the best understood standard candle.

  13. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.

  14. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  15. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. VI. First chromosphere model of a late-type giant

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Kučinskas, Arūnas; Klevas, Jonas; Ludwig, Hans-Günter

    2017-10-01

    Aims: Although observational data unequivocally point to the presence of chromospheres in red giant stars, no attempts have been made so far to model them using 3D hydrodynamical model atmospheres. We therefore compute an exploratory 3D hydrodynamical model atmosphere for a cool red giant in order to study the dynamical and thermodynamic properties of its chromosphere, as well as the influence of the chromosphere on its observable properties. Methods: Three-dimensional radiation hydrodynamics simulations are carried out with the CO5BOLD model atmosphere code for a star with the atmospheric parameters (Teff ≈ 4010 K, log g = 1.5, [ M / H ] = 0.0), which are similar to those of the K-type giant star Aldebaran (α Tau). The computational domain extends from the upper convection zone into the chromosphere (7.4 ≥ log τRoss ≥ - 12.8) and covers several granules in each horizontal direction. Using this model atmosphere, we compute the emergent continuum intensity maps at different wavelengths, spectral line profiles of Ca II K, the Ca II infrared triplet line at 854.2 nm, and Hα, as well as the spectral energy distribution (SED) of the emergent radiative flux. Results: The initial model quickly develops a dynamical chromosphere that is characterised by propagating and interacting shock waves. The peak temperatures in the chromospheric shock fronts reach values of up to 5000 K, although the shock fronts remain quite narrow. Similar to the Sun, the gas temperature distribution in the upper layers of red giant stars is composed of a cool component due to adiabatic cooling in the expanding post-shock regions and a hot component due to shock waves. For this red giant model, the hot component is a rather flat high-temperature tail, which nevertheless affects the resulting average temperatures significantly. Conclusions: The simulations show that the atmospheres of red giant stars are dynamic and intermittent. Consequently, many observable properties cannot be reproduced with static 1D models, but require advanced 3D hydrodynamical modelling. Furthermore, including a chromosphere in the models might produce significant contributions to the emergent UV flux.

  16. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  17. Star-Jet Interactions and Gamma-Ray Outbursts from 3C454.3

    NASA Astrophysics Data System (ADS)

    Khangulyan, D. V.; Barkov, M. V.; Bosch-Ramon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.

    2013-09-01

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M BH ~= 109 M ⊙, the total jet power: L j ~= 1048 erg s-1, and the Doppler factor of the gamma-ray emitting clouds: δ ~= 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution vpropE -1 or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  18. Star-jet Interactions and Gamma-ray Outbursts from 3C454.3

    NASA Technical Reports Server (NTRS)

    Khangulyan, D. V.; Barkov, M. V.; Bosch-Romon, V.; Aharonian, F. A.; Dorodnitsyn, A. V.

    2013-01-01

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: Blackhole Mass is approx. equal to 10(exp 9) Solar Mass, the total jet power: L(j) is approx. equal to 10(exp 48) erg s(exp -1), and the Doppler factor of the gamma-ray emitting clouds: Delta is approx. equal to 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model.We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution varies as E(exp -1) or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  19. Coordinated observations of interacting peculiar red giant binaries, 2

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE and H alpha observations continued on a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s), HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. They were primary candidates from earlier surveys of PRG's to test the hypothesis that the Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  20. Coordinated observations of interacting peculiar red giant binaries, 1

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE Observations were begun for a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s) HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. From our earlier surveys of PRG's, they were primary candidates to test the hypothesis that Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  1. Photodissociation Regions in the Interstellar Medium of Galaxies

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global scale, MR models predict the existence of two stable neutral phases of the interstellar medium, elucidate the formation and destruction of star-forming molecular clouds, and suggest radiation-induced feedback mechanisms that may regulate star formation rates and the column density of gas through giant molecular clouds.

  2. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    NASA Astrophysics Data System (ADS)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  3. Perfluorooctanesulfonate and periluorooctanoate in red panda and giant panda from China.

    PubMed

    Dai, Jiayin; Li, Ming; Jin, Yihe; Saito, Norimitsu; Xu, Muqi; Wei, Fuwen

    2006-09-15

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are important perfluorochemicals (PFCs) in various applications. Recently, it has been shown that these compounds are widespread in the environment, wildlife, and humans. The giant panda and the red panda belong to the order Carnivora, but are highly specialized as bamboo feeders. Both species are considered rare and endangered. In this study, we report for the first time on levels of PFOS and PFOA in serum of the giant panda and the red panda captured in zoos and animal parks from six provinces in China. PFOS was the predominant compound in all panda samples measured (ranging from 0.80 to 73.80 microg/L for red panda and from 0.76 to 19.00 microg/L for giant panda). The PFOA level ranged from 0.33 to 8.20 microg/L for red panda, and from 0.32 to 1.56 microg/L for giant panda. There was a positive significant correlation between concentrations of PFOS and PFOA in the serum obtained from pandas. No age- or sex- related differences were observed in concentrations of the fluorochemicals in panda sera. Greater concentrations of the fluorochemicals were found for those individuals collected from zoos near urbanized or industrialized areas than for other areas. These data combined with other reported data suggest that there are large differences in distribution of perfluorinated compounds in terrestrial animals.

  4. Modeling Radial Velocities and Eclipse Photometry of the Kepler Target KIC 4054905: an Oscillating Red Giant in an Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.

    2017-12-01

    Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.

  5. Giant star seismology

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  6. Characterization of the gut microbiota in the red panda (Ailurus fulgens).

    PubMed

    Kong, Fanli; Zhao, Jiangchao; Han, Shushu; Zeng, Bo; Yang, Jiandong; Si, Xiaohui; Yang, Benqing; Yang, Mingyao; Xu, Huailiang; Li, Ying

    2014-01-01

    The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.

  7. Characterization of the Gut Microbiota in the Red Panda (Ailurus fulgens)

    PubMed Central

    Han, Shushu; Zeng, Bo; Yang, Jiandong; Si, Xiaohui; Yang, Benqing; Yang, Mingyao; Xu, Huailiang; Li, Ying

    2014-01-01

    The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo. PMID:24498390

  8. Empirically Calibrated Asteroseismic Masses and Radii for Red Giants in the Kepler Fields

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc; Elsworth, Yvonne; Silva Aguirre, Victor; Chaplin, William J.; Garcia, Rafael A.; Hekker, Saskia; Holtzman, Jon; Huber, Daniel; Johnson, Jennifer; Kallinger, Thomas; Mosser, Benoit; Mathur, Savita; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis; Tayar, Jamie; Zinn, Joel; APOGEE Team, KASC Team, APOKASC Team

    2018-01-01

    We report on the joint asteroseismic and spectroscopic properties of a sample of 6048 evolved stars in the fields originally observed by the Kepler satellite. We use APOGEE spectroscopic data taken from Data Release 13 of the Sloan Digital Sky Survey, combined with asteroseismic data analyzed by members of the Kepler Asteroseismic Science Consortium. With high statistical significance, the different pipelines do not have relative zero points that are the same as the solar values, and red clump stars do not have the same empirical relative zero points as red giants. We employ theoretically motivated corrections to the scaling relation for the large frequency spacing, and adjust the zero point of the frequency of maximum power scaling relation to be consistent with masses and radii for members of star clusters. The scatter in calibrator masses is consistent with our error estimation. Systematic and random mass errors are explicitly separated and identified. The measurement scatter, and random uncertainties, are three times larger for red giants where one or more technique failed to return a value than for targets where all five methods could do so, and this is a substantial fraction of the sample (20% of red giants and 25% of red clump stars). Overall trends and future prospects are discussed.

  9. CARBON ABUNDANCES FOR RED GIANTS IN THE DRACO DWARF SPHEROIDAL GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetrone, Matthew D.; Stanford, Laura M.; Smith, Graeme H.

    2013-05-15

    Measurements of [C/Fe], [Ca/H], and [Fe/H] have been derived from Keck I LRISb spectra of 35 giants in the Draco dwarf spheroidal galaxy. The iron abundances are derived by a spectrum synthesis modeling of the wavelength region from 4850 to 5375 A, while calcium and carbon abundances are obtained by fitting the Ca II H and K lines and the CH G band, respectively. A range in metallicity of -2.9 {<=} [Fe/H] {<=} -1.6 is found within the giants sampled, with a good correlation between [Fe/H] and [Ca/H]. The great majority of stars in the sample would be classified asmore » having weak absorption in the {lambda}3883 CN band, with only a small scatter in band strengths at a given luminosity on the red giant branch. In this sense the behavior of CN among the Draco giants is consistent with the predominantly weak CN bands found among red giants in globular clusters of metallicity [Fe/H] < -1.8. Over half of the giants in the Draco sample have [Fe/H] > -2.25, and among these there is a trend for the [C/Fe] abundance to decrease with increasing luminosity on the red giant branch. This is a phenomenon that is also seen among both field and globular cluster giants of the Galactic halo, where it has been interpreted as a consequence of deep mixing of material between the base of the convective envelope and the outer limits of the hydrogen-burning shell. However, among the six Draco giants observed that turn out to have metallicities -2.65 < [Fe/H] < -2.25 there is no such trend seen in the carbon abundance. This may be due to small sample statistics or primordial inhomogeneities in carbon abundance among the most metal-poor Draco stars. We identify a potential carbon-rich extremely metal-poor star in our sample. This candidate will require follow-up observations for confirmation.« less

  10. On the Progenitor System of V392 Persei

    NASA Astrophysics Data System (ADS)

    Darnley, M. J.; Starrfield, S.

    2018-05-01

    A discussion regarding the progenitor system of the nova and dwarf nova system V392 Persei using archival data from 2MASS and WISE. We find that the system is unlikely to contain a luminous red giant donor (i.e. a symbiotic system), but cannot exclude the presence of a lower luminosity red giant or a sub-giant donor. The similarity of the SED of the quiescent V392 Per to that of GK Persei is noted.

  11. High spectral resolution spectroscopy of the SiO fundamental lines in red giants and red supergiants with VLT/VISIR

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2014-01-01

    Context. The mass-loss mechanism in red giants and red supergiants is not yet understood well. The SiO fundamental lines near 8 μm are potentially useful for probing the outer atmosphere, which is essential for clarifying the mass-loss mechanism. However, these lines have been little explored until now. Aims: We present high spectral resolution spectroscopic observations of the SiO fundamental lines near 8.1 μm in 16 bright red giants and red supergiants. Our sample consists of seven normal (i.e., non-Mira) K-M giants (from K1.5 to M6.5), three Mira stars, three optically bright red supergiants, two dusty red supergiants, and the enigmatic object GCIRS3 near the Galactic center. Methods: Our program stars were observed between 8.088 μm and 8.112 μm with a spectral resolution of 30 000 using VLT/VISIR. Results: We detected SiO fundamental lines in all of our program stars except for GCIRS3. The SiO lines in normal K and M giants as well as optically bright (i.e., not dusty) red supergiants do not show P-Cyg profiles or blueshifts, which means the absence of systematic outflows in the SiO line forming region. We detected P-Cyg profiles in the SiO lines in the dusty red supergiants VY CMa and VX Sgr, with the latter object being a new detection. These SiO lines originate in the outflowing gas with the thermal dust continuum emission seen as the background. The outflow velocities of the SiO line forming region in VY CMa and VX Sgr are estimated to be 27 km s-1 and 17 km s-1, respectively. We derived basic stellar parameters (effective temperature, surface gravity, luminosity, and mass) for the normal K-M giants and optically bright red supergiants in our sample and compared the observed VISIR spectra with synthetic spectra predicted from MARCS photospheric models. Most of the SiO lines observed in the program stars warmer than ~3400 K are reasonably reproduced by the MARCS models, which allowed us to estimate the silicon abundance as well as the 28Si/29Si and 28Si/30Si ratios. However, we detected possible absorption excess in some SiO lines. Moreover, the SiO lines in the cooler red giants and red supergiant cannot be explained by the MARCS models at all, even if the dust emission is taken into account. This disagreement may be a signature of the dense, extended molecular outer atmosphere. Based on VISIR observations made with the Very Large Telescope of the European Southern Observatory. Program ID: 087.D-0522(A).Reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A47

  12. Dynamical evolution of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    New studies of the dynamical evolution of cometary orbits in the Oort cloud are made using a revised version of Weissman's (1982) Monte Carlo simulation model, which more accurately mimics the perturbation of comets by the giant planets. It is shown that perturbations by Saturn and Jupiter provide a substantial barrier to the diffusion of cometary perihelia into the inner solar system. Perturbations by Uranus and Neptune are rarely great enough to remove comets from the Oort cloud, but do serve to scatter the comets in the cloud in initial energy. The new model gives a population of 1.8 to 2.1 x 10 to the 12th comets for the present-day Oort cloud, and a mass of 7 to 8 earth masses. Perturbation of the Oort cloud by giant molecular clouds in the galaxy is discussed, as is evidence for a massive 'inner Oort cloud' internal to the observed one. The possibility of an unseen solar companion orbiting in the Oort cloud and causing periodic comet showers is shown to be dynamically plausible but unlikely, based on the observed cratering rate on the earth and moon.

  13. Early Voyager 1 Images of Jupiter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These Jupiter photographs are part of a set taken by Voyager 1 on December 10 and 11, 1978 from a distance of 83 million km (52 million miles) or more than half the distance from the Earth to the sun. At this range, Voyager 1 is able to record more detail on the giant planet than the very best ground-based telescopes. The highest resolution ever obtained on the Jovian disk was recorded by Pioneer 11 four years ago. Voyager, however, has longer focal-length optics than Pioneer, and while nearly three months from encounter ( March 1979) was able to achieve higher resolution than that obtained by Pioneer only 24 hours from its encounter on 3 December 1974.

    Jupiter's colorful and turbulent atmosphere is evident in these photographs. The entire visible surface of the planet is made up of multiple layers of clouds, composed primarily of ammonia ice crystals colored by small amounts of materials of unknown composition. The Great Red Spot, seen to the lower left of 2 and lower right of 3, is now recovering from a period of relative inconspicuousness. An atmospheric system larger than the Earth and more than 100 years old, the Great Red Spot remains a mystery and a challenge to Voyager instruments. A bright convective cloud (center of and right of center in 4) displays a plume which has been swept westward (to the left) by local currents in the planet's equatorial wind system.

    Below and to the left and right of the Great Red Spot are a pair of white oval clouds; a third can be seen in 1. All three were formed almost 40 years ago and are the second oldest class of discrete features identified in the Jovian atmosphere.

    Each of the pictures was produced from blue, green, and orange originals in JPL's Image Processing Laboratory.

  14. Early Voyager 1 Images of Jupiter

    NASA Image and Video Library

    1996-09-26

    These Jupiter photographs are part of a set taken by NASA Voyager 1 on December 10 and 11, 1978 from a distance of 83 million km 52 million miles or more than half the distance from the Earth to the sun. At this range, Voyager 1 is able to record more detail on the giant planet than the very best ground-based telescopes. The highest resolution ever obtained on the Jovian disk was recorded by Pioneer 11 four years ago. Voyager, however, has longer focal-length optics than Pioneer, and while nearly three months from encounter (~ March 1979) was able to achieve higher resolution than that obtained by Pioneer only 24 hours from its encounter on 3 December 1974. Jupiter's colorful and turbulent atmosphere is evident in these photographs. The entire visible surface of the planet is made up of multiple layers of clouds, composed primarily of ammonia ice crystals colored by small amounts of materials of unknown composition. The Great Red Spot, seen to the lower left of 2 and lower right of 3, is now recovering from a period of relative inconspicuousness. An atmospheric system larger than the Earth and more than 100 years old, the Great Red Spot remains a mystery and a challenge to Voyager instruments. A bright convective cloud (center of and right of center in 4) displays a plume which has been swept westward (to the left) by local currents in the planet's equatorial wind system. Below and to the left and right of the Great Red Spot are a pair of white oval clouds; a third can be seen in 1. All three were formed almost 40 years ago and are the second oldest class of discrete features identified in the Jovian atmosphere. Each of the pictures was produced from blue, green, and orange originals in JPL's Image Processing Laboratory. http://photojournal.jpl.nasa.gov/catalog/PIA00454

  15. Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi

    2018-05-01

    We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.

  16. Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi

    2018-01-01

    We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.

  17. Formation of the Oort Cloud: Coupling Dynamical and Collisional Evolutions of Cometesimals

    NASA Astrophysics Data System (ADS)

    Charnoz, S.; Morbidelli, A.

    2002-09-01

    Cometesimals are thought to be born in the region of Giant Planets region and were subsequently ejected to the Oort Cloud by gravitational scattering. Some recent works (Stern & Weisman, 2001 Nature 409) have emphasized that during this phase of violent ejection, random velocities among cometesimals become so high that the majority of kilometer-sized comets might have been destroyed by multiple violent collisions before they reach the Oort Cloud, resulting in a low mass Oort Cloud. We present a new approach which allows to couple dynamical and collisional evolutions. This study focuses on cometesimals starting from the Jupiter-Saturn region. We find that the rapid depletion of the disk, due to the gravitational-scattering exerted by the giant planets, prevents a large fraction of cometesimals from rapid collisional destruction. These conclusions support the classical scenario of Oort Cloud formation.

  18. A high resolution liquid xenon imaging telescope for 0.3-10 MeV gamma-ray astrophysics: Construction and initial balloon flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1994-01-01

    An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.

  19. Serosurvey of ex situ giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens) in China with implications for species conservation.

    PubMed

    Loeffler, I Kati; Howard, JoGayle; Montali, Richard J; Hayek, Lee-Ann; Dubovi, Edward; Zhang, Zhihe; Yan, Qigui; Guo, Wanzhu; Wildt, David E

    2007-12-01

    Conservation strategies for the giant panda (Ailuropoda melanoleuca) include the development of a self-sustaining ex situ population. This study examined the potential significance of infectious pathogens in giant pandas ex situ. Serologic antibody titers against canine distemper virus (CDV), canine parvovirus (CPV), canine adenovirus (CAV), canine coronavirus (CCV), canine herpesvirus, canine parainfluenza virus (CPIV), Toxoplasma gondii, Neospora caninum, and Leptospira interrogans were measured in 44 samples taken from 19 giant pandas between 1998 and 2003 at the Chengdu Research Base of Giant Panda Breeding in Sichuan, China. Seroassays also included samples obtained in 2003 from eight red pandas (Ailurus fulgens) housed at the same institution. All individuals had been vaccinated with a Chinese canine vaccine that included modified live CDV, CPV, CAV, CCV, and CPIV. Positive antibody titers were found only against CDV, CPV, and T. gondii. Sera were negative for antibodies against the other six pathogens. Results indicate that the quality of the vaccine may not be reliable and that it should not be considered protective or safe in giant pandas and red pandas. Positive antibody titers against T. gondii were found in seven of the 19 giant pandas. The clinical, subclinical, or epidemiologic significance of infection with these pathogens via natural exposure or from modified live vaccines in giant pandas is unknown. Research in this area is imperative to sustaining a viable population of giant pandas and other endangered species.

  20. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. III. TWO-DIMENSIONAL EXTINCTION MAPS OF THE GALACTIC MIDPLANE USING THE RAYLEIGH-JEANS COLOR EXCESS METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R., E-mail: dln5q@virginia.edu, E-mail: gz2n@virginia.edu, E-mail: srm4n@virginia.edu

    We provide new, high-resolution A(K{sub s} ) extinction maps of the heavily reddened Galactic midplane based on the Rayleigh-Jeans Color Excess ({sup R}JCE{sup )} method. RJCE determines star-by-star reddening based on a combination of near- and mid-infrared photometry. The new RJCE-generated maps have 2' Multiplication-Sign 2' pixels and span some of the most severely extinguished regions of the Galaxy-those covered with Spitzer/IRAC imaging by the GLIMPSE-I, -II, -3D, and Vela-Carina surveys, from 256 Degree-Sign < l < 65 Degree-Sign and, in general, for |b| {<=} 1 Degree-Sign -1.{sup 0}5 (extending up to |b| {<=} 4 Degree-Sign in the bulge). Usingmore » RJCE extinction measurements, we generate dereddened color-magnitude diagrams and, in turn, create maps based on main sequence, red clump, and red giant star tracers, each probing different distances and thereby providing coarse three-dimensional information on the relative placement of dust cloud structures. The maps generated from red giant stars, which reach to {approx}18-20 kpc, probe beyond most of the Milky Way extinction in most directions and provide close to a 'total Galactic extinction' map-at minimum they provide high angular resolution maps of lower limits on A(K{sub s} ). Because these maps are generated directly from measurements of reddening by the very dust being mapped, rather than inferred on the basis of some less direct means, they are likely the most accurate to date for charting in detail the highly patchy differential extinction in the Galactic midplane. We provide downloadable FITS files and an IDL tool for retrieving extinction values for any line of sight within our mapped regions.« less

  1. THE SUPER LITHIUM-RICH RED GIANT RAPID ROTATOR G0928+73.2600: A CASE FOR PLANET ACCRETION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Joleen K.; Majewski, Steven R.; Rood, Robert T.

    2010-11-01

    We present the discovery of a super lithium-rich K giant star, G0928+73.2600. This red giant (T {sub eff} = 4885 K and log g = 2.65) is a fast rotator with a projected rotational velocity of 8.4 km s{sup -1} and an unusually high lithium abundance of A(Li) = 3.30 dex. Although the lack of a measured parallax precludes knowing the exact evolutionary phase, an isochrone-derived estimate of its luminosity places the star on the Hertzsprung-Russell diagram in a location that is not consistent with either the red bump on the first ascent of the red giant branch or withmore » the second ascent on the asymptotic giant branch, the two evolutionary stages where lithium-rich giant stars tend to cluster. Thus, even among the already unusual group of lithium-rich giant stars, G0928+73.2600 is peculiar. Using {sup 12}C/{sup 13}C as a tracer for mixing-more mixing leads to lower {sup 12}C/{sup 13}C-we find {sup 12}C/{sup 13}C = 28, which is near the expected value for standard first dredge-up mixing. We can therefore conclude that 'extra' deep mixing has not occurred. Regardless of the ambiguity of the evolutionary stage, the extremely large lithium abundance and the rotational velocity of this star are unusual, and we speculate that G0928+73.2600 has been enriched in both lithium and angular momentum from a sub-stellar companion.« less

  2. New bound on neutrino dipole moments from globular-cluster stars

    NASA Technical Reports Server (NTRS)

    Raffelt, Georg G.

    1990-01-01

    Neutrino dipole moments mu(nu) would increase the core mass of red giants at the helium flash by delta(Mc) = 0.015 solar mass x mu(nu)/10 to the -12th muB (where muB is the Bohr magneton) because of enhanced neutrino losses. Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters, number counts of horizontal-branch stars and red giants in 15 globular clusters, and statistical parallax determinations of field RR Lyr luminosities yield delta(Mc) = 0.009 + or - 0.012 solar mass, so that conservatively mu(nu) is less than 3 x 10 to the -12th muB.

  3. The Abundance of Lithium in an ABG Star in the Globular Cluster M3 (NGC 5272)

    NASA Astrophysics Data System (ADS)

    Givens, R. A.; Pilachowski, C. A.

    2016-12-01

    A survey of red giants in the globular cluster M3 with the Hydra multi-object spectrograph on the WIYN 3.5 m telescope indicated a prominent Li i 6707 Å feature in the red giant vZ 1050. Followup spectroscopy with the ARC 3.5 m telescope confirmed this observation and yielded a derived abundance of A(Li)NLTE = 1.6 ± 0.05. In addition, the high oxygen and low sodium abundances measured from the same spectrum suggest that vZ 1050 is a first generation cluster star. The location of vZ 1050 above the horizontal branch and blueward of the red giant branch in the cluster’s color-magnitude diagram places vZ 1050 on M3's asymptotic giant branch. The likely source for the enhanced lithium abundance is the Cameron-Fowler mechanism operating in vZ 1050 itself.

  4. Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.

    Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four starsmore » with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.« less

  5. Evidence for extended chromospheres surrounding red giant stars

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1982-01-01

    Observational evidence and theoretical arguments are summarized which indicate that regions of partially ionized hydrogen extending several stellar radii are an important feature of red giant and supergiant stars. The implications of the existence of extended chromospheres are examined in terms of the nature of the other atmospheres of, and mass loss from cool stars.

  6. New red giant star in the Kepler open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Komucyeya, E.; Abedigamba, O. P.; Jurua, E.; Anguma, S. K.

    2018-05-01

    A recent study indicated that 39 red giant stars showing solar-like oscillations were discovered in the field of Kepleropen cluster NGC 6819. The study was based on photometric distance estimates of 27 stars out of the 39. Using photometric method alone may not be adequate to confirm the membership of these stars. The stars were not previously known in literature to belong to the open cluster NGC 6819. In this study, Kepler data was used to study the membership of the 27 stars. A plot of apparent magnitude as a function of the large frequency separation, supplemented with the proper motion and radial velocity values from literature revealed KIC 5112840 to lie on the same plane with the well known members of the cluster. Echelle diagram was constructed, and the median gravity-mode period spacings (ΔP) calculated for KIC 5112840. A value of ΔP = 66.3 s was obtained, thus placing the red giant star KIC 5112840 on the Red Giant Branch stage of evolution. Our evolutionary status result using the approach in this paper is in agreement with what is in the available literature.

  7. The Fate of Exoplanets and the Red Giant Rapid Rotator Connection

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil; Smith, Verne V.; Cunha, Katia; Bizyaev, Dmitry

    2011-03-01

    We have computed the fate of exoplanet companions around main sequence stars to explore the frequency of planet ingestion by their host stars during the red giant branch evolution. Using published properties of exoplanetary systems combined with stellar evolution models and Zahn's theory of tidal friction, we modeled the tidal decay of the planets' orbits as their host stars evolve. Most planets currently orbiting within 2 AU of their star are expected to be ingested by the end of their stars' red giant branch ascent. Our models confirm that many transiting planets are sufficiently close to their parent star that they will be accreted during the main sequence lifetime of the star. We also find that planet accretion may play an important role in explaining the mysterious red giant rapid rotators, although appropriate planetary systems do not seem to be plentiful enough to account for all such rapid rotators. We compare our modeled rapid rotators and surviving planetary systems to their real-life counterparts and discuss the implications of this work to the broader field of exoplanets.

  8. 12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Szigeti, László; Mészáros, Szabolcs; Smith, Verne V.; Cunha, Katia; Lagarde, Nadège; Charbonnel, Corinne; García-Hernández, D. A.; Shetrone, Matthew; Pinsonneault, Marc; Allende Prieto, Carlos; Fernández-Trincado, J. G.; Kovács, József; Villanova, Sandro

    2018-03-01

    Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 ± 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity, and evolutionary status.

  9. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, M. S.; Avelino, P. P.; Stello, D.

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacingmore » and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.« less

  10. A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Gutermuth, Robert; Ali, Babar; Megeath, Thomas; Pipher, Judith; Myers, Philip; Fischer, William; Henning, Thomas; Wolk, Scott; Allen, Lori; Tobin, John

    2015-08-01

    We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We used dendrograms as a technique to study the hierarchical structures in the GMC.

  11. Arsia Mons Spiral Cloud

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the benefits of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is the opportunity to observe how the planet's weather changes during a second full martian year. This picture of Arsia Mons was taken June 19, 2001; southern spring equinox occurred the same day. Arsia Mons is a volcano nearly large enough to cover the state of New Mexico. On this particular day (the first day of Spring), the MOC wide angle cameras documented an unusual spiral-shaped cloud within the 110 km (68 mi) diameter caldera--the summit crater--of the giant volcano. Because the cloud is bright both in the red and blue images acquired by the wide angle cameras, it probably consisted mostly of fine dust grains. The cloud's spin may have been induced by winds off the inner slopes of the volcano's caldera walls resulting from the temperature differences between the walls and the caldera floor, or by a vortex as winds blew up and over the caldera. Similar spiral clouds were seen inside the caldera for several days; we don't know if this was a single cloud that persisted throughout that time or one that regenerated each afternoon. Sunlight illuminates this scene from the left/upper left.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  12. Cloud Atlas: Discovery of Rotational Spectral Modulations in a Low-mass, L-type Brown Dwarf Companion to a Star

    NASA Astrophysics Data System (ADS)

    Manjavacas, Elena; Apai, Dániel; Zhou, Yifan; Karalidi, Theodora; Lew, Ben W. P.; Schneider, Glenn; Cowan, Nicolas; Metchev, Stan; Miles-Páez, Paulo A.; Burgasser, Adam J.; Radigan, Jacqueline; Bedin, Luigi R.; Lowrance, Patrick J.; Marley, Mark S.

    2018-01-01

    Observations of rotational modulations of brown dwarfs and giant exoplanets allow the characterization of condensate cloud properties. As of now, rotational spectral modulations have only been seen in three L-type brown dwarfs. We report here the discovery of rotational spectral modulations in LP261-75B, an L6-type intermediate surface gravity companion to an M4.5 star. As a part of the Cloud Atlas Treasury program, we acquired time-resolved Wide Field Camera 3 grism spectroscopy (1.1–1.69 μm) of LP261-75B. We find gray spectral variations with the relative amplitude displaying only a weak wavelength dependence and no evidence for lower-amplitude modulations in the 1.4 μm water band than in the adjacent continuum. The likely rotational modulation period is 4.78 ± 0.95 hr, although the rotational phase is not well sampled. The minimum relative amplitude in the white light curve measured over the whole wavelength range is 2.41% ± 0.14%. We report an unusual light curve, which seems to have three peaks approximately evenly distributed in rotational phase. The spectral modulations suggests that the upper atmosphere cloud properties in LP261-75B are similar to two other mid-L dwarfs of typical infrared colors, but differ from that of the extremely red L-dwarf WISE0047.

  13. THE RELATIONSHIP BETWEEN {nu}{sub max} AND AGE t FROM ZAMS TO RGB-TIP FOR LOW-MASS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Y. K.; Gai, N., E-mail: tyk450@163.com, E-mail: ning.gai@hotmail.com

    2013-07-10

    Stellar age is an important quantity in astrophysics, which is useful for many fields both in the universe and galaxies. It cannot be determined by direct measurements, but can only be estimated or inferred. We attempt to find a useful indicator of stellar age, which is accurate from the zero-age main sequence to the tip of red giant branch for low-mass stars. Using the Yale Rotation and Evolution Code (YREC), a grid of stellar models has been constructed. Meanwhile, the frequency of maximum oscillations' power {nu}{sub max} and the large frequency separation {Delta}{nu} are calculated using the scaling relations. Formore » the stars, the masses of which are from 0.8 M{sub Sun} to 2.8 M{sub Sun }, we can obtain the {nu}{sub max} and stellar age by combing the scaling relations with the four sets of grid models (YREC, Dotter et al., Marigo et al., and YY isochrones). We find that {nu}{sub max} is tightly correlated and decreases monotonically with the age of the star from the main sequence to the red giant evolutionary stages. Moreover, we find that the line shapes of the curves in the Age versus {nu}{sub max} diagram, which is plotted by the four sets of grid models, are consistent for red giants with masses from 1.1 M{sub Sun} to 2.8 M{sub Sun }. For red giants, the differences of correlation coefficients between Age and {nu}{sub max} for different grid models are minor and can be ignored. Interestingly, we find two peaks that correspond to the subgiants and bump of red giants in the Age versus {nu}{sub max} diagram. By general linear least-squares, we make the polynomial fitting and deduce the relationship between log(Age) and log({nu}{sub max}) in red giants' evolutionary state.« less

  14. VizieR Online Data Catalog: OGLE UBVI phot. in Baade's Window (Paczynski+, 1999)

    NASA Astrophysics Data System (ADS)

    Paczynski, B.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Wozniak, P.; Zebrun, K.

    2000-01-01

    We present UBVI photometry for 8530 stars in Baade's Window obtained during the OGLE-II microlensing survey. Among these are over one thousand red clump giants. 1391 of them have photometry with errors smaller than 0.04, 0.06, 0.12, and 0.20 mag in the I, V, B, and U-band, respectively. We constructed a map of interstellar reddening. The corrected colors of the red clump giants: (U-B)0, (B-V)0, and (V-I)0 are very well correlated, indicating that a single parameter determines the observed spread of their values, reaching almost 2mag in the (U-B)0. It seems most likely that heavy element content is the dominant parameter, but it is possible that another parameter: the age (or mass) of a star moves it along the same trajectory in the color-color diagram as the metallicity. The current ambiguity can be resolved with spectral analysis, and our catalog may be useful as a finding list of red clump giants. We point out that these K giants are more suitable for a fair determination of the distribution of metallicity than brighter M giants. We also present a compilation of UBVI data for 308 red clump giants near the Sun, for which Hipparcos parallaxes are more accurate than 10%. Spectral analysis of their metallicity may provide information about the local metallicity distribution as well as the extent to which mass (age) of these stars affects their colors. (3 data files).

  15. Studies of the Long Secondary Periods in Pulsating Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Deibert, E.

    2016-12-01

    We have used systematic, sustained visual observations from the AAVSO International Database and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the excited pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a time scale of roughly 20-30 LSPs. There is no obvious difference between the carbon (C) stars and the normal oxygen (M) stars. Previous multicolor observations showed that the LSP color variations are similar to those of the pulsation period, and of the LSPs in the Magellanic Clouds, and not like those of eclipsing stars. We note that the LSPs are similar to the estimated rotation periods of the stars, though the latter have large uncertainties. This suggests that the LSP phenomenon may be a form of modulated rotational variability.

  16. Meridional circulation and CNO anomalies in red giant stars

    NASA Technical Reports Server (NTRS)

    Sweigart, A. V.; Mengel, J. G.

    1979-01-01

    The possibility is investigated that meridional circulation driven by internal rotation might lead to the mixing of CNO-processed material from the vicinity of the hydrogen shell into the envelope of a red giant star. This theory of meridional mixing is found to be generally consistent with available data and to be capable of explaining a number of observational results without invoking a radical departure from the standard physics of stellar interiors. It is suggested that meridional circulation must be a normal characteristic of a rotating star and that meridional mixing provides a reasonable framework for understanding many of the CNO anomalies exhibited by weak-G-band and CN-strong stars as well as the low C-12/C-13 ratios measured among field red giants.

  17. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hekker, S.; Debosscher, J.; De Ridder, J.

    2010-04-20

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less

  18. Travels with Gates - July 2010

    Science.gov Websites

    provocative actions. Story Cheonan Tragedy Strengthens Alliance CAMP RED CLOUD, South Korea, July 21, 2010 Camp Red Cloud. Story Leaders Reaffirm U.S. Commitment PANMUNJOM, South Korea, July 21, 2010 communist neighbor to the north. Story Leadership is Key to Addressing Suicides CAMP RED CLOUD, South Korea

  19. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  20. Visible and Near-IR Imaging of Giant Planets: Outer Manifestations of Deeper Secrets

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.

    1996-09-01

    Visible and near-infrared imaging of the giant planets -- Jupiter, Saturn, Uranus, and Neptune -- probes the outermost layers of clouds in these gaseous atmospheres. Not only are the images beautiful and striking in their color and diversity of detail, they also provide quantitative clues to the dynamical and chemical processes taking place both at the cloud tops and deeper in the interior: zonal wind profiles can be extracted; wavelength-dependent center-to-limb brightness variations yield valuable data for modeling vertical aerosol structure; the presence of planetary-scale atmospheric waves can sometimes be deduced; variations of cloud color and brightness with latitude provide insight into the underlying mechanisms driving circulation; development and evolution of discrete atmospheric features trace both exogenic and endogenic events. During the 1980's, our understanding of the giant planets was revolutionized by detailed visible-wavelength images taken by the Voyager spacecraft of these planets' atmospheres. However, those images were static: brief snapshots in time of four complex and dynamic atmospheric systems. In short, those images no longer represent the current appearance of these planets. Recently, our knowledge of the atmospheres of the gas giant planets has undergone major new advances, due in part to the excellent imaging capability and longer-term temporal sampling of the Hubble Space Telescope (HST) and the Galileo Mission to Jupiter. In this talk, I provide an update on our current understanding of the gas giants based on recent visible and near-infrared imaging, highlighting results from the collision of Comet Shoemaker-Levy 9 with Jupiter, Saturn's White Spots, intriguing changes in the atmosphere of Uranus, and Neptune's peripatetic clouds.

  1. False Color Mosaic of Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color mosaic shows a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here in the visible colors red, green and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.

    The edge of the planet runs along the right side of the mosaic. North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 280 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on Nov. 5, 1996, at a range of 1.2 million kilometers by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on Dec. 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.

  2. Dispersal of Giant Molecular Clouds by Photoionization and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-01-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by forming HII regions and driving their expansion. We present the results of radiation hydrodynamic simulations of star cluster formation in turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and lifetime of clouds. We find that the net SFE depends primarily on the initial gas surface density, $\\Sigma_0$, such that the net SFE increases from 4% to 50% as $\\Sigma_0$ increases from $20\\,M_{\\odot}\\,{\\rm pc}^{-2}$ to $1300\\,M_{\\odot}\\,{\\rm pc}^{-2}$. Cloud dispersal occurs within $10\\,{\\rm Myr}$ after the onset of radiation feedback, or within 0.7--4.0 free-fall times that increases with $\\Sigma_0$. Photoionization plays a dominant role in destroying molecular clouds typical of the Milky Way, while radiation pressure takes over in massive, dense clouds. Based on the analysis of mass loss processes by photoevaporation or momentum injection, we develop a semi-analytic model for cloud dispersal and compare it with the numerical results.

  3. Oscillating Red Giants Observed during Campaign 1 of the Kepler K2 Mission: New Prospects for Galactic Archaeology

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Huber, Daniel; Sharma, Sanjib; Johnson, Jennifer; Lund, Mikkel N.; Handberg, Rasmus; Buzasi, Derek L.; Silva Aguirre, Victor; Chaplin, William J.; Miglio, Andrea; Pinsonneault, Marc; Basu, Sarbani; Bedding, Tim R.; Bland-Hawthorn, Joss; Casagrande, Luca; Davies, Guy; Elsworth, Yvonne; Garcia, Rafael A.; Mathur, Savita; Di Mauro, Maria Pia; Mosser, Benoit; Schneider, Donald P.; Serenelli, Aldo; Valentini, Marica

    2015-08-01

    NASA’s re-purposed Kepler mission—dubbed K2—has brought new scientific opportunities that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2's capabilities, in particular its 360° ecliptic field of view, is galactic archaeology—the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research is to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. This asteroseismic information can provide estimates of stellar radius (hence distance), mass, and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed toward the north galactic gap, during the mission’s first full science campaign. We investigate the feasibility of using K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool giants within the {log}g range ˜1.9-3.2. Our detection is complete down to {\\text{Kp}} ˜ 14.5, which results in a seismic sample with little or no detection bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models.

  4. INTERNAL ROTATION OF THE RED-GIANT STAR KIC 4448777 BY MEANS OF ASTEROSEISMIC INVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M. P.; Cardini, D.; Ventura, R.

    We study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from Kepler observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure to extract the rotational splittings from the power spectrum. We find not only that the core rotates from a minimum of 8 to a maximum of 17 times faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al.), but we also estimate the variation of the angularmore » velocity within the helium core with a spatial resolution of 0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation. The results show that the entire core rotates rigidly and provide evidence for an angular velocity gradient around the base of the hydrogen-burning shell; however, we do not succeed in characterizing the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of 68 ± 22 nHz. We conclude that a set of data that includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.« less

  5. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    NASA Astrophysics Data System (ADS)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  6. Constraining Methane Abundance and Cloud Properties from the Reflected Light Spectra of Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Marley, M. S.; Lewis, N. K.

    2015-12-01

    We have assembled an atmospheric retrieval package for the reflected light spectra of gas- and ice- giants in order to inform the design and estimate the scientific return of future space-based coronagraph instruments. Such instruments will have a working bandpass of ~0.4-1 μm and a resolving power R~70, and will enable the characterization of tens of exoplanets in the Solar neighborhood. The targets will be chosen form known RV giants, with estimated effective temperatures of ~100-600 K and masses between 0.3 and 20 MJupiter. In this regime, both methane and clouds will have the largest effects on the observed spectra. Our retrieval code is the first to include cloud properties in the core set of parameters, along with methane abundance and surface gravity. We consider three possible cloud structure scenarios, with 0, 1 or 2 cloud layers, respectively. The best-fit parameters for a given model are determined using a Monte Carlo Markov Chain ensemble sampler, and the most favored cloud structure is chosen by calculating the Bayes factors between different models. We present the performance of our retrieval technique applied to a set of representative model spectra, covering a SNR range form 5 to 20 and including possible noise correlations over a 25 or 100 nanometer scale. Further, we apply the technique to more realistic cases, namely simulated observations of Jupiter, Saturn, Uranus, and the gas-giant HD99492c. In each case, we determine the confidence levels associated with the methane and cloud detections, as a function of SNR and noise properties.

  7. The tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies: II. Computer Simulations

    NASA Technical Reports Server (NTRS)

    Madore, B. F.; Freedman, W. L.

    1994-01-01

    Based on both empirical data for nearby galaxies, and on computer simulations, we show that measuring the position of the tip of the first-ascent red-giant branch (TRGB) provides a means of obtaining the distances to nearby galaxies with a precision and accuracy comparable to using Cepheids and/or RR Lyrae variables.

  8. Multi-wavelength observations of the peculiar red giant HR 3126

    NASA Technical Reports Server (NTRS)

    Pesce, Joseph E.; Stencel, Robert E.; Walter, Frederick M.; Doggett, Jesse; Dachs, Joachim; Whitelock, Patricia A.; Mundt, Reinhard

    1988-01-01

    Ultraviolet observations of the red giant HR 3126 are combined with multi-wavelength data in order to provide a firmer basis for explaining the arc-minute sized nebula surrounding the object. Possibilities as to the location of HR 3126 on the Hertzsprung-Russel diagram, and to the formation mechanisms of the reflection nebula IC 2220 associated with it, are summarized.

  9. ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stello, Dennis; Bedding, Timothy R.; Benomar, Othman

    2013-03-10

    Of the more than 150,000 targets followed by the Kepler Mission, about 10% were selected as red giants. Due to their high scientific value, in particular for Galaxy population studies and stellar structure and evolution, their Kepler light curves were made public in late 2011. More than 13,000 (over 85%) of these stars show intrinsic flux variability caused by solar-like oscillations making them ideal for large-scale asteroseismic investigations. We automatically extracted individual frequencies and measured the period spacings of the dipole modes in nearly every red giant. These measurements naturally classify the stars into various populations, such as the redmore » giant branch, the low-mass (M/M{sub Sun} {approx}< 1.8) helium-core-burning red clump, and the higher-mass (M/M{sub Sun} {approx}> 1.8) secondary clump. The period spacings also reveal that a large fraction of the stars show rotationally induced frequency splittings. This sample of stars will undoubtedly provide an extremely valuable source for studying the stellar population in the direction of the Kepler field, in particular when combined with complementary spectroscopic surveys.« less

  10. The initial giant umbrella cloud of the May 18th, 1980, explosive eruption of Mount St. Helens

    USGS Publications Warehouse

    Sparks, R.S.J.; Moore, J.G.; Rice, C.J.

    1986-01-01

    The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450??C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150??C and the flow consisted of a mixture of 3.25 ?? 1011 kg of pyroclasts and 5.0 ?? 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 ?? 1011 kg of pyroclasts and 1.0 ?? 1011 kg of air. ?? 1986.

  11. Structures of GMC W 37

    NASA Astrophysics Data System (ADS)

    Zhan, Xiao-Liang; Jiang, Zhi-Bo; Chen, Zhi-Wei; Zhang, Miao-Miao; Song, Chao

    2016-04-01

    We carried out observations toward the giant molecular cloud W 37 with the J = 1 - 0 transitions of 12CO, 13CO and C18O using the 13.7m single-dish telescope at the Delingha station of Purple Mountain Observatory. Based on these CO lines, we calculated the column densities and cloud masses for molecular clouds with radial velocities around +20 km s-1. The gas mass of W 37, calculated from 13 CO emission, is 1.7 × 105 M⊙, above the criterion to be considered a giant molecular cloud. The dense ridge of W 37 is a dense filament, which is supercritical in terms of linear mass ratio. Dense clumps found by C18O emission are aligned along the dense ridge at regular intervals of about 2.8 pc, similar to the clump separation caused by large-scale ‘sausage instability’. We confirm the identification of the giant molecular filament (GMF) G 18.0-16.8 and find a new giant filament, G 16.5-15.8, located ˜ 0.7° to the west of G 18.0-16.8. Both GMFs are not gravitationally bound, as indicated by their low linear mass ratio (˜ 80 M⊙ pc-1). We compared the gas temperature map with the dust temperature map from Herschel images, and found similar structures. The spatial distributions of class I objects and the dense clumps are reminiscent of triggered star formation occurring in the northwestern part of W 37, which is close to NGC 6611.

  12. A theoretical and observational study of the Red Giant Branch phase transition in Magellanic Cloud clusters - A progress report

    NASA Technical Reports Server (NTRS)

    Buonanno, R.; Corsi, C. E.; Fusi Pecci, F.; Greggio, L.; Renzini, A.; Sweigart, A. V.

    1986-01-01

    Preliminary results are reported for an investigation comparing theoretical models of the sudden appearance of an extended RGB (and its effects on the spectral energy distributions of stellar populations) with data from ESO CCD observations of clusters in the LMC and SMC. Isochrones for the entire RGB are being constructed on the basis of 100 new evolutionary sequences (calculated using the evolution code of Sweigart and Gross, 1976 and 1978) to permit determination of synthetic colors and spectral energy distributions. The observations so far indicate a main sequence about 0.1 mag redder than that predicted by the present models or by the isochrones of VandenBerg and Bell (1985), and fail to show a B-V color difference at the RGB phase transition.

  13. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6

  14. Asteroseismology can reveal strong internal magnetic fields in red giant stars.

    PubMed

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars

    2015-10-23

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. Copyright © 2015, American Association for the Advancement of Science.

  15. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  16. Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.

    1981-01-01

    Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.

  17. The Global Evolution of Giant Molecular Clouds. I. Model Formulation and Quasi-Equilibrium Behavior

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2006-12-01

    We present semianalytic dynamical models for giant molecular clouds evolving under the influence of H II regions launched by newborn star clusters. In contrast to previous work, we neither assume that clouds are in virial or energetic equilibrium, nor do we ignore the effects of star formation feedback. The clouds, which we treat as spherical, can expand and contract homologously. Photoionization drives mass ejection; the recoil of cloud material both stirs turbulent motions and leads to an effective confining pressure. The balance between these effects and the decay of turbulent motions through isothermal shocks determines clouds' dynamical and energetic evolution. We find that for realistic values of the rates of turbulent dissipation, photoevaporation, and energy injection by H II regions, the massive clouds where most molecular gas in the Galaxy resides live for a few crossing times, in good agreement with recent observational estimates that large clouds in Local Group galaxies survive roughly 20-30 Myr. During this time clouds remain close to equilibrium, with virial parameters of 1-3 and column densities near 1022 H atoms cm-2, also in agreement with observed cloud properties. Over their lives they convert 5%-10% of their mass into stars, after which point most clouds are destroyed when a large H II region unbinds them. In contrast, small clouds like those found in the solar neighborhood only survive ~1 crossing time before being destroyed.

  18. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    PubMed Central

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models. PMID:25370190

  19. Disk evolution, element abundances and cloud properties of young gas giant planets.

    PubMed

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  20. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Doğan, G.; Goupil, M. J.; Appourchaux, T.; Benomar, O.; Bruntt, H.; Campante, T. L.; Casagrande, L.; Ceillier, T.; Davies, G. R.; De Cat, P.; Fu, J. N.; García, R. A.; Lobel, A.; Mosser, B.; Reese, D. R.; Regulo, C.; Schou, J.; Stahn, T.; Thygesen, A. O.; Yang, X. H.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Eggenberger, P.; Gizon, L.; Mathis, S.; Molenda-Żakowicz, J.; Pinsonneault, M.

    2014-04-01

    Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question. Aims: Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars. Results: We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. Conclusions: We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches. Appendices and Tables 3-9 are available in electronic form at http://www.aanda.org

  1. Determinación de miembros, binaridad y metalicidad de gigantes rojas en el cúmulo abierto de edad intermedia NGC 2354

    NASA Astrophysics Data System (ADS)

    Clariá, J. J.; Mermilliod, J. C.; Piatti, A. E.

    We present new Coravel radial-velocity observations and photoelectric photometry in the UBV, DDO and Washington systems for a sample of red giant candidates in the field of the intermediate-age open cluster NGC 2354. Photometric membership probabilities show very good agrement with those obtained from Coravel radial velocities. The analysis of the photometric and kinematical data allow us to confirm cluster membership for 9 red giants, one of them being a spectroscopic binary, while 4 confirmed spectroscopic binaries appear to be probable members. We have also discovered 4 spectroscopic binaries not belonging to the cluster. A mean radial velocity of (33.40±0.27)km s-1 and a mean reddening E(B-V)= 0.13±0.03 were derived for the cluster giants. NGC 2354 has a mean ultraviolet excess <δ(U-B)>=-0.03±0.01, relative to the field K giants, and a mean new cyanogen anomaly ΔCN=-0.035±0.007, both implying [Fe/H]≈-0.3. The moderately metal-poor character of NGC 2354 is confirmed using five different metal abundance indicators of the Washington system. The cluster giant branch is formed by a well defined clump of 7 stars and 4 stars with high membership probabilities seem to define an ascending giant branch. The whole red giant locus cannot be reproduced by any theoretical track. This paper will appear in Astron. & Astrophys. Suppl. (1999).

  2. Chromospheres and mass loss in metal-deficient giant stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Avrett, E. H.

    1984-01-01

    Semiempirical atmospheric models indicate that the characteristic emission in the wings of the H-alpha line observed in Population II giant stars can arise naturally within static chromospheres. Radial expansion gives an asymmetric, blueshifted H-alpha core accompanied by greater emission in the red line wing than in the blue wing. Wind models with extended atmospheres suggest mass loss rates much smaller than 2 x 10 to the -9th solar mass per yr. Thus H-alpha provides no evidence that steady mass loss can significantly affect the evolution of stars on the red giant branch of globular clusters.

  3. Mass Loss at Higher Metallicity: Quantifying the Mass Return from Evolved Stars in the Galactic

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin

    Bulge Mass-losing evolved stars, and in particular asymptotic giant branch (AGB) stars and red supergiant (RSG) stars, are expected to be the major producers of dust in galaxies. This dust will help form planetary systems around future generations of stars. Our ADAP program to measure the mass loss from the AGB and RSG stars in the Magellanic Clouds is nearing completion, and we wish to extend this successful study to the Galactic bulge of the Milky Way Galaxy. Metallicity should determine the amount of elements available to condense dust in the star's outflow, so evolved stars of differing metallicities should have differing mass-loss rates. Building upon our work on evolved stars in the Magellanic Clouds, we will compare the mass-loss rates from AGB and RSG stars in the older and potentially more metal-rich Bulge to the mass-loss rates of AGB and RSG stars in the Magellanic Clouds, which have lower metallicity, making for an interesting contrast. In addition, the Galactic bulge, like the Clouds, is located at a well-determined distance ( 8 kpc), thereby removing the distance ambiguities that present a major uncertainty in determining mass-loss rates and luminosities for evolved stars. To model photometric observations of outflowing dust shells around evolved stars, we have constructed the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS; Sargent et al 2011; Srinivasan et al 2011) using the radiative transfer code 2Dust (Ueta and Meixner 2003). Our study will apply these models to the large photometric database of sources identified in the Spitzer Space Telescope GLIMPSE survey of the Milky Way and also to the various infrared spectra of Bulge AGB and RSG stars from Spitzer, ISO, etc. We have already modeled a few Galactic bulge evolved stars with GRAMS, and we will use these results as the foundation for modeling a large and representative sample of Galactic bulge evolved stars identified and measured photometrically by GLIMPSE. We will use our GRAMS grid, expanding as necessary to enable modeling of the higher metallicity evolved stars of the Galactic bulge, along with models of other types of stars, such as YSOs (Robitaille et al 2006), to identify the evolved stars in the GLIMPSE sample of the Galactic bulge. We will use these well-tested GRAMS models, which we have already extensively applied to study populations of mass losing evolved stars in the Magellanic Clouds, to fit the Spectral Energy Distributions (SEDs; plots of emitted power versus wavelength) of GLIMPSE Galactic bulge sources identified as RSG stars and oxygen-rich (O-rich), carbon-rich (C-rich), and extreme AGB stars. This modeling will yield stellar luminosities and mass-loss rates, as well as general dust chemistry (Orich versus C-rich) and other essential characteristics of the dust produced by evolved stars in the galactic plane. Our ongoing Magellanic Cloud and proposed Milky Way Galactic bulge evolved star studies will lay the groundwork for future studies of evolved stars in other nearby galaxies using data from the James Webb Space Telescope and other planned missions.

  4. Dark clouds in the vicinity of the emission nebula Sh2-205: interstellar extinction and distances

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Čepas, V.; Boyle, R. P.; Zdanavičius, J.; Maskoliūnas, M.; Kazlauskas, A.; Zdanavičius, K.; Černis, K.

    2016-05-01

    Results of CCD photometry in the seven-colour Vilnius system for 922 stars down to V = 16-17 mag and for 302 stars down to 19.5 mag are used to investigate the interstellar extinction in an area of 1.5 square degrees in the direction of the P7 and P8 clumps of the dark cloud TGU H942, which lies in the vicinity of the emission nebula Sh2-205. In addition, we used 662 red clump giants that were identified by combining the 2MASS and WISE infrared surveys. The resulting plots of extinction versus distance were compared with previous results of the distribution and radial velocities of CO clouds and with dust maps in different passbands of the IRAS and WISE orbiting observatories. A possible distance of the front edge of the nearest cloud layer at 130 ± 10 pc was found. This dust layer probably covers all the investigated area, which results in extinction of up to 1.8 mag in some directions. A second rise of the extinction seems to be present at 500-600 pc. Within this layer, the clumps P7 and P8 of the dust cloud TGU H942, the Sh2-205 emission nebula, and the infrared cluster FSR 655 are probably located. In the direction of these clouds, we identified 88 young stellar objects and a new infrared cluster. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A21

  5. NIMS Spectral Maps of Jupiter Great Red Spot

    NASA Image and Video Library

    1998-03-26

    The Near-Infrared Mapping Spectrometer (NIMS) instrument looks at Jupiter's Great Red Spot, in these views from June 26, 1996. NIMS studies infrared wavelengths of light that our eye cannot see. These maps are at four different infrared wavelengths, each one picked to reveal something different about the atmosphere. The top image is a false color map of a wavelength that is at the red edge of our ability to see. It shows the shapes of features that we would see with our eyes. The second map is of ammonia ice, red showing where the most ice is, blue where none exists. The differences between this and the first image are due to the amount and size of ammonia ice crystals. The third map down is from a wavelength that shows cloud heights, with the highest clouds in red, and the lowest in blue. The bottom map uses a wavelength that shows the hot Jupiter shining through the clouds. Red represents the thinnest clouds, and blue is thickest where it is more difficult to see below. Comparing the bottom two images, note that the highest clouds are in the center of the Great Red Spot, while there are relatively few clouds around the edges. http://photojournal.jpl.nasa.gov/catalog/PIA00501

  6. Evidence for extended chromospheres surrounding red giant stars

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1981-01-01

    There is now an increasing amount of both observational evidence and theoretical arguments that regions of partially ionized hydrogen extending several stellar radii are an important feature of red giant and supergiant stars. This evidence is discussed and the implications of the existence of extended chromospheres in terms of the nature of the outer atmospheres of, and mass loss from, cool stars are examined.

  7. Detection of the Tip of Red Giant Branc in NGC 5128

    NASA Technical Reports Server (NTRS)

    Soria, Roberto; Mould, Jeremy R.; Watson, Alan M.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.; Casertano, Stefano; Clarke, John T.; Crisp, David; Griffiths, Richard E.; hide

    1996-01-01

    We present a color-magnitude diagram of more than 10,000 stars in the halo of galaxy NGC 5128 (Centaurus A), based on WFPC2 images through the V and I filters. The position of the red-giant branch stars is compared with the loci of the RGB in six well-studied globular clusters and in the dwarf elliptical galaxy NGC 185;...

  8. Potential Mechanism of Detoxification of Cyanide Compounds by Gut Microbiomes of Bamboo-Eating Pandas

    PubMed Central

    2018-01-01

    ABSTRACT Gut microbes can enhance the ability of hosts to consume secondary plant compounds and, therefore, expand the dietary niche breadth of mammalian herbivores. The giant and red pandas are bamboo-eating specialists within the mammalian order Carnivora. Bamboo contains abundant plant secondary metabolites (e.g., cyanide-containing compounds). However, Carnivora species, including the giant panda, have deficient levels of rhodanese (one of the essential cyanide detoxification enzymes) in their tissues compared with the same tissues of herbivores. Here, we make a comparative analysis of 94 gut metagenomes, including 25 from bamboo-eating pandas (19 from giant pandas and 6 from red pandas), 30 from Père David’s deer, and 39 from published data for other mammals. The bamboo-eating pandas’ gut microbiomes had some common features, such as high proportions of Pseudomonas bacteria. The results revealed that bamboo-eating pandas’ gut microbiomes were significantly enriched in putative genes coding for enzymes related to cyanide degradation (e.g., rhodanese) compared with the gut microbiomes of typical herbivorous mammals, which might have coevolved with their special bamboo diets. The enrichment of putative cyanide-digesting gut microbes, in combination with adaptations related to morphology (e.g., pseudothumbs) and genomic signatures, show that the giant panda and red panda have evolved some common traits to adapt to their bamboo diet. IMPORTANCE The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), two obligate bamboo feeders, have distinct phylogenetic positions in the order Carnivora. Bamboo is extraordinarily rich in plant secondary metabolites, such as allied phenolic and polyphenolic compounds and even toxic cyanide compounds. Here, the enrichment of putative cyanide-digesting gut microbes, in combination with adaptations related to morphology (e.g., pseudothumbs) and genomic signatures, show that the giant panda and red panda have evolved some common traits to adapt to their bamboo diet. Thus, here is another story of diet-driven gut microbiota in nature. PMID:29898983

  9. Gravity mode offset and properties of the evanescent zone in red-giant stars

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Elsworth, Y.; Angelou, G. C.

    2018-03-01

    Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last decade calls for investigations to further understand the internal structures of these stars. Aim. The aim of this work is to validate a method to measure the underlying period spacing, coupling term, and mode offset of pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the evanescent zone between the gravity mode cavity and the pressure mode cavity. Methods: We implement an alternative mathematical description compared to what is used in the literature to analyse observational data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method allows us to constrain the gravity mode offset ɛg for red-giant stars. Results: We find that this alternative mathematical description allows us to determine the period spacing ΔΠ and the coupling term q for the dipole modes within a few percent of values found in the literature. Additionally, we find that ɛg varies on a star-by-star basis and should not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of the core of red-giant branch models shows a tentative correlation with the offset ɛg. Conclusions: We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and models with great care as the methods employed are sensitive to the range of input frequencies.

  10. Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Riebel, David

    2012-01-01

    I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.

  11. Non-radial oscillation modes with long lifetimes in giant stars.

    PubMed

    De Ridder, Joris; Barban, Caroline; Baudin, Frédéric; Carrier, Fabien; Hatzes, Artie P; Hekker, Saskia; Kallinger, Thomas; Weiss, Werner W; Baglin, Annie; Auvergne, Michel; Samadi, Réza; Barge, Pierre; Deleuil, Magali

    2009-05-21

    Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.

  12. Multiarm spirals on the periphery of disc galaxies

    NASA Astrophysics Data System (ADS)

    Lubov, Spiegel; Evgeny, Polyachenko

    2018-04-01

    Spiral patterns in some disc galaxies have two arms in the centre, and three or more arms on the periphery. The same result is also obtained in numerical simulations of stellar and gaseous discs.We argue that such patterns may occur due to fast cooling of the gas, resulting in formation of giant molecular clouds. The timescale of this process is 50 Myr, the factor of 10 shorter than of ordinary secular instability. The giant molecular clouds give rise to multiarm spirals through the mechanism of swing amplification.

  13. Giant molecular cloud scaling relations: the role of the cloud definition

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  14. Hubble Tracks Jupiter Storms

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Hubble Space Telescope is following dramatic and rapid changes in Jupiter's turbulent atmosphere that will be critical for targeting observations made by the Galileo space probe when it arrives at the giant planet later this year.

    This Hubble image provides a detailed look at a unique cluster of three white oval-shaped storms that lie southwest (below and to the left) of Jupiter's Great Red Spot. The appearance of the clouds, as imaged on February 13, 1995 is considerably different from their appearance only seven months earlier. Hubble shows these features moving closer together as the Great Red Spot is carried westward by the prevailing winds while the white ovals are swept eastward. (This change in appearance is not an effect of last July's comet Shoemaker-Levy 9 collisions with Jupiter.)

    The outer two of the white storms formed in the late 1930s. In the centers of these cloud systems the air is rising, carrying fresh ammonia gas upward. New, white ice crystals form when the upwelling gas freezes as it reaches the chilly cloud top level where temperatures are -200 degrees Fahrenheit (- 130 degrees Centigrade).

    The intervening white storm center, the ropy structure to the left of the ovals, and the small brown spot have formed in low pressure cells. The white clouds sit above locations where gas is descending to lower, warmer regions. The extent of melting of the white ice exposes varied amounts of Jupiter's ubiquitous brown haze. The stronger the down flow, the less ice, and the browner the region.

    A scheduled series of Hubble observations will help target regions of interest for detailed scrutiny by the Galileo spacecraft, which will arrive at Jupiter in early December 1995. Hubble will provide a global view of Jupiter while Galileo will obtain close-up images of structure of the clouds that make up the large storm systems such as the Great Red Spot and white ovals that are seen in this picture.

    This color picture is assembled from a series of images taken by the Wide Field Planetary Camera 2, in planetary camera mode, when Jupiter was at a distance of 519 million miles (961 million kilometers) from Earth. These images are part of a set of data obtained by a Hubble Space Telescope (HST) team headed by Reta Beebe of New Mexico State University.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  15. A CN Band Survey of Red Giants in the Globular Cluster M53

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smith, G. H.

    2004-12-01

    We investigate the star-to-star variations in λ 3883 CN bandstrength among red giant stars in the low-metallicity globular cluster M53 ([Fe/H] = --2.0). Our data were taken with the Kast spectrograph on the 3-meter Shane telescope at Lick Observatory in April 2001. Star-to-star variations in CN bandstrength are common in intermediate- and high-metallicity globular clusters ([Fe/H] ≥ --1.6). Our data were obtained to test whether that variation will also be present in a low-metallicity globular cluster, or whether it will be suppressed by the overall lack of metals in the stars. Our preliminary result is that the λ 3883 CN band is weak in our program stars, which span the brightest magnitude of the red giant branch. On visual inspection, the M53 giants appear to be similar in their CN bandstrength to the four CN-weak giants in NGC 6752 whose average spectrum is plotted in Fig. 4 of Norris et al. (1981, ApJ, 244, 205). This work is planned to form part of a larger study of the metallicity dependence of CN bandstrength and carbon abundance behavior on the upper giant branch of globular clusters. This work is supported by NSF grant AST 00-98453 and by an award from the ARCS foundation, Northern California Chapter.

  16. First report of Enterocytozoon bieneusi from giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens) in China.

    PubMed

    Tian, Ge-Ru; Zhao, Guang-Hui; Du, Shuai-Zhi; Hu, Xiong-Feng; Wang, Hui-Bao; Zhang, Long-Xian; Yu, San-Ke

    2015-08-01

    Enterocytozoon bieneusi is an emerging and opportunistic enteric pathogen triggering diarrhea and enteric disease in humans and animals. Despite extensive research on this pathogen, the prevalence and genotypes of E. bieneusi infection in precious wild animals of giant and red pandas have not been reported. In the present study, 82 faecal specimens were collected from 46 giant pandas (Ailuropoda melanoleuca) and 36 red pandas (Ailurus fulgens) in the northwest of China. By PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi, an overall infection rate of 10.98% (9/82) was observed in pandas, with 8.70% (4/46) for giant pandas, and 13.89% (5/36) for red pandas. Two ITS genotypes were identified: the novel genotype I-like (n=4) and genotype EbpC (n=5). Multilocus sequence typing (MLST) employing three microsatellites (MS1, MS3 and MS7) and one minisatellite (MS4) showed that nine, six, six and nine positive products were amplified and sequenced successfully at four respective loci. A phylogenetic analysis based on a neighbor-joining tree of the ITS gene sequences of E. bieneusi indicated that the genotype EbpC fell into 1d of group 1 of zoonotic potential, and the novel genotype I-like was clustered into group 2. The present study firstly indicated the presence of E. bieneusi in giant and red pandas, and these results suggested that integrated strategies should be implemented to effectively protect pandas and humans from infecting E. bieneusi in China. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The UK Infrared Telescope M33 monitoring project - IV. Variable red giant stars across the galactic disc

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; Saberi, Maryam; van Loon, Jacco Th.; Khosroshahi, Habib; Golabatooni, Najmeh; Mirtorabi, Mohammad Taghi

    2015-03-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fourth paper of the series, we present a search for variable red giant stars in an almost square degree region comprising most of the galaxy's disc, carried out with the WFCAM (Wide Field CAMera) instrument in the K band. These data, taken during the period 2005-2007, were complemented by J- and H-band images. Photometry was obtained for 403 734 stars in this region; of these, 4643 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. The variable stars are concentrated towards the centre of M33, more so than low-mass, less-evolved red giants. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. Most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey. The photometric catalogue is made publicly available at the Centre de Données astronomiques de Strasbourg.

  18. MASS OUTFLOW AND CHROMOSPHERIC ACTIVITY OF RED GIANT STARS IN GLOBULAR CLUSTERS. II. M13 AND M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, Sz.; Dupree, A. K.; Szalai, T.

    High-resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in H{alpha} and Ca II K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in H{alpha} generally appears in stars with T {sub eff} {approx}< 4500 K and log L/L {sub sun}{approx}> 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for H{alpha} revealsmore » the onset of chromospheric expansion in stars more luminous than log (L/L {sub sun}) {approx} 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in H{alpha} most probably due to decreased T {sub eff} and changing atmospheric structure. The Ca II K{sub 3} outflow velocities are larger than shown by H{alpha} at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in H{alpha} than RGB objects. While the H{alpha} velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92, shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the 'second-parameter' effect.« less

  19. SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedding, T. R.; Huber, D.; Stello, D.

    2010-04-20

    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations ({delta}{nu}) and the frequency of maximum power ({nu}{sub max}). We focus on a sample of 50 low-luminosity stars ({nu}{sub max} > 100 {mu}Hz, L {approx}< 30 L {sub sun}) havingmore » high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l = 3. Measuring the small separation between l = 0 and l = 2 allows us to plot the so-called C-D diagram of {delta}{nu}{sub 02} versus {delta}{nu}. The small separation {delta}{nu}{sub 01} of l = 1 from the midpoint of adjacent l = 0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l = 1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.« less

  20. THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jian; Jiang, B. W.; Xue, M. Y.

    Based on photometric data from the Spitzer/SAGE survey, using red giants as extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A{sub λ}/A{sub K{sub S}}. This quantity refers to the extinction in the four Infrared Array Camera (IRAC) bands (i.e., [3.6], [4.5], [5.8], and [8.0] μm) relative to the Two Micron All Sky Survey K{sub S} band at 2.16 μm. We obtain the near-infrared extinction coefficient to be E(J – H)/E(H – K{sub S} ) ≈ 1.29 ± 0.04 and E(J – K{sub S} )/E(H –more » K{sub S} ) ≈ 1.94 ± 0.04. The wavelength dependence of the MIR extinction A{sub λ}/A{sub K{sub S}} in the LMC varies from one sightline to another. The overall mean MIR extinction is A{sub [3.6]}/A{sub K{sub S}}∼0.72±0.03, A{sub [4.5]}/A{sub K{sub S}}∼0.94±0.03, A{sub [5.8]}/A{sub K{sub S}}∼0.58±0.04, and A{sub [8.0]}/A{sub K{sub S}}∼0.62±0.05. Except for the extinction in the IRAC [4.5] μm band, which may be contaminated by the 4.6 μm CO gas absorption of red giants used to trace LMC extinction, the extinction in the other three IRAC bands show a flat curve, close to the Milky Way R{sub V} = 5.5 model extinction curve, where R{sub V} is the optical total-to-selective extinction ratio. The possible systematic bias caused by the correlated uncertainties of K{sub S} – λ and J – K{sub S} is explored in terms of Monte Carlo simulations. We find that this bias could lead to an overestimation of A{sub λ}/A{sub K{sub S}} in the MIR.« less

  1. The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. VI. Luminosities and Mass-loss Rates on Population Scales

    NASA Astrophysics Data System (ADS)

    Riebel, D.; Srinivasan, S.; Sargent, B.; Meixner, M.

    2012-07-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ~30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 × 10-5 M ⊙ yr-1, equivalent to a total mass injection rate (including the gas) into the ISM of ~6 × 10-3 M ⊙ yr-1. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K s band as a function of J - K s color, BC_{K_{s}} = -0.40(J-K_{s})^2 + 1.83(J-K_{s}) + 1.29. We determine several IR color proxies for the dust mass-loss rate (\\dot{M}_{d}) from C-rich AGB stars, such as log \\dot{M_{d}} = ({-18.90}/({(K_{s}-[8.0])+3.37}))-5.93. We find that a larger fraction of AGB stars exhibiting the "long-secondary period" phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.

  2. Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.

    2014-09-01

    Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved stars, we may learn more about the later parts of the life of stardust; e.g., its residence in the interstellar medium, its time spent in molecular clouds, and its inclusion into solid bodies in future planetary systems.

  3. Formation of dust grains with impurities in red giant winds

    NASA Technical Reports Server (NTRS)

    Dominik, Carsten

    1994-01-01

    Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.

  4. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  5. Multifrequency observations of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    1988-01-01

    The discovery of symbiotic stars is described, and the results of multifrequency observations made during the past two decades are presented. Observational data identify symbiotic stars as long-period binary systems that can be divided into two basic physical classes: detached symbiotics containing a red giant (or a Mira variable), and semidetached symbiotics containing a lobe-filling red giant and a solar-type main sequence star. Three components are typically observed: (1) the cool giant component with an effective temperature of 2500-4000 K, which can be divided by the IR spectral classification into normal M giants (S-types) and heavily reddened Mira variables (D-types); (2) the hot companion displaying a bright blue continuum at UV wavelengths, which is sometimes also an X-ray source; and (3) a gaseous nebula enveloping the binary.

  6. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, Paul M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2012-12-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 μm. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ˜10-9 M⊙ yr-1. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-μm feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-μm band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

  7. Red giants seismology

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  8. Mitchell Red Cloud, Jr., Winnebago Medal of Honor Recipient, 1924-1950. With Teacher's Guide. Native Americans of the Twentieth Century.

    ERIC Educational Resources Information Center

    Minneapolis Public Schools, MN.

    A biography for elementary school students tells about Mitchell Red Cloud, Jr. (Winnebago), an American Indian Army corporal who received a Congressional Medal of Honor for bravery in the Korean War. Photographs of Corporal Red Cloud and his gravesite are included. A teaching guide following the bibliography contains information on the Medal of…

  9. SODIUM AND OXYGEN ABUNDANCES IN THE OPEN CLUSTER NGC 6791 FROM APOGEE H-BAND SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, Katia; Souto, Diogo; Smith, Verne V.

    2015-01-10

    The open cluster NGC 6791 is among the oldest, most massive, and metal-rich open clusters in the Galaxy. High-resolution H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyzed for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of ∼0.05-0.07 dex) in these cluster red giants, which span much of the red-giant branch (T {sub eff} ∼ 3500-4600 K), and include two red clump giants. From the infrared spectra, this cluster is confirmed to be amongmore » the most metal-rich clusters in the Galaxy (([Fe/H]) = 0.34 ± 0.06) and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Our non-LTE calculations for the studied Na I lines in the APOGEE spectral region (16373.86 Å and 16388.85 Å) indicate only small departures from LTE (≤0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.« less

  10. ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Yerra Bharat; Reddy, Bacham E.; Lambert, David L.

    In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low-mass (M {<=} 3 M{sub sun}) giants spanning the luminosity range from below to above the luminosity of the clump. Fifteen new Li-rich giants including four super Li-rich K giants (log {epsilon}(Li) {>=}3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and abovemore » the red giant branch (RGB) bump and clump locations in the H-R diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of {sup 3}He via {sup 7}Be to {sup 7}Li by the Cameron-Fowler mechanism but the location for the onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the RGB and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.« less

  11. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  12. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to perturbations in giant sea salt particle concentration, as evaluated from MERRA-2 reanalysis data, is consistent with the aircraft data.

  13. Construction and application of Red5 cluster based on OpenStack

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqing; Song, Jianxin

    2017-08-01

    With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.

  14. AMBER-NACO aperture-synthesis imaging of the half-obscured central star and the edge-on disk of the red giant L2 Puppis

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Schertl, D.; Hofmann, K.-H.; Weigelt, G.

    2015-09-01

    Aims: The red giant L2 Pup started a dimming event in 1994, which is considered to be caused by the ejection of dust clouds. We present near-IR aperture-synthesis imaging of L2 Pup achieved by combining data from VLT/NACO and the AMBER instrument of the Very Large Telescope Interferometer (VLTI). Our aim is to spatially resolve the innermost region of the circumstellar environment. Methods: We carried out speckle interferometric observations at 2.27 μm with VLT/NACO and long-baseline interferometric observations with VLTI/AMBER at 2.2-2.35 μm with baselines of 15-81 m. We also extracted an 8.7 μm image from the mid-IR VLTI instrument MIDI. Results: The diffraction-limited image obtained by bispectrum speckle interferometry with NACO with a spatial resolution of 57 mas shows an elongated component. The aperture-synthesis imaging combining the NACO speckle data and AMBER data with a spatial resolution of 5.6 × 7.3 mas further resolves not only this elongated component, but also the central star. The reconstructed image reveals that the elongated component is a nearly edge-on disk with a size of ~180 × 50 mas lying in the E-W direction, and furthermore, that the southern hemisphere of the central star is severely obscured by the equatorial dust lane of the disk. The angular size of the disk is consistent with the distance that the dust clouds that were ejected at the onset of the dimming event should have traveled by the time of our observations, if we assume that the dust clouds moved radially. This implies that the formation of the disk may be responsible for the dimming event. The 8.7 μm image with a spatial resolution of 220 mas extracted from the MIDI data taken in 2004 (seven years before the AMBER and NACO observations) shows an approximately spherical envelope without a signature of the disk. This suggests that the mass loss before the dimming event may have been spherical. Based on AMBER, NACO, and MIDI observations made with the Very Large Telescope and Very Large Telescope Interferometer of the European Southern Observatory. Program ID: 074.D-0075(A), 074.D-0101(A), 074.D-0198(B), 088.D-0150(A/B), and 288.D-5041(A). Appendices are available in electronic form at http://www.aanda.org

  15. Surprising Rapid Collapse of Sirius B from Red Giant to White Dwarf Through Mass Transfer to Sirius a

    NASA Astrophysics Data System (ADS)

    Yousef, Shahinaz; Ali, Ola

    2013-03-01

    Sirius was observed in antiquity as a red star. In his famous astronomy textbook the Almagest written 140 AD, Ptolemy described the star Sirius as fiery red. He curiously depicted it as one of six red-colored stars. The other five are class M and K stars, such as Arcturus and Betelgeuse. Apparent confirmation in ancient Greek and Roman sources are found and Sirius was also reported red in Europe about 1400 years ago. Sirius must have changed to a white dwarf in the night of Ascension. The star chapter in the Quran started with "by the star as it collapsed (1) your companion have not gone astray nor being misled (2), and in verse 49 which is the rotation period of the companion Sirius B around Sirius A, it is said" He is the Lord of Sirius (49). If Sirius actually was red what could have caused it to change into the brilliant bluish-white star we see today? What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The red color indicates that the star seen then was a red giant. It looks that what they have seen in antiquity was Sirius B which was then a red giant and it collapsed to form a white dwarf. Since there is no evidence of a planetary nebula, then the red Sirius paradox can be solved in terms of stellar evolution with mass transfer. Sirius B was the most massive star which evolved to a red giant and filled the Roche lobe. Mass transfer to Sirius A occurred through the Lagrangian point. Sirius A then became more massive while Sirius B lost mass and shrank. Sirius B then collapsed abruptly into a white dwarf. In the case of Algol, Ptolmy observed it as white star but it was red at the time of El sufi. At present it is white. The rate of mass transfer from Sirius B to Sirius A, and from Algol B to A is estimated from observational data of colour change from red to bullish white to be 0.0021 and 0.0024 M⊙/yr respectively.

  16. A thick cloud of Neptune Trojans and their colors.

    PubMed

    Sheppard, Scott S; Trujillo, Chadwick A

    2006-07-28

    The dynamical and physical properties of asteroids offer one of the few constraints on the formation, evolution, and migration of the giant planets. Trojan asteroids share a planet's semimajor axis but lead or follow it by about 60 degrees near the two triangular Lagrangian points of gravitational equilibrium. Here we report the discovery of a high-inclination Neptune Trojan, 2005 TN(53). This discovery demonstrates that the Neptune Trojan population occupies a thick disk, which is indicative of "freeze-in" capture instead of in situ or collisional formation. The Neptune Trojans appear to have a population that is several times larger than the Jupiter Trojans. Our color measurements show that Neptune Trojans have statistically indistinguishable slightly red colors, which suggests that they had a common formation and evolutionary history and are distinct from the classical Kuiper Belt objects.

  17. Estudio de cúmulos estelares de la Nube Menor de Magallanes: fotometría de Washington de 14 cúmulos de edad intermedia

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Bica, E.; Geisler, D.; Ahumada, A. V.; Girardi, L.

    We present CCD photometry in the Washington system C and T1 bands of 14 star clusters of the Small Magellanic Cloud (SMC). We determine ages and metallicities using theoretical isochrones, the T1 parameter and the Red Giant Standard method. Excepting IC 1708, all the observed clusters are aged between 1 and 6.3 Gyr, while their metallicities ([Fe/H]) range be- tween -0.7 and -1.4. Two important cluster formation episodes in the SMC, dated at 2 Gyr and 5 Gyr ago, were detected. During approximately the first 4 Gyr in the SMC lifetime, the cluster formation rate turned out to be constant. A detailed version of this work can be seen in Piatti et al. (2011, MNRAS, 417, 1559). FULL TEXT IN SPANISH

  18. Laboratory submillimeter transition frequencies of Li-7H and Li-6H. [used for abundance investigations in red giant stars

    NASA Technical Reports Server (NTRS)

    Plummer, G. M.; Herbst, E.; De Lucia, F. C.

    1984-01-01

    The fundamental (J = 1 - 0) rotational transition frequencies of Li-7H and Li-6H in their ground (v = 0) vibrational states and of Li-7H in its first excited (v = 1) vibrational state have been measured in the laboratory. Use of these transition frequencies should permit astronomical investigations of LiH abundances in red giant stars of high lithium abundance.

  19. VizieR Online Data Catalog: Carbon in red giants in GCs and dSph galaxies (Kirby+, 2015)

    NASA Astrophysics Data System (ADS)

    Kirby, E. N.; Guo, M.; Zhang, A. J.; Deng, M.; Cohen, J. G.; Guhathakurta, P.; Shetrone, M. D.; Lee, Y. S.; Rizzi, L.

    2015-07-01

    We obtained Keck/DEIMOS spectra of the carbon G band in red giants in Milky Way (MW) globular clusters (GCs) and dwarf spheroidal galaxies (dSphs) between 2011 Jul 29 and 2012 Mar 19. The GCs are NGC 2419, NGC 4590 (M68), and NGC 7078 (M15). The dSphs are Sculptor, Fornax, Ursa Minor, and Draco. See table 1. (3 data files).

  20. Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce II Lines in the H-band Spectral Window

    NASA Astrophysics Data System (ADS)

    Cunha, Katia; Smith, Verne V.; Hasselquist, Sten; Souto, Diogo; Shetrone, Matthew D.; Allende Prieto, Carlos; Bizyaev, Dmitry; Frinchaboy, Peter; García-Hernández, D. Anibal; Holtzman, Jon; Johnson, Jennifer A.; Jőnsson, Henrik; Majewski, Steven R.; Mészáros, Szabolcs; Nidever, David; Pinsonneault, Mark; Schiavon, Ricardo P.; Sobeck, Jennifer; Skrutskie, Michael F.; Zamora, Olga; Zasowski, Gail; Fernández-Trincado, J. G.

    2017-08-01

    Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between λ1.51 and 1.69 μm). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R=λ /δ λ ={{100,000}}) Fourier Transform Spectrometer (FTS) spectrum of α Boo and an APOGEE spectrum (R = 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using α Boo as a standard star, with the absolute cerium abundance in α Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N- and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.

  1. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulatedmore » cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.« less

  2. Molecular clouds in Orion and Monoceros. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Maddalena, R. J.

    1986-01-01

    About one-eighth of a well-sampled 850 deg. sq. region of Orion and Monoceros shows CO emission coming from either local clouds (d < 1 kpc) lying as much as 25 deg. from the galactic plane or from more distant objects located within a few degrees of the plane. Local giant clouds associated with Orion A and B have enhanced temperatures and densities near their western edges possibly due to compression by a high pressure region created by approx.10 supernovae that occurred in the Orion OB association. Another giant cloud associated with Mon R2 may be related to the Orion clouds. Two filamentary clouds (one possibly 300 pc long but 10 pc wide) may represent a new class of object. An expanding ring of clouds concentric with the H II region ionized by lambda Ori probably constitute fragments of the original cloud from which lambda Ori formed; the gas pressure of the H II region and the rocket effect probably disrupted the original cloud. At a distance of 3 kpc, a large (250 x 100 pc) and massive (7-11x10 to the 5th power solar mass) cloud was found with the unusual combination of low temperatures (T sub R < 2.7 K) and wide spectral lines (approx. 7 km /sec). Most of the signs of star formation expected for such a massive cloud being absent, this may be a young cloud that has not yet started to form stars. The approx. 15 large clouds found in the outer galaxy (1 approx. 206 deg. - 220 deg.) probably lie in two spiral arms. The distribution of outer galaxy clouds and a comparison of the properties of these clouds and those of local clouds are given.

  3. ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bildsten, Lars; Paxton, Bill; Moore, Kevin

    2012-01-15

    All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled bymore » space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.« less

  4. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  5. Metallicity of Young and Old Stars in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Tikhonov, N. A.

    2018-01-01

    Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.

  6. The search for multiple populations in Magellanic Cloud Clusters IV: Coeval multiple stellar populations in the young star cluster NGC 1978

    NASA Astrophysics Data System (ADS)

    Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.

    2018-04-01

    We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the sub-giant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Due to its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star-formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star-formation epochs have occurred within NGC 1978. First, we use UV CMDs to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the AGB scenario for the origin of multiple populations. Second, we estimate the broadness of the main sequence turnoff (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extendend MSTO in intermediate age clusters, while it fully supports predictions from the stellar rotation model.

  7. The search for multiple populations in Magellanic Cloud clusters - IV. Coeval multiple stellar populations in the young star cluster NGC 1978

    NASA Astrophysics Data System (ADS)

    Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.

    2018-07-01

    We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the subgiant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Because of its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star formation epochs have occurred within NGC 1978. First, we use ultraviolet colour-magnitude diagrams (CMDs) to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the asymptotic giant branch scenario for the origin of multiple populations. Second, we estimate the broadness of the main-sequence turn-off (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extended MSTO in intermediate-age clusters, while it fully supports predictions from the stellar rotation model.

  8. Star Shows It Has The Right Stuff

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Astronomers have used an observation by NASA's Chandra X-ray Observatory to make the best case yet that a star can be engulfed by its companion star and survive. This discovery will help astronomers better understand how closely coupled stars, and perhaps even stars and planets, evolve when one of the stars expands enormously in its red giant phase. The binary star system known as V471 Tauri comprises a white dwarf star (the primary) in a close orbit -- one thirtieth of the distance between Mercury and the Sun -- with a normal Sun-like star (the secondary). Chandra's data showed that the hot upper atmosphere of the secondary star has a deficit of carbon atoms relative to nitrogen atoms. "This deficit of carbon atoms is the first clear observational evidence that the normal star was engulfed by its companion in the past," according to Jeremy Drake of the Smithsonian Astrophysical Observatory in Cambridge, MA, who coauthored an article on V471 in The Astrophysical Journal Letters with Marek Sarna of the N. Copernicus Astronomical Center in Poland. The white dwarf star was once a star several times as massive as the Sun. Nuclear fusion reactions in the core of such a star convert carbon into nitrogen over a period of about a billion years. When the fuel in the core of the star is exhausted, the core collapses, triggering more energetic nuclear reactions that cause the star to expand and transform into a red giant before eventually collapsing to become a white dwarf. The carbon-poor material in the core of the red giant is mixed with outer part of the star, so its atmosphere shows a deficit of carbon, as compared with Sun-like stars. The X-ray spectra of a red giant star (top panel) and a Sun-like star (bottom panel) show the large difference in the peaks due to carbon atoms in the two stars. Theoretical calculations indicate that a red giant in a binary system can completely envelop its companion star and dramatically affect its evolution. During this common envelope phase, friction causes the companion star to spiral inward rapidly where it will either be destroyed by the red giant, or it will survive when much of the envelope is spun away. If the companion star manages to survive, it will bear the marks of its ordeal in the form of contamination by carbon-poor material that it accreted while it was inside the red giant envelope. The X-ray spectrum of V471 Tauri in the middle panel shows just this effect - the carbon peak is intermediate between that of a Sun-like star and an isolated red giant star. The data indicate that about 10 percent of the star's mass has been accreted from the red giant. In the future the companion star can return the favor when it expands and dumps material back onto the white dwarf. If enough material is dumped on the white dwarf, it could cause the white dwarf to explode as a supernova. "It's a dog-eat-dog world out there," observed Drake. V471 Tau was observed for approximately one day by Chandra using the Low Energy Transmission Grating and High Resolution Camera on January 24-25, 2002. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  9. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Moos, H. W.; Linsky, J. L.

    1981-01-01

    Evidence is presented that many of the weak features observed with International Ultraviolet Explorer (IUE) in the far-ultraviolet (1150-2000 A) spectrum of the archetype red giant Arcturus (K2 III) are A-X fourth positive bands of carbon monoxide excited by chromospheric emissions of O I, C I, and H I. The appearance of fluorescent CO bands near the wavelength of commonly used indicators of high-temperature (T greater than 20,000 K) plasma, such as C II at wavelength 1335 and C IV at wavelength 1548, introduces a serious ambiguity in diagnosing the presence of hot material in the outer atmospheres of the cool giants by means of low-dispersion IUE spectra.

  10. Mapping of the extinction in giant molecular clouds using optical star counts

    NASA Astrophysics Data System (ADS)

    Cambrésy, L.

    1999-05-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total individual masses M and their maximum of extinction. I show that the relation between the mass contained within an iso-extinction contour and the extinction is similar from cloud to cloud and allows the extrapolation of the maximum of extinction in the range 5.7 to 25.5 magnitudes. I found that about half of the mass is contained in regions where the visual extinction is smaller than 1 magnitude. The star count method used on large scale ( ~ 250 square degrees) is a powerful and relatively straightforward method to estimate the mass of molecular complexes. A systematic study of the all sky would lead to discover new clouds as I did in the Lupus complex for which I found a sixth cloud of about 10(4) M_⊙.

  11. Red-giant evolution, metallicity, and new bounds on hadronic axions

    NASA Technical Reports Server (NTRS)

    Haxton, W. C.; Lee, K. Y.

    1991-01-01

    Stellar cooling by nuclear axion emission is explored, identifying those special isotopes that dominate this process for temperatures from 10 to the 7th to 10 to the 9th K. It is argued that such nuclear energy-loss mechanisms are distinctive because the effects track metallicity. Three observables associated with evolution of stars along the red-giant and horizontal branches are shown to impose new and restrictive constraints on axions in the hadronic window.

  12. Metal-poor stars. IV - The evolution of red giants.

    NASA Technical Reports Server (NTRS)

    Rood, R. T.

    1972-01-01

    Detailed evolutionary calculations for six Population-II red giants are presented. The first five of these models are followed from the zero age main sequence to the onset of the helium flash. The sixth model allows the effect of direct electron-neutrino interactions to be estimated. The updated input physics and evolutionary code are described briefly. The results of the calculations are presented in a manner pertinent to later stages of evolutions and suitable for comparison with observations.

  13. Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Matsuno, Tadafumi; Bharat Kumar, Yerra; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-01-01

    Li abundances in the bulk of low-mass metal-poor stars are well reproduced by stellar evolution models adopting a constant initial abundance. However, a small number of stars have exceptionally high Li abundances, for which no convincing models have been established. We report on the discovery of 12 very metal-poor stars that have large excesses of Li, including an object having more than 100 times higher Li abundance than the values found in usual objects, which is the largest excess in metal-poor stars known to date. The sample is distributed over a wide range of evolutionary stages, including five unevolved stars, showing no clear abundance anomaly in other elements. The results indicate the existence of an efficient process to enrich Li in a small fraction of low-mass stars at the main-sequence or subgiant phase. The wide distribution of Li-rich stars along the red giant branch could be explained by the dilution of surface Li by mixing that occurs when the stars evolve into red giants. Our study narrows down the problem to be solved in order to understand the origins of Li excess found in low-mass stars, suggesting the presence of an unknown process that affects the surface abundances preceding red giant phases. This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon stars of the Large Magellenic Clouds and picking out very red stars in the red giant branch range. Observations will need to be done of these candidates to further confirm if they are carbon stars and are members of their respective globular cluster.

  15. PPR Great Red Spot Temperature Map

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This map shows temperature for the region around Jupiter's Great Red Spot and an area to the northwest. It corresponds to a level in Jupiter's atmosphere where the pressure is 1/2 of the of the Earth's at sea level (500 millibars), the same as it is near 6000 meters (20,000 feet) above sea level on Earth. The center of Great Red Spot appears colder than the surrounding areas, where air from below is being brought up. The 'panhandle' to the northwest is warmer and drier, and the gases there are descending, so it is much clearer of clouds. Compare this map to one released earlier at a higher place in the atmosphere (250 millibars or 12000 meters). The center of the Great Red Spot is warmer lower in the atmosphere, and a white 'hot spot' appears in this image that is not present at the higher place. This map was made from data taken by the Photopolarimeter/Radiometer (PPR) instrument on June 26, 1996.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment.

    JPL manages the Galileo mission for NASA's Office of Space Science, Washington, D.C.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  16. At the Heart of Blobs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's concept illustrates one possible answer to the puzzle of the 'giant galactic blobs.' These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other.

    Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs.

    If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept.

  17. Jupiter - Io In Front of Jupiter Turbulent Clouds

    NASA Image and Video Library

    1996-11-13

    This photograph of the southern hemisphere of Jupiter was obtained by Voyager 2 on June 25, 1979, at a distance of 12 million kilometers (8 million miles). The Voyager spacecraft is rapidly nearing the giant planet, with closest approach to occur at 4:23 pm PDT on July 9. Seen in front of the turbulent clouds of the planet is Io, the innermost of the large Galilean satellites of Jupiter. Io is the size of our moon. Voyager discovered in early March that Io is the most volcanically active planetary body known in the solar system, with continuous eruptions much larger than any that take place on the Earth. The red, orange, and yellow colors of Io are thought to be deposits of sulfur and sulfur compounds produced in these eruptions. The smallest features in either Jupiter or Io that can be distinguished in this picture are about 200 kilometers (125 miles) across; this resolution, it is not yet possible to identify individual volcanic eruptions. Monitoring of the erupture activity of Io by Voyager 2 will begin about July 5 and will extend past the encounter July 9. http://photojournal.jpl.nasa.gov/catalog/PIA00371

  18. Can comet clouds around neutron stars explain gamma-ray bursts?

    NASA Technical Reports Server (NTRS)

    Tremaine, S.; Zytkow, A. N.

    1986-01-01

    The proposal of Harwit and Salpeter (1973) that gamma-ray bursts are due to impacts of comets onto neutron stars is examined further. It is assumed that most stars are formed with comet clouds similar to the Oort comet cloud which surrounds the sun, and it is suggested that there are at least four mechanisms by wich neutron stars may be formed while retaining their comet clouds: a spherically symmetric supernova explosion in an isolated star, accretion-induced collapse of a white dwarf in a cataclysmic variable with a very low mass secondary, accretion-induced collapse of a white dwarf in a wide binary with a low-mass giant companion, and coalescence of a close binary composed of two white dwarfs. Estimates are given of the cometary impact rates for such systems. It is suggested that if the wide binary scenario is correct, optical bursts may arise from the impact of comets onto the white dwarf remnant of the giant companion.

  19. The magnetic fields at the surface of active single G-K giants

    NASA Astrophysics Data System (ADS)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro. Our results show that the magnetic fields of these giants are produced by a dynamo, possibly of α-ω origin since Ro is in general smaller than unity. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, η Psc) are detected with magnetic field strength at the sub-Gauss level. Besides Arcturus, these stars were not considered to be active giants before this study and are very similar in other respects to ordinary giants, with S-index indicating consistency with basal chromospheric flux. Tables 6-8 are available in electronic form at http://www.aanda.orgBased on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France, and at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, CNRS/INSU and the University of Hawaii.

  20. The Monoceros R2 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Carpenter, J. M.; Hodapp, K. W.

    2008-12-01

    The Monoceros R2 region was first recognized as a chain of reflection nebulae illuminated by A- and B-type stars. These nebulae are associated with a giant molecular cloud that is one of the closest massive star forming regions to the Sun. This chapter reviews the properties of the Mon R2 region, including the namesake reflection nebulae, the large scale molecula= r cloud, global star formation activity, and properties of prominent star forming regions in the cloud.

  1. Stardust from Supernovae and Its Isotopes

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter

    Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named "presolar grains." They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.

  2. Color vision in the giant panda (Ailuropoda melanoleuca).

    PubMed

    Kelling, Angela S; Snyder, Rebecca J; Marr, M Jackson; Bloomsmith, Mollie A; Gardner, Wendy; Maple, Terry L

    2006-05-01

    Hue discrimination abilities of giant pandas were tested, controlling for brightness. Subjects were 2 adult giant pandas (1 male and 1 female). A simultaneous discrimination procedure without correction was used. In five tasks, white, black, and five saturations each of green, blue, and red served as positive stimuli that were paired with one or two comparison stimuli consisting of 16 saturations of gray. To demonstrate discrimination, the subjects were required to choose the positive stimulus in 16 of 20 trials (80% correct) for three consecutivesessions. Both subjects reached criterion forgreen and red. The female subject also reached criterion for blue. The male was not tested for blue. This study is a systematic replication of Bacon and Burghardt's (1976) color discrimination experiment on black bears. The results suggest that color vision in the giant panda is comparable to that of black bears and other carnivores that are not strictly nocturnal.

  3. A New Giant Stellar Structure in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Zucker, Daniel B.; Kniazev, Alexei Y.; Bell, Eric F.; Martínez-Delgado, David; Grebel, Eva K.; Rix, Hans-Walter; Rockosi, Constance M.; Holtzman, Jon A.; Walterbos, Rene A. M.; Ivezić, Željko; Brinkmann, J.; Brewington, Howard; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

    2004-09-01

    The Sloan Digital Sky Survey has revealed an overdensity of luminous red giant stars ~3° (40 projected kpc) to the northeast of M31, which we have called Andromeda NE. The line-of-sight distance to Andromeda NE is within ~50 kpc of M31; Andromeda NE is not a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~-11.6 and a central surface brightness of ~29 mag arcsec-2, making it nearly 2 orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Based on its distance and morphology, Andromeda NE is likely undergoing tidal disruption. Andromeda NE's red giant branch color is unlike that of M31's present-day outer disk or the stellar stream reported by Ibata et al., arguing against a direct link between Andromeda NE and these structures. However, Andromeda NE has a red giant branch color similar to that of the G1 clump; it is possible that these structures are both material torn off of M31's disk in the distant past or that these are both part of one ancient stellar stream.

  4. MODELING THE NEAR-UV BAND OF GK STARS. II. NON-LTE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Short, C.; Campbell, Eamonn A.; Pickup, Heather

    We present a grid of atmospheric models and synthetic spectral energy distributions (SEDs) for late-type dwarfs and giants of solar and 1/3 solar metallicity with many opacity sources computed in self-consistent non-local thermodynamic equilibrium (NLTE), and compare them to the LTE grid of Short and Hauschildt (Paper I). We describe, for the first time, how the NLTE treatment affects the thermal equilibrium of the atmospheric structure (T({tau}) relation) and the SED as a finely sampled function of T{sub eff}, log g, and [A/H] among solar metallicity and mildly metal-poor red giants. We compare the computed SEDs to the library ofmore » observed spectrophotometry described in Paper I across the entire visible band, and in the blue and red regions of the spectrum separately. We find that for the giants of both metallicities, the NLTE models yield best-fit T{sub eff} values that are 30-90 K lower than those provided by LTE models, while providing greater consistency between log g values, and, for Arcturus, T{sub eff} values, fitted separately to the blue and red spectral regions. There is marginal evidence that NLTE models give more consistent best-fit T{sub eff} values between the red and blue bands for earlier spectral classes among the solar metallicity GK giants than they do for the later classes, but no model fits the blue-band spectrum well for any class. For the two dwarf spectral classes that we are able to study, the effect of NLTE on derived parameters is less significant. We compare our derived T{sub eff} values to several other spectroscopic and photometric T{sub eff} calibrations for red giants, including one that is less model dependent based on the infrared flux method (IRFM). We find that the NLTE models provide slightly better agreement to the IRFM calibration among the warmer stars in our sample, while giving approximately the same level of agreement for the cooler stars.« less

  5. Determining the Absolute Magnitudes of Galactic-Bulge Red Clump Giants in the Z and Y Filters of the Vista Sky Surveys and the IRAC Filters of the Spitzer Sky Surveys

    NASA Astrophysics Data System (ADS)

    Karasev, D. I.; Lutovinov, A. A.

    2018-04-01

    The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = -0.20 ± 0.04, M Y = -0.470 ± 0.045, M [3.6] = -1.70 ± 0.03, M [4.5] = -1.60 ± 0.03, M [5.8] = -1.67 ± 0.03, and M [8.0] = -1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [ M/H] ≃ 0.40 ( Z ≃ 0.038) with an error of [ M/H] ≃ 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9-10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of 8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200-8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.

  6. ASTEROSEISMOLOGY OF RED GIANTS FROM THE FIRST FOUR MONTHS OF KEPLER DATA: GLOBAL OSCILLATION PARAMETERS FOR 800 STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, D.; Bedding, T. R.; Stello, D.

    2010-11-10

    We have studied solar-like oscillations in {approx}800 red giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red giant branch to the helium main sequence. We investigate the relation between the large frequency separation ({Delta}{nu}) and the frequency of maximum power ({nu}{sub max}) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of {nu}{sub max} and {Delta}{nu} are in qualitative agreement with a simple stellar population model of the Kepler field, including the first evidencemore » for a secondary clump population characterized by M {approx}> 2 M{sub sun} and {nu}{sub max} {approx_equal} 40-110 {mu}Hz. We measured the small frequency separations {delta}{nu}{sub 02} and {delta}{nu}{sub 01} in over 400 stars and {delta}{nu}{sub 03} in over 40. We present C-D diagrams for l = 1, 2, and 3 and show that the frequency separation ratios {delta}{nu}{sub 02}/{Delta}{nu} and {delta}{nu}{sub 01}/{Delta}{nu} have opposite trends as a function of {Delta}{nu}. The data show a narrowing of the l = 1 ridge toward lower {nu}{sub max}, in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset {epsilon} in the asymptotic relation and find a clear correlation with {Delta}{nu}, demonstrating that it is related to fundamental stellar parameters. Finally, we present the first amplitude-{nu}{sub max} relation for Kepler red giants. We observe a lack of low-amplitude stars for {nu}{sub max} {approx}> 110 {mu}Hz and find that, for a given {nu}{sub max} between 40 and 110 {mu}Hz, stars with lower {Delta}{nu} (and consequently higher mass) tend to show lower amplitudes than stars with higher {Delta}{nu}.« less

  7. Evolved massive stars in W33 and in GMC 23.3-0.3

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Menten, Karl M.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, Michael; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, Rosie; Davies, Ben; MacKenty, John W.

    2015-08-01

    We have conducted an infrared spectroscopic survey for massive evolved stars and/or clusters in the Galactic giant molecular clouds G23.3-0.3 and W33. A large number of extraordinary sub-clumps/clusters of massive stars were detected. The spatial and temporal distribution of these massive stars yields information on the star formation history of the clouds.In G23.3-0.3, we discovered a dozen massive O-type stars, one candidate luminous blue variable, and several red supergiants. The O-type stars have masses from 25 to 50 Msun and ages of 5-8 Myr, while the RSGs belong to a burst that occurred 20-30 Myr ago. Therefore, GMC G23.3-0.3 has had one of the longest known histories of star formation (20-30 Myr). GMC G23.3-0.3 is rich in HII regions and supernova remnants; we detected massive stars in the cores of SNR W41 and of SNR G22.7-0.2.In W33, we detected a few evolved O-type stars and one Wolf-Rayet star, but none of the late-type objects has the luminosity of a red supergiant. W33 is characterized by discrete sources and has had at least 3-5 Myr of star formation history, which is now propagating from west to east. While our detections of massive evolved stars in W33 are made on the west side of the cloud, several dense molecular cores that may harbor proto clusters have recently been detected on the east side of the cloud by Immer et al. (2014).Messineo, Maria; Menten, Karl M.; Figer, Donald F.; Davies, Ben; Clark, J. Simon; Ivanov, Valentin D.Kudritzki, Rolf-Peter; Rich, R. Michael; MacKenty, John W.; Trombley, Christine 2014A&A...569A..20MMessineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Francisco, Najarro; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.H. Rosie; Davies, Ben; submitted to ApJ.

  8. A dearth of OH/IR stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  9. The spectroscopic indistinguishability of red giant branch and red clump stars

    NASA Astrophysics Data System (ADS)

    Masseron, T.; Hawkins, K.

    2017-01-01

    Context. Stellar spectroscopy provides useful information on the physical properties of stars such as effective temperature, metallicity and surface gravity. However, those photospheric characteristics are often hampered by systematic uncertainties. The joint spectro-sismo project (APOGEE+Kepler, aka APOKASC) of field red giants has revealed a puzzling offset between the surface gravities (log g) determined spectroscopically and those determined using asteroseismology, which is largely dependent on the stellar evolutionary status. Aims: Therefore, in this letter, we aim to shed light on the spectroscopic source of the offset. Methods: We used the APOKASC sample to analyse the dependencies of the log g discrepancy as a function of stellar mass and stellar evolutionary status. We discuss and study the impact of some neglected abundances on spectral analysis of red giants, such as He and carbon isotopic ratio. Results: We first show that, for stars at the bottom of the red giant branch where the first dredge-up had occurred, the discrepancy between spectroscopic log g and asteroseismic log g depends on stellar mass. This seems to indicate that the log g discrepancy is related to CN cycling. Among the CN-cycled elements, we demonstrate that the carbon isotopic ratio (12C /13C) has the largest impact on stellar spectrum. In parallel, we observe that this log g discrepancy shows a similar trend as the 12C /13C ratios as expected by stellar evolution theory. Although we did not detect a direct spectroscopic signature of 13C, other corroborating evidences suggest that the discrepancy in log g is tightly correlated to the production of 13C in red giants. Moreover, by running the data-driven algorithm (the Cannon) on a synthetic grid trained on the APOGEE data, we try to evaluate more quantitatively the impact of various 12C /13C ratios. Conclusions: While we have demonstrated that 13C indeed impacts all parameters, the size of the impact is smaller than the observed offset in log g. If further tests confirm that 13C is not the main element responsible of the log g problem, the number of spectroscopic effects remaining to be investigated is now relatively limited (if any).

  10. Carbon and nitrogen abundances in the giant stars of the globular clusters M3 and M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suntzeff, N.B.

    Carbon and nitrogen abundances, as well as the strengths of calcium II H and K and the ..delta..v = 0 cyanogen band, have been measured in red giant stars in the globular clusters M3 and M13. The data consist of spectrophotometric scans of low resolution (10 A) of 29 giants in M3 and 35 giants in M13 in the wavelength region 3000--5000 A.

  11. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  12. Molecular phylogeny of the red panda (Ailurus fulgens).

    PubMed

    Slattery, J P; O'Brien, S J

    1995-01-01

    The phylogenetic placement of the red panda (Ailurus fulgens) and the giant panda (Ailuropoda melanoleuca) has been an evolutionary enigma since their original descriptions in the nineteenth century. A series of recent molecular analyses led to a consensus that the giant panda's ancestors were derived from early bears (Ursidae), but left unsettled the phylogenetic relationship of the red panda. Previous molecular and morphological phylogenies were inconclusive and varied among placement of the red panda within the raccoon family (Procyonidae), within the bear family (Ursidae), or in a separate family of carnivores equidistant between the two. To examine a relatively ancient (circa 20-30 million years before the present, MYBP) phylogenetic divergence, we used two slowly evolving genetic markers: mitochondrial 12S rRNA sequence and 592 fibroblast proteins resolved by two dimensional gel electrophoresis. Four different carnivore outgroup species, including dog (Canidae: Canis familiaris), cat (Felidae: Felis catus), fanaloka (Viverridae: Fossa fossa), and mongoose (Herpestidae: Galidia elegans), were selected to identify the root of the phylogenetic topologies. Phylogenetic reconstruction by distance-based methods, maximum parsimony, and maximum likelihood clearly indicate a distinct bifurcation forming the Ursidae and the Procyonidae. Further, our data consistently place the red panda as an early divergence within the Procyonidae radiation and confirm the inclusion of giant panda in the Ursidae lineage.

  13. Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter makes the mosaic photo, showing the Great Red Spot as a swirling vortex type motion. This motion is also seen in several nearby white clouds. These bright white clouds and the Red Spot are rotating in a counter clockwise direction, except the peculiar filimentary cloud to the right of the Red Spot is going clockwise. The top of the picture shows the turbulence from the equatorial jet and more northerly atmospheric currents. The smallest clouds shown are only 70 miles (120 km) across.

  14. The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1987-01-01

    The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.

  15. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, In Sung; Lee, Myung Gyoon, E-mail: isjang@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch withmore » isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.« less

  16. The tip of the red giant branch as a distance indicator for resolved galaxies. 2: Computer simulations

    NASA Technical Reports Server (NTRS)

    Madore, Barry F.; Freedman, Wendy L.

    1995-01-01

    Based on both empirical data for the nearby galaxies, and on computer simulations, we show that measuring the position of the tip of the first-ascent red-giant branch provides a means of obtaining the distances to nearby galaxies with a precision and accuracy comparable to using Cepheids and/or RR Lyrae variables. We present an analysis of synthetic I vs (V-I) color magnitude diagrams of Population 2 systems to investigate the use of the observed discontinuity in the I-band luminosity function as a primary distance indicator. In the simulations we quantify the effects (1) signal to noise, (2) crowding, (3) population size, and (4) non-giant-branch-star contamination, on the method adopted for detecting the discontinuity,, measuring its luminosity, and estimating its uncertainity. We discuss sources of systematic error in the context of observable parameters, such as the signal-to-noise ratio and/or surface brightness. The simulations are then scaled to observed color-magnitude diagrams. It is concluded, that from the ground the tip of the red-giant-branch method can be sucessfully used to determine distances accurate to +/- 10% for galaxies out to 3 Mpc (mu approximately 27.5 mag); and from space a factor of four further in distance (mu approximately 30.6 mag) can be reached using HST. This method can be applied whereever a metal-poor population (-2.0 less than Z less than -0.7) of red-giant stars is detected (whose age is in the range 7-17 Gyr), whether that population resides in the halo of a spiral galaxy, the extended outer disk of a dwarf irregular, or in the outer periphery of an elliptical galaxy.

  17. Characterizing Cold Giant Planets in Reflected Light: Lessons from 50 Years of Outer Solar System Exploration and Observation

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott; Hammel, Heidi

    2014-01-01

    A space based coronagraph, whether as part of the WFIRST/AFTA mission or on a dedicated space telescope such as Exo-C or -S, will be able to obtain photometry and spectra of multiple gas giant planets around nearby stars, including many known from radial velocity detections. Such observations will constrain the masses, atmospheric compositions, clouds, and photochemistry of these worlds. Giant planet albedo models, such as those of Cahoy et al. (2010) and Lewis et al. (this meeting), will be crucial for mission planning and interpreting the data. However it is equally important that insights gleaned from decades of solar system imaging and spectroscopy of giant planets be leveraged to optimize both instrument design and data interpretation. To illustrate these points we will draw on examples from solar system observations, by both HST and ground based telescopes, as well as by Voyager, Galileo, and Cassini, to demonstrate the importance clouds, photochemical hazes, and various molecular absorbers play in sculpting the light scattered by solar system giant planets. We will demonstrate how measurements of the relative depths of multiple methane absorption bands of varying strengths have been key to disentangling the competing effects of gas column abundances, variations in cloud height and opacity, and scattering by high altitude photochemical hazes. We will highlight both the successes, such as the accurate remote determination of the atmospheric methane abundance of Jupiter, and a few failures from these types of observations. These lessons provide insights into technical issues facing spacecraft designers, from the selection of the most valuable camera filters to carry to the required capabilities of the flight spectrometer, as well as mission design questions such as choosing the most favorable phase angles for atmospheric characterization.

  18. NIMS Spectral Maps of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Near-Infrared Mapping Spectrometer (NIMS) instrument looks at Jupiter's Great Red Spot, in these views from June 26, 1996. NIMS studies infrared wavelengths of light that our eye cannot see. These maps are at four different infrared wavelengths, each one picked to reveal something different about the atmosphere.

    The top image is a false color map of a wavelength that is at the red edge of our ability to see. It shows the shapes of features that we would see with our eyes.

    The second map is of ammonia ice, red showing where the most ice is, blue where none exists. The differences between this and the first image are due to the amount and size of ammonia ice crystals.

    The third map down is from a wavelength that shows cloud heights, with the highest clouds in red, and the lowest in blue.

    The bottom map uses a wavelength that shows the hot Jupiter shining through the clouds. Red represents the thinnest clouds, and blue is thickest where it is more difficult to see below. Comparing the bottom two images, note that the highest clouds are in the center of the Great Red Spot, while there are relatively few clouds around the edges.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  19. A distance estimate to the Cygnus Loop based on the distances to two stars located within the remnant

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Milisavljevic, Dan

    2018-04-01

    Underlying nearly every quantitative discussion of the Cygnus Loop supernova remnant is uncertainty about its distance. Here, we present optical images and spectra of nebulosities around two stars whose mass-loss material appears to have interacted with the remnant's expanding shock front and thus can be used to estimate the Cygnus Loop's distance. Narrow passband images reveal a small emission-line nebula surrounding an M4 red giant near the remnant's eastern nebula NGC 6992. Optical spectra of the nebula show it to be shock-heated with significantly higher electron densities than seen in the remnant's filaments. This along with a bow-shaped morphology suggests it is likely red giant mass-loss material shocked and accelerated by passage of the Cygnus Loop's blast wave. We also identify a B7 V star located along the remnant's northwestern limb, which also appears to have interacted with the remnant's shock wave. It lies within a small arc of nebulosity in an unusually complex region of curved and distorted filaments along the remnant's northern shock front suggestive of a localized disturbance of the shock front due to the B star's stellar winds. Based on the assumption that these two stars lie inside the remnant, combined with an estimated distance to a molecular cloud situated along the remnant's western limb, we propose a distance to the Cygnus Loop of 1.0 ± 0.2 kpc. Although larger than several recent estimates of 500-800 pc, a distance ≃1 kpc helps resolve difficulties with the remnant's postshock cosmic ray and gas pressure ratio and estimated supernova explosion energy.

  20. Asteroseismology of Red Giant stars

    NASA Astrophysics Data System (ADS)

    Tarrant, N. J.; Chaplin, W. J.; Elsworth, Y. P.; Spreckley, S. A.; Stevens, I. R.

    2008-12-01

    Sun-like oscillations, that is p-modes excited stochastically by convective noise, have now been observed in a number of Red Giant stars. Compared to those seen in the Sun, these modes are of large amplitude and long period, making the oscillations attractive prospects for observation. However, the low Q-factor of these modes, and issues relating to the rising background at low frequencies, present some interesting challenges for identifying modes and determining the related asteroseismic parameters. We report on the analysis procedure adopted for peak-bagging by our group at Birming- ham, and the techniques used to robustly ensure these are not a product of noise. I also show results from a number of giants extracted from multi-year observations with the SMEI instrument

  1. HI emission from the red giant Y CVn with the VLA and FAST

    NASA Astrophysics Data System (ADS)

    Hoai, Do T.; Nhung, Pham T.; Matthews, Lynn D.; Gérard, Eric; Le Bertre, Thibaut

    2017-07-01

    Imaging studies with the Very Large Array (VLA) have revealed HI emission associated with the extended circumstellar shells of red giants. We analyze the spectral map obtained on Y CVn, a J-type carbon star on the Asymptotic Giant Branch. The HI line profiles can be interpreted with a model of a detached shell resulting from the interaction of a stellar outflow with the local interstellar medium. We reproduce the spectral map by introducing a distortion along a direction corresponding to the star’s motion in space. We then use this fitting to simulate observations expected from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), and discuss its potential for improving our description of the outer regions of circumstellar shells.

  2. Mid-IR Atmospheric Tracers of Jupiter's Storm Oval BA

    NASA Astrophysics Data System (ADS)

    Shannon, Matthew J.; Orton, G.; Fletcher, L.

    2010-10-01

    The 2005-2006 reddening of a major anticyclonic storm, known as Oval BA, in Jupiter's turbulent atmosphere may well be a paradigm for the formation of red-colored vortices on the giant planets, including Jupiters Great Red Spot. Mid-infrared observations can be effectively used to determine physical and chemical properties of the atmosphere, and we present the results of mid-infrared thermal imaging observations, collected from NASAs Infrared Telescope Facility (IRTF) in Hawaii, ESOs Very Large Telescope (VLT) in Chile and the NAOJ Subaru Telescope in Hawaii between spring of 2005 and summer of 2006. These address the role of atmospheric tracers, including cloud opacity, the ammonia gas content, and the variation of the fraction of para- to ortho-hydrogen from local thermal equilibrium in assessing the rate of upwelling. These properties were retrieved with the Oxford-developed code, Nemesis, with the purpose of providing constraints on dynamical models in an effort to identify the mechanism for the color change. The most obvious change is that the temperature gradient from the inner to the outer part of Oval BA increased over the time of the color change, indicating a strengthening of the intensity of the vortex.

  3. Supernova 1987A: 18 months later

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), approx. 50 kpc away. The supernova star was a massive star of approx. 15 to 20 solar mass. Observations now show that it was once a red giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red (supergiant). Of particular importance to physicsts is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2 to 4 x 10 to the 53rd power ergs emitted in neutrinos and a temperature, T sub nu e, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. The anticipated frequency of collapse events in our Galaxy is discussed.

  4. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  5. Tracing the origin of the panda's thumb

    NASA Astrophysics Data System (ADS)

    Abella, Juan; Pérez-Ramos, Alejandro; Valenciano, Alberto; Alba, David M.; Ercoli, Marcos D.; Hontecillas, Daniel; Montoya, Plinio; Morales, Jorge

    2015-06-01

    We investigate the relative development of the carnivoran radial sesamoids to untangle the evolution of this iconic structure. In the pandas (both giant and red), this `false thumb' is known to perform a grasping role during bamboo feeding in both the red and giant pandas. An original locomotor role has been inferred for ailurids, but this remains to be ascertained for ursids. A large sample of radial sesamoids of Indarctos arctoides from the Miocene of Batallones-3 (Spain) indicates that this early ailuropodine bear displayed a relatively hypertrophied radial sesamoid, with a configuration more similar to that of the red panda and other carnivorans than to that of giant pandas. This false thumb is the first evidence of this feature in the Ursidae, which can be linked to a more herbivorous diet. Moreover, in the two extant pandas, the false thumb should not be interpreted as an anatomical convergence, but as an exaptive convergence regarding its use during the bamboo feeding, which changes the evolutionary view of this singular structure.

  6. Arching Eruption

    NASA Image and Video Library

    2015-06-30

    NASA’s Solar Dynamics Observatory caught this image of an eruption on the side of the sun on June 18, 2015. The eruption ultimately escaped the sun, growing into a substantial coronal mass ejection, or CME — a giant cloud of solar material traveling through space. This imagery is shown in the 304 Angstrom wavelength of extreme ultraviolet light, a wavelength that highlights material in the low parts of the sun’s atmosphere and that is typically colorized in red. The video clip covers about four hours of the event. Credit: NASA/Goddard/SDO Download: svs.gsfc.nasa.gov/goto?11908 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Polarization and studies of evolved star mass loss

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Riebel, David; Meixner, Margaret

    2012-05-01

    Polarization studies of astronomical dust have proven very useful in constraining its properties. Such studies are used to constrain the spatial arrangement, shape, composition, and optical properties of astronomical dust grains. Here we explore possible connections between astronomical polarization observations to our studies of mass loss from evolved stars. We are studying evolved star mass loss in the Large Magellanic Cloud (LMC) by using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We use the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS), in order to model this mass loss. To model emission of polarized light from evolved stars, however, we appeal to other radiative transfer codes. We probe how polarization observations might be used to constrain the dust shell and dust grain properties of the samples of evolved stars we are studying.

  8. Two New Super Li-rich Core He-burning Giants: A New Twist to the Long Tale of Li Enhancement in K Giants

    NASA Astrophysics Data System (ADS)

    Bharat Kumar, Yerra; Singh, Raghubar; Eswar Reddy, B.; Zhao, Gang

    2018-05-01

    In this Letter we report two new super Li-rich K giants, KIC2305930 and KIC12645107, with Li abundances exceeding that of the interstellar medium (ISM; A(Li) ≥ 3.2 dex). Importantly, both of the giants have been classified as core He-burning red clump (RC) stars based on asteroseismic data from Kepler mission. Also, both of the stars are found to be low mass (M ≈ 1.0 M ⊙), which, together with an evidence of their evolutionary status of being RC stars, implies that the stars have gone through both the luminosity bump and He-flash during their red giant branch (RGB) evolution. The stars’ large Li abundance and evolutionary phase suggest that Li enrichment occurred very recently, probably at the tip of the RGB either during He-flash, an immediate preceding event on the RGB, or by some kind of external event such as merger of an RGB star with white dwarf. The findings will provide critical constraints to theoretical models for understanding of Li enhancement origin in RGB stars.

  9. Submillimeter Array {sup 12}CO (2-1) Imaging of the NGC 6946 Giant Molecular Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ya-Lin; Sakamoto, Kazushi; Pan, Hsi-An, E-mail: yalinwu@email.arizona.edu

    2017-04-10

    We present a {sup 12}CO (2–1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc are generally more luminous and turbulent, some of which have luminosities >10{sup 6} K km s{sup −1} pc{sup 2} and velocity dispersions >10 km s{sup −1}. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGCmore » 6946 has a shallower slope (index > −2) in the inner region, and a steeper slope (index < −2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.« less

  10. GLOBAL ANALYSIS OF KOI-977: SPECTROSCOPY, ASTEROSEISMOLOGY, AND PHASE-CURVE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Sato, Bun'ei; Kobayashi, Atsushi

    2015-01-20

    We present a global analysis of KOI-977, one of the planet host candidates detected by Kepler. The Kepler Input Catalog (KIC) reports that KOI-977 is a red giant, for which few close-in planets have been discovered. Our global analysis involves spectroscopic and asteroseismic determinations of stellar parameters (e.g., mass and radius) and radial velocity (RV) measurements. Our analyses reveal that KOI-977 is indeed a red giant, possibly in the red clump, but its estimated radius (≳ 20 R {sub ☉} = 0.093 AU) is much larger than KOI-977.01's orbital distance (∼0.027 AU) estimated from its period (P {sub orb} ∼more » 1.35 days) and host star's mass. RV measurements show a small variation, which also contradicts the amplitude of ellipsoidal variations seen in the light curve folded with KOI-977.01's period. Therefore, we conclude that KOI-977.01 is a false positive, meaning that the red giant, for which we measured the radius and RVs, is different from the object that produces the transit-like signal (i.e., an eclipsing binary). On the basis of this assumption, we also perform a light curve analysis including the modeling of transits/eclipses and phase-curve variations, adopting various values for the dilution factor D, which is defined as the flux ratio between the red giant and eclipsing binary. Fitting the whole folded light curve as well as individual transits in the short cadence data simultaneously, we find that the estimated mass and radius ratios of the eclipsing binary are consistent with those of a solar-type star and a late-type star (e.g., an M dwarf) for D ≳ 20.« less

  11. CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souto, Diogo; Cunha, K.; Smith, V.

    NGC 2420 is a ∼2 Gyr old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution ( R = 22,500) near-infrared ( λ 1.5–1.7 μ m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains six stars that are identified asmore » members of the first-ascent red giant branch (RGB), as well as six members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = −0.16 ± 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small (∼0.03–0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al, and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the {sup 12}C and {sup 14}N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.« less

  12. Radiation Hydrodynamics with GIZMO: The Disruption of Giant Molecular Clouds by Stellar Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Khatami, David; Hopkins, Philip F.

    2016-01-01

    We present a numerical implementation of radiation hydrodynamics for the meshless code GIZMO. The radiation transport is treated as an anisotropic diffusion process combined with radiation pressure effects, photoionization with heating and cooling routines, and a multifrequency treatment of an arbitrary number of sources. As a first application of the method, we investigate the disruption of giant molecular clouds by stellar radiative feedback. Specifically, what fraction of the gas must a GMC convert into stars to cause self-disruption? We test a range of cloud masses and sizes with several source luminosities to probe the effects of photoheating and radiation pressure on timescales shorter than the onset of the first supernovae. Observationally, only ~1-10% of gas is converted into stars, an inefficiency that is likely the result of feedback from newly formed stars. Whether photoheating or radiation pressure dominates is dependent on the given cloud properties. For denser clouds, we expect photoheating to play a negligible role with most of the feedback driven by radiation pressure. This work explores the necessary parameters a GMC must have in order for radiation pressure to be the main disruption process.

  13. A Slice of Orion

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Extended Orion Nebula Cloud

    This image composite shows a part of the Orion constellation surveyed by NASA's Spitzer Space Telescope. The shape of the main image was designed by astronomers to roughly follow the shape of Orion cloud A, an enormous star-making factory containing about 1,800 young stars. This giant cloud includes the famous Orion nebula (bright circular area in 'blade' part of hockey stick-shaped box at the bottom), which is visible to the naked eye on a clear, dark night as a fuzzy star in the hunter constellation's sword.

    The region that makes up the shaft part of the hockey stick box stretches 70 light-years beyond the Orion nebula. This particular area does not contain massive young stars like those of the Orion nebula, but is filled with 800 stars about the same mass as the sun. These sun-like stars don't live in big 'cities,' or clusters, of stars like the one in the Orion nebula; instead, they can be found in small clusters (right inset), or in relative isolation (middle insert).

    In the right inset, developing stars are illuminating the dusty cloud, creating small wisps that appear greenish. The stars also power speedy jets of gas (also green), which glow as the jets ram into the cloudy material.

    Since infrared light can penetrate through dust, we see not only stars within the cloud, but thousands of stars many light-years behind it, which just happen to be in the picture like unwanted bystanders. Astronomers carefully separate the young stars in the Orion cloud complex from the bystanders by looking for their telltale infrared glow.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  14. Tests of two convection theories for red giant and red supergiant envelopes

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-Wen

    1995-01-01

    Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.

  15. Resolving the Discrepancy of Distance to M60, a Giant Elliptical Galaxy in Virgo

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2017-05-01

    There is a well-known discrepancy in the distance estimation of M60, a giant elliptical galaxy in Virgo; the planetary nebula luminosity function (PNLF) distance moduli for this galaxy are, on average, 0.4 mag smaller than the values based on the surface brightness fluctuation (SBF) in the literature. We present photometry of the resolved stars in an outer field of M60 based on deep F775W and F850LP images in the Hubble Space Telescope obtained as part of the Pure Parallel Program in the archive. Detected stars are mostly old red giants in the halo of M60. With this photometry, we determine a distance to M60 using the tip of the red giant branch (TRGB). A TRGB is detected at F850LP{}{TRGB}=26.70+/- 0.06 mag, in the luminosity function of the red giants. This value corresponds to F814W{}0,{TRGB}=27.13+/- 0.06 mag and {{QT}}{TRGB}=27.04+/- 0.07 mag, where QT is a color-corrected F814W magnitude. From this we derive a distance modulus, {(m-M)}0=31.05+/- 0.07({ran}) +/- 0.06({sys}) (d=16.23+/- 0.50({ran})+/- 0.42({sys}) Mpc). This value is 0.3 mag larger than the PNLF distances and 0.1 mag smaller than the SBF distances in the previous studies, which indicates that the PNLF distances to M60 reported in the literature have larger uncertainties than the suggested values.

  16. 77 FR 42627 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... CONTACT: Richard A. Dunham III, Flight Procedure Standards Branch (AFS-420), Flight Technologies and... 2012 Red Cloud, NE., Red Cloud Muni, Takeoff Minimums and Obstacle DP, Orig Effective 23 AUGUST 2012...

  17. Galaxy Evolution Explorer Spies Band of Stars

    NASA Image and Video Library

    2007-06-20

    Globular star cluster NGC 362, in a false-color image from NASA's Galaxy Evolution Explorer. Image credit: NASA/JPL-Caltech/Univ. of Virginia The Galaxy Evolution Explorer's ultraviolet eyes have captured a globular star cluster, called NGC 362, in our own Milky Way galaxy. In this new image, the cluster appears next to stars from a more distant neighboring galaxy, known as the Small Magellanic Cloud. "This image is so interesting because it allows a study of the final stages of evolution of low-mass stars in NGC 362, as well as the history of star formation in the Small Magellanic Cloud," said Ricardo Schiavon of the University of Virginia, Charlottesville, Va. Globular clusters are densely packed bunches of old stars scattered in galaxies throughout the universe. NGC 362, located 30,000 light-years away, can be spotted as the dense collection of mostly yellow-tinted stars surrounding a large white-yellow spot toward the top-right of this image. The white spot is actually the core of the cluster, which is made up of stars so closely packed together that the Galaxy Evolution Explorer cannot see them individually. The light blue dots surrounding the cluster core are called extreme horizontal branch stars. These stars used to be very similar to our sun and are nearing the end of their lives. They are very hot, with temperatures reaching up to about four times that of the surface of our sun (25,000 Kelvin or 45,500 degrees Fahrenheit). A star like our sun spends most of its life fusing hydrogen atoms in its core into helium. When the star runs out of hydrogen in its core, its outer envelope will expand. The star then becomes a red giant, which burns hydrogen in a shell surrounding its inner core. Throughout its life as a red giant, the star loses a lot of mass, then begins to burn helium at its core. Some stars will have lost so much mass at the end of this process, up to 85 percent of their envelopes, that most of the envelope is gone. What is left is a very hot ultraviolet-bright core, or extreme horizontal branch star. Blue dots scattered throughout the image are hot, young stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way located approximately 200,000 light-years away. The stars in this galaxy are much brighter intrinsically than extreme horizontal branch stars, but they appear just as bright because they are farther away. The blue stars in the Small Magellanic Cloud are only about a few tens of millions of years old, much younger than the approximately 10-million-year-old stars in NGC 362. Because NGC 362 sits on the northern edge of the Small Magellanic Cloud galaxy, the blue stars are denser toward the south, or bottom, of the image. Some of the yellow spots in this image are stars in the Milky Way galaxy that are along this line of sight. Astronomers believe that some of the other spots, particularly those closer to NGC 362, might actually be a relatively ultraviolet-dim family of stars called "blue stragglers." These stars are formed from collisions or close encounters between two closely orbiting stars in a globular cluster. "This observation could only be done with the Galaxy Evolution Explorer because it is the only ultraviolet imager available to the astronomical community with such a large field of view," said Schiavon. This image is a false-color composite, where light detected by the Galaxy Evolution Explorer's far-ultraviolet detector is colored blue, and light from the telescope's near-ultraviolet detector is red. Written by Linda Vu, Spitzer Science Center Media contact: Whitney Clavin/JPL (818) 354-4673

  18. Red giants: then and now

    NASA Astrophysics Data System (ADS)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and ρsh·ρolinec prove to be important self-consistently derived quantities. I present some striking, explicit, asymptotic analytical theorems and results involving these quantities. Perhaps the most astonishingly unexpected and gratifying single result is this: for the very value Nature gives us for the relevant temperature exponent (η=15; CNO cycle) for nuclear-energy generation, ρsh and ρolinec behave in a well defined, precisely inverse manner for a given value of core-mass, Mc. This emphasizes that the internal behaviour of such stars is definitely anti-homologous rather than homologous: dense cores physically promote diffuse surrounding envelopes. I also extend the ideas yet further in a way which (I) links the structural and evolutionary behaviour of stars from the main sequence through horizontal-branch phases of evolution, and (II) also has implications for post-main-sequence developments in more massive stars. The end results is that the post-main-sequence developments of all stars - low-mass, intermediate-mass, and high-mass - as they expand to become giants, are finally seen to be examples of one underpinning fact: that dense cores with this surrounding shells naturally follow hydrogen exhaustion. While "this has been know all along" from oft-repeated computer calculations, we now know why analytically. That matters to true theorists. What follows is a requested, much expanded version of my Cambridge talk.

  19. PROBING THE DEEP END OF THE MILKY WAY WITH KEPLER : ASTEROSEISMIC ANALYSIS OF 854 FAINT RED GIANTS MISCLASSIFIED AS COOL DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; García, R. A.; Beck, P. G.

    Asteroseismology has proven to be an excellent tool to determine not only global stellar properties with good precision, but also to infer the stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission, the properties of Kepler targets were inferred from broadband photometry, leading to the Kepler Input Catalog (KIC). The KIC was later revised in the Kepler Star Properties Catalog, based on literature values and an asteroseismic analysis of stars that were unclassified in the KIC. Here, we present an asteroseismic analysis of 45,400 stars that were classified as dwarfsmore » in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than the cool dwarf category. We analyze the asteroseismic properties of these stars, derive their surface gravities, masses, and radii, and present updated effective temperatures and distances. We show that the sample is significantly fainter than the previously known oscillating giants in the Kepler field, with the faintest stars reaching down to a Kepler magnitude of Kp ∼ 16. We demonstrate that 404 stars are at distances beyond 5 kpc and that the stars are significantly less massive than for the original Kepler red-giant sample, consistent with a population of distant halo giants. A comparison with a galactic population model shows that up to 40 stars might be genuine halo giants, which would increase the number of known asteroseismic halo stars by a factor of 4. The detections presented here will provide a valuable sample for galactic archeology studies.« less

  20. Molecular Cloud Structures and Massive Star Formation in N159

    NASA Astrophysics Data System (ADS)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  1. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-01-01

    Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.

  2. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riebel, D.; Meixner, M.; Srinivasan, S.

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to {approx}30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionarymore » parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, equivalent to a total mass injection rate (including the gas) into the ISM of {approx}6 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K{sub s} band as a function of J - K{sub s} color, BC{sub K{sub s}}= -0.40(J-K{sub s}){sup 2} + 1.83(J-K{sub s}) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot{sub d}) from C-rich AGB stars, such as log M-dot{sub d} = (-18.90/((K{sub s}-[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.« less

  3. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  4. SATURN, IN NATURAL COLORS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided images of Saturn in many colors, from black-and-white, to orange, to blue, green, and red. But in this picture, image processing specialists have worked to provide a crisp, extremely accurate view of Saturn, which highlights the planet's pastel colors. Bands of subtle color - yellows, browns, grays - distinguish differences in the clouds over Saturn, the second largest planet in the solar system. Saturn's high-altitude clouds are made of colorless ammonia ice. Above these clouds is a layer of haze or smog, produced when ultraviolet light from the sun shines on methane gas. The smog contributes to the planet's subtle color variations. One of Saturn's moons, Enceladus, is seen casting a shadow on the giant planet as it passes just above the ring system. The flattened disk swirling around Saturn is the planet's most recognizable feature, and this image displays it in sharp detail. This is the planet's ring system, consisting mostly of chunks of water ice. Although it appears as if the disk is composed of only a few rings, it actually consists of tens of thousands of thin 'ringlets.' This picture also shows the two classic divisions in the ring system. The narrow Encke Gap is nearest to the disk's outer edge; the Cassini division, is the wide gap near the center. Scientists study Saturn and its ring system to gain insight into the birth of our solar system. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  5. THE YOUNG OPEN CLUSTER BERKELEY 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster withmore » a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.« less

  6. 50 CFR 665.401 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Lehi/maroobw red snapper, silvermouth Aphareus rutilans. Gogunafon/aiwe gray snapper, jobfish Aprion virescens. Tarakitu/etam Giant trevally, jack Caranx ignobilis. Tarakiton attelong/orong Black trevally... grouper Variola louti. Buninas agaga'/falaghal moroobw red snapper Etelis carbunculus. Abuninas...

  7. 50 CFR 665.401 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Lehi/maroobw red snapper, silvermouth Aphareus rutilans. Gogunafon/aiwe gray snapper, jobfish Aprion virescens. Tarakitu/etam Giant trevally, jack Caranx ignobilis. Tarakiton attelong/orong Black trevally... grouper Variola louti. Buninas agaga'/falaghal moroobw red snapper Etelis carbunculus. Abuninas...

  8. 50 CFR 665.401 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Lehi/maroobw red snapper, silvermouth Aphareus rutilans. Gogunafon/aiwe gray snapper, jobfish Aprion virescens. Tarakitu/etam Giant trevally, jack Caranx ignobilis. Tarakiton attelong/orong Black trevally... grouper Variola louti. Buninas agaga'/falaghal moroobw red snapper Etelis carbunculus. Abuninas...

  9. The circumstellar dust envelopes of red giant stars. I - M giant stars with the 10-micron silicate emission band

    NASA Technical Reports Server (NTRS)

    Hashimoto, O.; Nakada, Y.; Onaka, T.; Kamijo, F.; Tanabe, T.

    1990-01-01

    Spherical dust envelope models of red giant stars are constructed by solving the radiative transfer equations of the generalized two-stream Eddington approximation. The IRAS observations of M giant stars which show the 10-micron silicate emission band in IRAS LRS spectra are explained by the models with the dirty silicate grains with K proportional to lambda exp -1.5 for lambda greather than 28 microns. Under the assumption of steady mass flow in the envelope, this model analysis gives the following conclusions: (1) the strength of the silicate emission peak at 10 microns is a good indicator of the mass loss rate of the star, (2) no stars with the 10-microns silicate emission feature are observed in the range of mass loss rate smaller than 7 x 10 to the -8th solar mass/yr, and (3) the characteristic time of the mass loss process of M stars does not exceed a few 10,000 years.

  10. All in the Family: What Brown Dwarfs Teach Us About Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, M.

    2003-01-01

    As we await the first direct image of an extrasolar giant planet, we can turn to theory and the experience gained in the campaign to detect and understand brown dwarfs for guidance on what to expect. As with any new arrival to a family, there should be a strong family resemblance (one hopes) along with notable unique features and interesting peculiarities. The 300 or so known L and T dwarfs, combined with our own giant planets, already span much of the effective temperature range within which extrasolar planets will be found. Only objects with thick, easily detectable, water clouds have yet to be seen. Thus we already know much of the family. I will describe what we have learned from studying these objects, focusing on the important roles clouds and atmospheric chemistry play in affecting their atmospheres and emergent spectra. Relying on these findings and theoretical models, I'll sketch out what we can expect from extrasolar giant planets, focusing on easily detectable features. Some wild cards, of course, are to be expected. Photochemical hazes, in particular, may obscure the family traits on the faces of Jupiter's distant cousins and may make one wonder, at least momentarily, about the milkman.

  11. Probing Cloud-Driven Variability on Two of the Youngest, Lowest-Mass Brown Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Schneider, Adam; Cushing, Michael; Kirkpatrick, J. Davy

    2016-08-01

    Young, late-type brown dwarfs share many properties with directly imaged giant extrasolar planets. They therefore provide unique testbeds for investigating the physical conditions present in this critical temperature and mass regime. WISEA 1147-2040 and 2MASS 1119-1137, two recently discovered late-type (~L7) brown dwarfs, have both been determined to be members of the ~10 Myr old TW Hya Association (Kellogg et al. 2016, Schneider et al. 2016). Each has an estimated mass of 5-6 MJup, making them two of the youngest and lowest-mass free floating objects yet found in the solar neighborhood. As such, these two planetary mass objects provide unparalleled laboratories for investigating giant planet-like atmospheres far from the contaminating starlight of a host sun. Condensate clouds play a critical role in shaping the emergent spectra of both brown dwarfs and gas giant planets, and can cause photometric variability via their non-uniform spatial distribution. We propose to photometrically monitor WISEA 1147-2040 and 2MASS 1119-1137 in order to search for the presence of cloud-driven variability to 1) investigate the potential trend of low surface gravity with high-amplitude variability in a previously unexplored mass regime and 2) explore the angular momentum evolution of isolated planetary mass objects.

  12. Spectral Classification of Heavily Reddened Stars by CO Absorption Strength

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.

    2017-01-01

    The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.

  13. An empirical mass-loss law for Population II giants from the Spitzer-IRAC survey of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.

    2014-04-01

    Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.Appendix A is available in electronic form at http://www.aanda.org

  14. 50 CFR 665.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... palu-gutusiliva red snapper, silvermouth Aphareus rutilans. asoama gray snapper, jobfish Aprion virescens. sapoanae giant trevally, jack Caranx ignobilis. tafauli black trevally, jack Caranx lugubris. fausi blacktip grouper Epinephelus fasciatus. papa, velo lunartail grouper Variola louti. palu malau red...

  15. 50 CFR 665.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... palu-gutusiliva red snapper, silvermouth Aphareus rutilans. asoama gray snapper, jobfish Aprion virescens. sapoanae giant trevally, jack Caranx ignobilis. tafauli black trevally, jack Caranx lugubris. fausi blacktip grouper Epinephelus fasciatus. papa, velo lunartail grouper Variola louti. palu malau red...

  16. 50 CFR 665.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... palu-gutusiliva red snapper, silvermouth Aphareus rutilans. asoama gray snapper, jobfish Aprion virescens. sapoanae giant trevally, jack Caranx ignobilis. tafauli black trevally, jack Caranx lugubris. fausi blacktip grouper Epinephelus fasciatus. papa, velo lunartail grouper Variola louti. palu malau red...

  17. 50 CFR 665.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... palu-gutusiliva red snapper, silvermouth Aphareus rutilans. asoama gray snapper, jobfish Aprion virescens. sapoanae giant trevally, jack Caranx ignobilis. tafauli black trevally, jack Caranx lugubris. fausi blacktip grouper Epinephelus fasciatus. papa, velo lunartail grouper Variola louti. palu malau red...

  18. Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Leung, H. W.

    2017-06-01

    We have used AAVSO visual and photoelectric V data, and the AAVSO time-series package VSTAR and the Lomb-Scargle time-series algorithm to determine improved pulsation periods, "long secondary periods" (LSPs), and their amplitudes in 51 shorter-period pulsating red giants in the AAVSO photoelectric photometry program, and in the AAVSO long-period variable (LPV) binocular program. As is well known, radial pulsation becomes detectable in red giants at about spectral type M0, with periods of about 20 days. We find that the LSP phenomenon is also first detectable at about M0. Pulsation and LSP amplitudes increase from near zero to about 0.1 at pulsation periods of 100 days. At longer periods, the pulsation amplitudes continue to increase, but the LSP amplitudes are generally between 0.1 and 0.2 on average. The ratios of LSP to pulsation period cluster around 5 and 10, presumably depending on whether the pulsation period is the fundamental or first overtone. The pulsation and LSP phase curves are generally close to sinusoidal, except when the amplitude is small, in which case they may be distorted by observational scatter or, in the case of the LSP amplitude, by the pulsational variability. As with longer-period stars, the LSP amplitude i ncreases and decreases by a factor of two or more, for unknown reasons, on a time scale of about 20 LSPs. The LSP phenomenon is thus present and similar in radially pulsating red giants of all periods. Its cause remains unknown.

  19. Using asteroseismology to probe the structure and evolution of the Galaxy

    NASA Astrophysics Data System (ADS)

    Stello, Dennis

    2015-08-01

    Recent space missions have transformed our ability to use asteroseismology on vast numbers of stars. This advance has opened up for exploration of the structure and evolution of the Galaxy using oscillating red giant stars as distant tracers of stellar populations including the halo, the bulge and the thin and thick disks. Asteroseismology provides a powerful way to obtain precise estimates of stellar bulk properties such as radius, mass, and age. The radius, and hence distance, places a star accurately in the Galaxy, the mass reveals the mass function and, in combination with composition, provide ages for red giants. Initial results from the CoRoT and Kepler missions have demonstrated the enormous potential there is in the marriage between asteroseismology and contemporary Galactic Archaeology based on single-epoch spectroscopy, photometry, and parallax measurements. The scope for this research received a significant boost last year on several fronts. The re-purposed Kepler telescope, K2, started observing tens of thousands of red giants along the ecliptic covering all main constituents of the Galaxy, and in a few years time NASA's TESS mission will stars observing up to 1 mio red giants full sky. Finally, ESA's decision to fund PLATO guaranties that high quality seismic measurements will continue to flow beyond the nextdecade. In this talk I will give an overview of how seismology can aid the study of the structure and evolution of the Galaxy. I will include the most recent results that we have obtained with our K2 Galactic Archaeology Program.

  20. Nursery of Giants

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years. Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the DR21 region. The red filaments stretching across this image denote the presence of polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by surrounding interstellar radiation and become luminescent at wavelengths near 8.0 microns. The complex pattern of filaments is caused by an intricate combination of radiation pressure, gravity and magnetic fields. The result is a tapestry in which winds, outflows and turbulence move and shape the interstellar medium. To the lower left of the mosaic is a large bubble of gas and dust, which may represent the remnants of a past generation of stars. http://photojournal.jpl.nasa.gov/catalog/PIA05732

  1. Nursery of Giants

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years.

    Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the DR21 region.

    The red filaments stretching across this image denote the presence of polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by surrounding interstellar radiation and become luminescent at wavelengths near 8.0 microns. The complex pattern of filaments is caused by an intricate combination of radiation pressure, gravity and magnetic fields. The result is a tapestry in which winds, outflows and turbulence move and shape the interstellar medium.

    To the lower left of the mosaic is a large bubble of gas and dust, which may represent the remnants of a past generation of stars.

  2. Planets around Low-mass Stars (PALMS). VI. Discovery of a Remarkably Red Planetary-mass Companion to the AB Dor Moving Group Candidate 2MASS J22362452+4751425*

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Mawet, Dimitri; Ngo, Henry; Malo, Lison; Mace, Gregory N.; McLane, Jacob N.; Lu, Jessica R.; Tristan, Isaiah I.; Hinkley, Sasha; Hillenbrand, Lynne A.; Shkolnik, Evgenya L.; Benneke, Björn; Best, William M. J.

    2017-01-01

    We report the discovery of an extremely red planetary-mass companion to 2MASS J22362452+4751425, a ≈0.6 M⊙ late-K dwarf likely belonging to the ˜120 Myr AB Doradus moving group. 2M2236+4751 b was identified in multi-epoch NIRC2 adaptive optics imaging at Keck Observatory at a separation of 3\\buildrel{\\prime\\prime}\\over{.} 7, or 230 ± 20 AU in projection at the kinematic distance of 63 ± 5 pc to its host star. Assuming membership in the AB Dor group, as suggested from its kinematics, the inferred mass of 2M2236+4751 b is 11-14 MJup. Follow-up Keck/OSIRIS K-band spectroscopy of the companion reveals strong CO absorption similar to other faint red L dwarfs and lacks signs of methane absorption, despite having an effective temperature of ≈900-1200 K. With a (J-K)MKO color of 2.69 ± 0.12 mag, the near-infrared slope of 2M2236+4751 b is redder than all of the HR 8799 planets and instead resembles the ≈23 Myr isolated planetary-mass object PSO J318.5-22, implying that similarly thick photospheric clouds can persist in the atmospheres of giant planets at ages beyond 100 Myr. In near-infrared color-magnitude diagrams, 2M2236+4751 b is located at the tip of the red L dwarf sequence and appears to define the “elbow” of the AB Dor substellar isochrone separating low-gravity L dwarfs from the cooler young T dwarf track. 2M2236+4751 b is the reddest substellar companion to a star and will be a valuable benchmark to study the shared atmospheric properties of young low-mass brown dwarfs and extrasolar giant planets. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  3. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  4. Evolution of chromospheres and coronae in solar mass stars - A far-ultraviolet and soft X-ray comparison of Arcturus /K2 III/ and Alpha Centauri A /G2 V/

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Simon, T.; Linsky, J. L.

    1982-01-01

    IUE far-UV and Einstein Observatory soft X-ray observations for the red giant Arcturus and the nearby yellow dwarf Alpha-Centauri A, which are archetypes of solar mass stars in different stages of evolution, are compared. Evidence is found for neither coronal soft X-ray emission from the red giant, at surface flux levels of only 0.0006 that detected previously for the yellow dwarf, nor C II and IV resonance line emission at surface flux levels of only 0.02 those of the yellow dwarf. The resonance line upper limits and previous detections of the C II intersystem UV multiplet 0.01 near 2325 A provide evidence for an Arcturus outer atmosphere that is geometrically extended, tenuous and cool. The red giant has, in addition, a prominent cool stellar wind. An extensive tabulation of line identifications, widths and fluxes for the IUE far-UV echelle spectra of the two stars is given, and two competing explanations for the Wilson-Bappu effect are discussed.

  5. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas.

    PubMed

    Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen

    2017-01-31

    Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.

  6. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas

    PubMed Central

    Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen

    2017-01-01

    Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet. PMID:28096377

  7. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  8. Radio Emission from Red-Giant Hot Jupiters

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  9. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  10. New Views of a Familiar Beauty

    NASA Image and Video Library

    2005-01-12

    This image composite compares the well-known visible-light picture of the glowing Trifid Nebula (left panel) with infrared views from NASA's Spitzer Space Telescope (remaining three panels). The Trifid Nebula is a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. The false-color Spitzer images reveal a different side of the Trifid Nebula. Where dark lanes of dust are visible trisecting the nebula in the visible-light picture, bright regions of star-forming activity are seen in the Spitzer pictures. All together, Spitzer uncovered 30 massive embryonic stars and 120 smaller newborn stars throughout the Trifid Nebula, in both its dark lanes and luminous clouds. These stars are visible in all the Spitzer images, mainly as yellow or red spots. Embryonic stars are developing stars about to burst into existence. Ten of the 30 massive embryos discovered by Spitzer were found in four dark cores, or stellar "incubators," where stars are born. Astronomers using data from the Institute of Radioastronomy millimeter telescope in Spain had previously identified these cores but thought they were not quite ripe for stars. Spitzer's highly sensitive infrared eyes were able to penetrate all four cores to reveal rapidly growing embryos. http://photojournal.jpl.nasa.gov/catalog/PIA07225

  11. Sage Studies Of The Mass Return From AGB And RSG Stars In The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.

    2011-01-01

    The Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy project aims to further our understanding of the life cycle of matter in galaxies by studying this life cycle in our neighboring galaxy, the Large Magellanic Cloud (LMC). Combining SAGE mid-infrared photometry with that at shorter wavelengths from other catalogs, the spectral energy distribution (SED) for each of >25000 Asymptotic Giant Branch (AGB) and Red Supergiant (RSG) stars in the LMC has been assembled. To model mass loss from these stars, my colleagues and I have constructed the grid of RSG and AGB models (GRAMS) using the radiative transfer code 2Dust. I will discuss how GRAMS was constructed, and how we use it to determine the mass-loss rate for each evolved star studied, which gives the total mass-loss return to the LMC from AGB and RSG stars. In my talk, I show how this total mass-loss return is divided into oxygen-rich (O-rich) and carbon-rich (C-rich) dust using SED-fitting to identify O-rich versus C-rich AGB stars. Applications of this work to determining the mass return from evolved stars in other galaxies, including the Milky Way, will also be discussed.

  12. At the Heart of Blobs Artist Concept

    NASA Image and Video Library

    2005-01-11

    This artist's concept illustrates one possible answer to the puzzle of the "giant galactic blobs." These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other. Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs. If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept. http://photojournal.jpl.nasa.gov/catalog/PIA07221

  13. Complexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique Climate for Giant Sequoia in the California Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Waller, Eric Kindseth

    A better understanding of the environmental controls on current plant species distribution is essential if the impacts of such diverse challenges as invasive species, changing fire regimes, and global climate change are to be predicted and important diversity conserved. Climate, soil, hydrology, various biotic factors fire, history, and chance can all play a role, but disentangling these factors is a daunting task. Increasingly sophisticated statistical models relying on existing distributions and mapped climatic variables, among others, have been developed to try to answer these questions. Any failure to explain pattern with existing mapped climatic variables is often taken as a referendum on climate as a whole, rather than on the limitations of the particular maps or models. Every location has a unique and constantly changing climate so that any distribution could be explained by some aspect of climate. Chapter 1 of this dissertation reviews some of the major flaws in species distribution modeling and addresses concerns that climate may therefore not be predictive of, or even relevant to, species distributions. Despite problems with climate-based models, climate and climate-derived variables still have substantial merit for explaining species distribution patterns. Additional generation of relevant climate variables and improvements in other climate and climate-derived variables are still needed to demonstrate this more effectively. Satellite data have a long history of being used for vegetation mapping and even species distribution mapping. They have great potential for being used for additional climatic information, and for improved mapping of other climate and climate-derived variables. Improving the characterization of cloud cover frequency with satellite data is one way in which the mapping of important climate and climate-derived variables can be improved. An important input to water balance models, solar radiation maps could be vastly improved with a better mapping of spatial and temporal patterns in cloud cover. Chapter 2 of this dissertation describes the generation of custom daily cloud cover maps from Advanced Very High Resolution Radiometer (AVHRR) satellite data from 1981-1999 at ~5 km resolution and Moderate Resolution Imagine Spectroradiomter (MODIS) satellite reflectance data at ~500 meter resolution for much of the western U.S., from 2000 to 2012. Intensive comparisons of reflectance spectra from a variety of cloud and snow-covered scenes from the southwestern United States allowed the generation of new rules for the classification of clouds and snow in both the AVHRR and MODIS data. The resulting products avoid many of the problems that plague other cloud mapping efforts, such as the tendency for snow cover and bright desert soils to be mapped as cloud. This consistency in classification across cover types is critically important for any distribution modeling of a plant species that might be dependent on cloud cover. In Chapter 3, monthly cloud frequencies derived from the daily classifications were used directly in species distribution models for giant sequoia and were found to be the strongest predictors of giant sequoia distribution. A high frequency of cloud cover, especially in the spring, differentiated the climate of the west slope of the southern Sierra Nevada, where giant sequoia are prolific, from central and northern parts of the range, where the tree is rare and generally absent. Other mapped cloud products, contaminated by confusion with high elevation snow, would likely not have found this important result. The result illustrates the importance of accuracy in mapping as well as the importance of previously overlooked aspects of climate for species distribution modeling. But it also raises new questions about why the clouds form where they do and whether they might be associated with other aspects of climate important to giant sequoia distribution. What are the exact climatic mechanisms governing the distribution? Detailed aspects of the local climate warranted more investigation. Chapter 4 investigates the climate associated with the frequent cloud formation over the western slopes of the southern Sierra Nevada: the "sequoia belt". This region is climatically distinct in a number of ways, all of which could be factors in influencing the distribution of giant sequoia and other species. Satellite and micrometeorological flux tower data reveal characteristics of the sequoia belt that were not evident with surface climate measurements and maps derived from them. Results have implications for species distributions everywhere, but especially in rugged mountains, where climates are complex and poorly mapped. Chapter 5 summarizes some of the main conclusions from the work and suggests directions for related future research. (Abstract shortened by UMI.).

  14. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of giant molecular clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ˜ 109 M⊙) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the XCO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_{H, min} = 10 {cm}^{-3}, or using an observationally motivated CO intensity threshold of 0.25 {K} {km} {s}^{-1}. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (I.e. Jeans limiters). We find cloud lifetimes up to ≈ 40 Myr, with a median of 13 Myr, in agreement with observations. At one-tenth solar metallicity, young clouds ( ≲ 10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ≈3 and one to two orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ≈ 1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, ICO, is strongly suppressed at low dust extinction, Av, and possibly saturates towards high Av, in agreement with observations. The ICO-Av relation shifts towards higher Av for higher metallicities and, to a lesser extent, for stronger UV radiation. At one-tenth solar metallicity, CO emission is weaker in young clouds ( ≲ 10-15 Myr), consistent with the underabundance of CO. Consequently, XCO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  15. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1976-01-01

    The circumstellar envelopes surrounding 13 late-type giants and supergiants have been studied using a homogeneous collection of high-resolution, photoelectric scans of strong optical resonance lines. Various properties of the envelopes, including the mass loss rate, dilution factor, hydrogen density, and degree of ionization, have been determined quantitatively.

  16. Estructura del diagrama HR para gigantes rojas de poblacion I de masas intermedias.

    NASA Astrophysics Data System (ADS)

    Clariá, J. J.; Lapasset, E.; Minniti, D.

    1990-11-01

    The structure of the HR diagram (clump and giant branch) for intermediate mass population I red giants is examined on the basis of multicolour photometry (UBV, DDO, and DT1T2) of open clusters belonging to the NGC 3532 and NGC 6475 groups.

  17. Clouds in exoplanet atmospheres: comparison of two apparently similar giant planets

    NASA Astrophysics Data System (ADS)

    Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin; Deming, Drake; Filippazzo, Joe; Fraine, Jonathan D.; Hill, Matthew; Kilpatrick, Brian; Line, Michael R.; Morley, Caroline; Wakeford, Hannah; Collins, Karen A.; Conti, Dennis M.; Garlitz, Joseph; Rodriguez, Joseph

    2017-06-01

    We present a study aimed at a better understanding of the physics of clouds, which have been shown prevalent in hot Jupiter atmospheres. We compare and contrast the atmospheric spectra of WASP-67 b and HAT-P-38 b, part of our HST/WFC3 and Spitzer observation programs of exoplanets in transmission spectroscopy and secondary eclipses. These two planets lie in a very similar region of the equilibrium temperature-surface gravity parameter space and their compared analysis is therefore particularly significant.With the help of retrieval exercises on the molecules characterizing the 1.1-1.7 microns WFC3 spectra, we discuss which conclusions can be drawn about the atmospheric processes of these two giant planets.

  18. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  19. The origin of ultra-compact binaries

    NASA Technical Reports Server (NTRS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    1987-01-01

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  20. Long-Term Variability in o Ceti and Other Mira Variables: Signs of Supergranular Convection?

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Karovska, Margarita

    2009-09-01

    We describe our study of long-term variability of o Ceti (Mira A), the prototype of the Mira-type pulsating stars. Our study was originally undertaken to search for coherent long-period variability, but the results of our analysis didn't uncover this. However, we detected a low-frequency ``red noise'' in the Fourier spectrum of the o Ceti century-long light curve. We have since found similar behavior in other Miras and pulsating giant stars and have begun a study of a large sample of Mira variables. Similar red noise has been previously detected in red supergiants and attributed to supergranular convection. Its presence in Miras suggests the phenomenon may be ubiquitous in cool giant pulsators. These results support high-angular resolution observations of Miras and supergiants showing asymmetries in their surface brightness distributions, which may be due to large supergranular convection cells. Theoretical modeling, and numerical simulations of pulsation processes in late-type giants and supergiants should therefore take into account the effects of deep convection and large supergranular structures, which in turn may provide important insights into the behavior of Miras and other giant and supergiant pulsators. In this work, we summarize our results for o Ceti, present preliminary results of our broader study of Mira variables, and discuss how the results of this study may be used by future studies of AGB variables.

  1. Modelling Kepler red giants in eclipsing binaries: calibrating the mixing-length parameter with asteroseismology

    NASA Astrophysics Data System (ADS)

    Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss

    2018-03-01

    Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.

  2. The TESS-HERMES survey data release 1: high-resolution spectroscopy of the TESS southern continuous viewing zone

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjib; Stello, Dennis; Buder, Sven; Kos, Janez; Bland-Hawthorn, Joss; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Ness, Melissa; Huber, Daniel; Zwitter, Tomaz; Traven, Gregor; Hon, Marc; Kafle, Prajwal R.; Khanna, Shourya; Saddon, Hafiz; Anguiano, Borja; Casey, Andrew R.; Freeman, Ken; Martell, Sarah; De Silva, Gayandhi M.; Simpson, Jeffrey D.; Wittenmyer, Rob A.; Zucker, Daniel B.

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will provide high-precision time series photometry for millions of stars with at least a half-hour cadence. Of particular interest are the circular regions of 12° radius centred around the ecliptic poles that will be observed continuously for a full year. Spectroscopic stellar parameters are desirable to characterize and select suitable targets for TESS, whether they are focused on exploring exoplanets, stellar astrophysics or Galactic archaeology. Here, we present spectroscopic stellar parameters (Teff, log g, [Fe/H], v sin i, vmicro) for about 16 000 dwarf and subgiant stars in TESS' southern continuous viewing zone. For almost all the stars, we also present Bayesian estimates of stellar properties including distance, extinction, mass, radius and age using theoretical isochrones. Stellar surface gravity and radius are made available for an additional set of roughly 8500 red giants. All our target stars are in the range 10 < V < 13.1. Among them, we identify and list 227 stars belonging to the Large Magellanic Cloud. The data were taken using the High Efficiency and Resolution Multi-Element Spectrograph (HERMES; R ∼ 28 000) at the Anglo-Australian Telescope as part of the TESS-HERMES survey. Comparing our results with the TESS Input Catalogue (TIC) shows that the TIC is generally efficient in separating dwarfs and giants, but it has flagged more than 100 cool dwarfs (Teff < 4800 K) as giants, which ought to be high-priority targets for the exoplanet search. The catalogue can be accessed via http://www.physics.usyd.edu.au/tess-hermes/, or at Mikulski Archive for Space Telescopes (MAST).

  3. The age-velocity dispersion relation of the Galactic discs from LAMOST-Gaia data

    NASA Astrophysics Data System (ADS)

    Yu, Jincheng; Liu, Chao

    2018-03-01

    We present the age-velocity dispersion relation (AVR) in three dimensions in the solar neighbourhood using 3564 commonly observed sub-giant/red giant branch stars selected from The Large Sky Area Multi-Object Fiber Spectroscopic Telescope, which gives the age and radial velocity, and Gaia, which measures the distance and proper motion. The stars are separated into metal-poor ([Fe/H] < -0.2 dex and metal-rich ([Fe/H] > -0.2 dex) groups, so that the metal-rich stars are mostly α-poor, while the metal-poor group are mostly contributed by α-enhanced stars. Thus, the old and metal-poor stars likely belong to the chemically defined thick disc population, while the metal-rich sample is dominated by the thin disc. The AVR for the metal-poor sample shows an abrupt increase at ≳7 Gyr, which is contributed by the thick disc component. On the other hand, most of the thin disc stars with [Fe/H] > -0.2 dex display a power-law-like AVR with indices of about 0.3-0.4 and 0.5 for the in-plane and vertical dispersions, respectively. This is consistent with the scenario that the disc is gradually heated by the spiral arms and/or the giant molecular clouds. Moreover, the older thin disc stars (>7 Gyr) have a rounder velocity ellipsoid, i.e. σϕ/σz is close to 1.0, probably due to the more efficient heating in vertical direction. Particularly for the old metal-poor sample located with |z| > 270 pc, the vertical dispersion is even larger than its azimuthal counterpart. Finally, the vertex deviations and the tilt angles are plausibly around zero with large uncertainties.

  4. Metallicity-Corrected Tip of the Red Giant Branch Distances to M66 and M96

    NASA Astrophysics Data System (ADS)

    Mager, Violet; Madore, Barry F.; Freedman, Wendy L.

    2018-06-01

    We present distances to M66 and M96 obtained through measurements of the tip of the red giant branch (TRGB) in HST ACS/WFC images, and give details of our method. The TRGB can be difficult to determine in color-magnitude diagrams where it is not a hard, well-defined edge. We discuss our approach to this in our edge-detection algorithm. Furthermore, metals affect the magnitude of the TRGB as a function of color, creating a slope to the edge that has been dealt with in the past by applying a red color cut-off. We instead apply a metallicity correction to the data that removes this effect, increasing the number of useable stars and providing a more accurate distance measurement.

  5. ARC-1979-AC79-7102

    NASA Image and Video Library

    1979-07-03

    Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.

  6. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  7. Spitzer Makes 'Invisible' Visible

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

  8. Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Spaans, Marco

    1996-01-01

    We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.

  9. Comet 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Spectrometer Graph

    This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system.

    The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain.

    The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust.

    This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29-38, is shrouded by a cloud of dust. The data also demonstrate that this dust contains some of the same types of minerals found in comet Hale-Bopp.

    The findings tell a possible tale of solar system survival. Though the dust seen by Spitzer is likely from a comet that recently perished, its presence suggests that an icy distant ring of comets may still orbit the dead star.

    These data were collected by Spitzer's infrared spectrometer, an instrument that cracks light open like a geode, revealing its coveted components. In this spectrum, light from the white dwarf is on the left, at ultraviolet and visible wavelengths. The spectrum on the right, at infrared wavelengths longer than about 2 microns, shows much more light than can be explained by a white dwarf alone. The bump seen around a wavelength of 10 microns offers a clue to the source of this excess infrared light. It signifies the presence of silicate minerals, which are found in our own solar system on Earth, in sandy beaches, and in comets and asteroids. These silicate grains appear to be very small like those in comets, so astronomers favor the theory that a comet recently broke apart around the dead star.

  10. [Molecular cloning of the DNA sequence of activin beta A subunit gene mature peptides from panda and related species and its application in the research of phylogeny and taxonomy].

    PubMed

    Wang, Xiao-Jing; Wang, Xiao-Xing; Wang, Ya-Jun; Wang, Xi-Zhong; He, Guang-Xin; Chen, Hong-Wei; Fei, Li-Song

    2002-09-01

    Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).

  11. Turbulent Region Near Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color mosaics of the turbulent region west of Jupiter's Great Red Spot. The Great Red Spot is on the planetary limb on the right hand side of each mosaic. The region west (left) of the Great Red Spot is characterized by large, turbulent structures that rapidly change in appearance. The turbulence results from the collision of a westward jet that is deflected northward by the Great Red Spot into a higher latitude eastward jet. The large eddies nearest to the Great Red Spot are bright, suggesting that convection and cloud formation are active there.

    The top mosaic combines the violet (410 nanometers) and near infrared continuum (756 nanometers) filter images to create a mosaic similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundance of trace chemicals in Jupiter's atmosphere. The lower mosaic uses the Galileo imaging camera's three near-infrared (invisible) wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. Purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    The mosaic is centered at 16.5 degrees south planetocentric latitude and 85 degrees west longitude. The north-south dimension of the Great Red Spot is approximately 11,000 kilometers. The smallest resolved features are tens of kilometers in size. North is at the top of the picture. The images used were taken on June 26, 1997 at a range of 1.2 million kilometers (1.05 million miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  12. Jupiter - Solid or Gaseous? Ask Juno

    NASA Astrophysics Data System (ADS)

    Ackerman, J. A., Jr.

    2015-12-01

    Data from Cassini, Galileo, S-L 9 and Ulysses suggest Jupiter and Saturn are solid, frozen, Methane Gas Hydrate (MGH) planets. The bulk of these giants formed slow and cold by the natural accretion of snowflakes at their current orbital radii in the presence of methane, forming rigid incompressible bodies. MGH, (CH4)8(H2O)46 (d=0.9), is consistent with the abundances of the elements comprising the Earth (H>O>C). Their combined MGH comprises >250 earth-masses of H2O. Jupiter (d=1.33) incorporated most of the heavy elements in the nascent solar system, exemplified by an enormously enhanced D/H. The temperature excess of Jupiter's atmosphere is the result of an impact ~6,000 years BP, triggering an incredibly energetic fusion explosion which ejected the masses of the proto-Galilean moons. It also initiated a continuing fusion furnace in the crater producing a jet of hot gases extending >2x106 km, beyond Callisto. The jet has slowly diminished over 6,000 years, resulting in the differences in the four Galilean Moons. The mass ejection (ang. mom.) slowed Jupiter's rotation until ~1930, currently interpreted as a drift of the Great Red Spot. A diminishing fusion reaction (D + p → 3He + γ) continues to this day, producing Jupiter's atmospheric 'temperature excess'. Jupiter's rapid rotation deflects the rising vortex of hot gases from the fusion reaction horizontally, driving multiple zonal vortices, constrained by the frozen MGH surface <1000 km below the cloud tops. It appears as the tilted Great Red Spot (GRS), ~30,000 km to the west of the crater at 22 o S Lat., which has remained unchanged in the last 350 years - impossible due to the enormous Coliolis effect. Streams of 3He produced in the fusion reaction exiting Jupiter through the center of the GRS have been detected by the Galileo probe and orbiter, Ulysses, and Cassini. The fusion releases methane, also heavy elements which oxidize as they rise, producing the cloud-top colors. The MGH hypothesis explains the >6 minute delays of the larger S-L 9 'main events' as the time required for the mushroom clouds from their impacts to reach the cloud tops. The Juno MWR can potentially detect the fusion source and certainly the hot, longitudinally extended column forming the GRS. The Gravity Experiment should detect the basin in which it is located, possibly others.

  13. Giant Planets in Reflected Light: What Science Can We Expect?

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  14. Surface Magnetic Fields on Giants and Supergiants

    NASA Astrophysics Data System (ADS)

    Lebre, Agnès

    2018-04-01

    After a short introduction to spectropolarimetry and the tecnics allowing for the detection of surface fields, I will review the numerous and various detections of magnetic fields at the surface of giant and supergiant stars. On Betelgeuse, the prototype of Red Supergiants, I will present recent results collected after a 10 years long spectropolarimetric survey.

  15. A sample of potential disk hosting first ascent red giants

    NASA Astrophysics Data System (ADS)

    Steele, Amy; Debes, John

    2018-01-01

    Observations of (sub)giants with planets and disks provide the first set of proof that disks can survive the first stages of post-main-sequence evolution, even though the disks are expected to dissipate by this time. The infrared (IR) excesses present around a number of post-main-sequence (PMS) stars could be due to a traditional debris disk with planets (e.g. kappa CrB), some remnant of enhanced mass loss (e.g. the shell-like structure of R Sculptoris), and/or background contamination. We present a sample of potential disk hosting first ascent red giants. These stars all have infrared excesses at 22 microns, and possibly host circumstellar debris. We summarize the characteristics of the sample to better inform the incidence rates of thermally emitting material around giant stars. A thorough follow-up study of these candidates would serve as the first step in probing the composition of the dust in these systems that have left the main sequence, providing clues to the degree of disk processing that occurs beyond the main-sequence.

  16. CHEMICAL TAGGING OF THREE DISTINCT POPULATIONS OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 6752

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.

    2012-05-01

    We present aluminum, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among giants in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stroemgren photometry along the redmore » giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.« less

  17. Asteroseismology of 16,000 Kepler Red Giants: Global Oscillation Parameters, Masses, and Radii

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Huber, Daniel; Bedding, Timothy R.; Stello, Dennis; Hon, Marc; Murphy, Simon J.; Khanna, Shourya

    2018-06-01

    The Kepler mission has provided exquisite data to perform an ensemble asteroseismic analysis on evolved stars. In this work we systematically characterize solar-like oscillations and granulation for 16,094 oscillating red giants, using end-of-mission long-cadence data. We produced a homogeneous catalog of the frequency of maximum power (typical uncertainty {σ }{ν \\max }=1.6 % ), the mean large frequency separation ({σ }{{Δ }ν }=0.6 % ), oscillation amplitude ({σ }{{A}}=4.7 % ), granulation power ({σ }gran}=8.6 % ), power excess width ({σ }width}=8.8 % ), seismically derived stellar mass ({σ }{{M}}=7.8 % ), radius ({σ }{{R}}=2.9 % ), and thus surface gravity ({σ }logg}=0.01 dex). Thanks to the large red giant sample, we confirm that red-giant-branch (RGB) and helium-core-burning (HeB) stars collectively differ in the distribution of oscillation amplitude, granulation power, and width of power excess, which is mainly due to the mass difference. The distribution of oscillation amplitudes shows an extremely sharp upper edge at fixed {ν }\\max , which might hold clues for understanding the excitation and damping mechanisms of the oscillation modes. We find that both oscillation amplitude and granulation power depend on metallicity, causing a spread of 15% in oscillation amplitudes and a spread of 25% in granulation power from [Fe/H] = ‑0.7 to 0.5 dex. Our asteroseismic stellar properties can be used as reliable distance indicators and age proxies for mapping and dating galactic stellar populations observed by Kepler. They will also provide an excellent opportunity to test asteroseismology using Gaia parallaxes, and lift degeneracies in deriving atmospheric parameters in large spectroscopic surveys such as APOGEE and LAMOST.

  18. A Differential Chemical Element Analysis of the Metal-poor Globular Cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; McWilliam, Andrew

    2011-08-01

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 ± 0.02 (stat.) ±0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by ~0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The α-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. 77 FR 4713 - Proposed Establishment of Class E Airspace; Red Cloud, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... accommodate new Standard Instrument Approach Procedures (SIAP) at Red Cloud Municipal Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules (IFR) operations for...: Send comments on this proposal to the U.S. Department of [[Page 4714

  20. New Changes in Jupiter Great Red Spot

    NASA Image and Video Library

    2015-10-13

    This image is one of two images from NASA Hubble Space Telescope comparing the movement of Jupiter clouds. The movement of Jupiter's clouds can be seen by comparing the first map to the second one in this animated pair of images. Zooming in on the Great Red Spot at blue (below, at left) and red (below, at right) wavelengths reveals a unique filamentary feature not previously seen. http://photojournal.jpl.nasa.gov/catalog/PIA19648

  1. A Comparative Study of WASP-67 b and HAT-P-38 b from WFC3 Data

    NASA Astrophysics Data System (ADS)

    Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin B.; Filippazzo, Joseph; Hill, Matthew; Fraine, Jonathan D.; Wakeford, Hannah R.; Deming, Drake; Kilpatrick, Brian; Line, Michael R.; Morley, Caroline V.; Collins, Karen A.; Conti, Dennis M.; Garlitz, Joseph; Rodriguez, Joseph E.

    2018-02-01

    Atmospheric temperature and planetary gravity are thought to be the main parameters affecting cloud formation in giant exoplanet atmospheres. Recent attempts to understand cloud formation have explored wide regions of the equilibrium temperature-gravity parameter space. In this study, we instead compare the case of two giant planets with nearly identical equilibrium temperature (T eq ∼ 1050 K) and gravity (g ∼ 10 m s‑1). During HST Cycle 23, we collected WFC3/G141 observations of the two planets, WASP-67 b and HAT-P-38 b. HAT-P-38 b, with mass 0.42 M J and radius 1.4 R J, exhibits a relatively clear atmosphere with a clear detection of water. We refine the orbital period of this planet with new observations, obtaining P = 4.6403294 ± 0.0000055 days. WASP-67 b, with mass 0.27 M J and radius 0.83 R J, shows a more muted water absorption feature than that of HAT-P-38 b, indicating either a higher cloud deck in the atmosphere or a more metal-rich composition. The difference in the spectra supports the hypothesis that giant exoplanet atmospheres carry traces of their formation history. Future observations in the visible and mid-infrared are needed to probe the aerosol properties and constrain the evolutionary scenario of these planets.

  2. THE INSIDIOUS BOOSTING OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS IN INTERMEDIATE-AGE MAGELLANIC CLOUD CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardi, Léo; Marigo, Paola; Bressan, Alessandro

    2013-11-10

    In the recent controversy about the role of thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate, to various extents, the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect, linked to the physics of stellar interiors, that in all probability is the main cause of this conundrum.more » As soon as stellar populations intercept the ages at which red giant branch stars first appear, a sudden and abrupt change in the lifetime of the core He-burning phase causes a temporary 'boost' in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of ∼2. The boost occurs for turn-off masses of ∼1.75 M{sub ☉}, just in the proximity of the expected peak in the TP-AGB lifetimes (for MC metallicities), and for ages of ∼1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. As we discuss in this paper, the identification of this evolutionary effect brings about three main consequences. First, we claim that present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters are biased toward too large values. Second, the relative TP-AGB contribution of single-burst populations falling in this critical age range cannot be accurately derived by approximations such as the fuel consumption theorem, which ignore, by construction, the above evolutionary effect. Third, a careful revision of AGB star populations in intermediate-age MC clusters is urgently demanded, promisingly with the aid of detailed sets of stellar isochrones.« less

  3. Bipolar nebulae and mass loss from red giant stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1985-01-01

    Observations of several bipolar nebulae are used to learn something of the nature of mass loss from the probable red-giant progenitors of these nebulae. Phenomena discussed are: (1) probable GL 2688's optical molecular emissions; (2) newly discovered very high velocity knots along the axis of OH 0739 - 14, which reveal evidence for mass ejections of + or 300 km/s from the M9 III star embedded in this nebula; (3) the bipolar structure of three extreme carbon stars, and the evidence for periodic mass ejection in IRC + 30219, also at high speed (about 80 km/s); and (4) the curious cool TiO-rich region above Parsamian 13, which may represent the very recent shedding of photospheric material from a cool, oxygen-rich giant. Several general key questions about bipolar nebulae that relate to the process of mass loss from their progenitor stars are raised.

  4. CN anomalies in extremely metal-deficient red giants

    NASA Technical Reports Server (NTRS)

    Anthony-Twarog, Barbara J.; Shawl, Stephen J.; Twarog, Bruce A.

    1992-01-01

    New photometric and UV spectroscopic data for the metal-deficient red giants CD -38 deg 245 and BD -18 deg 5550 are presented and discussed in light of recently noted photometric anomalies. From the IUE spectra it is aparent that the UV excess found in BD -18 deg 5550 is not the result of a hot companion. The IUE spectra, in conjunction with other observations, point to anomalous nitrogen abundances as the source of the discrepancies between the photometric and spectroscopic abundances for these stars. CD -38 deg 245 appears to be exceptionally nitrogen-rich while BD -18 deg 5550 is anomalously nitrogen-poor with respect to stars of comparable metallicities. While BD -18 deg 5550 appears to be an exception to the rule for its metallicity, the confirmation of a similar photometric pattern for CS 22885-96 may be an indication that the nitrogen overabundance in CD -38 deg 245 is typical for giants of extreme metal-deficiency.

  5. Are We Observing Coronal Mass Ejections in OH/IR AGB Stars?

    NASA Astrophysics Data System (ADS)

    Heiles, Carl

    2017-05-01

    Solar Coronal Mass Ejections (CMEs) are magnetic electron clouds that are violently ejected by the same magnetic reconnection events that produce Solar flares. CMEs are the major driving source of the hazardous space weather environments near the Earth. In exoplanet systems, the equivalent of Solar wind and CMEs can affect a planet's atmosphere, and in extreme cases can erode it, as probably happened with Mars, or disrupt the cosmic-ray shielding aspect of the planet's magnetic field.We (Jensen et al. 2013SoPh..285...83J, 2016SoPh..291..465J) have developed a new way to observe the electron column density and magnetic field of CMEs, namely to measure the frequency change and Faraday rotation of a spacecraft downlink carrier produced by propagation effects in the plasma. Surprisingly, this can work on other stars if they have the equivalent of the spacecraft carrier, as do OH/IR stars.OH/IR stars are Asymptotic Giant Branch (AGB) stars, which are red giant stars burning He in their final stages of stellar evolution. They have highly convective surfaces and large mass-ejection rates in the form of expanding dense shells of molecular gas and obscuring dust, which were ejected from the star by chaotic turbulent motions and then accelerated by radiation pressure. OH masers reside in these shells, pumped by the IR emission from the dust. The OH masers on the far side of the star (i.e., the positive-velocity masers) are the surrogate for the Solar-case spacecraft signal.The big question: Can we see CMEs in OH/IR stars? We have observed six OH/IR stars with the Arecibo Observatory for a total of about 150 hours over the past 1.5 years. We see changes in OH maser frequency and in the position angle of linear polarization. Both can be produced by electron clouds moving across the line of sight. We will present statistical summaries of the variability and interpret them in terms of CME models.

  6. Carbon and nitrogen abundance determinations from transition layer lines. [giant stars

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1988-01-01

    For red giants a smooth increase in the nitrogen to carbon abundance ratio for increasing B-V as is expected for the first dredge up phase when the outer convection zone deepens is found. An average increase in the nitrogen to silicon ratio for B-V = 0.6 which goes back to almost solar values for cool giants with B - V approximately 1.0 is reported. It looks as if Si would be enriched for deeper mixing contrary to expectations from standard evolution theory.

  7. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2016-01-01

    Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  8. NGC 6819: testing the asteroseismic mass scale, mass loss and evidence for products of non-standard evolution

    NASA Astrophysics Data System (ADS)

    Handberg, R.; Brogaard, K.; Miglio, A.; Bossini, D.; Elsworth, Y.; Slumstrup, D.; Davies, G. R.; Chaplin, W. J.

    2017-11-01

    We present an extensive peakbagging effort on Kepler data of ∼50 red giant stars in the open star cluster NGC 6819. By employing sophisticated pre-processing of the time series and Markov chain Monte Carlo techniques we extracted individual frequencies, heights and line widths for hundreds of oscillation modes. We show that the 'average' asteroseismic parameter δν02, derived from these, can be used to distinguish the stellar evolutionary state between the red giant branch (RGB) stars and red clump (RC) stars. Masses and radii are estimated using asteroseismic scaling relations, both empirically corrected to obtain self-consistency and agreement with independent measures of distance, and using updated theoretical corrections. Remarkable agreement is found, allowing the evolutionary state of the giants to be determined exclusively from the empirical correction to the scaling relations. We find a mean mass of the RGB stars and RC stars in NGC 6819 to be 1.61 ± 0.02 and 1.64 ± 0.02 M⊙, respectively. The difference ΔM = -0.03 ± 0.01 M⊙ is almost insensitive to systematics, suggesting very little RGB mass loss, if any. Stars that are outliers relative to the ensemble reveal overmassive members that likely evolved via mass transfer in a blue straggler phase. We suggest that KIC 4937011, a low-mass Li-rich giant, is a cluster member in the RC phase that experienced very high mass loss during its evolution. Such over- and undermassive stars need to be considered when studying field giants, since the true age of such stars cannot be known and there is currently no way to distinguish them from normal stars.

  9. The red supergiant population in the Perseus arm

    NASA Astrophysics Data System (ADS)

    Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-04-01

    We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the infrared calcium triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.

  10. NOEMA Observations of a Molecular Cloud in the Low-metallicity Galaxy Kiso 5639

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Herrera, Cinthya; Rubio, Monica; Elmegreen, Debra Meloy; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Olmo-García, Amanda

    2018-06-01

    A giant star-forming region in a metal-poor dwarf galaxy has been observed in optical lines with the 10 m Gran Telescopio Canarias (GTC) and in the emission line of CO(1–0) with the Northern Extended Millimeter Array (NOEMA) mm-wave interferometer. The metallicity was determined to be 12+{log}({{O}}/{{H}})=7.83+/- 0.09, from which we estimate a conversion factor of α CO ∼ 100 M ⊙ pc‑2(K km s‑1)‑1 and a molecular cloud mass of ∼2.9 × 107 M ⊙. This is an enormous concentration of molecular mass at one end of a small galaxy, suggesting a recent accretion. The molecular cloud properties seem normal: the surface density, 120 M ⊙ pc‑2, is comparable to that of a standard giant molecular cloud; the cloud’s virial ratio of ∼1.8 is in the star formation range; and the gas consumption time, 0.5 Gyr, at the present star formation rate is typical for molecular regions. The low metallicity implies that the cloud has an average visual extinction of only 0.8 mag, which is close to the threshold for molecule formation. With such an extinction threshold, molecular clouds in metal-poor regions should have high surface densities and high internal pressures. If high pressure is associated with the formation of massive clusters, then metal-poor galaxies such as dwarfs in the early universe could have been the hosts of metal-poor globular clusters.

  11. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.

    PubMed

    Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin

    2016-02-23

    The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.

  12. Resolved Giant Molecular Clouds in Nearby Spiral Galaxies: Insights from the CANON CO (1-0) Survey

    NASA Astrophysics Data System (ADS)

    Donovan Meyer, Jennifer; Koda, Jin; Momose, Rieko; Mooney, Thomas; Egusa, Fumi; Carty, Misty; Kennicutt, Robert; Kuno, Nario; Rebolledo, David; Sawada, Tsuyoshi; Scoville, Nick; Wong, Tony

    2013-08-01

    We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 × 105 M ⊙ in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and 12CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H2 mass (or X CO) for each galaxy is 1-2 × 1020 cm-2 (K km s-1)-1, all within a factor of two of the Milky Way disk value (~2 × 1020 cm-2 (K km s-1)-1). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X CO trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.

  13. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    PubMed Central

    Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin

    2016-01-01

    The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438

  14. Model Atmospheres for Massive Gas Giants with Thick Clouds: Application to the HR 8799 Planets and Predictions for Future Detections

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne

    2011-08-01

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 μm modal particle size and (2) clouds made of 1 μm sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 MJ , 6-13 MJ , and 3-11 MJ , respectively, and imply coeval ages between ~10 and ~150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.

  15. The alignment of molecular cloud magnetic fields with the spiral arms in M33.

    PubMed

    Li, Hua-bai; Henning, Thomas

    2011-11-16

    The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds. ©2011 Macmillan Publishers Limited. All rights reserved

  16. The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life.

    PubMed

    Ziurys, Lucy M

    2006-08-15

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C(8)H, C(3)S, SiC(3), and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO(+), SO(2), and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO(+), HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  17. Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.

  18. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistentmore » with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.« less

  19. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Eric D.; Fortney, Jonathan J.

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiativemore » cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.« less

  20. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  1. Outburst activity of the symbiotic system AG Dra

    NASA Astrophysics Data System (ADS)

    Hric, L.; Gális, R.; Leedjärv, L.; Burmeister, M.; Kundra, E.

    2014-09-01

    AG Dra is a well-known bright symbiotic binary with a white dwarf and a pulsating red giant. Long-term photometry monitoring and a new behaviour of the system are presented. A detailed period analysis of photometry as well as spectroscopy was carried out. In the system of AG Dra, two periods of variability are detected. The longer one around 550 d is related to the orbital motion and the shorter one around 355 d was interpreted as pulsations of the red giant in our previous article. In addition, the active stages change distinctively, but the outbursts are repeated with periods from 359-375 d.

  2. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroralmore » radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.« less

  3. Carbon and Nitrogen Abundance Variations Among Red Giant Branch Stars in M10

    NASA Astrophysics Data System (ADS)

    Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present analysis of the CN and CH molecular band strengths derived for red giants in M10 as part of a first pilot study in the WIYN Indiana Northern Globular Survey (WINGS). This survey plans to use a combination of low-resolution spectroscopy taken with Hydra and wide-field SDSS filter photometry taken with the newly upgraded ODI to study the multiple populations and dynamics of a sample of Milky Way globular clusters. Our sample comes from the first in a series of observation runs conducted in Aug. 2014 using Hydra on the WIYN 3.5m telescope. CN and CH bands are measured for ~100 red giant branch stars and used to characterize the distribution in band strength and to derive carbon and nitrogen abundances by comparing observed band strengths to synthetic spectra produced by the Synthetic Spectrum Generator (SSG), which makes use of MARCS model atmospheres. Band strengths and CN abundances are used to investigate the distribution of stars in nitrogen normal and enhanced populations and to compare these to other ways of characterizing multiple stellar populations with other light elements (such as Na and O).

  4. Precision Distances with the Tip of the Red Giant Branch Method

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael Lynn; Carnegie-Chicago Hubble Program Team

    2018-01-01

    The Carnegie-Chicago Hubble Program aims to construct a distance ladder that utilizes old stellar populations in the outskirts of galaxies to produce a high precision measurement of the Hubble Constant that is independent of Cepheids. The CCHP uses the tip of the red giant branch (TRGB) method, which is a statistical measurement technique that utilizes the termination of the red giant branch. Two innovations combine to make the TRGB a competitive route to the Hubble Constant (i) the large-scale measurement of trigonometric parallax by the Gaia mission and (ii) the development of both precise and accurate means of determining the TRGB in both nearby (~1 Mpc) and distant (~20 Mpc) galaxies. Here I will summarize our progress in developing these standardized techniques, focusing on both our edge-detection algorithm and our field selection strategy. Using these methods, the CCHP has determined equally precise (~2%) distances to galaxies in the Local Group (< 1 Mpc) and across the Local Volume (< 20 Mpc). The TRGB is, thus, an incredibly powerful and straightforward means to determine distances to galaxies of any Hubble Type and, thus, has enormous potential for putting any number of astrophyiscal phenomena on absolute units.

  5. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.

    PubMed

    Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika

    2013-06-27

    Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

  6. An Extreme Analogue of ɛ Aurigae: An M-giant Eclipsed Every 69 Years by a Large Opaque Disk Surrounding a Small Hot Source

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Siverd, Robert J.; Pepper, Joshua; Tang, Sumin; Kafka, Stella; Gaudi, B. Scott; Conroy, Kyle E.; Beatty, Thomas G.; Stevens, Daniel J.; Shappee, Benjamin J.; Kochanek, Christopher S.

    2016-05-01

    We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ˜3.45 year long, near-total eclipse (depth of ˜4.5 mag) with a very long period of ˜69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ɛ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source (Teff ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1-0.5 R⊙ (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1-2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ˜24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case, this system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype ɛ Aurigae.

  7. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair

    2017-05-01

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  8. Jupiter Infrared Glow

    NASA Image and Video Library

    2015-07-07

    This still from an animation of four images shows Jupiter in infrared light as seen by NASA InfraRed Telescope Facility, or IRTF, on May 16, 2015. The observations were obtained in support of NASA's Juno mission by a team headed by Juno scientist Glenn Orton. Observations like these are helping to provide spatial and temporal context for what the science instruments on board Juno will see once the spacecraft arrives at the giant planet in mid-2016. Juno will pass very close to the planet -- coming within just a few thousand miles (or kilometers) of the cloud tops every two weeks. That up-close vantage point will be balanced by distant views of the planet that show how different features move and change over time in relation to each other. The IRTF is a three-meter telescope, optimized for infrared observations, and located at the summit of Mauna Kea, Hawaii. The observatory is operated and managed for NASA by the University of Hawaii Institute for Astronomy, Honolulu. http://photojournal.jpl.nasa.gov/catalog/PIA19640

  9. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  10. Developing Atmospheric Retrieval Methods for Direct Imaging Spectroscopy of Gas Giants in Reflected Light I: Methane Abundances and Basic Cloud Properties

    NASA Technical Reports Server (NTRS)

    Lupu, R. E.; Marley, M. S.; Lewis, N.; Line, M.; Traub, W.; Zahnle, K.

    2016-01-01

    Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are expected to be performed in the next decade by space-based telescopes equipped with optical wavelength coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope (WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs an albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmospheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise, in the presence of spectral noise correlations. After internal validation, the method is applied to realistic reflected-light spectra of Jupiter, Saturn, and HD 99492 c, a likely observing target. We find that the presence or absence of clouds and methane can be determined with high accuracy, while parameters uncertainties are model-dependent.

  11. THE LOCATION, CLUSTERING, AND PROPAGATION OF MASSIVE STAR FORMATION IN GIANT MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parentmore » GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.« less

  12. Catching the Drift: Simulating Dark Spots and Bright Companions on the Ice Giants

    NASA Astrophysics Data System (ADS)

    LeBeau, R. P., Jr.; Koutas, N.; Palotai, C. J.; Bhure, S.; Hadland, N.; Sankar, R.

    2017-12-01

    Starting with the original Great Dark Spot (GDS-89) observed by Voyager 2, roughly a half-dozen large geophysical vortices have been observed on the Ice Giants, the most recent in 2015 on Neptune (Wong et al., 2016). While the presumption is that these Dark Spots are similar in structure to the large vortices on Jupiter, in some cases the Dark Spots exhibit dynamical motions such as the shape oscillations and latitudinal drift of GDS-89 (Smith et al., 1989) or the possible vortex drift underlying the "Berg" cloud feature on Uranus (de Pater et al., 2011). Others, like NGDS-1998, have remained largely stable across years of observation (Sromovsky et al., 2002). In addition, several of the vortices are linked with Bright Companion clouds which are presumed to be orographic features formed as the atmosphere rises over the vortex. The numerical simulation of these features has evolved with each new observation. Prior simulations have captured the forms if not all the specifics of observed Dark Spot dynamics (LeBeau and Dowling, 1998; LeBeau and Deng, 2006); likewise, numerical models have demonstrated the potential for orographic companion clouds (Stratman et al., 2001). However, as more knowledge of the Ice Giant atmospheres has been obtained, it has proven challenging to generate consistent dynamical models that capture the details of the Dark Spot variations and are physically consistent with known observations. In particular, current simulations indicate that the addition of a companion cloud can alter the vortex dynamics, both in terms of drift and oscillations. Given the impact of these clouds, a new parametric simulation study uses an updated microphysics model, implemented in the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al., 1998, 2006), to account for the condensation of methane and hydrogen sulfide (Palotai et al., 2016). Simulations of dark spots with varying sizes, strengths, and locations are conducted with different microphysical parameters such as the deep abundance and ambient supersaturation. Simulations are evaluated in terms of vortex stability and drift rate along with companion cloud formation with the goal of improving our understanding of the underlying physics driving the varying behaviors of the observed Dark Spots.

  13. An Empirical Calibration of the Mixing-Length Parameter α

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco R.; Valenti, Elena; Straniero, Oscar; Origlia, Livia

    2006-05-01

    We present an empirical calibration of the mixing-length free parameter α based on a homogeneous infrared database of 28 Galactic globular clusters spanning a wide metallicity range (-2.15<[Fe/H]<-0.2). Empirical estimates of the red giant effective temperatures have been obtained from infrared colors. Suitable relations linking these temperatures to the cluster metallicity have been obtained and compared to theoretical predictions. An appropriate set of models for the Sun and Population II giants has been computed by using both the standard solar metallicity (Z/X)solar=0.0275 and the most recently proposed value (Z/X)solar=0.0177. We find that when the standard solar metallicity is adopted, a unique value of α=2.17 can be used to reproduce both the solar radius and the Population II red giant temperature. Conversely, when the new solar metallicity is adopted, two different values of α are required: α=1.86 to fit the solar radius and α~2.0 to fit the red giant temperatures. However, it must be noted that regardless the adopted solar reference, the α-parameter does not show any significant dependence on metallicity. Based on observations collected at the European Southern Observatory (ESO), La Silla, Chile. Also based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  14. The "RED Versa NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements"

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Evans, K.; Wiscombe, W.

    2003-01-01

    A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the RED and near infrared (MR) spectral regions is introduced. Because zenith radiance does not have a one-to-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances such as NDCI while largely removing nouniquiness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the 'RED vs. NIR' plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multi-channel sunphotometer, is a part of AERONET - a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.

  15. Mars At Opposition

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These NASA Hubble Space Telescope views provide the most detailed complete global coverage of the red planet Mars ever seen from Earth. The pictures were taken on February 25, 1995, when Mars was at a distance of 65 million miles (103 million km).

    To the surprise of researchers, Mars is cloudier than seen in previous years. This means the planet is cooler and drier, because water vapor in the atmosphere freezes out to form ice-crystal clouds. Hubble resolves Martian surface features with a level of detail only exceeded by planetary probes, such as impact craters and other features as small as 30 miles (50 kilometers) across.

    [Tharsis region] - A crescent-shaped cloud just right of center identifies the immense shield volcano Olympus Mons, which is 340 miles (550 km) across at its base. Warm afternoon air pushed up over the summit forms ice-crystal clouds downwind from the volcano. Farther to the east (right) a line of clouds forms over a row of three extinct volcanoes which are from north to south: Ascraeus Mons, Pavonis Mons, Arsia Mons. It's part of an unusual, recurring 'W'-shaped cloud formation that once mystified earlier ground-based observers.

    [Valles Marineris region] - The 16 mile-high volcano Ascraeus Mons pokes through the cloud deck along the western (left) limb of the planet. Other interesting geologic features include (lower left) Valles Marineris, an immense rift valley the length of the continental United States. Near the image center lies the Chryse basin made up of cratered and chaotic terrain. The oval-looking Argyre impact basin (bottom) appears white due to clouds or frost.

    [Syrtis Major region] - The dark 'shark fin' feature left of center is Syrtis Major. Below it the giant impact basin Hellas. Clouds cover several great volcanos in the Elysium region near the eastern (right) limb. As clearly seen in the Hubble images, past dust storms in Mars' southern hemisphere have scoured the plains of fine light dust and transported the dust northward. This leaves behind a relatively coarser, and less reflective sand in, predominantly, the southern hemisphere.

    The pictures were taken with Hubble's Wide Field Planetary Camera 2.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http:// oposite.stsci.edu/pubinfo/

  16. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  17. Capture of the Sun's Oort cloud from stars in its birth cluster.

    PubMed

    Levison, Harold F; Duncan, Martin J; Brasser, Ramon; Kaufmann, David E

    2010-07-09

    Oort cloud comets are currently believed to have formed in the Sun's protoplanetary disk and to have been ejected to large heliocentric orbits by the giant planets. Detailed models of this process fail to reproduce all of the available observational constraints, however. In particular, the Oort cloud appears to be substantially more populous than the models predict. Here we present numerical simulations that show that the Sun captured comets from other stars while it was in its birth cluster. Our results imply that a substantial fraction of the Oort cloud comets, perhaps exceeding 90%, are from the protoplanetary disks of other stars.

  18. Deep Clouds

    NASA Image and Video Library

    2008-05-27

    Bright puffs and ribbons of cloud drift lazily through Saturn's murky skies. In contrast to the bold red, orange and white clouds of Jupiter, Saturn's clouds are overlain by a thick layer of haze. The visible cloud tops on Saturn are deeper in its atmosphere due to the planet's cooler temperatures. This view looks toward the unilluminated side of the rings from about 18 degrees above the ringplane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft wide-angle camera on April 15, 2008 at a distance of approximately 1.5 million kilometers (906,000 miles) from Saturn. Image scale is 84 kilometers (52 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA09910

  19. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    NASA Astrophysics Data System (ADS)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (Teff < 400 K) giant exoplanetary atmospheres. The impact of effective temperature, gravity, metallicity, and sedimentation efficiency is explored. We find prominent H2O features around 0.94 μm, 0.83 μm, and across a wide spectral region from 0.4 to 0.73 μm. The 0.94 μm feature is only detectable where high-altitude water clouds brighten the planet: Teff ∼ 150 K, g ≳ 20 ms‑2, fsed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and Teff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High fsed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.

  20. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar, profile and 3D views since it reduces crowding of the scene and delivers intuitive contextual information. The resulting visualization has proved useful for vegetation analysis for habitat mapping, and can also be applied as a first step for point cloud level classification. An interactive demonstration of the visualization script is shown during poster attendance, including the opportunity to view your own point cloud sample files.

  1. HOT WHITE DWARF SHINES IN YOUNG STAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A dazzling 'jewel-box' collection of over 20,000 stars can be seen in crystal clarity in this NASA Hubble Space Telescope image, taken with the Wide Field and Planetary Camera 2. The young (40 million year old) cluster, called NGC 1818, is 164,000 light-years away in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. The LMC, a site of vigorous current star formation, is an ideal nearby laboratory for studying stellar evolution. In the cluster, astronomers have found a young white dwarf star, which has only very recently formed following the burnout of a red giant. Based on this observation astronomers conclude that the red giant progenitor star was 7.6 times the mass of our Sun. Previously, astronomers have estimated that stars anywhere from 6 to 10 solar masses would not just quietly fade away as white dwarfs but abruptly self-destruct in torrential explosions. Hubble can easily resolve the star in the crowded cluster, and detect its intense blue-white glow from a sizzling surface temperature of 50,000 degrees Fahrenheit. IMAGE DATA Date taken: December 1995 Wavelength: natural color reconstruction from three filters (I,B,U) Field of view: 100 light-years, 2.2 arc minutes TARGET DATA Name: NGC 1818 Distance: 164,000 light-years Constellation: Dorado Age: 40 million years Class: Rich star cluster Apparent magnitude: 9.7 Apparent diameter: 7 arc minutes Credit: Rebecca Elson and Richard Sword, Cambridge UK, and NASA (Original WFPC2 image courtesy J. Westphal, Caltech) Image files are available electronically via the World Wide Web at: http://oposite.stsci.edu/pubinfo/1998/16 and via links in http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. GIF and JPEG images are available via anonymous ftp to oposite.stsci.edu in /pubinfo/GIF/9816.GIF and /pubinfo/JPEG/9816.jpg.

  2. The Dawn of a New Era for Supernova 1987a

    NASA Image and Video Library

    2017-12-08

    Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years. The titanic supernova, called Supernova 1987A (SN 1987A), blazed with the power of 100 million suns for several months following its discovery on Feb. 23, 1987. Since that first sighting, SN 1987A has continued to fascinate astronomers with its spectacular light show. Located in the nearby Large Magellanic Cloud, it is the nearest supernova explosion observed in hundreds of years and the best opportunity yet for astronomers to study the phases before, during, and after the death of a star. "The 30 years' worth of observations of SN 1987A are important because they provide insight into the last stages of stellar evolution," said Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and the Gordon and Betty Moore Foundation in Palo Alto, California. The latest data from these powerful telescopes indicate that SN 1987A has passed an important threshold. The supernova shock wave is moving beyond the dense ring of gas produced late in the life of the pre-supernova star when a fast outflow or wind from the star collided with a slower wind generated in an earlier red giant phase of the star's evolution. What lies beyond the ring is poorly known at present, and depends on the details of the evolution of the star when it was a red giant. Read more: go.nasa.gov/2lEgs8M NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. The Carnegie-Chicago Hubble Program. I. An Independent Approach to the Extragalactic Distance Scale Using Only Population II Distance Indicators

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Bono, Giuseppe; Carlson, Erika K.; Clementini, Gisella; Durbin, Meredith J.; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Kollmeier, Juna A.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-12-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3% measurement of the Hubble constant (H 0) using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to H 0 using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble type, of any inclination, and, using old stars in low-density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of H 0 via the distance ladder. Initially, the accuracy of our value of H 0 will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero-point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end “distance ladder” completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to H 0 will allow for the high-precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to H 0. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #13472 and #13691.

  4. Impact of Cumulus Cloud Spacing on Landsat Atmospheric Correction and Aerosol Retrieval

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Tsay, Si-Chee; Oreopoulos, Lazaros

    2001-01-01

    A Landsat-7 ETM+ image acquired over the Southern Great Plains DoE/ARM site during the ARESE II experiment is used to study the effect of clouds on reflected radiation in clear patches of a cumulus cloud field. The result shows that the apparent path radiance in the clear patches is enhanced by nearby clouds in both band 1 (blue) and band 3 (red) of ETM+. More importantly, the magnitude of the enhancement depends on the mean cloud-free distance in the clear patches. For cloud-free distance less than 0.5 km, the enhancement of apparent path radiance is more than 0.025 and 0.015 (reflectance units) in band 1 and band 3 respectively, which corresponds to an enhancement of apparent aerosol optical thickness of approximately 0.25 and approximately 0.15. Neglecting of the 3-D cloud effect would lead to underestimates of surface reflectance of approximately 0.025 and approximately 0.015 in the blue and red band respectively, if the true aerosol optical thickness is 0.2 and the surface reflectance is 0.05. The enhancement decreases exponentially with mean cloud-free distance, reaching asymptotic values of 0.09 for band 1 and 0.027 for band 3 at a mean cloud-free distance about 2 km. The asymptotic values are slightly larger than the mean path radiances retrieved from a completely clear region -- 0.086 and 0.024 for the blue and red band respectively.

  5. Massive Star Makes Waves

    NASA Image and Video Library

    2012-12-18

    The giant star Zeta Ophiuchi, a young, large and hot star located around 370 light-years away, is having a hocking effect on the surrounding dust clouds in this infrared image from NASA Spitzer Space Telescope.

  6. Titan under a red giant sun: a new kind of "habitable" moon.

    PubMed

    Lorenz, R D; Lunine, J I; McKay, C P

    1997-11-15

    We explore the response of Titan's surface and massive atmosphere to the change in solar spectrum and intensity as the sun evolves into a red giant. Titan's surface temperature is insensitive to insolation increases as the haze-laden atmosphere "puffs up" and blocks more sunlight. However, we find a window of several hundred Myr exists, roughly 6 Gyr from now, when liquid water-ammonia can form oceans on the surface and react with the abundant organic compounds there. The window opens due to a drop in haze production as the ultraviolet flux from the reddening sun plummets. The duration of such a window exceeds the time necessary for life to have begun on Earth. Similar environments, with approximately 200K water-ammonia oceans warmed by methane greenhouses under red stars, are an alternative to the approximately 30OK water-CO2 environments considered the classic "habitable" planet.

  7. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-08-01

    Future direct-imaging exoplanet missions such as WFIRST/AFTA, Exo-C, and Exo-S will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These “cold” exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  8. A physically-based approach of treating dust-water cloud interactions in climate models

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Karydis, V.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-12-01

    All aerosol-cloud-climate assessment studies to date assume that the ability of dust (and other insoluble species) to act as a Cloud Condensation Nuclei (CCN) is determined solely by their dry size and amount of soluble material. Recent evidence however clearly shows that dust can act as efficient CCN (even if lacking appreciable amounts of soluble material) through adsorption of water vapor onto the surface of the particle. This "inherent" CCN activity is augmented as the dust accumulates soluble material through atmospheric aging. A comprehensive treatment of dust-cloud interactions therefore requires including both of these sources of CCN activity in atmospheric models. This study presents a "unified" theory of CCN activity that considers both effects of adsorption and solute. The theory is corroborated and constrained with experiments of CCN activity of mineral aerosols generated from clays, calcite, quartz, dry lake beds and desert soil samples from Northern Africa, East Asia/China, and Northern America. The unified activation theory then is included within the mechanistic droplet activation parameterization of Kumar et al. (2009) (including the giant CCN correction of Barahona et al., 2010), for a comprehensive treatment of dust impacts on global CCN and cloud droplet number. The parameterization is demonstrated with the NASA Global Modeling Initiative (GMI) Chemical Transport Model using wind fields computed with the Goddard Institute for Space Studies (GISS) general circulation model. References Barahona, D. et al. (2010) Comprehensively Accounting for the Effect of Giant CCN in Cloud Activation Parameterizations, Atmos.Chem.Phys., 10, 2467-2473 Kumar, P., I.N. Sokolik, and A. Nenes (2009), Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN, Atmos.Chem.Phys., 9, 2517- 2532

  9. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  10. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  11. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J., E-mail: kerri.l.cahoy@nasa.go

    2010-11-20

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 {mu}m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, andmore » Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H{sub 2}O clouds at 2 AU, and have both NH{sub 3} and H{sub 2}O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = {lambda}/{Delta}{lambda} {approx} 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence atmospheric temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H{sub 2}O absorption features near 0.94 {mu}m. While solar system giant planets are well separated by their broadband colors, we find that arbitrary giant exoplanets can have a large range of possible colors and that color alone cannot be relied upon to characterize planet types. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator-to-pole temperature gradients than are found on Jupiter and thus may exhibit differing atmospheric dynamics. These results are useful for future interpretation of direct imaging exoplanet observations as well as for deriving requirements and designing filters for optical direct imaging instrumentation.« less

  12. Why stars become red giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, J.H.

    1988-06-01

    It is shown that a radiative envelope in which the Kramers opacity law holds cannot transport a luminosity larger than a critical value, and it is argued that the transition to red giant structure is triggered by the star's luminosity exceeding the critical value. If the Kramers law is used for all temperatures and densities, the radius of the star diverges as the critical luminosity is approached. In real stars the radiative envelope expands as the luminosity increases until the star intersects the Hayashi track. Once on the Hayashi track, luminosities in excess of the critical luminosity can be accommodatedmore » by forcing most of the mass of the envelope into the convection zone. 17 references.« less

  13. High-resolution spectra of stars in globular clusters. VI - Oxygen-deficient red giant stars in M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.A.; Wallerstein, G.; Oke, J.B.

    From high-resolution, high signal-to-noise spectra, abundances of carbon, nitrogen, and oxygen and the C-12/C-13 ratio for five red giants in M13, including star II-67, which has previously been reported to be deficient in oxygen have been determined. Three of the five stars exhibit substantial oxygen deficiencies; O/Fe values range from +0.5 to less than about 0.3. The sum of the CNO nuclides is the same for all stars, which is interpreted as evidence that mixing of CNO-cycled material into the envelope is the cause of the variations in oxygen abundance. 41 refs.

  14. Scientists Discover Sugar in Space

    NASA Astrophysics Data System (ADS)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds. Glycolaldehyde is a simpler molecular cousin to table sugar, the scientists say. The sugar molecule was detected in a large cloud of gas and dust some 26,000 light-years away, near the center of our Galaxy. Such clouds, often many light-years across, are the material from which new stars are formed. Though very rarified by Earth standards, these interstellar clouds are the sites of complex chemical reactions that occur over hundreds of thousands or millions of years. So far, about 120 different molecules have been discovered in these clouds. Most of these molecules contain a small number of atoms, and only a few molecules with eight or more atoms have been found in interstellar clouds. The 12 Meter Telescope "Finding glycolaldehyde in one of these interstellar clouds means that such molecules can be formed even in very rarified conditions," said Hollis. "We don't yet understand how it could be formed there," he added. "A combination of more astronomical observations and theoretical chemistry work will be required to resolve the mystery of how this molecule is formed in space." "We hope this discovery inspires renewed efforts to find even more kinds of molecules, so that, with a better idea of the total picture, we may be able to deduce the details of the prebiotic chemistry taking place in interstellar clouds," Hollis said. The discovery was made by detecting faint radio emission from the sugar molecules in the interstellar cloud. Molecules rotate end-for-end, and as they change from one rotational energy state to another, they emit radio waves at precise frequencies. The "family" of radio frequencies emitted by a particular molecule forms a unique "fingerprint" that scientists can use to identify that molecule. The scientists identified glycolaldehyde by detecting six frequencies of radio emission in what is termed the millimeter-wavelength region of the electromagnetic spectrum -- a region between more-familiar microwaves and infrared radiation. The NRAO 12 Meter Telescope used to detect the sugar molecule has been a pioneer instrument in the detection of molecules in space. Built in 1967, it made the first detections of dozens of the molecules now known to exist in space, including the important first discovery of carbon monoxide, now widely used by astronomers as a signpost showing regions where stars are being formed. The 12 Meter Telescope is scheduled to be closed at the end of July, in preparation for the Atacama Large Millimeter Array, an advanced system of 64 radio-telescope antennas in northern Chile now being developed by an international partnership. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Giant Molecular Cloud Near Milky Way's Center The giant molecular cloud, known as Sagittarius B2 (North), as seen by the NSF's Very Large Array (VLA) radio telescope in New Mexico. This is the cloud in which scientists using the 12 Meter Telescope detected the simple sugar molecule glycolaldehyde. This VLA image shows hydrogen gas in a region nearly 3 light-years across. In this image, red indicates stronger radio emission; blue weaker. The 12 Meter Telescope studied this region at much shorter wavelengths, which revealed the evidence of sugar molecules. CREDIT: R. Gaume, M. Claussen, C. De Pree, W.M. Goss, D. Mehringer, NRAO/AUI/NSF.

  15. NGC 6067: a young and massive open cluster with high metallicity

    NASA Astrophysics Data System (ADS)

    Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Tabernero, H. M.; González-Fernández, C.; Castro, N.

    2017-08-01

    NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M⊙ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78 ± 0.12 kpc, an age of 90 ± 20 Ma and a tidal radius of 14.8^{+6.8}_{-3.2} arcmin. We estimate an initial mass above 5700 M⊙, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses ≈6 M⊙. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H] = +0.19 ± 0.05, and a homogeneous chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li) = 2.41, is also detected. An overabundance of Ba is found, supporting the enhanced s-process. The ratio of yellow to red giants is much smaller than 1, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.

  16. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, D.; Bedding, T. R.; Stello, D.

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen andmore » Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.« less

  17. Rotational and radial velocities of 1.3-2.2 M {sub ☉} red giants in open clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Joleen K., E-mail: jcarlberg@dtm.ciw.edu

    2014-06-01

    This study presents the rotational distribution of red giant (RG) stars in 11 old to intermediate age open clusters. The masses of these stars are all above the Kraft break, so they lose negligible amounts of their birth angular momentum (AM) during the main-sequence (MS) evolution. However, they do span a mass range with quite different AM distributions imparted during formation, with the stars less massive than ∼1.6M {sub ☉} arriving on the MS with lower rotation rates than the more massive stars. The majority of RGs in this study are slow rotators across the entire red giant branch regardlessmore » of mass, supporting the picture that intermediate-mass stars rapidly spin down when they evolve off the MS and develop convection zones capable of driving a magnetic dynamo. Nevertheless, a small fraction of RGs in open clusters show some level of enhanced rotation, and faster rotators are as common in these clusters as in the field RG population. Most of these enhanced rotators appear to be red clump stars, which is also true of the underlying stellar sample, while others are clearly RGs that are above or below the clump. In addition to rotational velocities, the radial velocities (RVs) and membership probabilities of individual stars are also presented. Cluster heliocentric RVs for NGC 6005 and Pismis 18 are reported for the first time.« less

  18. Evolutionary Models of Red Supergiants: Evidence for A Metallicity-dependent Mixing Length and Implications for Type IIP Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Yoon, Sung-Chul; Jung, Moo-Keon; Kim, Dong Uk; Kim, Jihoon

    2018-01-01

    Recent studies on the temperatures of red supergiants (RSGs) in the local universe provide us with an excellent observational constraint on RSG models. We calibrate the mixing length parameter by comparing model predictions with the empirical RSG temperatures in Small and Large Magellanic Clouds, Milky Way, and M31, which are inferred from the TiO band and the spectral energy distribution (SED). Although our RSG models are computed with the MESA code, our result may be applied to other stellar evolution codes, including the BEC and TWIN codes. We find evidence that the mixing length increases with increasing metallicity for both cases where the TiO and SED temperatures of RSGs are used for the calibration. Together with the recent finding of a similar correlation in low-mass red giants by Tayar et al., this implies that the metallicity dependence of the mixing length is a universal feature in post-main sequence stars of both low and high masses. Our result implies that typical Type IIP supernova (SN IIP) progenitors with initial masses of ∼ 10{--}16 {M}ȯ have a radius range of 400 {R}ȯ ≲ R≲ 800 {R}ȯ regardless of metallicity. As an auxiliary result of this study, we find that the hydrogen-rich envelope mass of SN IIP progenitors for a given initial mass is predicted to be largely independent of metallicity if the Ledoux criterion with slow semiconvection is adopted, while the Schwarzschild models predict systematically more massive hydrogen-rich envelopes for lower metallicity.

  19. Spitzer Makes Invisible Visible

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon. http://photojournal.jpl.nasa.gov/catalog/PIA05734

  20. Photographer : JPL Range : 3.4 million km This pair of images shows two of the long-lived white oval

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 3.4 million km This pair of images shows two of the long-lived white oval clouds which have resided in the Jovian southern hemisphere for nearly 40 years. The upper picture shows the cloud that is at a longitude west of the Great Red Spot, and the lower frame, the cloud at a longitude east of this feature. The third oval is currently just south of the Great Red Spot. The clouds show very similar internal structures. To the east of each of them, recirculation currents are clearly seen. In the lower frame, a similar structure is seen to the west of the cloud. Although a recirculation current is associated with the upper western region of the cloud, it is further away from this feature and not seen in the image. This photo was taken by Voyager 2.

  1. A Real Shooting Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star

    This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light.

    The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years.

    As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake.

    Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence.

    Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer

    Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its 'whale of a tail' can be found in the tail of the whale constellation.

  2. Evidence of a false thumb in a fossil carnivore clarifies the evolution of pandas

    PubMed Central

    Salesa, Manuel J.; Antón, Mauricio; Peigné, Stéphane; Morales, Jorge

    2006-01-01

    The “false thumb” of pandas is a carpal bone, the radial sesamoid, which has been enlarged and functions as an opposable thumb. If the giant panda (Ailuropoda melanoleuca) and the red panda (Ailurus fulgens) are not closely related, their sharing of this adaptation implies a remarkable convergence. The discovery of previously unknown postcranial remains of a Miocene red panda relative, Simocyon batalleri, from the Spanish site of Batallones-1 (Madrid), now shows that this animal had a false thumb. The radial sesamoid of S. batalleri shows similarities with that of the red panda, which supports a sister-group relationship and indicates independent evolution in both pandas. The fossils from Batallones-1 reveal S. batalleri as a puma-sized, semiarboreal carnivore with a moderately hypercarnivore diet. These data suggest that the false thumbs of S. batalleri and Ailurus fulgens were probably inherited from a primitive member of the red panda family (Ailuridae), which lacked the red panda's specializations for herbivory but shared its arboreal adaptations. Thus, it seems that, whereas the false thumb of the giant panda probably evolved for manipulating bamboo, the false thumbs of the red panda and of S. batalleri more likely evolved as an aid for arboreal locomotion, with the red panda secondarily developing its ability for item manipulation and thus producing one of the most dramatic cases of convergence among vertebrates. PMID:16387860

  3. Evidence of a false thumb in a fossil carnivore clarifies the evolution of pandas.

    PubMed

    Salesa, Manuel J; Antón, Mauricio; Peigné, Stéphane; Morales, Jorge

    2006-01-10

    The "false thumb" of pandas is a carpal bone, the radial sesamoid, which has been enlarged and functions as an opposable thumb. If the giant panda (Ailuropoda melanoleuca) and the red panda (Ailurus fulgens) are not closely related, their sharing of this adaptation implies a remarkable convergence. The discovery of previously unknown postcranial remains of a Miocene red panda relative, Simocyon batalleri, from the Spanish site of Batallones-1 (Madrid), now shows that this animal had a false thumb. The radial sesamoid of S. batalleri shows similarities with that of the red panda, which supports a sister-group relationship and indicates independent evolution in both pandas. The fossils from Batallones-1 reveal S. batalleri as a puma-sized, semiarboreal carnivore with a moderately hypercarnivore diet. These data suggest that the false thumbs of S. batalleri and Ailurus fulgens were probably inherited from a primitive member of the red panda family (Ailuridae), which lacked the red panda's specializations for herbivory but shared its arboreal adaptations. Thus, it seems that, whereas the false thumb of the giant panda probably evolved for manipulating bamboo, the false thumbs of the red panda and of S. batalleri more likely evolved as an aid for arboreal locomotion, with the red panda secondarily developing its ability for item manipulation and thus producing one of the most dramatic cases of convergence among vertebrates.

  4. On the observational characteristics of lithium-enhanced giant stars in comparison with normal red giants†

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Tajitsu, Akito

    2017-08-01

    While lithium is generally deficient in the atmosphere of evolved giant stars because of the efficient mixing-induced dilution, a small fraction of red giants show unusually strong Li lines indicative of conspicuous abundance excess. With the aim of shedding light on the origin of these peculiar stars, we carried out a spectroscopic study on the observational characteristics of 20 selected bright giants already known to be Li-rich from past studies, in comparison with the reference sample of a large number of normal late G-early K giants. Special attention was paid to clarifying any difference between the two samples from a comprehensive point of view (i.e., with respect to stellar parameters, rotation, activity, kinematic properties, 6Li/7Li ratio, and the abundances of Li, Be, C, O, Na, S, and Zn). Our sample stars are roughly divided into a “bump/clump group” and a “luminous group” according to their positions on the HR diagram. Regarding the former group [1.5 ≲ log (L/L⊙) ≲ 2 and M ∼ 1.5-3 M⊙], Li-enriched giants and normal giants appear practically similar in almost all respects except for Li, suggesting that surface Li enhancement in this group may be a transient episode which normal giants undergo at certain evolutionary stages in their lifetime. Meanwhile, those Li-rich giants belonging to the latter group [log (L/L⊙) ∼ 3 and M ∼ 3-5 M⊙] appear more anomalous in the sense that they tend to show higher rotation as well as higher activity, and that their elemental abundances (especially those derived from high-excitation lines) are apt to show apparent overabundances, though this might be due to a spurious effect reflecting the difficulty of abundance derivation in stars of higher rotation and activity. Our analysis confirmed considerable Be deficiency as well as absence of 6Li as the general characteristics of Li-rich giants under study, which implies that engulfment of planets is rather unlikely for the origin of Li-enrichment.

  5. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons tomore » super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.« less

  6. Digging in the coronal graveyard - A Rosat observation of the red giant Arcturus

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas R.; Fleming, Thomas A.; Schmitt, Juergen H. M. M.

    1991-01-01

    A deep exposure of the bright star Arcturus (Alpha Bootis: K1 III) with the Roentgensatellit (Rosat) failed to detect soft X-ray emission from the archetype 'noncoronal' red giant. The 3-sigma upper limit in the energy band 0.1-2.4 keV corresponds to an X-ray luminosity of less than 3 x 10 to the 25th erg/s, equivalent to a coronal surface flux density of less than 0.0001 solar. The nondetection safely eliminates coronal irradiation as a possible mechanism to produce the highly variable He I 10830 feature and emphasizes the sharp decline in solarlike coronal activity that accompanies the evolution of low-mass single stars away from the main sequence. While the most conspicuous object in the Rosat field of view was not visible in X-rays, at least one fainter star is among the about 60 sources recorded: the Sigma Sct variable CN Boo, an A8 giant in the UMa Stream.

  7. The evolution of rotating stars. III - Predicted surface rotation velocities for stars which conserve total angular momentum

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  8. Evolution of the symbiotic binary system AG Pegasi - The slowest classical nova eruption ever recorded

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Mikolajewska, Joanna; Mikolajewski, Maciej; Polidan, Ronald S.; Slovak, Mark H.

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the ongoing eruption in the symbiotic star AG Pegasi, showing that this binary has evolved considerably since the turn of the century. Recent dramatic changes in both the UV continuum and the wind from the hot component allow a more detailed analysis than in previous papers. AG Peg is composed of a normal M3 giant and a hot, compact star embedded in a dense, ionized nebula. The hot component powers the activity observed in this system, including a dense wind and a photoionized region within the outer atmosphere of the red giant. The hot component contracted in radius at roughly constant luminosity from 1850 to 1985. Its bolometric luminosity declined by a factor of about 4 during the past 5 yr. Both the mass loss rate from the hot component and the emission activity decreased in step with the hot component's total luminosity, while photospheric radiation from the red giant companion remained essentially constant.

  9. A Flame in Orion Belt

    NASA Image and Video Library

    2010-12-02

    This mosaic image taken by NASA Wide-field Infrared Survey Explorer, features three nebulae that are part of the giant Orion Molecular Cloud. Included in this view are the Flame nebula, the Horsehead nebula and NGC 2023.

  10. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less

  11. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Wu, Yue; Deng, Li-Cai

    2015-07-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surfacemore » gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.« less

  12. Testing tidal theory for evolved stars by using red-giant binaries observed by Kepler

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Mathis, S.; Gallet, F.; Charbonnel, C.; Benbakoura, M.; García, R. A.; do Nascimento, J.-D.

    2018-06-01

    Tidal interaction governs the redistribution of angular momentum in close binary stars and planetary systems and determines the systems evolution towards the possible equilibrium state. Turbulent friction acting on the equilibrium tide in the convective envelope of low-mass stars is known to have a strong impact on this exchange of angular momentum in binaries. Moreover, theoretical modelling in recent literature as well as presented in this paper suggests that the dissipation of the dynamical tide, constituted of tidal inertial waves propagating in the convective envelope, is weak compared to the dissipation of the equilibrium tide during the red-giant phase. This prediction is confirmed when we apply the equilibrium-tide formalism developed by Zahn (1977), Verbunt & Phinney (1995), and Remus, Mathis & Zahn (2012) onto the sample of all known red-giant binaries observed by the NASA Kepler mission. Moreover, the observations are adequately explained by only invoking the equilibrium tide dissipation. Such ensemble analysis also benefits from the seismic characterisation of the oscillating components and surface rotation rates. Through asteroseismology, previous claims of the eccentricity as an evolutionary state diagnostic are discarded. This result is important for our understanding of the evolution of multiple star and planetary systems during advanced stages of stellar evolution.

  13. HUBBLE HERITAGE PROJECT'S FIRST ANNIVERSARY(NGC 2261)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NGC 2346, in contrast to the first two young objects, is a so-called 'planetary nebula,' which is ejected from Sun-like stars which are near the ends of their lives. NGC 2346 is remarkable because its central star is known to be actually a very close pair of stars, orbiting each other every 16 days. It is believed that the binary star was originally more widely separated. However, when one component of the binary evolved, expanded in size, and became a red-giant star, it literally swallowed its companion star. The companion star then spiralled downwards inside the red giant, and in the process spewed out gas into a ring around the binary system. Later on, when the hot core of the red giant was exposed, it developed a faster stellar wind, which emerged perpendicularly to the ring and inflated two huge 'bubbles.' This two-stage process is believed to have resulted in the butterfly-like shape of the nebula. NGC 2346 lies about 2,000 light-years away from us, and is about one-third of a light-year in size. The Hubble Heritage team made this image from observations of NGC 2346 acquired by Massimo Stiavelli (STScI), Inge Heyer (STScI), and collaborators. Image Credit: NASA/The Hubble Heritage Team (AURA/STScI).

  14. A Study of the Multiple Populations in M10

    NASA Astrophysics Data System (ADS)

    Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico

    2017-06-01

    We present an analysis of CN and CH band strengths which allow the identification of multiple populations in red giant stars in the globular cluster M10. Our measurements come from low-resolution spectroscopy obtained for ~140 red and asymptotic giant branch stars over two observation runs using Hydra on the WIYN 3.5m telescope. We sort the stars into nitrogen normal and enhanced populations based on the distribution of CN band strength as a function of magnitude. Once the stars are sorted into first and second generation (CN normal and enhanced, respectively), we compare this analysis to other ways of determining multiple stellar populations such as with the light elements Na and O and photometric indicators, particularly the UV photometry from the Hubble Space Telescope. C and N abundances are determined by matching observed CN and CH band measurements with those produced by synthetic spectra created with the Synthetic Spectrum Generator (SSG). The large sample size also allows us to study characteristics like radial distribution, and evolutionary effects such as the depletion of carbon (and subsequent nitrogen enrichment) as a star climbs the red giant branch. We find a rate of carbon depletion as a function of time for both populations in M10 and compare our result to M13, a cluster similar in metallicity.

  15. TESTING CONVECTIVE-CORE OVERSHOOTING USING PERIOD SPACINGS OF DIPOLE MODES IN RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montalban, J.; Noels, A.; Dupret, M.-A.

    2013-04-01

    Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing ({Delta}P) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable {Delta}P for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between {Delta}P and the mass of themore » helium core (M{sub He}); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (({Delta}P){sub a}) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts.« less

  16. Survival of a brown dwarf after engulfment by a red giant star.

    PubMed

    Maxted, P F L; Napiwotzki, R; Dobbie, P D; Burleigh, M R

    2006-08-03

    Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it.

  17. The Red-giant Branch Bump Revisited: Constraints on Envelope Overshooting in a Wide Range of Masses and Metallicities

    NASA Astrophysics Data System (ADS)

    Khan, Saniya; Hall, Oliver J.; Miglio, Andrea; Davies, Guy R.; Mosser, Benoît; Girardi, Léo; Montalbán, Josefina

    2018-06-01

    The red-giant branch bump provides valuable information for the investigation of the internal structure of low-mass stars. Because current models are unable to accurately predict the occurrence and efficiency of mixing processes beyond convective boundaries, one can use the luminosity of the bump—a diagnostic of the maximum extension of the convective envelope during the first-dredge up—as a calibrator for such processes. By combining asteroseismic and spectroscopic constraints, we expand the analysis of the bump to masses and metallicities beyond those previously accessible using globular clusters. Our data set comprises nearly 3000 red-giant stars observed by Kepler and with APOGEE spectra. Using statistical mixture models, we are able to detect the bump in the average seismic parameters ν max and < {{Δ }}ν > , and show that its observed position reveals general trends with mass and metallicity in line with expectations from models. Moreover, our analysis indicates that standard stellar models underestimate the depth of efficiently mixed envelopes. The inclusion of significant overshooting from the base of the convective envelope, with an efficiency that increases with decreasing metallicity, allows us to reproduce the observed location of the bump. Interestingly, this trend was also reported in previous studies of globular clusters.

  18. VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Kerins, E.; Lagadec, E.; Minniti, D.

    2014-04-01

    Variability is examined in over 2.6 million stars covering 11 square degrees of the core of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) from Visible and Infrared Survey Telescope for Astronomy Z-band observations. Generally, pulsation on the Sgr dSph giant branches appears to be excited by the internal κ mechanism. Pulsation amplitudes appear identical between red and asymptotic (red giant branch/asymptotic giant branch) giant stars, and between unreddened carbon and oxygen-rich stars at the same luminosity. The lack of correlation between infrared excess and variability among oxygen-rich stars indicates that pulsations do not contribute significantly to wind driving in oxygen-rich stars in the Sgr dSph, though the low amplitudes of these stars mean this may not apply elsewhere. The dust-enshrouded carbon stars have the highest amplitudes of the stars we observe. Only in these stars does an external κ-mechanism-driven pulsation seem likely, caused by variations in their more opaque carbon-rich molecules or dust. This may allow pulsation driving of winds to be effective in carbon stars. Variability can be simplified to a power law (A ∝ L/T2), as in other systems. In total, we identify 3026 variable stars (with rms variability of δZ ≳ 0.015 mag), of which 176 are long-period variables associable with the upper giant branches of the Sgr dSph. We also identify 324 candidate RR Lyrae variables in the Sgr dSph and 340 in the outer Galactic bulge.

  19. Directly Imaged Giant Planets: What Do We Hope to Learn?

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2015-01-01

    As we move into an era when GPI and SPHERE are (hopefully) discovering and characterizing new young giant planets, it is worthwhile to step back and review our science goals for young giant planets. Of course for individual planets we ideally would hope to measure mass, radius, atmospheric composition, temperature, and cloud properties, but how do these characteristics fit into our broader understanding of planetary system origin and evolution theories? In my presentation I will review both the specifics of what we hope to learn from newly discovered young worlds as well as how these characteristics inform our broader understanding of giant planets and planetary systems. Finally I will consider the limitations realistic datasets will place on our ability to understand newly discovered planets, illustrating with data from any new such worlds that are available by the conference date.

  20. In Situ Probe Science at Saturn

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Lunine, Jonathan I.; Simon-Miller, Amy A.; Atreya, Sushil K.; Brinckerhoff, William B.; Colaprete, Anthony; Coustenis, Athena; Fletcher, Leigh N.; Guillot, Tristan; Lebreton, Jean-Pierre; Mahaffy, Paul; Mousis, Olivier; Orton, Glenn S.; Reh, Kim; Spilker, Linda J.; Spilker, Thomas R.; Webster, Chris R.

    2014-05-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He/3He, D/H, 15N/14N, 18O/16O, and 13C/12C. Detection of certain disequilibrium species, diagnostic of deeper internal processes and dynamics of the atmosphere, would also help discriminate between competing theories. Many of the key atmospheric constituents needed to discriminate between alternative theories of giant planet formation and chemical evolution are either spectrally inactive or primarily located in the deeper atmosphere inaccessible to remote sensing from Earth, flyby, or orbiting spacecraft. Abundance measurements of these key constituents, including the two major molecular carriers of carbon, methane and carbon monoxide (neither of which condense in Saturn's atmosphere), sulfur which is expected to be well-mixed below the 4 to 5-bar ammonium hydrosulfide (NH4SH) cloud, and gradients of nitrogen below the NH4SH cloud and oxygen in the upper layers of the H2O and H2O-NH4 solution cloud, must be made in situ and can only be achieved by an entry probe descending through 10 bars. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed atmosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution that also require in situ exploration. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key atmospheric constituents, and atmospheric structure including pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sensing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution. Acknowledgements This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2013 California Institute of Technology. U.S. Government sponsorship acknowledged. O. Mousis acknowledges support from CNES.

  1. HST Hot-Jupiter Transmission Spectral Survey: Clear Skies for Cool Saturn WASP-39b

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.; Henry, Gregory W.; Williamson, Michael W.; Fortney, Jonathan J.; Burrows, Adam S.; Kataria, Tiffany; Nikolov, Nikolay; Showman, Adam P.; Ballester, Gilda E.; Désert, Jean-Michel; Aigrain, Suzanne; Deming, Drake; Lecavelier des Etangs, Alain; Vidal-Madjar, Alfred

    2016-08-01

    We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μm, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μm. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrum is well matched by a clear H2-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.

  2. Atmospheric circulation of brown dwarfs and directly imaged extrasolar giant planets with active clouds

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam

    2016-10-01

    Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the typical cloud-induced turbulent circulation, and in particular, the large flux variability for some objects can be attributed to the global-scale patterns of temperature anomaly and cloud formation caused by atmospheric waves.

  3. Sizing Up Red-Giant Twins

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high-resolution ground-based spectroscopy at the Fred Lawrence Whipple Observatory and Apache Point Observatory, Rawls and collaborators established that the two stars have masses of 2.17 and 2.15 solar masses, and radii of 8.4 and 8.3 solar radii.Not Quite Twins?Intriguingly, when the authors measured the stellar oscillations from the binary, they were only able to pick out one signal. Using the scaling relations, their measurements reveal that the star producing the oscillations has a mass of 2.17 solar masses and radius of 8.3 radii consistent with both red giants in the system, within error bars. This provides excellent confirmation of the scaling relations for obtaining mass and radius, but it also raises a new question: why is only one star of this twin system producing oscillations?Rawls and collaborators have an idea: one star might be more magnetically active than the other, causing the suppression of oscillations in the more active star. The authors observations and detailed modeling support this idea, but similar analyses of the rest of the red-giant eclipsing binaries identified in the Kepler field will help to determine if KIC 9246715 is unusual, or if this behavior is common among such systems.CitationMeredith L. Rawls et al 2016 ApJ 818 108. doi:10.3847/0004-637X/818/2/108

  4. Thoughts on the Theory of Irradiated Giant Planets

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Sudarsky, David; Hubeny, Ivan

    2004-06-01

    We have derived physical diagnostics that can inform the direct detection and remote sensing programs of extrasolar giant planets (EGPs) now being planned or proposed. Stellar irradiation of the planet's atmosphere and the effects of water and ammonia clouds are incorporated in a consistent fashion. Whether an EGP is at wide or close-in separations from its parent star, direct detection will soon be possible and will yield centrally important physical and chemical constraints. Our theory of irradiated EGPs is being developed to meet this challenge.

  5. Physics of the primitive solar nebula and of giant gaseous protoplanets

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1978-01-01

    It has been proposed that the supernova responsible for injecting Al-26 into the early solar system was in fact responsible for triggering the collapse of an interstellar cloud in order to produce a system of stars, one of which would be the solar system. Details concerning the mechanism involved in such a process are discussed. Attention is given to the evolution of the primitive solar nebula, the instabilities in the primitive solar nebula, and the giant gaseous protoplanets. The principal conclusion to be drawn from the material presented is that the primitive solar nebula was a rather chaotic place, highly turbulent, with the multiple formation of giant gaseous protoplanets.

  6. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 217 GREENLING Kelp 194 Rock 191 Whitespot 192 Grenadier, giant 214 Grenadier (rattail) 213 Jellyfish..., Pacific (pilchard) 170 Sea cucumber, red 895 Shad 180 Skilfish 715 Snailfish, general (genus Liparis and... Snails 890 Urchin, green sea 893 Urchin, red sea 892 [76 FR 40636, July 11, 2011] ...

  7. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  8. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    NASA Technical Reports Server (NTRS)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Dranke, Stephen; Richards, Anita M. S.

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for alpha Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of alpha Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For alpha Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of alpha Boo. Finally, we develop a simple analytical wind model for alpha Boo based on our new long-wavelength flux measurements.

  9. MULTI-WAVELENGTH RADIO CONTINUUM EMISSION STUDIES OF DUST-FREE RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander

    2013-10-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained amore » snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements.« less

  10. Hertzsprung-Russell diagram and mass distribution of barium stars

    NASA Astrophysics Data System (ADS)

    Escorza, A.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.; Siess, L.; Van Winckel, H.; Karinkuzhi, D.; Shetye, S.; Pourbaix, D.

    2017-12-01

    With the availability of parallaxes provided by the Tycho-Gaia Astrometric Solution, it is possible to construct the Hertzsprung-Russell diagram (HRD) of barium and related stars with unprecedented accuracy. A direct result from the derived HRD is that subgiant CH stars occupy the same region as barium dwarfs, contrary to what their designations imply. By comparing the position of barium stars in the HRD with STAREVOL evolutionary tracks, it is possible to evaluate their masses, provided the metallicity is known. We used an average metallicity [Fe/H] = -0.25 and derived the mass distribution of barium giants. The distribution peaks around 2.5 M⊙ with a tail at higher masses up to 4.5 M⊙. This peak is also seen in the mass distribution of a sample of normal K and M giants used for comparison and is associated with stars located in the red clump. When we compare these mass distributions, we see a deficit of low-mass (1 - 2 M⊙) barium giants. This is probably because low-mass stars reach large radii at the tip of the red giant branch, which may have resulted in an early binary interaction. Among barium giants, the high-mass tail is however dominated by stars with barium indices of less than unity, based on a visual inspection of the barium spectral line; that is, these stars have a very moderate barium line strength. We believe that these stars are not genuine barium giants, but rather bright giants, or supergiants, where the barium lines are strengthened because of a positive luminosity effect. Moreover, contrary to previous claims, we do not see differences between the mass distributions of mild and strong barium giants. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A100

  11. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  12. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    PubMed Central

    Ziurys, Lucy M.

    2006-01-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule “freeze-out,” shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This “survivor” molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells. PMID:16894164

  13. Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2006-08-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  14. Horsehead Nebula

    NASA Image and Video Library

    1999-12-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud intricate structure.

  15. Environmental Catastrophes in the Earth's History Due to Solar Systems Encounters with Giant Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Pavlov, Alexander A.

    2011-01-01

    In its motion through the Milky Way galaxy, the solar system encounters an average density (>=330 H atoms/cubic cm) giant molecular cloud (GMC) approximately every 108 years, a dense (approx 2 x 103 H atoms/cubic cm) GMC every approx 109 years and will inevitably encounter them in the future. However, there have been no studies linking such events with severe (snowball) glaciations in Earth history. Here we show that dramatic climate change can be caused by interstellar dust accumulating in Earth's atmosphere during the solar system's immersion into a dense (approx ,2 x 103 H atoms/cubic cm) GMC. The stratospheric dust layer from such interstellar particles could provide enough radiative forcing to trigger the runaway ice-albedo feedback that results in global snowball glaciations. We also demonstrate that more frequent collisions with less dense GMCs could cause moderate ice ages.

  16. Predicting Juno Evidence for a Solid Methane Gas Hydrate Jupiter J. Ackerman Abstract

    NASA Astrophysics Data System (ADS)

    Ackerman, J. A., Jr.

    2016-12-01

    Predicting Juno Evidence for a Solid Methane Gas Hydrate Jupiter J. Ackerman AbstractDeuterium enhancements of 1010 observed in LDNs and heavy elements detected by the Galileo probe (C, O, S, Ar, Kr and Xe) suggest the giant planets accreted slow and cold from snowflakes and dust at their current orbits, forming frozen, highly deuterated Methane Gas Hydrate (d=0.9) bodies, together comprising > 300 earth masses of water. Jupiter also incorporated most of the heavy elements in the nascent solar system as dust grains (d=1.33). A recent (6,000 years BP) high energy impact on heavily deuterated Jupiter triggered a massive nuclear fusion explosion which ejected the Galilean moons, initiating a flaming plasma plume originally extending 2 x106 km, beyond Callisto. The rapidly rotating plume produced the physical differences observed on the Galilean moons and the remainder condensed ejecting millions of asteroids similar to 67P as it slowly diminished over 5000 years. The fusion reaction has diminished to d + p > 3He+ + γ, but is still producing Jupiter's atmospheric temperature excess, >5x1017 watts, and driving the multiple zonal wind vortices constrained below by Jupiter's solid surface. The mass being ejected by the plume measurably slowed the rotation of the giant Jupiter up until 1937. The highly energetic 3He+ ions from the fusion reaction that exit Jupiter through the Great Red Spot were sensed by Ulysses, Cassini and Galileo at distances greater than 11 Jupiter radii, with the period of Jupiter's rotation. The Juno JEDI particle detector will measure the speed and density of the 3He+ 'blizzard' exiting the GRS, for which there is no other explanation. The Micro Wave Radiometer (MWR) system will confirm the hot vortex extending below the cloud tops from the fusion reaction on the surface westward to the Great Red Spot at 22o S latitude, due to its estimated 115 degree longitudinal extent. The high intensity of the 3He+ particulate radiation at 4000 km directly above the Great Red Spot could disable the MWR system. The Juno Radio Science (gravity) experiment will detect the very large basin or flooded palimpsest surrounding the active fusion impact site and an east-west ice mountain range paralleling the vortex, formed due to the raining out of water as it rises, expands and cools.

  17. RESOLVED GIANT MOLECULAR CLOUDS IN NEARBY SPIRAL GALAXIES: INSIGHTS FROM THE CANON CO (1-0) SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donovan Meyer, Jennifer; Koda, Jin; Mooney, Thomas

    We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 Multiplication-Sign 10{sup 5} M{sub Sun} in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and {sup 12}CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H{sub 2} mass (or X{sub CO})more » for each galaxy is 1-2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, all within a factor of two of the Milky Way disk value ({approx}2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X{sub CO} trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.« less

  18. GIANT MOLECULAR CLOUDS AND STAR FORMATION IN THE NON-GRAND DESIGN SPIRAL GALAXY NGC 6946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebolledo, David; Wong, Tony; Leroy, Adam

    We present high spatial resolution observations of giant molecular clouds (GMCs) in the eastern part of the nearby spiral galaxy NGC 6946 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have observed CO(1 {yields} 0), CO(2 {yields} 1) and {sup 13}CO(1 {yields} 0), achieving spatial resolutions of 5.''4 Multiplication-Sign 5.''0, 2.''5 Multiplication-Sign 2.''0, and 5.''6 Multiplication-Sign 5.''4, respectively, over a region of 6 Multiplication-Sign 6 kpc. This region extends from 1.5 kpc to 8 kpc galactocentric radius, thus avoiding the intense star formation in the central kpc. We have recovered short-spacing u-v components by using singlemore » dish observations from the Nobeyama 45 m and IRAM 30 m telescopes. Using the automated CPROPS algorithm, we identified 45 CO cloud complexes in the CO(1 {yields} 0) map and 64 GMCs in the CO(2 {yields} 1) maps. The sizes, line widths, and luminosities of the GMCs are similar to values found in other extragalactic studies. We have classified the clouds into on-arm and inter-arm clouds based on the stellar mass density traced by the 3.6 {mu}m map. Clouds located on-arm present in general higher star formation rates than clouds located in inter-arm regions. Although the star formation efficiency shows no systematic trend with galactocentric radius, some on-arm clouds-which are more luminous and more massive compared to inter-arm GMCs-are also forming stars more efficiently than the rest of the identified GMCs. We find that these structures appear to be located in two specific regions in the spiral arms. One of them shows a strong velocity gradient, suggesting that this region of high star formation efficiency may be the result of gas flow convergence.« less

  19. Resolving the substructure of molecular clouds in the LMC

    NASA Astrophysics Data System (ADS)

    Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Remy; Wojciechowski, Evan; Bandurski, Jeffrey; MC3 Collaboration

    2018-01-01

    We present recent wide-field CO and 13CO mapping of giant molecular clouds in the Large Magellanic Cloud with ALMA. Our sample exhibits diverse star-formation properties, and reveals comparably diverse molecular cloud properties including surface density and velocity dispersion at a given scale. We first present the results of a recent study comparing two GMCs at the extreme ends of the star formation activity spectrum. Our quiescent cloud exhibits 10 times lower surface density and 5 times lower velocity dispersion than the active 30 Doradus cloud, yet in both clouds we find a wide range of line widths at the smallest resolved scales, spanning nearly the full range of line widths seen at all scales. This suggests an important role for feedback on sub-parsec scales, while the energetics on larger scales are dominated by clump-to-clump relative velocities. We then extend our analysis to four additional clouds that exhibit intermediate levels of star formation activity.

  20. Relating Line Width and Optical Depth for CO Emission in the Large Mgellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Evan; Wong, Tony; Bandurski, Jeffrey; MC3 (Mapping CO in Molecular Clouds in the Magellanic Clouds) Team

    2018-01-01

    We investigate data produced from ALMA observations of giant molecular clouds (GMCs) located in the Large Magellanic Cloud (LMC), using 12CO(2–1) and 13CO(2–1) emission. The spectral line width is generally interpreted as tracing turbulent rather than thermal motions in the cloud, but could also be affected by optical depth, especially for the 12CO line (Hacar et al. 2016). We compare the spectral line widths of both lines with their optical depths, estimated from an LTE analysis, to evaluate the importance of optical depth effects. Our cloud sample includes two regions recently published by Wong et al. (2017, submitted): the Tarantula Nebula or 30 Dor, an HII region rife with turbulence, and the Planck cold cloud (PCC), located in a much calmer environment near the fringes of the LMC. We also include four additional LMC clouds, which span intermediate levels of star formation relative to these two clouds, and for which we have recently obtained ALMA data in Cycle 4.

  1. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-01-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  2. The dwarf spheroidal galaxy in Draco. I - New BV photometry. II - Galactic foreground reddening

    NASA Technical Reports Server (NTRS)

    Stetson, P. B.

    1979-01-01

    BV photoelectric photometry for 39 stars and BV photographic photometry for 514 stars in the field of the Draco dwarf spheroidal galaxy are presented. The color-magnitude diagram for 512 of these field stars is found to display a well-defined red horizontal branch as well as a red giant branch whose observed width is comparable to the accidental photometric error. The results also indicate that a more diffuse sequence of stars lies about 0.1 mag to the blue of the giant branch and that an upper horizontal branch of more massive core helium-burning stars may also be present. The foreground reddening toward Draco is then determined by narrow-band uvby-beta photometry of galactic B-A-F stars.

  3. HUBBLE WATCHES THE RED PLANET AS MARS GLOBAL SURVEYOR BEGINS AEROBRAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    his NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere). This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations. Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking. Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds. Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view. The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this observation. Mars was 158 million miles (255 million kilometers) from Earth at the time. [LEFT] An image of this region of Mars, taken in June 1997, is shown for comparison. The Hellas basin is filled with bright clouds and/or surface frost. More water ice clouds are visible across the planet than in the Sept. image, reflecting the effects of the changing season. Mars appears larger because it was 44 million miles (77 million kilometers) closer to Earth than in the September image. Credit: Phil James (Univ. Toledo) and Steve Lee (Univ. Colorado), and NASA

  4. CloudSat Takes a 3D Slice of Hurricane Matthew

    NASA Image and Video Library

    2016-10-07

    NASA's CloudSat flew east of Hurricane Matthew's center on Oct. 6 at 11:30 a.m. PDT (2:30 p.m. EDT), intersecting parts of Matthew's outer rain bands and revealing Matthew's anvil clouds (thick cirrus cloud cover), with cumulus and cumulonimbus clouds beneath (lower image). Reds/pinks are larger water/ice droplets. http://photojournal.jpl.nasa.gov/catalog/PIA21095

  5. Mars Global Surveyor: 7 Years in Orbit!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 September 2004 Today, 12 September 2004, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) team celebrates 7 Earth years orbiting Mars. MGS first reached the red planet and performed its critical orbit insertion burn on 12 September 1997. Over the past 7 years, MOC has returned over 170,000 images; its narrow angle camera has covered about 4.5% of the surface, and its wide angle cameras have viewed 100% of the planet nearly everyday.

    At this time, MOC is not acquiring data because Mars is on the other side of the Sun relative to Earth. This period, known as Solar Conjunction, occurs about once every 26 months. During Solar Conjunction, no radio communications from spacecraft that are orbiting or have landed on Mars can be received. MOC was turned off on 7 September and is expected to resume operations on 25 September 2004, when Mars re-emerges from behind the Sun.

    The rotating color image of Mars shown here was compiled from MOC red and blue wide angle daily global images acquired exactly 1 Mars year ago on 26 October 2002 (Ls 86.4o). In other words, Mars today (12 September 2004) should look about the same as the view provided here. Presently, Mars is in very late northern spring, and the north polar cap has retreated almost to its summer configuration. Water ice clouds form each afternoon at this time of year over the large volcanoes in the Tharsis and Elysium regions. A discontinuous belt of clouds forms over the martian equator; it is most prominent north of the Valles Marineris trough system. In the southern hemisphere, it is late autumn and the giant Hellas Basin floor is nearly white with seasonal frost cover. The south polar cap is not visible, it is enveloped in seasonal darkness. The northern summer and southern winter seasons will begin on 20 September 2004.

  6. ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Corey; Pudritz, Ralph; Klessen, Ralf

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction ( f {sub esc}) arising as a consequence of star cluster formation in a turbulent, 10{sup 6} M {sub ⊙} giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloudmore » boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f {sub esc} of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and f {sub esc} drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average f {sub esc} of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for f {sub esc} from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.« less

  7. Reassessing the conservation status of the giant panda using remote sensing.

    PubMed

    Xu, Weihua; Viña, Andrés; Kong, Lingqiao; Pimm, Stuart L; Zhang, Jingjing; Yang, Wu; Xiao, Yi; Zhang, Lu; Chen, Xiaodong; Liu, Jianguo; Ouyang, Zhiyun

    2017-11-01

    The conservation status of the iconic giant panda is a barometer of global conservation efforts. The IUCN Red List has downgraded the panda's extinction risk from "endangered" to "vulnerable". Newly obtained, detailed GIS and remotely sensed data applied consistently over the last four decades show that panda habitat covered less area and was more fragmented in 2013 than in 1988 when the species was listed as endangered.

  8. JUPITER WILL BECOME A HOT JUPITER: CONSEQUENCES OF POST-MAIN-SEQUENCE STELLAR EVOLUTION ON GAS GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Madhusudhan, Nikku, E-mail: dave@ias.edu, E-mail: Nikku.Madhusudhan@yale.edu

    When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to {approx}1000 K or more. Furthermore, massive planets around post-main-sequence starsmore » could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.« less

  9. What's Old is New in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Large Magellanic Cloud

    This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy.

    The infrared image, a mosaic of 300,000 individual tiles, offers astronomers a unique chance to study the lifecycle of stars and dust in a single galaxy. Nearly one million objects are revealed for the first time in this Spitzer view, which represents about a 1,000-fold improvement in sensitivity over previous space-based missions. Most of the new objects are dusty stars of various ages populating the Large Magellanic Cloud; the rest are thought to be background galaxies.

    The blue color in the picture, seen most prominently in the central bar, represents starlight from older stars. The chaotic, bright regions outside this bar are filled with hot, massive stars buried in thick blankets of dust. The red color around these bright regions is from dust heated by stars, while the red dots scattered throughout the picture are either dusty, old stars or more distant galaxies. The greenish clouds contain cooler interstellar gas and molecular-sized dust grains illuminated by ambient starlight.

    Astronomers say this image allows them to quantify the process by which space dust -- the same stuff that makes up planets and even people -- is recycled in a galaxy. The picture shows dust at its three main cosmic hangouts: around the young stars, where it is being consumed (red-tinted, bright clouds); scattered about in the space between stars (greenish clouds); and in expelled shells of material from old stars (randomly-spaced red dots).

    The Large Magellanic Cloud, located 160,000 light-years from Earth, is one of a handful of dwarf galaxies that orbit our own Milky Way. It is approximately one-third as wide as the Milky Way, and, if it could be seen in its entirety, would cover the same amount of sky as a grid of about 480 full moons. About one-third of the entire galaxy can be seen in the Spitzer image.

    This picture is a composite of infrared light captured by Spitzer. Light with wavelengths of 3.6 (blue) and 8 (green) microns was captured by the telescope's infrared array camera; 24-micron light (red) was detected by the multiband imaging photometer.

  10. Jovian Art

    NASA Image and Video Library

    2017-02-24

    NASA Juno spacecraft skimmed the upper wisps of Jupiter atmosphere when JunoCam snapped this image on Feb. 2, 2017. from an altitude of about 9,000 miles 14,500 kilometers above the giant planet swirling cloudtops. Streams of clouds spin off a rotating oval-shaped cloud system in the Jovian southern hemisphere. Citizen scientist Roman Tkachenko reconstructed the color and cropped the image to draw viewers' eyes to the storm and the turbulence around it. http://photojournal.jpl.nasa.gov/catalog/PIA21383

  11. ARC-1983-AC83-0768-2

    NASA Image and Video Library

    1983-11-09

    Milky way - The real shape of our galaxy is revealed in this infrared image obtained by IRAS. Infrared light penetrates the dust clouds and shows that the galaxy appears as a thin disk, just like the edge-on spiral galaxies we see throughtout the cosmos. The bulge in the band is the center of the galaxy. The yellow and green knots and blobs scattered along the band are giant clouds of interstellar gas and dust heated by nearby stars.

  12. The star-forming content of the W3 giant molecular cloud

    NASA Astrophysics Data System (ADS)

    Moore, T. J. T.; Bretherton, D. E.; Fujiyoshi, T.; Ridge, N. A.; Allsopp, J.; Hoare, M. G.; Lumsden, S. L.; Richer, J. S.

    2007-08-01

    We have surveyed a ˜0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to 2500 M⊙. Part of the W3 GMC is subject to an interaction with the H ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5-13 per cent in the undisturbed cloud but ˜25-37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.

  13. Morning Clouds Atop Martian Mountain

    NASA Image and Video Library

    2015-06-19

    Seen shortly after local Martian sunrise, clouds gather in the summit pit, or caldera, of Pavonis Mons, a giant volcano on Mars, in this image from the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter. The clouds are mostly made of ice crystals. They appear blue in the image because the cloud particles scatter blue light more strongly than other colors. Pavonis Mons stands about nine miles (14 kilometers) high, and the caldera spans about 29 miles (47 kilometers) wide. This image was made by THEMIS through three of its visual-light filters plus a near-infrared filter, and it is approximately true in color. THEMIS and other instruments on Mars Odyssey have been studying Mars from orbit since 2001. http://photojournal.jpl.nasa.gov/catalog/PIA19675

  14. Atmospheres of the Giant Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets, Jupiter, Saturn, Uranus, and Neptune, are fluid objects. They have no solid surfaces because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction between gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers arc only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are organized by winds, which are powered by heat derived from sunlight (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are distinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fascinating objects for study, providing clues about the origin and evolution of the planets and the formation of the solar system.

  15. Discovery of a Molecular Collision Front in Interacting Galaxies NGC 4567/4568 with ALMA

    NASA Astrophysics Data System (ADS)

    Kaneko, Hiroyuki; Kuno, Nario; Saitoh, Takayuki R.

    2018-06-01

    We present results of 12CO(J = 1–0) imaging observations of NGC 4567/4568, a galaxy pair in a close encounter, with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we find clear evidence of a molecular collision front with a velocity dispersion that is 16.8 ± 1.4 km s‑1 at the overlapping region, owing to high spatial and velocity resolution. By integrating over the velocity width that corresponds to the molecular collision front, we find a long filamentary structure with a size of 1800 pc × 350 pc at the collision front. This filamentary molecular structure spatially coincides with a dark lane seen in the R-band image. We find four molecular clouds in the filament, each with a radius of 30 pc and mass of 106 M ⊙ the radii matching a typical value for giant molecular clouds (GMCs) and the masses corresponding to those between GMCs and giant molecular associations (GMAs). All four clouds are gravitationally bound. The molecular filamentary structure and its physical conditions are similar to the structure expected via numerical simulation. The filament could be a progenitor of super star clusters.

  16. Establishing the accuracy of asteroseismic mass and radius estimates of giant stars - I. Three eclipsing systems at [Fe/H] ˜ -0.3 and the need for a large high-precision sample

    NASA Astrophysics Data System (ADS)

    Brogaard, K.; Hansen, C. J.; Miglio, A.; Slumstrup, D.; Frandsen, S.; Jessen-Hansen, J.; Lund, M. N.; Bossini, D.; Thygesen, A.; Davies, G. R.; Chaplin, W. J.; Arentoft, T.; Bruntt, H.; Grundahl, F.; Handberg, R.

    2018-05-01

    We aim to establish and improve the accuracy level of asteroseismic estimates of mass, radius, and age of giant stars. This can be achieved by measuring independent, accurate, and precise masses, radii, effective temperatures and metallicities of long period eclipsing binary stars with a red giant component that displays solar-like oscillations. We measured precise properties of the three eclipsing binary systems KIC 7037405, KIC 9540226, and KIC 9970396 and estimated their ages be 5.3 ± 0.5, 3.1 ± 0.6, and 4.8 ± 0.5 Gyr. The measurements of the giant stars were compared to corresponding measurements of mass, radius, and age using asteroseismic scaling relations and grid modelling. We found that asteroseismic scaling relations without corrections to Δν systematically overestimate the masses of the three red giants by 11.7 per cent, 13.7 per cent, and 18.9 per cent, respectively. However, by applying theoretical correction factors fΔν according to Rodrigues et al. (2017), we reached general agreement between dynamical and asteroseismic mass estimates, and no indications of systematic differences at the precision level of the asteroseismic measurements. The larger sample investigated by Gaulme et al. (2016) showed a much more complicated situation, where some stars show agreement between the dynamical and corrected asteroseismic measures while others suggest significant overestimates of the asteroseismic measures. We found no simple explanation for this, but indications of several potential problems, some theoretical, others observational. Therefore, an extension of the present precision study to a larger sample of eclipsing systems is crucial for establishing and improving the accuracy of asteroseismology of giant stars.

  17. Identifying Li-rich giants from low-resolution spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Kumar, Yerra Bharat; Reddy, Bacham Eswar; Zhao, Gang

    2018-04-01

    In this paper we discuss our choice of a large unbiased sample used for the survey of red giant branch stars for finding Li-rich K giants, and the method used for identifying Li-rich candidates using low-resolution spectra. The sample has 2000 giants within a mass range of 0.8 to 3.0it{M}_{⊙}. Sample stars were selected from the Hipparcos catalogue with colour (B-V) and luminosity (it{L}/it{L}_{⊙}) in such way that the sample covers RGB evolution from its base towards RGB tip passing through first dredge-up and luminosity bump. Low-resolution (R ≈ 2000, 3500, 5000) spectra were obtained for all sample stars. Using core strength ratios of lines at Li I 6707 Å and its adjacent line Ca I 6717 Å we successfully identified 15 K giants with A(Li) > 1.5 dex, which are defined as Li-rich K giants. The results demonstrate the usefulness of low-resolution spectra to measure Li abundance and identify Li-rich giants from a large sample of stars in relatively shorter time periods.

  18. Combined ultraviolet studies of astronomical source

    NASA Technical Reports Server (NTRS)

    Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.

    1985-01-01

    As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.

  19. Two-component gravitating systems and the red giant-like structure

    NASA Technical Reports Server (NTRS)

    Fujimoto, Masayuki Y.; Tomisaka, Kohji

    1992-01-01

    The present study investigates the equilibria and evolution of gravitating systems composed of two components by approximating their equations of states to polytropes. The structures are explored in hydrostatic equilibrium systematically under the condition that two components interact with each other only through gravity. The systems are found to be characterized by four parameters, the ratio of central densities and the ratio of central thermal energies per unit mass, and the polytropic indices of two components. If the central density is much higher, the structure is little affected by the presence of the other component. If the difference in the central thermal energies is smaller than specified by beta-cri, the system adopts an equilibrium configuration for any mass ratio. Two-component systems necessarily evolve to have the red giantlike structure if one component suffers cooling faster than the other. It is concluded that the red giant structure is a general characteristic of gravitating systems for which there is an appropriate mechanism to decouple the constituent into the hotter and cooler components.

  20. Ultraviolet and optical observations of metal deficient red giants and chromospheric models

    NASA Technical Reports Server (NTRS)

    Duprele, A. K.; Avrett, E. H.; Hartmann, L.; Smith, G.

    1984-01-01

    Three metal deficient field stars were observed in the ultraviolet and optical spectral regions: HD 165195, HD 110281, and HD 232078. High dispersion spectra near H alpha, and low dispersion, long wavelength IUE spectra were obtained. The H alpha profiles have strong asymmetric emission with absorption cores that are frequently asymmetric. The surface flux of Mg II lines is similar to that of luminous Pop I stars in spite of the lower metal abundance. Semi-empirical atmospheric models suggest that the characteristic emission in the wings of the H alpha line can arise within static chromospheres. Radial expansion gives an asymmetric, blue-shifted H alpha core accompanied by greater emission in the red line wing than the blue wing. Wind models with extended atmospheres suggest mass loss rates - 2 billion M/yr. Thus H alpha provides no evidence that steady mass loss is substantial enough to significantly affect the evolution of stars on the red giant branch of globular clusters.

  1. Dissipation of Titans north polar cloud at northern spring equinox

    USGS Publications Warehouse

    Le, Mouelic S.; Rannou, P.; Rodriguez, S.; Sotin, Christophe; Griffith, C.A.; Le, Corre L.; Barnes, J.W.; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.; Tobie, G.

    2012-01-01

    Saturns Moon Titan has a thick atmosphere with a meteorological cycle. We report on the evolution of the giant cloud system covering its north pole using observations acquired by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft. A radiative transfer model in spherical geometry shows that the clouds are found at an altitude between 30 and 65 km. We also show that the polar cloud system vanished progressively as Titan approached equinox in August 2009, revealing at optical wavelengths the underlying sea known as Kraken Mare. This decrease of activity suggests that the north-polar downwelling has begun to shut off. Such a scenario is compared with the Titan global circulation model of Rannou et al. (2006), which predicts a decrease of cloud coverage in northern latitudes at the same period of time. ?? 2011 Elsevier Ltd. All rights reserved.

  2. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H II regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range <105.5 {M}⊙ (where {M}⊙ represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environments across galactic disks.

  3. HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.

    We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μ m, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μ m. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrummore » is well matched by a clear H{sub 2}-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.« less

  4. Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in captive giant panda (ailuropoda melanoleuca) and red panda (Ailurus fulgens) from China.

    PubMed

    Hu, Guo-Cheng; Luo, Xiao-Jun; Dai, Jia-Yin; Zhang, Xiu-Lan; Wu, Hua; Zhang, Cheng-Lin; Guo, Wei; Xu, Mu-Qi; Mai, Bi-Xian; Weit, Fu-Wen

    2008-07-01

    Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and brominated flame retardants (BFRs) were investigated in captive giant and red panda tissues from China. The total concentrations of OCPs, PCBs, and polybrominated diphenyl ethers (PBDEs) in tissues ranged from 16.3 to 888 ng/g lipid weight (lw), 24.8 to 854 ng/g lw, and 16.4 to 2158 ng/g lw, respectively. p,p'-DDE and beta-HCH were major OCP contaminants. PCBs 99, 118, 153/132, 170, 180, and 209 were the major contributing congeners determined. Among PBDEs, congener BDE-209 was the most frequent and abundant, followed by BDE-206, BDE-208, BDE-207, BDE-203, BDE-47, and BDE-153. Decabromodiphenyl ethane (DeBDethane) was detected in 87 and 71% of the giant and red panda samples with concentrations up to 863 ng/g lw, respectively. The remarkable levels and dominance of BDE-209 and DeBDethane may relate to significant production, usage, or disposal of BFRs in China. The positive significant correlation between concentrations of PBDEs and PCBs in captive pandas may suggest that the exposure routes of PBDEs and PCBs to panda are similar. To our knowledge, this is the first report of the occurrence of DeBDethane in captive wildlife samples. Therefore, further studies are warranted to better understand DeBDethane production, transport, uptake, and toxicological effect.

  5. Photometric Detection of Multiple Populations in Globular Clusters Using Integrated Light

    NASA Astrophysics Data System (ADS)

    Bowman, William P.; Pilachowski, Catherine A.; van Zee, Liese; Winans, Amanda; Ciardullo, Robin; Gronwall, Caryl

    2017-10-01

    We investigate the multiple stellar populations of the globular clusters (GCs) M3, M5, M13, and M71 using {g}{\\prime } and intermediate-band CN-λ 3883 photometry obtained with the WIYN 0.9 m telescope on Kitt Peak. We find a strong correlation between red giant stars’ CN-{g}{\\prime } colors and their spectroscopic sodium abundances, thus demonstrating the efficacy of the two-filter system for stellar population studies. In all four clusters, the observed spread in red giant branch CN-{g}{\\prime } colors is wider than that expected from photometric uncertainty, confirming the well-known chemical inhomogeneity of these systems. M3 and M13 show clear evidence for a radial dependence in the CN-band strengths of its red giants, while the evidence for such a radial dependence of CN strengths in M5 is ambiguous. Our data suggest that the dynamically old, relatively metal-rich M71 system is well mixed, as it shows no evidence for chemical segregation. Finally, we measure the radial gradients in the integrated CN-{g}{\\prime } color of the clusters and find that such gradients are easily detectable in the integrated light. We suggest that photometric observations of color gradients within GCs throughout the Local Group can be used to characterize their multiple populations, and thereby constrain the formation history of GCs in different galactic environments.

  6. Ortho- and para-hydrogen in dense clouds, protoplanets, and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Decampli, W. M.; Cameron, A. G. W.; Bodenheimer, P.; Black, D. C.

    1978-01-01

    If ortho- and para-hydrogen achieve a thermal ratio on dynamical time scales in a molecular hydrogen cloud, then the specific heat is high enough in the temperature range 35-70 K to possibly induce hydrodynamic collapse. The ortho-para ratio in many interstellar cloud fragments is expected to meet this condition. The same may have been true for the primitive solar nebula. Detailed hydrodynamic and hydrostatic calculations are presented that show the effects of the assumed ortho-para ratio on the evolution of Jupiter during its protoplanetary phase. Some possible consequences of a thermalized ortho-para ratio in the atmospheres of the giant planets are also discussed.

  7. Clouds over Tharsis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Color composite of condensate clouds over Tharsis made from red and blue images with a synthesized green channel. Mars Orbiter Camera wide angle frames from Orbit 48.

    Figure caption from Science Magazine

  8. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less

  9. Red Cloud Reading Test: American Indian Form of the Test of Individual Needs in Reading, a Competency Based Test of Reading Skills [and] Instructor's Manual.

    ERIC Educational Resources Information Center

    Gilliland, Hap

    The oral Red Cloud Reading Test provides a complete analysis of reading level and skills for American Indian students in grades 1-7 or for high school and adult students reading at or below high school levels. The test determines the basic and recreational reading levels, identifies reading problems, determines reading speeds, and analyzes the…

  10. Impacts of cloud immersion on microclimate, photosynthesis and water relations of fraser fir in a temperate mountain cloud forest

    Treesearch

    Keith Reinhardt; William K. Smith

    2010-01-01

    The red spruce-Fraser fir ecosystem (Picea rubens Sarg.-Abies fraseri [Pursh] Poir.) of the southern Appalachian mountains is a temperate zone cloud forest immersed in clouds for 30 to 40 percent of a typical summer day, and experiencing immersion on about 65 percent of all days annually. We compared the microclimate,...

  11. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. PLANET ENGULFMENT BY {approx}1.5-3 M{sub sun} RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunitomo, M.; Ikoma, M.; Sato, B.

    2011-08-20

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around {approx}1.5-3 M{sub sun} stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (ormore » the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M{sub sun}, which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M{sub sun}), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses {approx}> 2.5M{sub sun}, is required.« less

  13. The Composition and Chemistry of the Deep Tropospheres of Saturn and Uranus from Ground-Based Radio Observations

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.

    2017-12-01

    Ground-based radio observations of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the deep tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based observations remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the deep troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn observations were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published observations at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the time of the conference, we hope to have refined estimates of the absolute mixing ratio of each species, and preliminary results on Saturn. We will discuss the implications of our results for the chemistry and composition of the giant planets, and the differences between gas- and ice-giants.

  14. Speckle interferometry of IRC +10216 in the fundamental vibration-rotation lines of CO

    NASA Technical Reports Server (NTRS)

    Dyck, H. M.; Beckwith, S.; Zuckerman, B.

    1983-01-01

    The largest fraction of the matter returned by stars to the interstellar medium is probably provided by red giants. The carbon star IRC +10216 is an example of an evolved giant with a large mass loss rate. One plausible mechanism for the acceleration of the gas in stars like IRC +10216 is radiation pressure on dust grains which then collide with and transfer their momentum to the gas. However, at the present time neither infrared nor microwave observations provide a clear picture of the distribution of matter near cool red giant stars. There exists one method which may be used to obtain more information about the distribution of matter very close to the star. This method involves the measurement of the spatial extent of near-infrared lines by employing a combination of very high spatial and high spectral resolution. The present investigation is concerned with an application of this method. Speckle interferometry is used to measure the radial distribution of CO molecules on angular scales of 1 sec near IRC +10216.

  15. First detection of winds in red giants by microwave continuum techniques

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1983-01-01

    Eight red giants and supergiants have been observed at 4885 MHz (6 cm) with the Very Large Array in an attempt to detect continuum emission. The bright giant Alpha-1 Her (M5 II) was detected at an average flux density of 0.9 + or - 0.13 mJy. Since the likely source of this emission is an ionized, optically thick component of a stellar wind, this detection implies a mass loss rate of 2 x 10 to the -9th solar masses per yr for the ionized gas. The fraction of the outflow in Alpha-1 Her that is ionized (0.002-0.02) seems to be similar to that previously found for Alpha Ori and Alpha Sco A. Alpha Boo (K2 IIIp) and Beta Gem (K0 III) are probable and definite detections, respectively. The derived ionized mass loss rates for these two stars are about 1 x 10 to the -10th solar masses per yr, implying in the case of Alpha Boo that the wind is largely ionized.

  16. On 7Li Enrichment by Low-Mass Metal-Poor Red Giant Branch Stars.

    PubMed

    de La Reza R; da Silva L; Drake; Terra

    2000-06-01

    First-ascent red giants with strong and very strong Li lines have just been discovered in globular clusters. Using the stellar internal prompt (7)Li enrichment-mass-loss scenario, we explore the possibility of (7)Li enrichment in the interstellar matter of the globular cluster M3 produced by these Li-rich giants. We found that enrichment as large as 70% or more compared to the initial (7)Li content of M3 can be obtained during the entire life of this cluster. However, because M3 will cross into the Galactic plane several times, the new (7)Li will be very probably removed by ram pressure into the disk. Globular clusters appear then as possible new sources of (7)Li in the Galactic disk. It is also suggested that the known Na/Al variations in stars of globular clusters could be somehow related to the (7)Li variations and that the cool bottom process mixing mechanism acting in the case of (7)Li could also play a role in the case of Na and Al surface enrichments.

  17. Companions to peculiar red giants: HR 363 and HR 1105

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B., III; Johnson, Hollis R.; Perry, Benjamin F., Jr.

    1988-01-01

    Recent IUE observations of two Tc-deficient S-type peculiar red giants that are also spectroscopic binaries, HR 363 and HR 1105 are reported. A 675 min SWP exposure of HR 363 shows emission lines of O I 1304 and Si II 1812 and a trace of continuum. Compared to the M giants, the far UV flux may be relatively larger, indicating a possible contribution from a white dwarf companion, but no high temperature emission lines are seen to indicate that this is an interacting system where mass-transfer recently occurred. However, HR 1105 appears to have a highly variable UV companion. In 1982, no UV flux was discerned for this system, but by 1986 C IV was strong, increasing by a factor of 3 in 1987 with prominent lines of Si III, C III, O III, Si IV, and N V. Using orbital parameters, these observations are consistent with high activity occuring when the side of the S-star primary illuminated by the companion faces the Earth, but since the IUE data were taken over 3 orbits, a secular change in the UV component cannot be excluded.

  18. Far-infrared data for symbiotic stars. II - The IRAS survey observations

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Fernandez-Castro, T.; Stencel, R. E.

    1988-01-01

    IRAS survey data for all known symbiotic binaries are reported. S type systems have 25 micron excesses much larger than those of single red giant stars, suggesting that these objects lose mass more rapidly than do normal giants. D type objects have far-IR colors similar to those of Mira variables, implying mass-loss rate of about 10 to the -6th solar masses/yr. The near-IR extinctions of the D types indicate that their Mira components are enshrouded in optically thick dust shells, while their hot companions lie outside the shells. If this interpretation of the data is correct, then the very red near-IR colors of D type symbiotic stars are caused by extreme amounts of dust absorption rather than dust emission. The small group of D prime objects possesses far-IR colors resembling those of compact planetary nebulae or extreme OH/IR stars. It is speculated that these binaries are not symbiotic stars at all, but contain a hot compact star and an exasymptotic branch giant which is in the process of ejecting a planetary nebula shell.

  19. PHOTO ILLUSTRATION OF COMET P/SHOEMAKER-LEVY 9 and PLANET JUPITER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite photo, assembled from separate images of Jupiter and comet P/Shoemaker-Levy 9, as imaged by the Wide Field and Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million km) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jupiter's magnificent cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. Credit: H.A. Weaver, T.E. Smith (Space Telescope Science Institute) and J.T. Trauger, R.W. Evans (Jet Propulsion Laboratory), and NASA

  20. ARC-1994-AC94-0353-1

    NASA Image and Video Library

    1994-07-07

    This is a composite photo, assembled from separate images of Jupiter and Comet P/Shoemaker-Levy 9 as imaged by the Wide Field & Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million KM) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jpiter's magnifient cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. CREDIT: H.A. Weaver, T.E. Smith (Space Telescope Science Institute (STSI)) and J.T. Tranuger, R.W. Evans (Jet Propulsion Laboratory (JPL)) and NASA. (HST ref: STSci-PR94-26a)

Top