Cloud microphysical background for the Israel-4 cloud seeding experiment
NASA Astrophysics Data System (ADS)
Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel
2015-05-01
The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.
Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment.
NASA Astrophysics Data System (ADS)
Silverman, Bernard A.; Sukarnjanaset, Wathana
2000-07-01
A randomized, warm-rain enhancement experiment was carried out during 1995-98 in the Bhumibol catchment area in northwestern Thailand. The experiment was conducted in accordance with a randomized, floating single-target design. The seeding targets were semi-isolated, warm convective clouds, contained within a well-defined experimental unit, that, upon qualification, were selected for seeding or not seeding with calcium chloride particles in a random manner. The seeding was done by dispensing the calcium chloride particles at an average rate of 21 kg km1 per seeding pass into the updrafts of growing warm convective clouds (about 1-2 km above cloud base) that have not yet developed or, at most, have just started to develop a precipitation radar echo. The experiment was carried out by the Bureau of Royal Rainmaking and Agricultural Aviation (BRRAA) of the Ministry of Agriculture and Cooperatives as part of its Applied Atmospheric Resources Research Program, Phase 2.During the 4 yr of the experiment, a total of 67 experimental units (34 seeded and 33 nonseeded units) were qualified in accordance with the experimental design. Volume-scan data from a 10-cm Doppler radar at 5-min intervals were used to track each experimental unit, from which various radar-estimated properties of the experimental units were obtained. The statistical evaluation of the experiment was based on a rerandomization analysis of the single ratio of seeded to unseeded experimental unit lifetime properties. In 1997, the BRRAA acquired two sophisticated King Air 350 cloud-physics aircraft, providing the opportunity to obtain physical measurements of the aerosol characteristics of the environment in which the warm clouds grow, of the hydrometeor characteristics of seeded and unseeded clouds, and of the calcium chloride seeding plume dimensions and particle size distribution-information directly related to the effectiveness of the seeding conceptual model that was not directly available up to then
Precipitation formation from orographic cloud seeding.
French, Jeffrey R; Friedrich, Katja; Tessendorf, Sarah A; Rauber, Robert M; Geerts, Bart; Rasmussen, Roy M; Xue, Lulin; Kunkel, Melvin L; Blestrud, Derek R
2018-02-06
Throughout the western United States and other semiarid mountainous regions across the globe, water supplies are fed primarily through the melting of snowpack. Growing populations place higher demands on water, while warmer winters and earlier springs reduce its supply. Water managers are tantalized by the prospect of cloud seeding as a way to increase winter snowfall, thereby shifting the balance between water supply and demand. Little direct scientific evidence exists that confirms even the basic physical hypothesis upon which cloud seeding relies. The intent of glaciogenic seeding of orographic clouds is to introduce aerosol into a cloud to alter the natural development of cloud particles and enhance wintertime precipitation in a targeted region. The hypothesized chain of events begins with the introduction of silver iodide aerosol into cloud regions containing supercooled liquid water, leading to the nucleation of ice crystals, followed by ice particle growth to sizes sufficiently large such that snow falls to the ground. Despite numerous experiments spanning several decades, no direct observations of this process exist. Here, measurements from radars and aircraft-mounted cloud physics probes are presented that together show the initiation, growth, and fallout to the mountain surface of ice crystals resulting from glaciogenic seeding. These data, by themselves, do not address the question of cloud seeding efficacy, but rather form a critical set of observations necessary for such investigations. These observations are unambiguous and provide details of the physical chain of events following the introduction of glaciogenic cloud seeding aerosol into supercooled liquid orographic clouds.
NASA Astrophysics Data System (ADS)
Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.
Physical View of Cloud Seeding
ERIC Educational Resources Information Center
Tribus, Myron
1970-01-01
Reviews experimental data on various aspects of climate control. Includes a discussion of (1) the physics of cloud seeding, (2) the applications of cloud seeding, and (3) the role of statistics in the field of weather modification. Bibliography. (LC)
Cirrus Cloud Seeding has Potential to Cool Climate
NASA Technical Reports Server (NTRS)
Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.
2013-01-01
Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth s climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.
Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model
NASA Astrophysics Data System (ADS)
Spiridonov, Vlado; Karacostas, Theodore; Bampzelis, Dimitrios; Pytharoulis, Ioannis
2015-02-01
An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the
Statistical Analysis of the Polarimetric Cloud Analysis and Seeding Test (POLCAST) Field Projects
NASA Astrophysics Data System (ADS)
Ekness, Jamie Lynn
project would be necessary to obtain standardly accepted statistically significant results (p < 0.5) for the double ratio of precipitation amount, the obtained p-value of 0.063 is close and considering the positive result from other hygroscopic seeding experiments, the North Dakota Cloud Modification Project should consider implementation of hygroscopic seeding.
The behavior of the radar parameters of cumulonimbus clouds during cloud seeding with AgI
NASA Astrophysics Data System (ADS)
Vujović, D.; Protić, M.
2017-06-01
Deep convection yielding severe weather phenomena (hail, flash floods, thunder) is frequent in Serbia during the warmer part of the year, i.e. April to September. As an effort to mitigate any potential damage to material goods, agricultural crops and vegetation from larger hailstones, cloud seeding is performed. In this paper, we analyzed 29 severe hailstorms seeded by silver iodide. From these, we chose five intense summer thunderstorm cells to analyze in detail the influence of silver-iodide cloud seeding on the radar parameters. Four of them were seeded and one was not. We also used data from firing stations (hail fall occurrence, the size of the hailstones). The most sensitive radar parameter in seeding was the height where maximum reflectivity in the cloud was observed. Its cascade appeared in every case of seeding, but was absent from the non-seeded case. In the case of the supercell, increase and decrease of the height where maximum reflectivity in the cloud was observed occurred in almost regular intervals, 12 to 15 min. The most inert parameter in seeding was maximum radar reflectivity. It changed one to two dBz during one cycle. The height of the top of the cloud and the height of the zone exhibiting enhanced radar echo both had similar behavior. It seems that both increased after seeding due to a dynamic effect: upward currents increasing due to the release of latent heat during the freezing of supercooled droplets. Mean values of the height where maximum reflectivity in the cloud was observed, the height of the top of the cloud and the height of the zone exhibiting enhanced radar echo during seeded period were greater than during unseeded period in 75.9%, 72.4% and 79.3% cases, respectively. This is because the values of the chosen storm parameters were higher when the seeding started, and then those values decreased after the seeded was conducted.
Occupational contact dermatitis in manual cloud seeding operations.
Ng, W T; Koh, D
2011-05-01
This is a case report on irritant contact dermatitis secondary to calcium oxide exposure during manual cloud seeding operations. A less hazardous substitute such as sodium chloride should be considered wherever possible. Cloud seeding operations are briefly discussed in this report, and the impact of calcium oxide exposure as an occupational hazard is elaborated.
Tai, Yanlong; Liang, Haoran; Zaki, Abdelali; El Hadri, Nabil; Abshaev, Ali M; Huchunaev, Buzgigit M; Griffiths, Steve; Jouiad, Mustapha; Zou, Linda
2017-12-26
Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO 2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (h g.p ., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO 2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 μm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.
Quantifying spatial variability of AgI cloud seeding benefits and Ag enrichments in snow
NASA Astrophysics Data System (ADS)
Fisher, J.; Benner, S. G.; Lytle, M. L.; Kunkel, M. L.; Blestrud, D.; Holbrook, V. P.; Parkinson, S.; Edwards, R.
2016-12-01
Glaciogenic cloud seeding is an important scientific technology for enhancing water resources across in the Western United States. Cloud seeding enriches super cooled liquid water layers with plumes of silver iodide (AgI), an artificial ice nuclei. Recent studies using target-control regression analysis and modeling estimate glaciogenic cloud seeding increases snow precipitation between 3-15% annually. However, the efficacy of cloud seeding programs is difficult to assess using weather models and statistics alone. This study will supplement precipitation enhancement statistics and Weather Research and Forecasting (WRF) model outputs with ultra-trace chemistry. Combining precipitation enhancement estimates with trace chemistry data (to estimate AgI plume targeting accuracy) may provide a more robust analysis. Precipitation enhancement from the 2016 water year will be modeled two ways. First, by using double-mass curve. Annual SNOTEL data of the cumulative SWE in unseeded areas and cumulative SWE in seeded areas will be compared before, and after, the cloud seeding program's initiation in 2003. Any change in the double-mass curve's slope after 2003 may be attributed to cloud seeding. Second, WRF model estimates of precipitation will be compared to the observed precipitation at SNOTEL sites. The difference between observed and modeled precipitation in AgI seeded regions may also be attributed to cloud seeding (assuming modeled and observed data are comparable at unseeded SNOTEL stations). Ultra-trace snow chemistry data from the 2016 winter season will be used to validate whether estimated precipitation increases are positively correlated with the mass of silver in the snowpack.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana
2016-05-01
In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.
Geoengineering by cloud seeding: influence on sea ice and climate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasch, Philip J.; Latham, John; Chen, Chih-Chieh
2009-12-18
GCM computations using a fully coupled ocean atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with extent of the seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover and cooling the planet must be assessed alongside the localmore » changes to climate features.« less
Prototype methodology for obtaining cloud seeding guidance from HRRR model data
NASA Astrophysics Data System (ADS)
Dawson, N.; Blestrud, D.; Kunkel, M. L.; Waller, B.; Ceratto, J.
2017-12-01
Weather model data, along with real time observations, are critical to determine whether atmospheric conditions are prime for super-cooled liquid water during cloud seeding operations. Cloud seeding groups can either use operational forecast models, or run their own model on a computer cluster. A custom weather model provides the most flexibility, but is also expensive. For programs with smaller budgets, openly-available operational forecasting models are the de facto method for obtaining forecast data. The new High-Resolution Rapid Refresh (HRRR) model (3 x 3 km grid size), developed by the Earth System Research Laboratory (ESRL), provides hourly model runs with 18 forecast hours per run. While the model cannot be fine-tuned for a specific area or edited to provide cloud-seeding-specific output, model output is openly available on a near-real-time basis. This presentation focuses on a prototype methodology for using HRRR model data to create maps which aid in near-real-time cloud seeding decision making. The R programming language is utilized to run a script on a Windows® desktop/laptop computer either on a schedule (such as every half hour) or manually. The latest HRRR model run is downloaded from NOAA's Operational Model Archive and Distribution System (NOMADS). A GRIB-filter service, provided by NOMADS, is used to obtain surface and mandatory pressure level data for a subset domain which greatly cuts down on the amount of data transfer. Then, a set of criteria, identified by the Idaho Power Atmospheric Science Group, is used to create guidance maps. These criteria include atmospheric stability (lapse rates), dew point depression, air temperature, and wet bulb temperature. The maps highlight potential areas where super-cooled liquid water may exist, reasons as to why cloud seeding should not be attempted, and wind speed at flight level.
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart; Jing, Xiaoqin; Friedrich, Katja; Ikeda, Kyoko; Rasmussen, Roy
2017-01-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign, conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming, was designed to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. Part I of this study (Pokharel and Geerts, 2016) describes the project design, instrumentation, as well as the ambient atmospheric conditions and macrophysical and microphysical properties of the clouds sampled in ASCII. This paper (Part II) explores how the silver iodide (AgI) seeding affects snow growth in these orographic clouds in up to 27 intensive operation periods (IOPs), depending on the instrument used. In most cases, 2 h without seeding (NOSEED) were followed by 2 h of seeding (SEED). In situ data at flight level (2D-probes) indicate higher concentrations of small snow particles during SEED in convective clouds. The double difference of radar reflectivity Z (SEED - NOSEED in the target region, compared to the same trend in the control region) indicates an increase in Z for the composite of ASCII cases, over either mountain range, and for any of the three radar systems (WCR, MRR, and DOW), each with their own control and target regions, and for an array of snow gauges. But this double difference varies significantly from case to case, which is attributed to uncertainties related to sampling representativeness and to differences in natural trends between control and target regions. We conclude that a sample much larger than ASCII's sample is needed for clear observational evidence regarding the sensitivity of seeding efficacy to atmospheric and cloud conditions.
NASA Astrophysics Data System (ADS)
Wakimizu, K.; Nishiyama, K.; Tomine, K.; Maki, T.; Suzuki, Y.; Morita, O.
2012-12-01
ice perticles formed by LC seeding grew to the precipitable size and resultant snowfall was detected by radar in approximately 120 min. after seeding operation. In this study, based on these observed facts, optimum design for enhancing winter-time water resources by LC seeding method was suggested. Successive low-level horizontal penetrations of operational aircraft with seeding LC into many moving super-cooled cumuli towards the Japan Islands will lead to the spreading of cloud volume and subsequent coversion of large amount of iv active cloud volume into newly exploited artificial precipitation. As a result, these experiments succeeded, and the total amount of estimated radar precipitation of the be able to secure a large amount of water resource from these experiment results.
NASA Technical Reports Server (NTRS)
Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.;
1998-01-01
An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.
NASA Astrophysics Data System (ADS)
Pokharel, Binod
This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud. Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent
Directed Panspermia. 3. strategies and Motivation for Seeding Star-Forming Clouds
NASA Astrophysics Data System (ADS)
Mautner, Michael N.
1997-11-01
Microbial swarms aimed at star-forming regions of interstellar clouds can seed stellar associations of 10 - 100 young planetary systems. Swarms of millimeter size, milligram packets can be launched by 35 cm solar sails at 5E-4 c, to penetrate interstellar clouds. Selective capture in high-density planetary accretion zones of densities > 1E-17 kg m-3 is achieved by viscous drag. Strategies are evaluated to seed dense cloud cores, or individual protostellar condensations, accretion disks or young planets therein. Targeting the Ophiuchus cloud is described as a model system. The biological content, dispersed in 30 μm, 1E-10 kg capsules of 1E6 freeze-dried microorganisms each, may be captured by new planets or delivered to planets after incorporation first into carbonaceous asteroids and comets. These objects, as modeled by meteorite materials, contain biologically available organic and mineral nutrients that are shown to sustain microbial growth. The program may be driven by panbiotic ethics, predicated on: 1. The unique position of complex organic life amongst the structures of Nature; 2. Self-propagation as the basic propensity of the living pattern; 3. The biophysical unity humans with of the organic, DNA/protein family of life; and 4. Consequently, the primary human purpose to safeguard and propagate our organic life form. To promote this purpose, panspermia missions with diverse biological payloads will maximize survival at the targets and induce evolutionary pressures. In particular, eukaryotes and simple multicellular organisms in the payload will accelerate higher evolution. Based on the geometries and masses of star-forming regions, the 1E24 kg carbon resources of one solar system, applied during its 5E9 yr lifespan, can seed all newly forming planetary systems in the galaxy.
Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob
2012-09-13
The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.
Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob
2012-01-01
The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action
Stabilization of Global Temperature and Polar Sea-ice cover via seeding of Maritime Clouds
NASA Astrophysics Data System (ADS)
Chen, Jack; Gadian, Alan; Latham, John; Launder, Brian; Neukermans, Armand; Rasch, Phil; Salter, Stephen
2010-05-01
The marine cloud albedo enhancement (cloud whitening) geoengineering technique (Latham1990, 2002, Bower et al. 2006, Latham et al. 2008, Salter et al. 2008, Rasch et al. 2009) involves seeding maritime stratocumulus clouds with seawater droplets of size (at creation) around 1 micrometer, causing the droplet number concentration to increase within the clouds, thereby enhancing their albedo and possibly longevity. GCM modeling indicates that (subject to satisfactory resolution of specified scientific and technological problems) the technique could produce a globally averaged negative forcing of up to about -4W/m2, adequate to hold the Earth's average temperature constant as the atmospheric carbon dioxide concentration increases to twice the current value. This idea is being examined using GCM modeling, LES cloud modeling, technological development (practical and theoretical), and analysis of data from the recent, extensive VOCALS field study of marine stratocumulus clouds. We are also formulating plans for a possible limited-area field test of the technique. Recent general circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds may compensate for some effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios), when employed in an atmosphere where the CO2 concentration is doubled, can restore global averages of temperature, precipitation and polar sea-ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. Our computations suggest that for the specimen cases examined there is no appreciable reduction of rainfall over land, as a consequence of seeding. This result is in agreement with one separate study but not another. Much further work is required to explain these
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latham, John; Bower, Keith; Choularton, Tom
2012-09-07
The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involvesmore » (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.« less
Potential value of satellite cloud pictures in weather modification projects
NASA Technical Reports Server (NTRS)
Biswas, K. R.
1972-01-01
Satellite imagery for one project season of cloud seeding programs in the northern Great Plains has been surveyed for its probable usefulness in weather modification programs. The research projects and the meteorological information available are described. A few illustrative examples of satellite imagery analysis are cited and discussed, along with local observations of weather and the seeding decisions made in the research program. This analysis indicates a definite correlation between satellite-observed cloud patterns and the types of cloud seeding activity undertaken, and suggests a high probability of better and/or earlier decisions if the imagery is available in real time. Infrared imagery provides better estimates of cloud height which can be useful in assessing the possibility of a hail threat. The satellite imagery appears to be of more value to area-seeding projects than to single-cloud seeding experiments where the imagery is of little value except as an aid in local forecasting and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, J; Cunha, J; Sudhyadhom, A
Purpose: Robotic radiosurgery is a salvage treatment option for patients with recurrent prostate cancer. We explored the feasibility of tracking the bolus of permanent prostate implants (PPI) using image recognition software optimized to track spinal anatomy. Methods: Forty-five inert iodine seeds were implanted into a gelatin-based prostate phantom. Four superficial gold seeds were inserted to provide ground-truth alignment. A CT scan of the phantom (120 kVp, 1 mm slice thickness) was acquired and a single-energy iterative metal artifact reduction (MAR) algorithm was used to enhance the quality of the DRR used for tracking. CyberKnife treatment plans were generated from themore » MAR CT and regular CT (no-MAR) using spine tracking. The spine-tracking grid was centered on the bolus of seeds and resized to encompass the full seed cloud. A third plan was created from the regular CT scan, using fiducial tracking based on the 4 superficial gold seeds with identical align-center coordinates. The phantom was initially aligned using the fiducial-tracking plan. Then the MAR and no-MAR spine-tracking plans were loaded without moving the phantom. Differences in couch correction parameters were recorded in the case of perfect alignment and after the application of known rotations and translations (roll/pitch of 2 degrees; translations XYZ of 2 cm). Results: The spine tracking software was able to lock on to the bolus of seeds and provide couch corrections both in the MAR and no-MAR plans. In all cases, differences in the couch correction parameters from fiducial alignment were <0.5 mm in translations and <1 degree in rotations. Conclusion: We were able to successfully track the bolus of seeds with the spine-tracking grid in phantom experiments. For clinical applications, further investigation and developments to adapt the spine-tracking algorithm to optimize for PPI seed cloud tracking is needed to provide reliable tracking in patients. One of the authors (MD) has received
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart
2016-12-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).
``From seed-to-seed'' experiment with wheat plants under space-flight conditions
NASA Astrophysics Data System (ADS)
Mashinsky, A.; Ivanova, I.; Derendyaeva, T.; Nechitailo, G.; Salisbury, F.
1994-11-01
An important goal with plant experiments in microgravity is to achieve a complete life cycle, the ``seed-to-seed experiment''. Some Soviet attempts to reach this goal are described, notably an experiment with the tiny mustard, Arabidopsis thaliana, in the Phyton 3 device on Salyut 7. Normal seeds were produced although yields were reduced and development was delayed. Several other experiments have shown abnormalities in plants grown in space. In recent work, plants of wheat (Triticum aestivum) were studied on the ground and then in a preliminary experiment in space. Biometric indices of vegetative space plants were 2 to 2.5 times lower than those of controls, levels of chlorophyll a and b were reduced (no change in the ratio of the two pigments), carotenoids were reduced, there was a serious imbalance in major minerals, and membrane lipids were reduced (no obvious change in lipid patterns). Following the preliminary studies, an attempt was made with the Svetoblock-M growth unit to grow a super-dwarf wheat cultivar through a life cycle. The experiment lasted 167 d on Mir. Growth halted from about day 40 to day 100, when new shoots appeared. Three heads had appeared in the boot (surrounded by leaves) when plants were returned to earth. One head was sterile, but 28 seeds matured on earth, and most of these have since produced normal plants and seeds. In principle, a seed-to-seed experiment with wheat should be successful in microgravity.
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
Seeds in space experiment results
NASA Technical Reports Server (NTRS)
Alston, Jim A.
1991-01-01
Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the space exposed experiment developed for students (SEEDS) tray in sealed canister number six and in two small vented canisters. The tray was in the F-2 position. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in Park Seed's seed storage facility. The initial results are presented. There was a better survival rate in the sealed canister in space than in the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.
NASA Astrophysics Data System (ADS)
Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.
2005-12-01
During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct
Cloud Migration Experiment Configuration and Results
2017-12-01
ARL-TR-8248 ● DEC 2017 US Army Research Laboratory Cloud Migration Experiment Configuration and Results by Michael De Lucia...or reconstruction of the document. ARL-TR-8248 ● DEC 2017 US Army Research Laboratory Cloud Migration Experiment Configuration...and Results by Michael De Lucia Computational and Information Sciences Directorate, ARL Justin Wray and Steven S Collmann ICF International
Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.
Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S
2016-11-01
Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser
NASA Astrophysics Data System (ADS)
Imai, T.; Martin, I.; Iha, K.
A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work
Liebeskind, David S
2016-01-01
Crowdsourcing, an unorthodox approach in medicine, creates an unusual paradigm to study precision cerebrovascular health, eliminating the relative isolation and non-standardized nature of current imaging data infrastructure, while shifting emphasis to the astounding capacity of big data in the cloud. This perspective envisions the use of imaging data of the brain and vessels to orient and seed A Million Brains Initiative™ that may leapfrog incremental advances in stroke and rapidly provide useful data to the sizable population around the globe prone to the devastating effects of stroke and vascular substrates of dementia. Despite such variability in the type of data available and other limitations, the data hierarchy logically starts with imaging and can be enriched with almost endless types and amounts of other clinical and biological data. Crowdsourcing allows an individual to contribute to aggregated data on a population, while preserving their right to specific information about their own brain health. The cloud now offers endless storage, computing prowess, and neuroimaging applications for postprocessing that is searchable and scalable. Collective expertise is a windfall of the crowd in the cloud and particularly valuable in an area such as cerebrovascular health. The rise of precision medicine, rapidly evolving technological capabilities of cloud computing and the global imperative to limit the public health impact of cerebrovascular disease converge in the imaging of A Million Brains Initiative™. Crowdsourcing secure data on brain health may provide ultimate generalizability, enable focused analyses, facilitate clinical practice, and accelerate research efforts.
Preparatory studies of zero-g cloud drop coalescence experiment
NASA Technical Reports Server (NTRS)
Telford, J. W.; Keck, T. S.
1979-01-01
Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.
Antiparticle cloud temperatures for antihydrogen experiments
NASA Astrophysics Data System (ADS)
Bianconi, A.; Charlton, M.; Lodi Rizzini, E.; Mascagna, V.; Venturelli, L.
2017-07-01
A simple rate-equation description of the heating and cooling of antiparticle clouds under conditions typical of those found in antihydrogen formation experiments is developed and analyzed. We include single-particle collisional, radiative, and cloud expansion effects and, from the modeling calculations, identify typical cooling phenomena and trends and relate these to the underlying physics. Some general rules of thumb of use to experimenters are derived.
The Mixed-Phase Arctic Cloud Experiment (M-PACE)
NASA Technical Reports Server (NTRS)
Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.; Yannuzzi, V. T.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M. R.; Mather, J. H.;
2007-01-01
The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.
Continued results of the seeds in space experiment
NASA Technical Reports Server (NTRS)
Alston, Jim A.
1993-01-01
Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seed were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The tray was in the F-2 position. The seed were germinated and the germination rates and the development of the resulting plants were compared to the performance of the control seed that stayed in Park Seed's seed storage facility. The initial results were presented in a paper at the First LDEF Post-Retrieval Symposium. There was a better survival rate of the seed in the sealed canister in space than in the storage facility at Park Seed. At least some of the seed in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutations and obtain second generation seed. These small seeded crops have now been grown for evaluation and second generation seed collected.
Continued results of the seeds in space experiment
NASA Technical Reports Server (NTRS)
Alston, Jim A.
1992-01-01
Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in the storage facility. There was a better survival rate in the sealed canister in space than in the storage facility. At least some of the seed in the vented canisters survived the exposure to vacuum for almost six years. The number of observed mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutation and obtain a second generation seed. These small seeded crops are now being grown for evaluation.
ERIC Educational Resources Information Center
Schaffhauser, Dian
2013-01-01
For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.
NASA Astrophysics Data System (ADS)
Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.
2008-02-01
Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
NASA Astrophysics Data System (ADS)
Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.
2016-04-01
This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.
Illinois Precipitation Research: A Focus on Cloud and Precipitation Modification.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.; Czys, Robert R.; Scott, Robert W.; Westcott, Nancy E.
1991-05-01
At the heart of the 40-year atmospheric research endeavors of the Illinois State Water Survey have been studies to understand precipitation processes in order to learn how precipitation is modified purposefully and accidentally, and to measure the physical and socio-economic consequences of cloud and precipitation modification. Major field and laboratory activities of past years or briefly treated as a basis for describing the key findings of the past ten years. Recent studies of inadvertent and purposeful cloud and rain modification and their effects are emphasized, including a 1989 field project conducted in Illinois and key findings from an on-going exploratory experiment addressing cloud and rain modification. Results are encouraging for the use of dynamic seeding on summer cumuliform clouds of the Midwest.Typical in-cloud results at 10°C reveal multiple updrafts that tend to be filled with large amounts of supercooled drizzle and raindrops. Natural ice production is vigorous, and initial concentrations are larger than expected from ice nuclei. However, natural ice production is not so vigorous as to preclude opportunities for seeding. Radar-based studies of such clouds reveal that their echo cores usually can be identified prior to desired seeding times, which is significant for the evaluation of their behavior. Cell characteristics show considerable variance under different types of meteorological conditions. Analysis of cell mergers reveals that under conditions of weak vertical shear, mid-level intercell flow at 4 km occurs as the reflectivity bridge between cells rapidly intensifies. The degree of intensification of single-echo cores after they merge is strongly related to the age and vigor of the cores before they join. Hence, cloud growth may be enhanced if seeding can encourage echo cores to merge at critical times. Forecasting research has developed a technique for objectively distinguishing between operational seeding and nonoperational days and for
NASA Astrophysics Data System (ADS)
Farley, Richard D.
1987-07-01
This paper reports on simulations of a multicellular hailstorm case observed during the 1983 Alberta Hail Project. The field operations on that day concentrated on two successive feeder cells which were subjected to controlled seeding experiments. The fist of these cells received the placebo treatment and the second was seeded with dry ice. The principal tool of this study is a modified version of the two-dimensional, time dependent hail category model described in Part I of this series of papers. It is with this model that hail growth processes are investigated, including the simulated effects of cloud seeding techniques as practiced in Alberta.The model simulation of the natural case produces a very good replication of the observed storm, particularly the placebo feeder cell. This is evidenced, in particular, by the high degree of fidelity of the observed and modeled radar reflectivity in terms of magnitudes, structure, and evolution. The character of the hailfall at the surface and the scale of the storm are captured nicely by the model, although cloud-top heights are generally too high, particularly for the mature storm system.Seeding experiments similar to those conducted in the field have also been simulated. These involve seeding the feeder cell early in its active development phase with dry ice (CO2) or silver iodide (AgI) introduced near cloud top. The model simulations of these seeded cases capture some of the observed seeding signatures detected by radar and aircraft. In these model experiments, CO2 seeding produced a stronger response than AgI seeding relative to inhibiting hail formation. For both seeded cases, production of precipitating ice was initially enhanced by the seeding, but retarded slightly in the later stages, the net result being modest increases in surface rainfall, with hail reduced slightly. In general, the model simulations support several subhypotheses of the operational strategy of the Alberta Research Council regarding the earlier
Modification of cirrus clouds to reduce global warming
NASA Astrophysics Data System (ADS)
Mitchell, David L.; Finnegan, William
2009-10-01
Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.
NASA Astrophysics Data System (ADS)
Rasch, Philip J.; Wood, Robert; Ackerman, Thomas P.
2017-04-01
Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in radiative forcing of climate, confounding estimates of climate sensitivity to increases in greenhouse gases. Projections of future warming are also thus strongly dependent on estimates of aerosol effects on clouds. I will discuss the opportunities for improving estimates of aerosol effects on clouds from controlled field experiments where aerosol with well understood size, composition, amount, and injection altitude could be introduced to deliberately change cloud properties. This would allow scientific investigation to be performed in a manner much closer to a lab environment, and facilitate the use of models to predict cloud responses ahead of time, testing our understanding of aerosol cloud interactions.
View of CBEF Space Seed Experiment Hardware
2009-10-13
ISS021-E-006274 (13 Oct. 2009) --- A close-up view of the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment is featured in this image photographed by an Expedition 21 crew member in the Kibo laboratory on the International Space Station.
View of CBEF Space Seed Experiment Hardware
2009-10-13
ISS021-E-006256 (13 Oct. 2009) --- A close-up view of the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment is featured in this image photographed by an Expedition 21 crew member in the Kibo laboratory on the International Space Station.
Marine cloud brightening: regional applications.
Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack
2014-12-28
The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet.
Artificial ionospheric modification: The Metal Oxide Space Cloud experiment
NASA Astrophysics Data System (ADS)
Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.
2017-05-01
Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.
2006-01-01
Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.
Homomorphic encryption experiments on IBM's cloud quantum computing platform
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
Seed size- and density-related hidden treatments in common biodiversity experiments
Qinfeng Guo
2011-01-01
With a few exceptions, most well-known field biodiversity experiments on ecosystem functioning have been conducted in plant communities (especially grasslands) in which different numbers of species are planted as treatments. In these experiments, investigators have either kept the total seed weight or seed number constant across treatment plots. However, although in...
NASA Astrophysics Data System (ADS)
Schwarzenböck, A.; Mertes, S.; Heintzenberg, J.; Wobrock, W.; Laj, P.
The paper focuses on the redistribution of aerosol particles (APs) during the artificial nucleation and subsequent growth of ice crystals in a supercooled cloud. A significant number of the supercooled cloud droplets during icing periods (seeding agents: C 3H 8, CO 2) did not freeze as was presumed prior to the experiment but instead evaporated. The net mass flux of water vapour from the evaporating droplets to the nucleating ice crystals (Bergeron-Findeisen mechanism) led to the release of residual particles that simultaneously appeared in the interstitial phase. The strong decrease of the droplet residuals confirms the nucleation of ice particles on seeding germs without natural aerosol particles serving as ice nuclei. As the number of residual particles during the seedings did not drop to zero, other processes such as heterogeneous ice nucleation, spontaneous freezing, entrainment of supercooled droplets and diffusion to the created particle-free ice germs must have contributed to the experimental findings. During the icing periods, residual mass concentrations in the condensed phase dropped by a factor of 1.1-6.7, as compared to the unperturbed supercooled cloud. As the Bergeron-Findeisen process also occurs without artificial seeding in the atmosphere, this study demonstrated that the hydrometeors in mixed-phase clouds might be much cleaner than anticipated for the simple freezing process of supercooled droplets in tropospheric mid latitude clouds.
NASA Technical Reports Server (NTRS)
Starr, D. OC.; Cox, S. K.
1985-01-01
A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.
Rain-shadow: An area harboring "Gray Ocean" clouds
NASA Astrophysics Data System (ADS)
Padmakumari, B.; Maheskumar, R. S.; Harikishan, G.; Morwal, S. B.; Kulkarni, J. R.
2018-06-01
The characteristics of monsoon convective clouds over the rain-shadow region of north peninsular India have been investigated using in situ aircraft cloud microphysical observations collected during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). The parameters considered for characterization are: liquid water content (LWC), cloud vertical motion (updraft, downdraft: w), cloud droplet number concentration (CDNC) and effective radius (Re). The results are based on 15 research flights which were conducted from the base station Hyderabad during summer monsoon season. The clouds studied were developing congestus. The clouds have low CDNC and low updraft values resembling the oceanic convective clouds. The super-saturation in clouds is found to be low (≤0.2%) due to low updrafts. The land surface behaves like ocean surface during monsoon as deduced from Bowen ratio. Microphysically the clouds showed oceanic characteristics. However, these clouds yield low rainfall due to their low efficiency (mean 14%). The cloud parameters showed a large variability; hence their characteristic values are reported in terms of median values. These values will serve the numerical models for rainfall simulations over the region and also will be useful as a scientific basis for cloud seeding operations to increase the rainfall efficiency. The study revealed that monsoon convective clouds over the rain-shadow region are of oceanic type over the gray land, and therefore we christen them as "Gray Ocean" clouds.
Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.
1972-01-01
A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations
Campaign datasets for ARM Cloud Aerosol Precipitation Experiment (ACAPEX)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. Ruby; Mei, Fan; Comstock, Jennifer
This campaign consisted of the deployment of the DOE ARM Mobile Facility 2 (AMF2) and the ARM Aerial Facility (AAF) G-1 in a field campaign called ARM Cloud Aerosol Precipitation Experiment (ACAPEX), which took place in conjunction with CalWater 2- a NOAA field campaign. The joint CalWater 2/ACAPEX field campaign aimed to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. The observational strategy consisted of the use of land and offshore assets to monitor: 1. the evolution and structure ofmore » ARs from near their regions of development 2. the long-range transport of aerosols in the eastern North Pacific and potential interactions with ARs 3. how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent.« less
Space Exposed Experiment Developed for Students (SEEDS) P-0004-2
NASA Technical Reports Server (NTRS)
Grigsby, Doris K.
1991-01-01
This cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution, by the end of March, 1990, of approximately 132,000 space exposed experiment developed for students (SEEDS) kits to 64,000 teachers representing 40,000 classrooms and 3.3 million kindergarden through university students. Kits were sent to every state, as well as to 30 foreign countries. Preliminary radiation data indicates that layer A received 725 rads, while layer D received 350 rads. Germination rate was reported to be 73.8 percent for space exposed seeds and 70.3 percent for earth based control seeds. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while earth based control seeds' average germination rate was 8.3 days. Some mutations (assumed to be radiation induced) reported by students and Park Seed include plants that added a leaf instead of the usual flower at the end of the flower front and fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds produced green plants.
Preparation and operation of space-based experiment on plant growth in KIBO, named Space Seed
NASA Astrophysics Data System (ADS)
Yano, Sachiko; Tanigaki, Fumiaki; Shimazu, Toru; Kasahara, Haruo; Nakamura, Tai; Karahara, Ichirou; Hoson, Takayuki; Kamisaka, Seiichiro
The Japan Aerospace Exploration Agency (JAXA) recently carried out plant growth experiment using the Plant Experiment Unit (PEU) installed in the Cell Biology Experiment Facility (CBEF) onboard KIBO. This experiment named Space Seed was designed to investigate the effect of microgravity on plant growth, especially seed to seed life cycle. Space shuttle STS-128 (17A) carrying eight PEU's was launched to the International Space Station (ISS) on August 28, 2009. The experiment was started on September 10 and terminated on November 11, 2009. The control system of environment in PEU and CBEF worked successfully as planned. In KIBO, Arabidopsis seeds germinated, and bolting and flowering were observed in the PEU's. In the end of March, 2010, Arabidopsis plants harvested in Kibo will be recovered to Earth by the space shuttle mission STS-131(19A) and analyzed for their biological characteristics such as seed fertility, cell wall properties, and gene expression. In this presentation, we describe the outline of the Space Seed experiment. We also describe experimental data such as the control of temperature and humidity in PEUs and CBEF, the onboard operations by the ISS crew, the procedure by which the experiment was monitored from the ground, and brief information about seed germination and subsequent growth under microgravity condition in space. We also succeeded in comparing the results of plant growth in PEUs on onboard 1-G control (Centrifuge) with results in microgravity condition and in ground control.
An Apollo compatible cloud physics experiment.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Hollinden, A. B.; Satterblom, P. R.
1973-01-01
Consideration of the utilization of a low-gravity environment to obtain experimental information, in the area of cloud microphysics, which cannot be obtained in ground laboratories. The experiment discussed is designed to obtain quantitative answers about evaporation and breakup of salt particles from ocean spray and other sources. In addition to salt nuclei distribution mechanisms, this breakup has ecological importance in relation to the spreading of salt mists from salted highways and spreading of brine cooling tower spray from electrical power generation plants. This experiment is being submitted for consideration on the Apollo-Soyuz Test Program in 1975.
NASA Technical Reports Server (NTRS)
Luo, Yali; Xu, Kuan-Man; Morrison, Hugh; McFarquhar, Greg M.; Wang, Zhien; Zhang, Gong
2007-01-01
A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a
Performing quantum computing experiments in the cloud
NASA Astrophysics Data System (ADS)
Devitt, Simon J.
2016-09-01
Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.
Study of the Fine-Scale Structure of Cumulus Clouds.
NASA Astrophysics Data System (ADS)
Rodi, Alfred R.
Small cumulus clouds are studied using data from an instrumented aircraft. Two aspects of the role of turbulence and mixing in these couds are examined: (1) the effect of mixing on the droplet size distribution, and (2) the effect of turbulence on the spread of ice crystal plumes artificially generated with cloud seeding agents. The data were collected in the course of the Bureau of Reclamation's High Plains Cooperative Experiment (HIPLEX) in Montana in the summers of 1978-80 by the University of Wyoming King Air aircraft. The shape of the cloud droplet spectrum as measured by the Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP) is found to be very sensitive to entrainment of dry environmental air into the cloud. The narrowest cloud droplet spectra, the highest droplet concentrations, and the largest sized droplets are found in the cloud parcels which are least affected by entrainment. The most dilute regions of cloud exhibit the broadest spectra which are frequently bimodal. A procedure for measuring cloud inhomogeneity from FSSP is developed. The data shows that the clouds are extremely inhomogeneous in structure. Current models of inhomogeneous mixing are shown to be inadequate in explaining droplet spectrum effects. However, the inhomogeneous models characterize the data far better than classical models of droplet spectrum evolution. High resolution measurements of ice crystals from the PMS two dimensional imaging probe are used to characterize the spread of the ice crystal plume in seeded clouds. Plume spread is found to be a very complicated process which is in some cases dominated by organized motions in the cloud. As a result, classical diffusion theory is often inadequate to predict plume growth. The turbulent diffusion that occurs is shown to be best modeled using the relative diffusion concept of Richardson. Procedures for adapting aircraft data to the relative diffusion model are developed, including techniques for
NASA Astrophysics Data System (ADS)
Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.
2016-07-01
Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km
NASA Technical Reports Server (NTRS)
Hunt, R. J.; Wu, S. T.
1976-01-01
The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.
Biodiesel from Seeds: An Experiment for Organic Chemistry
ERIC Educational Resources Information Center
Goldstein, Steven W.
2014-01-01
Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…
Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan;
2015-01-01
We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
Francis, Jasmine H; Iyer, Saipriya; Gobin, Y Pierre; Brodie, Scott E; Abramson, David H
2017-10-01
To compare the efficacy and toxicity of treating class 3 retinoblastoma vitreous seeds with ophthalmic artery chemosurgery (OAC) alone versus OAC with intravitreous chemotherapy. Retrospective cohort study. Forty eyes containing clouds (class 3 vitreous seeds) of 40 retinoblastoma patients (19 treated with OAC alone and 21 treated with OAC plus intravitreous and periocular chemotherapy). Ocular survival, disease-free survival and time to regression of seeds were estimated with Kaplan-Meier estimates. Ocular toxicity was evaluated by clinical findings and electroretinography: 30-Hz flicker responses were compared at baseline and last follow-up visit. Continuous variables were compared with Student t test, and categorical variables were compared with the Fisher exact test. Ocular survival, disease-free survival, and time to regression of seeds. There were no disease- or treatment-related deaths and no patient demonstrated externalization of tumor or metastatic disease. There was no significant difference in the age, laterality, disease, or disease status (treatment naïve vs. previously treated) between the 2 groups. The time to regression of seeds was significantly shorter for eyes treated with OAC plus intravitreous chemotherapy (5.7 months) compared with eyes treated with OAC alone (14.6 months; P < 0.001). The 18-month Kaplan-Meier estimates of disease-free survival were significantly worse for the OAC alone group: 67.1% (95% confidence interval, 40.9%-83.6%) versus 94.1% (95% confidence interval, 65%-99.1%) for the OAC plus intravitreous chemotherapy group (P = 0.05). The 36-month Kaplan-Meier estimates of ocular survival were 83.3% (95% confidence interval, 56.7%-94.3%) for the OAC alone group and 100% for the OAC plus intravitreous chemotherapy group (P = 0.16). The mean change in electroretinography responses was not significantly different between groups, decreasing by 11 μV for the OAC alone group and 22 μV for the OAC plus intravitreous chemotherapy
Modification of cirrus clouds to reduce global warming
NASA Astrophysics Data System (ADS)
Mitchell, D. L.
2009-12-01
Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths < 3.6 cover 13% of the globe and have a net warming effect on climate, with the coldest cirrus having the strongest warming effect. Roughly 2/3 of predicted global warming is due to the feedback effect of water vapor and clouds from an initial greenhouse gas forcing, and a recent study indicates water vapor and clouds in the upper troposphere (UT) have the greatest impact on climate sensitivity (the equilibrium response of global-mean surface temperature to a CO2 doubling). Thus altering UT water vapor and cirrus may be a good strategy for climate engineering. Cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous
Aerosol-Cloud Interactions During Puijo Cloud Experiments - The effects of weather and local sources
NASA Astrophysics Data System (ADS)
Komppula, Mika; Portin, Harri; Leskinen, Ari; Romakkaniemi, Sami; Brus, David; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Kortelainen, Aki; Hao, Liqing; Miettinen, Pasi; Jaatinen, Antti; Ahmad, Irshad; Lihavainen, Heikki; Laaksonen, Ari; Lehtinen, Kari E. J.
2013-04-01
The Puijo measurement station has provided continuous data on aerosol-cloud interactions since 2006. The station is located on top of the Puijo observation tower (306 m a.s.l, 224 m above the surrounding lake level) in Kuopio, Finland. The top of the tower is covered by cloud about 15 % of the time, offering perfect conditions for studying aerosol-cloud interactions. With a twin-inlet setup (total and interstitial inlets) we are able to separate the activated particles from the interstitial (non-activated) particles. The continuous twin-inlet measurements include aerosol size distribution, scattering and absorption. In addition cloud droplet number and size distribution are measured continuously with weather parameters. During the campaigns the twin-inlet system was additionally equipped with aerosol mass spectrometer (AMS) and Single Particle Soot Photometer (SP-2). This way we were able to define the differences in chemical composition of the activated and non-activated particles. Potential cloud condensation nuclei (CCN) in different supersaturations were measured with two CCN counters (CCNC). The other CCNC was operated with a Differential Mobility Analyzer (DMA) to obtain size selected CCN spectra. Other additional measurements included Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) for particle hygroscopicity. Additionally the valuable vertical wind profiles (updraft velocities) are available from Halo Doppler lidar during the 2011 campaign. Cloud properties (droplet number and effective radius) from MODIS instrument onboard Terra and Aqua satellites were retrieved and compared with the measured values. This work summarizes the two latest intensive campaigns, Puijo Cloud Experiments (PuCE) 2010 & 2011. We study especially the effect of the local sources on the cloud activation behaviour of the aerosol particles. The main local sources include a paper mill, a heating plant, traffic and residential areas. The sources can be categorized and identified
NASA Astrophysics Data System (ADS)
Agha Taher, R.; Jafari, M.; Fallah, M.; Alavi, A.
2015-12-01
time period has been used. In order to reach better results, images from MODIS satellite has been used as auxiliary data for the images that are with an error margin. Initial classification on the images was conducted to distinguish water and non water applications. Neural network classification was applied with specific scales on the images and the two major applications were thereby extracted. Then, in order to authenticate the proceedings, Error matrix and Kappa coefficient has been applied on the classified images. Base pixel method of neural network was used for the purpose of information extraction while authenticity of that was evaluated too. The outcomes display the trend of Urmia shoreline has been approximately constant between the years of 1976 to 1995 and has experienced very low variations. In 1998 the lake experienced increase of water and therefore advancement of the shoreline of the lake due to increase of precipitation and the volume of inflowing water to the basin. During 2000 to 20125, however, the lake's shoreline has experienced a downward trend, which was intensified in 2007 and reached to its most critical level ever since, that is decreasing to about one third. Further, temporal and spatial potentiality evaluation of clouds seeding in Urmia lake zone has been studied as a solution for improvement and recovery of the current status of the lake, and an algorithm was proposed for optimized temporal- spatial study on could seeding. Ecological, meteorological and synoptic data were used for timing study of the cloud's seeding plan, which upon study; it is easy to evaluate precipitation potential and quality of the system. At the next step, the rate of humidity and also stability of the precipitating system can be analyzed using radar acquired data. Whereas extracted date from MODIS images are expressing the spatial position, therefore in order to study the location of the cloud's seeding, MODIS images of the selected time intervals along with
FE-2 Nicole Stott works on the CBEF Space Seed Experiment
2009-10-13
ISS021-E-006261 (13 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, works with the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment in the Kibo laboratory of the International Space Station.
FE-2 Nicole Stott works on the CBEF Space Seed Experiment
2009-10-13
ISS021-E-006267 (13 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, works with the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment in the Kibo laboratory of the International Space Station.
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
Radiobiological experiments with plant seeds aboard the biosatellite Kosmos 1887
NASA Technical Reports Server (NTRS)
Anikeeva, I. D.; Vaulina, E. N.; Kostina, L. N.; Marenny, A. M.; Portman, A. I.; Rusin, S. V.; Benton, E. V.
1990-01-01
The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied provided with various protective measures: the seeds were located inside the satellite and in open space, protected with aluminium foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminium foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can be thus regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.
Radiobiological experiments with plant seeds aboard the biosatellite Cosmos 1887
NASA Technical Reports Server (NTRS)
Benton, E. V.; Anikeeva, I. D.; Akatov, Yu. A.; Vaulina, E. N.; Kostina, L. N.; Marenny, A.; Portman, A. I.; Rusin, S. V.
1995-01-01
The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied. The seeds were located inside the satellite in an open space, protected with aluminum foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminum foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival rate and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can thus be regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.
Radiobiological experiments with plant seeds aboard the biosatellite Kosmos 1887.
Anikeeva, I D; Akatov YuA; Vaulina, E N; Kostina, L N; Marenny, A M; Portman, A I; Rusin, S V; Benton, E V
1990-01-01
The effects of spaceflight factors on the seeds of Arabidopsis thaliana and Crepis capillaris were studied provided with various protective measures: the seeds were located inside the satellite and in open space, protected with aluminium foil and also exposed without the foil cover. When the seeds were in open space without any protection, their viability was found to be suppressed; the survival rate and fertility of plants grown from these seeds were also diminished. An increase in the frequency of chromosome aberrations (CA) and in the number of multiple injuries was registered in this case. Experiments with the aluminium foil shielding showed a decrease in the suppression of the seeds' viability, but mutational changes were found to be even more increased, while the survival and fertility of the plants decreased. An increase in the thickness of shielding resulted in a decrease in the effects up to the level of the control, except for the effects connected with CA and fertility of the plants. Analysis of the results shows that these impairments can be ascribed to the action of single heavy charged particles (HCP). The seeds can be thus regarded as an integral biological 'dosimeter' which allows estimation of the total effects of radiation, ecological and biological factors.
NASA Astrophysics Data System (ADS)
Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.
2015-12-01
Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. There, another MIRA-35 was operated in simultaneous transmission and simultaneous reception (STSR) mode for obtaining measurements of differential reflectivity (ZDR) and correlation coefficient ρhv.
FE-2 Nicole Stott works on the CBEF Space Seed Experiment
2009-10-14
ISS021-E-006292 (14 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, using a watering syringe, supplies water to the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment in the Kibo laboratory on the International Space Station.
Zhang, Mingming; Steele, Michael A; Yi, Xianfeng
2013-11-01
The question of how tannin affects feeding and hoarding preferences of rodents still remains poorly understood, in part, because it is difficult to control for other seed traits when considering the sole effect of tannin. Here, we constructed a series of artificial 'seeds' with different tannin levels, made from wheat flour, peanut powder and hydrolysable tannins, to determine the direct effects of tannin on both feeding and hoarding preferences. We first presented 'seeds' to individual rodents of two species (Tamias sibiricus and Apodemus peninsulae) confined in semi-natural enclosures and then monitored patterns of seed dispersal and consumption by free-ranging animals in a temperate forest in the Xiaoxing'an Mountains, Heilongjiang Province of China. Our results showed that small rodents displayed a significant preference for low-tannin 'seeds' for both consumption and caching in both captive and field experiments. Moreover, our two-year study consistently showed that tannin concentration was significantly and negatively correlated with the number of cached 'seeds' at both the individual and population levels. Seed size, compared with tannin concentrations, appeared to have little effect on dispersal distances and the number of 'seeds' cached. Low-tannin 'seeds' tended to be dispersed greater distances by rodents in the field than those with higher levels of tannin. These results failed to support those of previous reports indicating that acorns containing higher tannins are more likely to be cached by food hoarding animals. Copyright © 2013 Elsevier B.V. All rights reserved.
Cloud Infrastructure & Applications - CloudIA
NASA Astrophysics Data System (ADS)
Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank
The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.
How seed orchard culture affects seed quality: experience with the southern pines
James P. Barnett
1996-01-01
Tree improvement programs have influenced significantly the quality of southern pine seeds produced when compared to collections from native stands. Seed orchard management practices such as fertilization can increase seed size and reduce seed dormancy. These result in the need for less complex pregermination treatments. Repeated cone collections from the same clones...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney
2014-05-16
To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective cloudsmore » and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.« less
Final results of the Space Exposed Experiment Developed for Students (SEEDS) P-0004-2
NASA Technical Reports Server (NTRS)
Grigsby, Doris K.
1992-01-01
Space Exposed Experiment Developed for Students (SEEDS), resulted in the distribution of over 132,000 SEED kits in 1990. The kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF) as well as seeds that had been stored in a climate controlled warehouse for the same period of time. Students compared germination and growth rate characteristics of the two seeds groups and returned data to NASA for analysis. The scientific information gained was valuable as students shared the excitement of taking part in a national project. Of greater importance was the subsequent interest generated in science education.
Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Shenk, W. E.; Skillman, W.
1974-01-01
An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.
NASA Technical Reports Server (NTRS)
Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.
1974-01-01
The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.
The Wisconsin Snow and Cloud-Terra 2000 Experiment (WISC-T2000)
NASA Technical Reports Server (NTRS)
2002-01-01
Atmospheric scientists take to the skies this winter for the Wisconsin Snow and Cloud-Terra 2000 experiment, Feb. 25 through March 13. Scientists in WISC-T2000 will use instruments on board NASA's ER-2, a high-altitude research plane, to validate new science products from NASA's earth-observing satellite Terra, which began its five-year mission on Dec. 18, 1999. Contact Terri Gregory Public Information Coordinator Space Science and Engineering Center University of Wisconsin-Madison (608) 263-3373; fax (608) 262-5974 terri.gregory@ssec.wisc.edu Science Goals: WISC-T2000 is the third in a series of field experiments sponsored by the University of Wisconsin-Madison's Space Science and Engineering Center. The center helped develop one of the five science instruments on Terra, the Moderate-Resolution Imaging Spectroradiometer (MODIS). MODIS will make global measurements of clouds, oceans, land, and atmospheric properties in an effort to monitor and predict global climate change. Infrastructure: The ER-2 will be based at Madison's Truax Field and will fly over the upper Midwest and Oklahoma. ER-2 measurements will be coordinated with observations at the Department of Energy's Cloud and Radiation Testbed site in Oklahoma (http://www.arm.gov/), which will be engaged in a complementary cloud experiment. The center will work closely with NASA's Goddard Space Flight Center, which will collect and distribute MODIS data and science products. Additional information on the WISC-T2000 field campaign is available at the project's Web site http://cimss.ssec.wisc.edu/wisct2000/
Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter
2009-09-01
Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2.5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. The results can be explained in terms of the seed size-seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil seed survival and seed production can be avoided by
Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments
NASA Technical Reports Server (NTRS)
Davis, M. H.
1977-01-01
The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.
Evaluation of Arctic Clouds And Their Response to External Forcing in Climate Models
NASA Astrophysics Data System (ADS)
Wang, Y.; Jiang, J. H.; Ming, Y.; Su, H.; Yung, Y. L.
2017-12-01
A warming Arctic is undergoing significant environmental changes, mostly evidenced by the reduction in Arctic sea-ice extent (SIE). However, the role of Arctic clouds in determining the sea ice melting remains elusive, as different phases of clouds can induce either positive or negative radiative forcing in different seasons. The possible cloud feedbacks following the opened ocean surface are also debatable due to variations of polar boundary structure. Therefore, Arctic cloud simulation has long been considered as the largest source of uncertainty in the climate sensitivity assessment. Other local or remote atmospheric factors, such as poleward moisture and heat transport as well as atmospheric aerosols seeding liquid and ice clouds, further complicate our understanding of the Arctic cloud change. Our recent efforts focus on the post-CMIP5 and CMIP6 models, which improve atmospheric compositions, cloud macro- and microphysics, convection parameterizations, etc. In this study, we utilize long-term satellite measurements with high-resolution coverage and broad wavelength spectrum to evaluate the mean states and variations of mixed-phase clouds in the Arctic, along with the concurrent moisture and SIE measurements. The model sensitivity experiments to understand external perturbations on the atmosphere-cryosphere coupling in the Arctic will be presented.
Seeds in space experiment. [long duration exposure facility
NASA Technical Reports Server (NTRS)
Alston, Jim A.
1992-01-01
Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed in one sealed canister and in two small vented canisters. After being returned to earth, the seeds were germinated and the germination rates and development of the resulting plants were compared to the performance of the control seeds that stayed in the Park Seed's seed storage facility. There was a better survival rate in the sealed canister in space than at the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.
Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Hobbs, P. V.; Kirchoff, V. W. J. H.; Artaxo, P.; Remer, L. A.; Holben, B. N.; King, M. D.; Ward, D. E.; Prins, E. M.; Longo, K. M.;
1998-01-01
The Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project took place in the Brazilian Amazon and cerrado regions in August-September 1995 as a collaboration between Brazilian and American scientists. SCAR-B, a comprehensive experiment to study biomass burning, emphasized measurements of surface biomass, fires, smoke aerosol and trace gases, clouds, and radiation. their climatic effects, and remote sensing from aircraft and satellites. It included aircraft and ground-based in situ measurements of smoke emission factors and the compositions, sizes, and optical properties of the smoke particles; studies of the formation of ozone; the transport and evolution of smoke; and smoke interactions with water vapor and clouds. This overview paper introduces SCAR-B and summarizes some of the main results obtained so far. (1) Fires: measurements of the size distribution of fires, using the 50 m resolution MODIS Airborne Simulator, show that most of the fires are small (e.g. 0.005 square km), but the satellite sensors (e.g., AVHRR and MODIS with I km resolution) can detect fires in Brazil which are responsible for 60-85% of the burned biomass: (2) Aerosol: smoke particles emitted from fires increase their radius by as much as 60%, during their first three days in the atmosphere due to condensation and coagulation, reaching a mass median radius of 0.13-0.17 microns: (3) Radiative forcing: estimates of the globally averaged direct radiative forcing due to smoke worldwide, based on the properties of smoke measured in SCAR-B (-O.l to -0.3 W m(exp -2)), are smaller than previously modeled due to a lower single-scattering albedo (0.8 to 0.9), smaller scattering efficiency (3 square meters g(exp -2) at 550 nm), and low humidification factor; and (4) Effect on clouds: a good relationship was found between cloud condensation nuclei and smoke volume concentrations, thus an increase in the smoke emission is expected to affect cloud properties. In SCAR-B, new techniques were developed
NASA Astrophysics Data System (ADS)
Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.
2016-12-01
A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal cloud seeding deployment, it is essential that these convergence zones are detected before clouds are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and cloud radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can
Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan; Klinger, Robert C.
2013-01-01
Rodents frequently forage in a density-dependent manner, increasing harvesting in patches with greater seed densities. Although seldom considered, seed harvesting may also depend on the species identities of other individuals in the seed neighbourhood. When the seed harvest of a focal species increases in association with another seed species, the focal species suffers from Associational Susceptibility. In contrast, if seeds of the focal species are harvested less when in association with a second species, the focal species benefits from Associational Resistance.To evaluate density dependence and associational effects among seeds in mixtures, we conducted seed removal experiments using a completely additive design patterned after a two-species competition experiment using seeds of either Achnatherum hymenoides(Indian ricegrass), Leymus cinereus (basin wildrye) or Pseudoroegneria spicata (bluebunch wheatgrass), all native perennial grasses, combined with seeds of Bromus tectorum(cheatgrass), a non-native annual grass. The experiment involved placing five fixed quantities of the native seeds mixed with five fixed quantities of B. tectorum seeds in a factorial design, resulting in 35 seed mixture combinations. The seed-eating rodent community at our study sites, in order of abundance, is composed of Peromyscus maniculatus (North American deer mouse), Dipodomys ordii (Ord's kangaroo rat) and Perognathus parvus (Great Basin pocket mouse).Native seed harvesting was density dependent, with a greater proportion of seeds being harvested as density increased. In the mixed density model, the presence of B. tectorumdid not affect harvest of any of the native species' seeds when analysed individually. However, when all three native species were analysed together, increasing quantities of B. tectorum resulted in reduced harvest of native seeds, demonstrating weak but significant Associational Resistance. In contrast, harvest of B. tectorum seeds increased
Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments
NASA Technical Reports Server (NTRS)
Anderson, B. J.
1981-01-01
In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.
Remote sensing of smoke, clouds, and radiation using AVIRIS during SCAR experiments
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Remer, Lorraine; Kaufman, Yorman J.
1995-01-01
During the past two years, researchers from several institutes joined together to take part in two SCAR experiments. The SCAR-A (Sulfates, Clouds And Radiation - Atlantic) took place in the mid-Atlantic region of the United States in July, 1993. remote sensing data were acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), the MODIS Airborne Simulator (MAS), and a RC-10 mapping camera from an ER-2 aircraft at 20 km. In situ measurements of aerosol and cloud microphysical properties were made with a variety of instruments equipped on the University of Washington's C-131A research aircraft. Ground based measurements of aerosol optical depths and particle size distributions were made using a network of sunphotometers. The main purpose of SCAR-A experiment was to study the optical, physical and chemical properties of sulfate aerosols and their interaction with clouds and radiation. Sulfate particles are believed to affect the energy balance of the earth by directly reflecting solar radiation back to space and by increasing the cloud albedo. The SCAR-C (Smoke, Clouds And Radiation - California) took place on the west coast areas during September - October of 1994. Sets of aircraft and ground-based instruments, similar to those used during SCAR-A, were used during SCAR-C. Remote sensing of fires and smoke from AVIRIS and MAS imagers on the ER-2 aircraft was combined with a complete in situ characterization of the aerosol and trace gases from the C-131A aircraft of the University of Washington and the Cesna aircraft from the U.S. Forest Service. The comprehensive data base acquired during SCAR-A and SCAR-C will contribute to a better understanding of the role of clouds and aerosols in global change studies. The data will also be used to develop satellite remote sensing algorithms from MODIS on the Earth Observing System.
Experience in using commercial clouds in CMS
NASA Astrophysics Data System (ADS)
Bauerdick, L.; Bockelman, B.; Dykstra, D.; Fuess, S.; Garzoglio, G.; Girone, M.; Gutsche, O.; Holzman, B.; Hufnagel, D.; Kim, H.; Kennedy, R.; Mason, D.; Spentzouris, P.; Timm, S.; Tiradani, A.; Vaandering, E.; CMS Collaboration
2017-10-01
Historically high energy physics computing has been performed on large purpose-built computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.
Experience in using commercial clouds in CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauerdick, L.; Bockelman, B.; Dykstra, D.
Historically high energy physics computing has been performed on large purposebuilt computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is amore » growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.« less
Contrasting cloud composition between coupled and decoupled marine boundary layer clouds
NASA Astrophysics Data System (ADS)
Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2016-10-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.
Making the most of cloud storage - a toolkit for exploitation by WLCG experiments
NASA Astrophysics Data System (ADS)
Alvarez Ayllon, Alejandro; Arsuaga Rios, Maria; Bitzes, Georgios; Furano, Fabrizio; Keeble, Oliver; Manzi, Andrea
2017-10-01
Understanding how cloud storage can be effectively used, either standalone or in support of its associated compute, is now an important consideration for WLCG. We report on a suite of extensions to familiar tools targeted at enabling the integration of cloud object stores into traditional grid infrastructures and workflows. Notable updates include support for a number of object store flavours in FTS3, Davix and gfal2, including mitigations for lack of vector reads; the extension of Dynafed to operate as a bridge between grid and cloud domains; protocol translation in FTS3; the implementation of extensions to DPM (also implemented by the dCache project) to allow 3rd party transfers over HTTP. The result is a toolkit which facilitates data movement and access between grid and cloud infrastructures, broadening the range of workflows suitable for cloud. We report on deployment scenarios and prototype experience, explaining how, for example, an Amazon S3 or Azure allocation can be exploited by grid workflows.
Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia
NASA Astrophysics Data System (ADS)
Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter
2010-05-01
In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the
ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L Ruby
The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amountmore » and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.« less
Simulations of a Molecular Cloud experiment using CRASH
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.
Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.
Link, Bruce M; Busse, James S; Stankovic, Bratislav
2014-10-01
Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly
AceCloud: Molecular Dynamics Simulations in the Cloud.
Harvey, M J; De Fabritiis, G
2015-05-26
We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.
NASA Astrophysics Data System (ADS)
Chambers, L. H.; Taylor, J.; Ellis, T. D.; McCrea, S.; Rogerson, T. M.; Falcon, P.
2016-12-01
In 1997, NASA's Clouds and the Earth's Radiant Energy System (CERES) team began engaging K-12 schools as ground truth observers of clouds. CERES seeks to understand cloud effects on Earth's energy budget; thus accurate detection and characterization of clouds is key. While satellite remote sensing provides global information about clouds, it is limited in time and resolution. Ground observers, on the other hand, can observe clouds at any time of day (and sometimes night), and can see small and thin clouds that are challenging to detect from space. In 2006, two active sensing satellites, CloudSat and CALIPSO, were launched into the A-Train, which already contained 2 CERES instruments on the Aqua spacecraft. The CloudSat team also engaged K-12 schools to observe clouds, through The GLOBE Program, with a specialized observation protocol customized for the narrow radar swath. While providing valuable data for satellite assessment, these activities also engage participants in accessible, authentic science that gets people outdoors, helps them develop observation skills, and is friendly to all ages. The effort has evolved substantially since 1997, adopting new technology to provide a more compelling experience to citizen observers. Those who report within 15 minutes of the passage of a wide range of satellites (Terra, Aqua, CloudSat, CALIPSO, NPP, as well as a number of geostationary satellites) are sent a satellite image centered on their location and are invited to extend the experience beyond simple observation to include analysis of the two different viewpoints. Over the years these projects have collected large amounts of cloud observations from every continent and ocean basin on Earth. A number of studies have been conducted comparing the ground observations to the satellite results. This presentation will provide an overview of those results and also describe plans for a coordinated, thematic cloud observation and data analysis activity going forward.
NASA Technical Reports Server (NTRS)
Wu, M.-L.
1985-01-01
In order to develop the remote sensing techniques to infer cloud physical parameters, a multispectral cloud radiometer (MCR) was mounted on a NASA high-altitude aircraft in conjunction with the Cooperative Convective Precipitation Experiment in 1981. The MCR has seven spectral channels, of which three are centered near windows associated with water vapor bands in the near infrared, two are centered near the oxygen A band at 0.76 microns, one is centered at the 1.14-micron water vapor band, and one is centered in the thermal infrared. The reflectance and temperature measured on May 31, 1981, are presented together with theoretical calculations. The results indicate that the MCR produces quality measurements. Therefore several cloud parameters can be derived with good accuracy. The parameters are the cloud-scaled optical thickness, cloud top pressure, volume scattering coefficient, particle thermodynamic phase, effective mean particle size, and cloud-top temperature.
HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment
NASA Astrophysics Data System (ADS)
Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha
2017-06-01
With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.
Aircraft-Induced Hole Punch and Canal Clouds
NASA Astrophysics Data System (ADS)
Heymsfield, A. J.; Kennedy, P.; Massie, S. T.; Schmitt, C. G.; Wang, Z.; Haimov, S.; Rangno, A.
2009-12-01
The production of holes and channels in altocumulus clouds by two commercial turboprop aircraft is documented for the first time. An unprecedented data set combining in situ measurements from microphysical probes with remote sensing measurements from cloud radar and lidar, all operating from the NSF/NCAR C130 aircraft, as well as ground-based NOAA and CSU radars, is used to describe the radar/lidar properties of a hole punch cloud and channel and the ensuing ice microphysical properties and structure of the ice column that subsequently developed. Ice particle production by commercial turboprop aircraft climbing through clouds much warmer than the regions where contrails are produced has the potential to modify significantly the cloud microphysical properties and effectively seed them under some conditions. Jet aircraft may also be producing hole punch clouds when flying through altocumulus with supercooled droplets at heights lower than their normal cruise altitudes where contrails can form. Commercial aircraft therefore can generate ice and affect the clouds at temperatures as much as 30°C warmer than the -40°C contrail formation threshold temperature.
Occurrence of lower cloud albedo in ship tracks
NASA Astrophysics Data System (ADS)
Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.
2012-09-01
The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.
NASA Astrophysics Data System (ADS)
Turpin, B. J.; Ramos, A.; Kirkland, J. R.; Lim, Y. B.; Seitzinger, S.
2011-12-01
There is considerable laboratory and field-based evidence that chemical processing in clouds and wet aerosols alters organic composition and contributes to the formation of secondary organic aerosol (SOA). Single-compound laboratory experiments have played an important role in developing aqueous-phase chemical mechanisms that aid prediction of SOA formation through multiphase chemistry. In this work we conduct similar experiments with cloud/fog water surrogates, to 1) evaluate to what extent the previously studied chemistry is observed in these more realistic atmospheric waters, and 2) to identify additional atmospherically-relevant precursors and products that require further study. We used filtered Camden and Pinelands, NJ rainwater as a surrogate for cloud water. OH radical (~10-12 M) was formed by photolysis of hydrogen peroxide and samples were analyzed in real-time by electrospray ionization mass spectroscopy (ESI-MS). Discrete samples were also analyzed by ion chromatography (IC) and ESI-MS after IC separation. All experiments were performed in duplicate. Standards of glyoxal, methylglyoxal and glycolaldehyde and their major aqueous oxidation products were also analyzed, and control experiments performed. Decreases in the ion abundance of many positive mode compounds and increases in the ion abundance of many negative mode compounds (e.g., organic acids) suggest that precursors are predominantly aldehydes, organic peroxides and/or alcohols. Real-time ESI mass spectra were consistent with the expected loss of methylglyoxal and subsequent formation of pyruvate, glyoxylate, and oxalate. New insights regarding other potential precursors and products will be provided.
Mabood, Fazal; Gilani, Syed Abdullah; Hussain, Javid; Alshidani, Sulaiman; Alghawi, Said; Albroumi, Mohammed; Alameri, Saif; Jabeen, Farah; Hussain, Zahid; Al-Harrasi, Ahmed; Al Abri, Zahra K M; Farooq, Saima; Naureen, Zakira; Hamaed, Ahmad; Rasul Jan, M; Shah, Jasmin
2017-05-05
New experimental designs for the extraction of polyphenols from different seeds including Basil seed, Red seed, Sesame seeds and Ajwan seeds were investigated. Four variables the concentration and volume of methanol and NaOH solutions as well as the temperature and time of extraction were varied to see their effect on total phenol extraction. The temperature was varied in the range from 25°C to 200°C while the time in the range from 30 to 200minutes. Response surface methodology was used to optimize the extraction parameters. The estimation of polyphenols was measured through phenols reduction UV-Vis spectroscopic method of phosphotungstic-phosphomolybdic acids (Folin-Ciocalteu's reagent). Calibration curve was made by using tannic acid as a polyphenols standard in the concentration range from 0.1 to 10ppm. The regression line obtained shows the value of correlation coefficient i.e. R=0.930 and Root mean square error of cross validation (RMSEC) value of 0.0654. The Basil seeds were found containing the highest amount of total phenols i.e. 785.76mg/100g. While the Sesame seeds having the least amount i.e. 33.08mg/100g. The Ajwan seeds and the Red seeds are containing the medium amounts i.e. 379mg/100g and 220.54mg/100g respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mabood, Fazal; Gilani, Syed Abdullah; Hussain, Javid; Alshidani, Sulaiman; Alghawi, Said; Albroumi, Mohammed; Alameri, Saif; Jabeen, Farah; Hussain, Zahid; Al-Harrasi, Ahmed; Al Abri, Zahra K. M.; Farooq, Saima; Naureen, Zakira; Hamaed, Ahmad; Rasul Jan, M.; Shah, Jasmin
2017-05-01
New experimental designs for the extraction of polyphenols from different seeds including Basil seed, Red seed, Sesame seeds and Ajwan seeds were investigated. Four variables the concentration and volume of methanol and NaOH solutions as well as the temperature and time of extraction were varied to see their effect on total phenol extraction. The temperature was varied in the range from 25 °C to 200 °C while the time in the range from 30 to 200 minutes. Response surface methodology was used to optimize the extraction parameters. The estimation of polyphenols was measured through phenols reduction UV-Vis spectroscopic method of phosphotungstic-phosphomolybdic acids (Folin-Ciocalteu's reagent). Calibration curve was made by using tannic acid as a polyphenols standard in the concentration range from 0.1 to 10 ppm. The regression line obtained shows the value of correlation coefficient i.e. R = 0.930 and Root mean square error of cross validation (RMSEC) value of 0.0654. The Basil seeds were found containing the highest amount of total phenols i.e. 785.76 mg/100 g. While the Sesame seeds having the least amount i.e. 33.08 mg/100 g. The Ajwan seeds and the Red seeds are containing the medium amounts i.e. 379 mg/100 g and 220.54 mg/100 g respectively.
Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity
Link, Bruce M.; Busse, James S.
2014-01-01
Abstract Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves. Key Words: Arabidopsis—Branch—Inflorescence—Microgravity—Morphology—Seed—Space. Astrobiology 14, 866–875. PMID:25317938
STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, J; Matrosov, S; Shupe, M
2010-09-29
During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phasemore » will begin nominally on 1 November 2010 and extend to approximately early April 2011.« less
Feasibility of reduced gravity experiments involving quiescent, uniform particle cloud combustion
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Facca, Lily T.; Berlad, Abraham L.; Tangirala, Venkat
1989-01-01
The study of combustible particle clouds is of fundamental scientific interest as well as a practical concern. The principal scientific interests are the characteristic combustion properties, especially flame structure, propagation rates, stability limits, and the effects of stoichiometry, particle type, transport phenomena, and nonadiabatic processes on these properties. The feasibility tests for the particle cloud combustion experiment (PCCE) were performed in reduced gravity in the following stages: (1) fuel particles were mixed into cloud form inside a flammability tube; (2) when the concentration of particles in the cloud was sufficiently uniform, the particle motion was allowed to decay toward quiescence; (3) an igniter was energized which both opened one end of the tube and ignited the suspended particle cloud; and (4) the flame proceeded down the tube length, with its position and characteristic features being photographed by high-speed cameras. Gravitational settling and buoyancy effects were minimized because of the reduced gravity enviroment in the NASA Lewis drop towers and aircraft. Feasibility was shown as quasi-steady flame propagation which was observed for fuel-rich mixtures. Of greatest scientific interest is the finding that for near-stoichiometric mixtures, a new mode of flame propagation was observed, now called a chattering flame. These flames did not propagate steadily through the tube. Chattering modes of flame propagation are not expected to display extinction limits that are the same as those for acoustically undisturbed, uniform, quiescent clouds. A low concentration of fuel particles, uniformly distributed in a volume, may not be flammable but may be made flammable, as was observed, through induced segregation processes. A theory was developed which showed that chattering flame propagation was controlled by radiation from combustion products which heated the successive discrete laminae sufficiently to cause autoignition.
Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information
NASA Astrophysics Data System (ADS)
Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.
2017-09-01
Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Petersen, W. A.; Giangrande, S.; Heymsfield, G. M.; Kollias, P.; Rutledge, S. A.; Schwaller, M.; Zipser, E. J.
2011-12-01
The Midlatitude Continental Convective Clouds Experiment (MC3E) took place from 22 April through 6 June 2011 centered at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility in north-central Oklahoma. This campaign was a joint effort between the ARM and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement mission Ground Validation program. It was the first major field campaign to take advantage of numerous new radars and other remote sensing instrumentation purchased through the American Recovery and Reinvestment Act of 2009. The measurement strategy for this field campaign was to provide a well-defined forcing dataset for modeling efforts coupled with detailed observations of cloud/precipitation dynamics and microphysics within the domain highlighted by advanced multi-scale, multi-frequency radar remote sensing. These observations are aimed at providing important insights into eight different components of convective simulation and microphysical parameterization: (1) pre-convective environment, (2) convective initiation, (3) updraft/downdraft dynamics, (4) condensate transport/detrainment/entrainment, (5) precipitation and cloud microphysics, (6) influence on the environment, (7) influence on radiation, and (8) large-scale forcing. In order to obtain the necessary dataset, the MC3E surface-based observational network included six radiosonde launch sites each launching 4-8 sondes per day, three X-band scanning ARM precipitation radars, a C-band scanning ARM precipitation radar, the NASA N-Pol (S-band) scanning radar, the NASA D3R Ka/Ku-band radar, the Ka/W-band scanning ARM cloud radar, vertically pointing radar systems at Ka-, S- and UHF band, a network of over 20 disdrometers and rain gauges and the full complement of radiation, cloud and atmospheric state observations available at the ARM facility. This surface-based network was complemented by aircraft measurements
Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series
NASA Astrophysics Data System (ADS)
Champion, Nicolas
2016-06-01
Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl
The Cloud Detection and UV Monitoring Experiment (CLUE)
NASA Technical Reports Server (NTRS)
Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.
2004-01-01
We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.
Space Exposed Experiment Developed for Students (SEEDS) (P0004-2)
NASA Technical Reports Server (NTRS)
Grigsby, Doris K.; Ehrlich, Nelson J.
1992-01-01
SEEDS, a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution of approximately 132,000 SEEDS kits to 3.3 million students. Kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF), as well as seeds that had been stored in a climate controlled warehouse for the same time period. Preliminary data indicates the germination rate for space exposed seeds was 73.8 percent while Earth based seeds germinated at a rate of 70.3 percent. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while Earth based seeds' average germination time was 8.3 days. Some mutations (assumed to be radiation induced) include plants that added a leaf instead of the usual flower at the end of the flower frond. Also, fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds producing green plants.
First Look at Results from the Metal Oxide Space Cloud (MOSC) Experiment
NASA Astrophysics Data System (ADS)
Caton, R. G.; Pedersen, T. R.; Parris, R. T.; Groves, K. M.; Bernhardt, P. A.; Cannon, P. S.
2013-12-01
During the moon down period from 28 April to 10 May 2013, the NASA Sounding Rocket Program successfully completed a series of two launches from the Kwajalein Atoll for the Air Force Research Laboratory's Metal Oxide Space Cloud (MOSC) experiment. Payloads on both Terrier Improved Orion rockets flown during the mission included two 5 kg of canisters of Samarium (Sm) powder in a thermite mix for immediate expulsion and vaporization and a two-frequency Coherent Electromagnetic Radio Tomography (CERTO) beacon provided by the Naval Research Laboratory. The launches were carefully timed for dusk releases of Sm vapor at preselected altitudes creating artificially generated layers lasting several hours. A host of ground sensors were deployed to fully probe and characterize the localized plasma cloud produced as a result of charge exchange with the background oxygen (Sm + O → SmO+ + e-). In addition to incoherent scatter probing of the ionization cloud with the ALTAIR radar, ground diagnostics included GPS and CERTO beacon receivers at five locations in the Marshall Islands. Researchers from QinetiQ and the UK MOD participated in the MOSC experiment with the addition of an HF transmitting system and an array of receivers distributed across multiple islands to examine the response of the HF propagation environment to the artificially generated layer. AFRL ground equipment included a pair of All-Sky Imagers, optical spectrographs, and two DPS-4D digisondes spaced ~200 km apart providing vertical and oblique soundings. As the experimental team continues to evaluate the data, this paper will present a first look at early results from the MOSC experiment. Data collected will be used to improve existing models and tailor future experiments targeted at demonstrating the ability to temporarily control the RF propagation environment through an on-demand modification of the ionosphere. Funding for the launch was provided by the DoD Space Test Program.
Seeds: A Celebration of Science.
ERIC Educational Resources Information Center
Melton, Bob
The Space Exposed Experiment Developed for Students (SEEDS) Project offered science classes at the 5-12 and college levels the opportunity to conduct experiments involving tomato seeds that had been space-exposed over long periods of time. SEEDS kits were complete packages obtained from the National Aeronautics and Space Administration (NASA) for…
NASA Astrophysics Data System (ADS)
Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.
2009-12-01
Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.
Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)
NASA Technical Reports Server (NTRS)
Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.
2004-01-01
In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.
Cone and seed yields in white spruce seed production areas
John A. Pitcher
1966-01-01
The source of seed is an important consideration in the reforestation program on the National Forests in the North Central Region. Thirty-five seed production areas have been set up in the Region, along the lines proposed by the North Central Forest Experiment Station, to provide control of seed source. Red pine, white pine, shortleaf and loblolly pine, and white...
Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K
2016-05-01
With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Marine Cloud Brightening: Recent Developments
NASA Astrophysics Data System (ADS)
Latham, J.; Gadian, A.; Kleypas, J. A.; Parkes, B.; Hauser, R.; Salter, S.
2012-12-01
Our detailed review of Marine Cloud Brightening (MCB) [Latham et al. (2012) Phil Trans Roy Soc] covers our work up to late 2010. We present herein an outline of some subsequent work. Areas in which we have been particularly active in the last 2 years include; (1) seawater spray technology, (2) influence of MCB on rainfall, (3) CFD studies of Flettner Rotor stability. (4) pseudo-random studies, (5), use of MCB to weaken hurricanes and halt coral bleaching. We used the UK Met. Office HADGEM 1 ocean/atmosphere coupled climate model in all the studies mentioned below. Our treatment of MCB is as described in our 2012 paper. In all cases below our conclusions are provisional, with more work required. We have analysed research conducted by others and ourselves on the important topic of the impact of MCB on rainfall. It appears that the widely varying predictions from different studies result from differences in cloud seeding locations and amounts. This raises the possibility - which needs much more investigation - that unacceptable rainfall differences could be overcome by changing seeding locations. It may be possible to produce a world-wide, everywhere-to-everywhere transfer function of the effects of increased cloud reflectivity by using pseudo-random variation of the CCN concentration in a climate model. Tests on artificial alterations to a real daily temperature record showed that, over a 20 year run, the scatter of results of the detection of the magnitude of the alteration were about 1% of the root mean square of the natural variation. In these studies the CCN values in 89 regions of the oceans were either multiplied or divided by a chosen constant, at different random 10-day intervals, during a run of 20 years. The resulting model predictions of important meteorological parameters such as temperature, precipitation and ice extent were recorded for all the regions of the world. For each point of interest the precipitation record was correlated for each different
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.
1972-01-01
The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.
Temporally consistent segmentation of point clouds
NASA Astrophysics Data System (ADS)
Owens, Jason L.; Osteen, Philip R.; Daniilidis, Kostas
2014-06-01
We consider the problem of generating temporally consistent point cloud segmentations from streaming RGB-D data, where every incoming frame extends existing labels to new points or contributes new labels while maintaining the labels for pre-existing segments. Our approach generates an over-segmentation based on voxel cloud connectivity, where a modified k-means algorithm selects supervoxel seeds and associates similar neighboring voxels to form segments. Given the data stream from a potentially mobile sensor, we solve for the camera transformation between consecutive frames using a joint optimization over point correspondences and image appearance. The aligned point cloud may then be integrated into a consistent model coordinate frame. Previously labeled points are used to mask incoming points from the new frame, while new and previous boundary points extend the existing segmentation. We evaluate the algorithm on newly-generated RGB-D datasets.
NASA Technical Reports Server (NTRS)
Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly;
2000-01-01
The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric
2000-01-01
The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.
GAS CLOUDS RAINING STAR STUFF ONTO MILKY WAY GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This composite radio light image and rendition of our galaxy as seen in visible light shows enigmatic 'high-velocity clouds' of gas high above the plane of the Milky Way which rain gas into the galaxy, seeding it with the stuff of stars. The cloud outlined, and possibly others too, is now known to have low heavy element content and to be raining down onto the Milky Way disk, seeding it with material for star birth. Identifying this infalling gas helps in solving a long-standing mystery of galactic evolution by revealing a source of the low-metallicity gas required to explain the observed chemical composition of stars near the Sun. In this all-sky projection, the edge-on plane of our galaxy appears as a white horizontal strip. The false-color orange-yellow 'clouds' are regions containing neutral hydrogen, which glows in 21-centimeter radiation. Hubble Space Telescope's spectrograph was aimed at one of the clouds (encircled) to measure its detailed composition and velocity. This discovery is based on a combination of data from NASA's Hubble Space Telescope, three radio telescopes (at Effelsberg in Germany, and Dwingeloo and Westerbork in the Netherlands), the William Herschel Telescope on the island of La Palma and the Wisconsin H-alpha Mapper at NOAO's Kitt Peak Observatory. Photo Credits: Image composite by Ingrid Kallick of Possible Designs, Madison Wisconsin. The background Milky Way image is a drawing made at Lund Observatory. High-velocity clouds are from the survey done at Dwingeloo Observatory (Hulsbosch and Wakker, 1988).
Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
The Midlatitude Continental Convective Clouds Experiment (MC3E)
Jensen, M. P.; Petersen, W. A.; Bansemer, A.; ...
2015-12-18
The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms -1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less
The Midlatitude Continental Convective Clouds Experiment (MC3E)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mark P.; Petersen, Walt A.; Bansemer, Aaron
The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. Data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less
The Midlatitude Continental Convective Clouds Experiment (MC3E)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M. P.; Petersen, W. A.; Bansemer, A.
The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms -1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration
2014-06-01
The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.
NASA Technical Reports Server (NTRS)
Campbell, William F.; Bingham, Gail; Carman, John; Bubenheim, David; Levinskikh, Margarita; Sytchev, Vladimir N.; Podolsky, Igor B.; Chernova, Lola; Nefodova, Yelena
2001-01-01
The Mir Space Station provided an outstanding opportunity to study long-term plant responses when exposed to a microgravity environment. Furthermore, if plants can be grown to maturity in a microgravity environment, they might be used in future bioregenerative life-support systems (BLSS). The primary objective of the Greenhouse experiment onboard Mir was to grow Super Dwarf and Apogee wheat through complete life cycles in microgravity; i.e., from seed-to-seed-to-seed. Additional objectives were to study chemical, biochemical, and structural changes in plant tissues as well as photosynthesis, respiration, and transpiration (evaporation of water from plants). Another major objective was to evaluate the suitability clothe facilities on Mir for advanced research with plants. The Greenhouse experiment was conducted in the Russian/Bulgarian plant growth chamber, the Svet, to which the United States added instrumentation systems to monitor changes in CO2 and water vapor caused by the plants (with four infrared gas analyzers monitoring air entering and leaving two small plastic chambers). In addition, the US instrumentation also monitored O2; air, leaf (IR), cabin pressure; photon flux; and substrate temperature and substrate moisture (16 probes in the root module). Facility modifications were first performed during the summer of 1995 during Mir 19, which began after STS-72 left Mir. Plant development was monitored by daily observations and some photographs.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
Clouds of different colors: A prospective look at head and neck surgical resident call experience.
Melzer, Jonathan
2017-12-01
Graduate medical education programs typically set up call under the assumption that residents will have similar experiences. The terms black cloud and white cloud have frequently been used to describe residents with more difficult (black) or less difficult (white) call experiences. This study followed residents in the department of head and neck surgery during call to determine whether certain residents have a significantly different call experience than the norm. It is a prospective observational study conducted over 16 months in a tertiary care center with a resident training program in otolaryngology. Resident call data on total pages, consults, and operative interventions were examined, as well as subjective survey data about sleep and perceived difficulty of resident call. Analysis showed no significant difference in call activity (pages, consults, operative interventions) among residents. However, data from the resident call surveys revealed perceived disparities in call difficulty that were significant. Two residents were clearly labeled as black clouds compared to the rest. These residents did not have the highest average number of pages, consults, or operative interventions. This study suggests that factors affecting call perception are outside the objective, absolute workload. These results may be used to improve resident education on sleep training and nighttime patient management in the field of otolaryngology and may influence otolaryngology residency programs.
Recent experience in seeding transonic/supersonic flows at AEDC
NASA Astrophysics Data System (ADS)
Heltsley, F. L.
1985-10-01
The laser velocimeter has been utilized for several years at the Arnold Engineering and Development Center (AEDC) as a flow diagnostics tool. Most applications, following the initial proof-of-concept experiments, have involved relatively complex unknown flow fields in which the more conventional, intrusive techniques had either not been attempted or had yielded unsatisfactory results. A blunt-base nozzle-afterbody base flow study is discussed as a respresentative example of such applications. A wide variety of problems have been encountered during these tests, many of which have proven to be closely related to the size and/or size distribution of the seeding material within the fluid. Resulting measurement uncertainties could often not be conclusively resolved because of the unknown nature of the flow field. The other experiments listed were conducted to provide known aerodynamic conditions for comparison with the velocimeter results.
Recent experience in seeding transonic/supersonic flows at AEDC
NASA Technical Reports Server (NTRS)
Heltsley, F. L.
1985-01-01
The laser velocimeter has been utilized for several years at the Arnold Engineering and Development Center (AEDC) as a flow diagnostics tool. Most applications, following the initial proof-of-concept experiments, have involved relatively complex unknown flow fields in which the more conventional, intrusive techniques had either not been attempted or had yielded unsatisfactory results. A blunt-base nozzle-afterbody base flow study is discussed as a respresentative example of such applications. A wide variety of problems have been encountered during these tests, many of which have proven to be closely related to the size and/or size distribution of the seeding material within the fluid. Resulting measurement uncertainties could often not be conclusively resolved because of the unknown nature of the flow field. The other experiments listed were conducted to provide known aerodynamic conditions for comparison with the velocimeter results.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Hou, A.; Lau, W. K.; Shie, C.; Tao, W.; Lin, X.; Chou, M.; Olson, W. S.; Grecu, M.
2006-05-01
The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model during the South China Sea Monsoon Experiment (SCSMEX) is compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) radiation and cloud retrievals. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. Mesoscale organization is adequately simulated except when environmental wind shear is very weak. The partitions between convective and stratiform rain are also close to TMI and PR classification. However, the model simulated rain spectrum is quite different from either TMI or PR measurements. The model produces more heavy rains and light rains (less than 0.1 mm/hr) than the observations. The model also produces heavier vertical hydrometer profiles of rain, graupel when compared with TMI retrievals and PR radar reflectivity. Comparing GCE simulated OLR and cloud properties with CERES measurements found that the model has much larger domain averaged OLR due to smaller total cloud fraction and a much skewed distribution of OLR and cloud top than CERES observations, indicating that the model's cloud field is not wide spread, consistent with the model's precipitation activity. These results will be used as guidance for improving the model's microphysics.
Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie
2014-01-01
A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.
Results of magnetospheric barium ion cloud experiment of 1971
NASA Technical Reports Server (NTRS)
Adamson, D.; Fricke, C. L.; Long, S. A. T.
1975-01-01
The barium ion cloud experiment involved the release of about 2 kg of barium at an altitude of 31 482 km, a latitude of 6.926 N., and a longitude of 74.395 W. Significant erosion of plasma from the main ion core occurred during the initial phase of the ion cloud expansion. From the motion of the outermost striational filaments, the electric field components were determined to be 0.19 mV/m in the westerly direction and 0.68 mV/m in the inward direction. The differences between these components and those measured from balloons flown in the proximity of the extremity of the field line through the release point implied the existence of potential gradients along the magnetic field lines. The deceleration of the main core was greater than theoretically predicted. This was attributed to the formation of a polarization wake, resulting in an increase of the area of interaction and resistive dissipation at ionospheric levels. The actual orientation of the magnetic field line through the release point differed by about 10.5 deg from that predicted by magnetic field models that did not include the effect of ring current.
Silicon photonics cloud (SiCloud)
NASA Astrophysics Data System (ADS)
DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram
2015-02-01
We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.
Cloud Processed CCN Suppress Stratus Cloud Drizzle
NASA Astrophysics Data System (ADS)
Hudson, J. G.; Noble, S. R., Jr.
2017-12-01
Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was
Alterations of Cloud Microphysics Due to Cloud Processed CCN
NASA Astrophysics Data System (ADS)
Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.
2015-12-01
High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect
Seed predators exert selection on the subindividual variation of seed size.
Sobral, M; Guitián, J; Guitián, P; Larrinaga, A R
2014-07-01
Subindividual variation among repeated organs in plants constitutes an overlooked level of variation in phenotypic selection studies, despite being a major component of phenotypic variation. Animals that interact with plants could be selective agents on subindividual variation. This study examines selective pressures exerted during post-dispersal seed predation and germination on the subindividual variation of seed size in hawthorn (Crataegus monogyna). With a seed offering experiment and a germination test, we estimated phenotypic selection differentials for average and subindividual variation of seed size due to seed predation and germination. Seed size affects germination, growth rate and the probability of an individual seed of escaping predation. Longer seeds showed higher germination rates, but this did not result in significant selection on phenotypes of the maternal trees. On the other hand, seed predators avoided wider seeds, and by doing so exerted phenotypic selection on adult average and subindividual variation of seed size. The detected selection on subindividual variation suggests that the levels of phenotypic variation within individual plants may be, at least partly, the adaptive consequence of animal-mediated selection. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Du, X.; Guo, Q.; Gao, X.; Ma, K.
2007-01-01
Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms. We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan, southwestern China. The results showed that: (1) there were marked differences in (mature) seed production between mast (733,700 seeds in 2001) and regular (51,200 and 195,600 seeds in 2002 and 2003, respectively) years for C. fargesii. (2) Most seeds were dispersed in leaf litter, humus and 0-2 cm depth soil in seed bank. (3) Frequency distributions of both DBH and height indicated that C. fargesii had a relatively stable population. (4) Seed rain, seed ground density, seed loss, and leaf fall were highly dynamic and certain quantity of seeds were preserved on the ground for a prolonged time due to predator satiation in both the mast and regular years so that the continuous presence of seed bank and seedling recruitments in situ became possible. Both longer time observations and manipulative experiments should be carried out to better understand the roles of seed dispersal and regeneration process in the ecosystem performance. ?? 2006 Elsevier B.V. All rights reserved.
Elastic extension of a local analysis facility on external clouds for the LHC experiments
NASA Astrophysics Data System (ADS)
Ciaschini, V.; Codispoti, G.; Rinaldi, L.; Aiftimiei, D. C.; Bonacorsi, D.; Calligola, P.; Dal Pra, S.; De Girolamo, D.; Di Maria, R.; Grandi, C.; Michelotto, D.; Panella, M.; Taneja, S.; Semeria, F.
2017-10-01
The computing infrastructures serving the LHC experiments have been designed to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, the LHC experiments are exploring the opportunity to access Cloud resources provided by external partners or commercial providers. In this work we present the proof of concept of the elastic extension of a local analysis facility, specifically the Bologna Tier-3 Grid site, for the LHC experiments hosted at the site, on an external OpenStack infrastructure. We focus on the Cloud Bursting of the Grid site using DynFarm, a newly designed tool that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on an OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage.
Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.
2014-10-01
Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Shenk, W. E.; Skillman, W. C.
1975-01-01
Low level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. The aerial photographs were also used to make a positive identification in a satellite picture of the cloud observed by the low level aircraft. The experiment was conducted over the tropical oceans in the vicinity of Florida, Puerto Rico, Panama and in the Western Gulf of Mexico. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at the cloud base. The magnitude of the vector difference between the cloud motion and the cloud base wind is less than 1.3 m/sec for 67% of the cases with track lengths of 1 hour or longer. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/sec.
Jeffrey E. Ott; Robert D. Cox; Nancy L. Shaw; Beth A. Newingham; Amy C. Ganguli; Mike Pellant; Bruce A. Roundy; Dennis L. Eggett
2016-01-01
Objectives of postfire seeding in the Great Basin include reestablishment of perennial cover, suppression of exotic annual weeds, and restoration of diverse plant communities. Nonconventional seeding techniques may be required when seeding mixes of grasses, forbs, and shrubs containing seeds of different sizes. We conducted an operational-scale experiment to...
NASA Astrophysics Data System (ADS)
Long, Yoann; Charbouillot, Tiffany; Brigante, Marcello; Mailhot, Gilles; Delort, Anne-Marie; Chaumerliac, Nadine; Deguillaume, Laurent
2013-10-01
Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2rad /O2rad - and HOrad ) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to
Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds
NASA Astrophysics Data System (ADS)
WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.
2016-12-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.
Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; ...
2006-10-05
[1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less
Corona discharge induced snow formation in a cloud chamber.
Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan
2017-09-18
Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.
NASA Astrophysics Data System (ADS)
Zhang, Junhua; Lohmann, Ulrike
2003-08-01
The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.
The Citizen CATE Experiment: Techniques to Determine Totality Coverage and Clouded Data Removal.
NASA Astrophysics Data System (ADS)
McKay, Myles A.; Ursache, Andrei; Penn, Matthew; Citizen CATE Experiment 2017 Team
2018-01-01
August 21, 2017, the Citizen Continental-America Telescopic Eclipse(CATE) Experiment observed the 2017 total solar eclipse using a network of 68 identical telescopes and camera systems along the path of totality. The result from the observation was over 90% of all sites collected totality data on the day of the eclipse. Since the volunteers had to remove the solar filter manually, there is an uncertainty between the time of totality and data acquired during totality. Some sites also experienced cloudy weather which obscured the eclipse in some of the exposures but had small breaks in the clouds during the observation, collecting clear totality data. Before we can process and analyze the eclipse data, we must carefully determine which frames cover the time of totality for each site and remove exposures with clouds blocking the FOV. In this poster, we will discuss the techniques we used to determine the extent of totality from each location using the logged GPS data and the removal of totality exposure with clouds.
Relating seed treatments to nursery performance: Experience with southern pines
James P. Barnett
2008-01-01
Producing good quality seeds that perform well in the nursery continues to be challenging. High quality conifer seeds are obtained by optimizing collecting, processing, storing, and treating methodologies, and such quality is needed to consistently produce uniform nursery crops. Although new technologies are becoming available to evaluate seed quality, they have not...
The Complex Point Cloud for the Knowledge of the Architectural Heritage. Some Experiences
NASA Astrophysics Data System (ADS)
Aveta, C.; Salvatori, M.; Vitelli, G. P.
2017-05-01
The present paper aims to present a series of experiences and experimentations that a group of PhD from the University of Naples Federico II conducted over the past decade. This work has concerned the survey and the graphic restitution of monuments and works of art, finalized to their conservation. The targeted query of complex point cloud acquired by 3D scanners, integrated with photo sensors and thermal imaging, has allowed to explore new possibilities of investigation. In particular, we will present the scientific results of the experiments carried out on some important historical artifacts with distinct morphological and typological characteristics. According to aims and needs that emerged during the connotative process, with the support of archival and iconographic historical research, the laser scanner technology has been used in many different ways. New forms of representation, obtained directly from the point cloud, have been tested for the elaboration of thematic studies for documenting the pathologies and the decay of materials, for correlating visible aspects with invisible aspects of the artifact.
The impact of parametrized convection on cloud feedback.
Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming
2015-11-13
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback
The impact of parametrized convection on cloud feedback
Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming
2015-01-01
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud
Context-aware distributed cloud computing using CloudScheduler
NASA Astrophysics Data System (ADS)
Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.
2017-10-01
The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.
Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...
2009-07-23
Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less
EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS
NASA Astrophysics Data System (ADS)
Falkovich, Gregory; Malinowski, Szymon P.
2008-07-01
condensation nuclei Antonio Celani, Andrea Mazzino and Marco Tizzi Laboratory and modeling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling Szymon P Malinowski, Miroslaw Andrejczuk, Wojciech W Grabowski, Piotr Korczyk, Tomasz A Kowalewski and Piotr K Smolarkiewicz Evolution of non-uniformly seeded warm clouds in idealized turbulent conditions Stanislav Derevyanko, Gregory Falkovich and Sergei Turitsyn Lagrangian statistics in two-dimensional free turbulent convection A Bistagnino and G Boffetta Turbulence, raindrops and the l1/2 number density law S Lovejoy and D Schertzer Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization Orlando Ayala, Bogdan Rosa and Lian-Ping Wang Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation Orlando Ayala, Bogdan Rosa, Lian-Ping Wang and Wojciech W Grabowski Collisions of particles advected in random flows K Gustavsson, B Mehlig and M Wilkinson Turbulent collision efficiency of heavy particles relevant to cloud droplets Lian-Ping Wang, Orlando Ayala, Bogdan Rosa and Wojciech W Grabowski
[Effects of illumination and seed-soaking reagent on seed germination of Solanum nigrum].
Yang, Chuan-Jie; Wei, Shu-He; Zhou, Qi-Xing; Hu, Ya-Hu; Niu, Rong-Cheng
2009-05-01
To explore a rapid seed germination method for hyperaccumulator Solanum nigrum, a germination experiment with different illumination and seed-soaking treatments was conducted in constant temperature box and greenhouse, with filter as burgeon base. Under illumination, the germination rate was about 5 times high of that without illumination (P < 0.05), indicating that illumination was one of the prerequisites for the seed germination of S. nigrum. All test seed-soaking reagents could significantly improve the germination rate of S. nigrum (P < 0.05), with the best effect of H2O2. The seeds treated with H2O2 had the shortest germination time. The germination rate of seeds soaked but without cleaning was 2-3 times as high as that of seeds soaked and cleaned with water.
NASA Astrophysics Data System (ADS)
Champion, N.
2012-08-01
Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images) and is based on a region-growing procedure. Seeds (corresponding to clouds) are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images). Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011). In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.
Photogrammetric Measurements of an EH-60L Brownout Cloud
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Tanner, Philip E.
2010-01-01
There is a critical lack of quantitative data regarding the mechanism of brownout cloud formation. Recognizing this, tests were conducted during the Air Force Research Lab 3D-LZ Brownout Test at the US Army Yuma Proving Ground. Photogrammetry was utilized during two rounds of flight tests with an instrumented EH-60L Black Hawk to determine if this technique could quantitatively measure the formation and evolution of a brownout cloud. Specific areas of interest include the location, size, and average convective velocity of the cloud, along with the characteristics of any defined structures within it. Following the first flight test, photogrammetric data were validated through comparison with onboard vehicle data. Lessons learned from this test were applied to the development of an improved photogrammetry system. A second flight test, utilizing the improved system, demonstrated that obtaining quantitative measurements of the brownout cloud are possible. Results from these measurements are presented in the paper. Flow visualization with chalk dust seeding was also tested. It was observed that pickup forces of the brownout cloud appear to be very low. Overall, these tests demonstrate the viability of photogrammetry as a means for quantifying brownout cloud formation and evolution.
NASA Astrophysics Data System (ADS)
De Haan, D. O.; Riva, M.; Surratt, J. D.; Cazaunau, M.; Doussin, J. F.
2016-12-01
Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.
[Growth of wheat from seed-to-seed in space flight
NASA Technical Reports Server (NTRS)
Levinskikh, M. A.; Sychev, V. N.; Derendiaeva, T. A.; Signalova, O. B.; Podol'skii, I. G.; Padalka, G. I.; Avdeev, S. V.; Bingham, G. E.; Campbell, W. F. (Principal Investigator)
2000-01-01
In our earlier space experiment with super dwarf wheat we found the spikes developed in space to be barren. The cause of the full crop sterility was sensitivity of this wheat species to the ethylene concentration of 0.3-0.8 mg/m3 during the experiment. The follow-up ground experiments were made to identify species of dwarf wheat that could be raised in space greenhouse Svet and are distinguished by partial tolerance of their reproductive organs to elevated ethylene in air. The choice fell on the USU-Apogee cultivar specially developed for planting in growth chambers as an integral part of various bioregenerative life support systems, including the space ones. An experiment with wheat Apogee was performed in greenhouse Svet on board MIR. The period of the full crop vegetation cycle was not significantly altered under the spaceflight conditions. The experiment yielded 508 seeds from 12 plants, i.e. by 38% less than in laboratory experiments and by 69% more as compared with results of growing crops in ethylene-contaminated atmosphere (1 mg/m3). Mass of the space seeds was low if compared with the laboratory crops. This was the first time when the feasibility of gathering seeds from wheat that had passed the whole vegetation cycle in space flight was demonstrated. The experiment will give mightly impetus to the advancement of research on space biological LSS and gravitational biology.
PROGRA2 experiment: New results for dust clouds and regoliths analogs
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Renard, J.-B.; Levasseur-Regourd, A. C.; Worms, J.-C.
2006-01-01
With the PROGRA2 experience, linear polarization of scattered light is measured on various types of dust clouds lifted by microgravity, or by an air-draught. The aim is to compare the phase curves for dust analogs with those obtained in the Solar System (cometary comae, and solid particles in planetary atmospheres) by remote-sensing and in situ techniques. Measurements are also performed on layers of particles (on the ground) and compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves have been obtained, e.g., for quartz samples, crystals, fluffy mixtures of silica and carbon blacks and a high porosity regolith analog made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the ICAPS experiment onboard the ISS and on the precursor experiment.
Dispersal of seeds from splash-cup plants
NASA Astrophysics Data System (ADS)
Pepper, Rachel
2017-11-01
Splash cup plants disperse their seeds with the help of raindrops. The seeds sit in a small (mm-scale) conical cup and are ejected upon drop impact. The seeds are ejected at velocities up to five times the impact speed of the raindrop, and are dispersed up to 1 m away from the parent plant, which is only a few cm high. Previous work investigating the mechanism of this remarkable dispersal predicted an optimum cup opening angle of around 40°, which matched reasonably well with experiments performed with 3D-printed splash cup models. Those experiments were done with off-center drop impacts on initially empty cups with no seeds. We discuss similar experiments for cups that are not initially empty, but rather contain seed mimics, water, or both seeds and water. For some of these realistic initial states results are strikingly different from empty cups. Connections to theory will also be discussed.
NASA Astrophysics Data System (ADS)
Ritzman, Jaclyn M.
The objective of the Wyoming Weather Modification Pilot Project is to evaluate the effect of glaciogenic seeding on wintertime precipitation over two co-located barriers in southeast Wyoming. Orographic clouds are to be targeted if they meet strict criteria. An analysis of the impact of seeding requires knowledge of the amount of precipitation that fell from seedable clouds. This amount of precipitation was determined by applying the strict seeding criteria to an eight-year simulation from the Weather Research and Forecasting model at 4-km horizontal resolution. Results from the analysis from the model suggested that the fraction of seedable precipitation was 35.1% (35.5%) over the Sierra Madre and Medicine Bow mountain ranges from 2000-2008. This fraction decreases to 23.2% (23.0%) under a warmer, future climate scenario over the Sierra Madres (Medicine Bows).
X-Ray Shadowing Experiments Toward Infrared Dark Clouds
NASA Technical Reports Server (NTRS)
Anderson, L. E.; Snowden, S.; Bania, T. M.
2009-01-01
We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.
Yellow-poplar seed quality varies by seed trees, stands, and years
G.A. Limstrom
1959-01-01
The number of year-old yellow-poplar (Liriodendron tulipifera L.) seedlings grown from equal quantities of seed varies as much among individual seed trees within a stand as among stands of different geographic location. Moreover, production will vary from one year to another. This information was obtained from an experiment begun in the Central...
Gravity independence of seed-to-seed cycling in Brassica rapa
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Xiao, Y.; Stout, S. C.; Bingham, G. E.; Briarty, L. G.; Levenskikh, M. A.; Sychev, V. N.; Podolski, I. G.
2000-01-01
Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.
Magnetic stimulation of marigold seed
NASA Astrophysics Data System (ADS)
Afzal, I.; Mukhtar, K.; Qasim, M.; Basra, S. M. A.; Shahid, M.; Haq, Z.
2012-10-01
The effects of magnetic field treatments of French marigold seeds on germination, early seedling growth and biochemical changes of seedlings were studied under controlled conditions. For this purpose, seeds were exposed to five different magnetic seed treatments for 3 min each. Most of seed treatments resulted in improved germination speed and spread, root and shoot length, seed soluble sugars and a-amylase activity. Magnetic seed treatment with 100 mT maximally improved germination, seedling vigour and starch metabolism as compared to control and other seed treatments. In emergence experiment, higher emergence percentage (4-fold), emergence index (5-fold) and vigorous seedling growth were obtained in seeds treated with 100 mT. Overall, the enhancement of marigold seeds by magnetic seed treatment with 100 mT could be related to enhanced starch metabolism. The results suggest that magnetic field treatments of French marigold seeds have the potential to enhance germination, early growth and biochemical parameters of seedlings.
Aerosol and cloud observations from the Lidar In-space Technology Experiment
NASA Technical Reports Server (NTRS)
Winker, D. M.
1995-01-01
The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.
NASA Technical Reports Server (NTRS)
Katz, U.
1982-01-01
Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.
NASA Astrophysics Data System (ADS)
Gadian, A.; Hauser, R.; Kleypas, J. A.; Latham, J.; Parkes, B.; Salter, S.
2013-12-01
This study examines the potential to cool ocean surface waters in regions of hurricane genesis and early development. This would be achieved by seeding, with copious quantities of seawater cloud condensation nuclei (CCN), low-level maritime stratocumulus clouds covering these regions or those at the source of incoming currents. Higher cloud droplet density would increase these clouds' reflectivity to incoming sunlight, and possibly their longevity. This approach is a more localized application of the Marine Cloud Brightening (MCB) geoengineering technique promoting global cooling. By utilizing a climate ocean/atmosphere coupled model, HadGEM1, and by judicious seeding of maritime stratocumulus clouds, we demonstrate that we may be able to significantly reduce sea surface temperatures (SSTs) in hurricane development regions. Thus artificial seeding may reduce hurricane intensity; but how well the magnitude of this effect is yet to be determined. Increases in coral bleaching events over the last few decades have been largely caused by rising SSTs, and continued warming is expected to cause even greater increases through this century. Using thr same Global Climate Model to examine the potential of MCB to cool oceanic surface waters in three coral reef provinces. Our simulations indicate that under doubled CO2 conditions, the substantial increases in coral bleaching conditions from current values in three reef regions (Caribbean, French Polynesia, and the Great Barrier Reef) were eliminated when MCB was applied, which reduced the SSTs at these sites roughly to their original values. In this study we also illustrate how even regional application of MCB can affect the planetary meridional heat flux and the reduction in poleward heat transfer. (a) Change in annual average sea surface temperature, Celsius, between the 2xCO2 and CONTROL simulations. (b) Change in annual average sea surface temperature, Celsius, between the CONTROL and 2xCO2+MCB simulations. The dashed black
NASA Astrophysics Data System (ADS)
Kodama, C.; Noda, A. T.; Satoh, M.
2012-06-01
This study presents an assessment of three-dimensional structures of hydrometeors simulated by the NICAM, global nonhydrostatic atmospheric model without cumulus parameterization, using multiple satellite data sets. A satellite simulator package (COSP: the CFMIP Observation Simulator Package) is employed to consistently compare model output with ISCCP, CALIPSO, and CloudSat satellite observations. Special focus is placed on high thin clouds, which are not observable in the conventional ISCCP data set, but can be detected by the CALIPSO observations. For the control run, the NICAM simulation qualitatively captures the geographical distributions of the high, middle, and low clouds, even though the horizontal mesh spacing is as coarse as 14 km. The simulated low cloud is very close to that of the CALIPSO low cloud. Both the CloudSat observations and NICAM simulation show a boomerang-type pattern in the radar reflectivity-height histogram, suggesting that NICAM realistically simulates the deep cloud development process. A striking difference was found in the comparisons of high thin cirrus, showing overestimated cloud and higher cloud top in the model simulation. Several model sensitivity experiments are conducted with different cloud microphysical parameters to reduce the model-observation discrepancies in high thin cirrus. In addition, relationships among clouds, Hadley circulation, outgoing longwave radiation and precipitation are discussed through the sensitivity experiments.
Cloud Statistics for NASA Climate Change Studies
NASA Technical Reports Server (NTRS)
Wylie, Donald P.
1999-01-01
The Principal Investigator participated in two field experiments and developed a global data set on cirrus cloud frequency and optical depth to aid the development of numerical models of climate. Four papers were published under this grant. The accomplishments are summarized: (1) In SUCCESS (SUbsonic aircraft: Contrail & Cloud Effects Special Study) the Principal Investigator aided weather forecasters in the start of the field program. A paper also was published on the clouds studied in SUCCESS and the use of the satellite stereographic technique to distinguish cloud forms and heights of clouds. (2) In SHEBA (Surface Heat Budget in the Arctic) FIRE/ACE (Arctic Cloud Experiment) the Principal Investigator provided daily weather and cloud forecasts for four research aircraft crews, NASA's ER-2, UCAR's C-130, University of Washington's Convert 580, and the Canadian Atmospheric Environment Service's Convert 580. Approximately 105 forecasts were written. The Principal Investigator also made daily weather summaries with calculations of air trajectories for 54 flight days in the experiment. The trajectories show where the air sampled during the flights came from and will be used in future publications to discuss the origin and history of the air and clouds sampled by the aircraft. A paper discussing how well the FIRE/ACE data represent normal climatic conditions in the arctic is being prepared. (3) The Principal Investigator's web page became the source of information for weather forecasting by the scientists on the SHEBA ship. (4) Global Cirrus frequency and optical depth is a continuing analysis of global cloud cover and frequency distribution are being made from the NOAA polar orbiting weather satellites. This analysis is sensitive to cirrus clouds because of the radiative channels used. During this grant three papers were published which describe cloud frequencies, their optical properties and compare the Wisconsin FM Cloud Analysis to other global cloud data such as
Gomaa, Nasr H; Picó, F Xavier
2011-06-01
Water-limited hot environments are good examples of hyper-aridity. Trees are scarce in these environments but some manage to survive, such as the tree Moringa peregrina. Understanding how trees maintain viable populations in extremely arid environments may provide insight into the adaptive mechanisms by which trees cope with extremely arid weather conditions. This understanding is relevant to the current increasing aridity in several regions of the world. Seed germination experiments were conducted to assess variation in seed mass, seed germination, and seedling traits of Moringa peregrina plants and the correlations among these traits. A seed burial experiment was also designed to study the fate of M. peregrina seeds buried at two depths in the soil for two time periods. On average, seeds germinated in three days and seedling shoots grew 0.7 cm per day over three weeks. Larger seeds decreased germination time and increased seedling growth rates relative to smaller seeds. Seeds remained quiescent in the soil and germination was very high at both depths and burial times. The after-ripening time of Moringa peregrina seeds is short and seeds germinate quickly after imbibition. Plants of M. peregrina may increase in hyper-arid environments from seeds with larger mass, shorter germination times, and faster seedling growth rates. The results also illustrate the adjustment in allocation to seed biomass and correlations among seed and seedling traits that allows M. peregrina to be successful in coping with aridity in its environment.
Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops
NASA Technical Reports Server (NTRS)
Liao, Xiaohan; Rossow, William B.; Rind, David
1995-01-01
A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.
HilleRisLambers, Janneke; Tewksbury, Joshua J.; Rogers, Haldre S.
2013-01-01
In healthy forests, vertebrate frugivores move seeds from intact to degraded forests, aiding in the passive regeneration of degraded forests. Yet vertebrate frugivores are declining around the world, and little is known about the impact of this loss on regeneration of degraded areas. Here, we use a unique natural experiment to assess how complete vertebrate frugivore loss affects native seed rain in degraded forest. All native vertebrate frugivores (which were primarily avian frugivores) have been functionally extirpated from the island of Guam by the invasive brown tree snake (Boiga irregularis), whereas the nearby island of Saipan has a relatively intact vertebrate frugivore community. We captured seed rain along transects extending from intact into degraded forest and compared the species richness, density and condition of the seed rain from native bird-dispersed tree species between the two islands. Considering seeds from native bird-dispersed species, approximately 1.66 seeds landed per 26 days in each square meter of degraded forest on Saipan, whereas zero seeds landed per 26 days per square meter in degraded forest on Guam. Additionally, on Saipan, 69% of native bird-dispersed seeds in intact forest and 77% of seeds in degraded forest lacked fleshy fruit pulp, suggesting ingestion by birds, compared to 0% of all seeds on Guam. Our results show an absence of seed rain in degraded forests on Guam, correlated with the absence of birds, whereas on Saipan, frugivorous birds regularly disperse seeds into degraded forests, providing a mechanism for re-colonization by native plants. These results suggest that loss of frugivores will slow regeneration of degraded forests on Guam. PMID:23741503
Caves, Eleanor M; Jennings, Summer B; Hillerislambers, Janneke; Tewksbury, Joshua J; Rogers, Haldre S
2013-01-01
In healthy forests, vertebrate frugivores move seeds from intact to degraded forests, aiding in the passive regeneration of degraded forests. Yet vertebrate frugivores are declining around the world, and little is known about the impact of this loss on regeneration of degraded areas. Here, we use a unique natural experiment to assess how complete vertebrate frugivore loss affects native seed rain in degraded forest. All native vertebrate frugivores (which were primarily avian frugivores) have been functionally extirpated from the island of Guam by the invasive brown tree snake (Boiga irregularis), whereas the nearby island of Saipan has a relatively intact vertebrate frugivore community. We captured seed rain along transects extending from intact into degraded forest and compared the species richness, density and condition of the seed rain from native bird-dispersed tree species between the two islands. Considering seeds from native bird-dispersed species, approximately 1.66 seeds landed per 26 days in each square meter of degraded forest on Saipan, whereas zero seeds landed per 26 days per square meter in degraded forest on Guam. Additionally, on Saipan, 69% of native bird-dispersed seeds in intact forest and 77% of seeds in degraded forest lacked fleshy fruit pulp, suggesting ingestion by birds, compared to 0% of all seeds on Guam. Our results show an absence of seed rain in degraded forests on Guam, correlated with the absence of birds, whereas on Saipan, frugivorous birds regularly disperse seeds into degraded forests, providing a mechanism for re-colonization by native plants. These results suggest that loss of frugivores will slow regeneration of degraded forests on Guam.
The oxygen requirement of germinating flax seeds
NASA Astrophysics Data System (ADS)
Kuznetsov, O.; Hasenstein, K.
Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).
GEWEX Cloud Systems Study (GCSS)
NASA Technical Reports Server (NTRS)
Moncrieff, Mitch
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.
Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin;
2006-01-01
Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.
NASA Astrophysics Data System (ADS)
Gorelov, Yury; Kurganskaya, Lubov; Ilyin, Vyacheslav; Ruzaeva, Irina; Rozno, Svetlana; Kavelenova, Ludmila
The problem of native flora plants conservation appears today as one of the most actual for humanity. The wide spreading natural ecosystems degradation results in the status changes for formerly common species to rare, endangered or extincted ones. That is why the complex of biological diversity conservation measures must be used including ex situ and in situ forms. Last years the seed banks (special seed collections in controlled conditions, including temperature below zero) and field banks (special alive plants collections) were created in many countries taking in mind the future of humanity. The seed banks as long-term depositories can be placed on the space stations where the threat of earth catastrophes is removed. But we must make it clear how the complex of space flight factors effects upon the seed quality and germination and plants development from “cosmic” seeds. For instance, the action of residual ionizing radiation into space apparatus on plant seeds can alter its vitality maybe by the growth of free radicals pool in molecular and subcellular level. The unknown level of such action permits us to propose wide diapason of effects from the absence of any changes to the stimulation of vital activity, decrease of it, mutagenesis and maybe the death of seeds. Only the experiments that begin in space and continue on the Earth can show us the effect of space flight factors complex on plant seeds. Here we describe the first results of experiment held on the board of space apparatus “Bion-M” No1. Totally 79 experiments were included to the program of “Bion-M”, among them the experiment “Biocont-BS”. The equipment for it was prepared by Central Scientific Research Institute of Machine-building; the seed material was selected and prepared by the Botanical Garden of Samara State University. The equipment with seeds was into space apparatus, which working orbit was average 575 km and the flight lasted for 30 days. The seed samples of 9 rare plants
Small Seed Black Hole Growth in Various Accretion Regimes
NASA Astrophysics Data System (ADS)
Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.
2016-03-01
Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.
Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne
2007-01-01
Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.
Kuprewicz, Erin K.
2015-01-01
Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate) enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis) and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although tradeoffs in seed
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, R. V.; Hollinden, A. B.
1973-01-01
The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.
Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.
1994-01-01
The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of
Seed consumption and dispersal of ant-dispersed plants by slugs.
Türke, Manfred; Heinze, Eric; Andreas, Kerstin; Svendsen, Sarah M; Gossner, Martin M; Weisser, Wolfgang W
2010-07-01
In beech-dominated forests in Central Europe, many spring geophytes show adaptations to seed dispersal by ants (myrmecochory). Ants, however, can be rare in such moist forests. Motivated by observations of slug feeding on seeds we investigated the seed consumption of two plant species, Anemone nemorosa and Asarum europaeum, by slugs, in a series of experiments. In a seed predation experiment in a beech forest, we found that seed removal was strongly reduced when gastropods were excluded from the seed depots. The contribution of insects, including ants, and rodents to seed removal was relatively less but differed between May and July. In the laboratory, slug species, in particular Arion sp., consumed seeds of both plant species. Slugs either consumed the elaiosomes of seeds or swallowed seeds intact. Swallowed seeds were defecated undamaged and germinated as well as control seeds when buried overwinter, indicating the potential for seed dispersal by slugs. We also recovered seeds of myrmecochores in the faeces of several slugs caught in forests. In a slug release experiment in the forest, slugs moved up to 14.6 m (mean 4.4 m) in 15 h, which is the median gut passage time of seeds based on measurements made in the laboratory. We also found that when slug-defecated seeds were offered to rodents, these were less attractive than control seeds, suggesting that passage through the slug gut reduces seed predation risk. Our results demonstrate that slugs are significant consumers of elaiosomes or entire seeds of ant-dispersed plants and that they can function as seed dispersers of these plants.
NASA Technical Reports Server (NTRS)
Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene
1993-01-01
Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.
Beckman, Noelle G; Dybzinski, Ray; Tilman, G David
2014-02-01
Numerous observational studies have documented conspecific negative density-dependence that is consistent with the Janzen-Connell Hypothesis (JCH) of diversity maintenance. However, there have been few experimental tests of a central prediction of the JCH: that removing host-specific enemies should lead to greater increases in per capita recruitment in areas of higher host density or lower relative phylogenetic diversity. Using spatially randomized plots of high and low host biomass in a temperate grassland biodiversity experiment, we treated developing seedheads of six prairie perennials to factorial applications of fungicide and insecticide. We measured predispersal seed production, seed viability, and seedling biomass. Results were highly species-specific and idiosyncratic. Effects of insect seed predators and fungal pathogens on predispersal responses varied with neither conspecific biomass nor phylogenetic diversity, suggesting that-at least at the predispersal stage and for the insect and fungal seed predators we were able to exclude-the JCH is not sufficient to contribute to negative conspecific density-dependence for these dominant prairie species.
Differential predation of forage seed
USDA-ARS?s Scientific Manuscript database
In recent field experiments we observed that the main invertebrate seed predators of overseeded tall fescue (Festuca arundinacea Schreb.) or Italian ryegrass (Lolium multiflorum Lam.) seed in unimproved pastures were harvester ants (Pogonomyrmex sp.) and common field crickets (Gryllus sp.) To determ...
Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Dong, Xiquan; Wood, Robert
With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds,more » whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by
Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon
NASA Astrophysics Data System (ADS)
Pöhlker, Christopher; Wiedemann, Kenia T.; Sinha, Bärbel; Shiraiwa, Manabu; Gunthe, Sachin S.; Smith, Mackenzie; Su, Hang; Artaxo, Paulo; Chen, Qi; Cheng, Yafang; Elbert, Wolfgang; Gilles, Mary K.; Kilcoyne, Arthur L. D.; Moffet, Ryan C.; Weigand, Markus; Martin, Scot T.; Pöschl, Ulrich; Andreae, Meinrat O.
2012-08-01
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Dry Priming of Maize Seeds Reduces Aluminum Stress
Alcântara, Berenice Kussumoto; Machemer-Noonan, Katja; Silva Júnior, Francides Gomes; Azevedo, Ricardo Antunes
2015-01-01
Aluminum (Al) toxicity is directly related to acidic soils and substantially limits maize yield. Earlier studies using hormones and other substances to treat the seeds of various crops have been carried out with the aim of inducing tolerance to abiotic stress, especially chilling, drought and salinity. However, more studies regarding the effects of seed treatments on the induction of Al tolerance are necessary. In this study, two independent experiments were performed to determine the effect of ascorbic acid (AsA) seed treatment on the tolerance response of maize to acidic soil and Al stress. In the first experiment (greenhouse), the AsA seed treatment was tested in B73 (Al-sensitive genotype). This study demonstrates the potential of AsA for use as a pre-sowing seed treatment (seed priming) because this metabolite increased root and shoot growth under acidic and Al stress conditions. In the second test, the evidence from field experiments using an Al-sensitive genotype (Mo17) and an Al-tolerant genotype (DA) suggested that prior AsA seed treatment increased the growth of both genotypes. Enhanced productivity was observed for DA under Al stress after priming the seeds. Furthermore, the AsA treatment decreased the activity of oxidative stress-related enzymes in the DA genotype. In this study, remarkable effects using AsA seed treatment in maize were observed, demonstrating the potential future use of AsA in seed priming. PMID:26714286
CERN Computing in Commercial Clouds
NASA Astrophysics Data System (ADS)
Cordeiro, C.; Field, L.; Garrido Bear, B.; Giordano, D.; Jones, B.; Keeble, O.; Manzi, A.; Martelli, E.; McCance, G.; Moreno-García, D.; Traylen, S.
2017-10-01
By the end of 2016 more than 10 Million core-hours of computing resources have been delivered by several commercial cloud providers to the four LHC experiments to run their production workloads, from simulation to full chain processing. In this paper we describe the experience gained at CERN in procuring and exploiting commercial cloud resources for the computing needs of the LHC experiments. The mechanisms used for provisioning, monitoring, accounting, alarming and benchmarking will be discussed, as well as the involvement of the LHC collaborations in terms of managing the workflows of the experiments within a multicloud environment.
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
Introducing Cloud Computing Topics in Curricula
ERIC Educational Resources Information Center
Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue
2012-01-01
The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…
Weather Fundamentals: Clouds. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…
Atmospheric transport of mold spores in clouds of desert dust
Shinn, E.A.; Griffin, Dale W.; Seba, D.B.
2003-01-01
Fungal spores can be transported globally in clouds of desert dust. Many species of fungi (commonly known as molds) and bacteria--including some that are human pathogens--have characteristics suited to long-range atmospheric transport. Dust from the African desert can affect air quality in Africa, Europe, the Middle East, and the Americas. Asian desert dust can affect air quality in Asia, the Arctic, North America, and Europe. Atmospheric exposure to mold-carrying desert dust may affect human health directly through allergic induction of respiratory stress. In addition, mold spores within these dust clouds may seed downwind ecosystems in both outdoor and indoor environments.
One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels
NASA Astrophysics Data System (ADS)
Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.
2017-12-01
Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.
Seed-to-seed growth of Arabidopsis thaliana on the International Space Station
NASA Technical Reports Server (NTRS)
Link, B. M.; Durst, S. J.; Zhou, W.; Stankovic, B.
2003-01-01
The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Oxygen requirement of germinating flax seeds
NASA Astrophysics Data System (ADS)
Kuznetsov, Oleg A.; Hasenstein, K. H.
2003-05-01
Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.
Milkweed Seed Dispersal: A Means for Integrating Biology and Physics.
ERIC Educational Resources Information Center
Bisbee, Gregory D.; Kaiser, Cheryl A.
1997-01-01
Describes an activity that integrates biology and physics concepts by experimenting with the seed dispersal of common milkweed or similar wind-dispersed seeds. Student teams collect seeds and measure several parameters, review principles of trajectory motion, perform experiments, and graph data. Students examine the ideas of…
NASA Astrophysics Data System (ADS)
Carazzo, G.; Jellinek, M.
2010-12-01
The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across
Effects of environmental variation during seed production on seed dormancy and germination.
Penfield, Steven; MacGregor, Dana R
2017-02-01
The environment during seed production has major impacts on the behaviour of progeny seeds. It can be shown that for annual plants temperature perception over the whole life history of the mother can affect the germination rate of progeny, and instances have been documented where these affects cross whole generations. Here we discuss the current state of knowledge of signal transduction pathways controlling environmental responses during seed production, focusing both on events that take place in the mother plant and those that occur directly as a result of environmental responses in the developing zygote. We show that seed production environment effects are complex, involving overlapping gene networks active independently in fruit, seed coat, and zygotic tissues that can be deconstructed using careful physiology alongside molecular and genetic experiments. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
User experience integrated life-style cloud-based medical application.
Serban, Alexandru; Lupşe, Oana Sorina; Stoicu-Tivadar, Lăcrămioara
2015-01-01
Having a modern application capable to automatically collect and process data from users, based on information and lifestyle answers is one of current challenges for researchers and medical science. The purpose of the current study is to integrate user experience design (UXD) in a cloud-based medical application to improve patient safety, quality of care and organizational efficiency. The process consists of collecting traditional and new data from patients and users using online questionnaires. A questionnaire dynamically asks questions about the user's current diet and lifestyle. After the user will introduce the data, the application will formulate a presumptive nutritional plan and will suggest different medical recommendations regarding a healthy lifestyle, and calculates a risk factor for diseases. This software application, by design and usability will be an efficient tool dedicated for fitness, nutrition and health professionals.
The cloud chamber as a field diagnostic tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, A
1967-10-19
This document presents the Pros and Cons of using a cloud chamber for field use. Historical aspects are briefly discussed. A cloud chamber experiment on Midi Mist is described. Plans for fielding an experiment on Hupmobile are presented.
NASA Astrophysics Data System (ADS)
Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind
2017-04-01
"Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.
The first observed cloud echoes and microphysical parameter retrievals by China's 94-GHz cloud radar
NASA Astrophysics Data System (ADS)
Wu, Juxiu; Wei, Ming; Hang, Xin; Zhou, Jie; Zhang, Peichang; Li, Nan
2014-06-01
By using the cloud echoes first successfully observed by China's indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar reflectivity factor is larger (over -10 dBZ). (3) The radar's sensitivity is comparatively higher because the minimum radar reflectivity factor is about -35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle effective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar reflectivity factor.
Collapse of primordial gas clouds and the formation of quasar black holes
NASA Technical Reports Server (NTRS)
Loeb, Abraham; Rasio, Frederic A.
1994-01-01
The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.; Lin, Ruei-Fong
1993-01-01
The radiation field over a broken stratocumulus cloud deck is simulated by the Monte Carlo method. We conducted four experiments to investigate the main factor for the observed shortwave reflectively over the FIRE flight 2 leg 5, in which reflectivity decreases almost linearly from the cloud center to cloud edge while the cloud top height and the brightness temperature remain almost constant through out the clouds. From our results, the geometry effect, however, did not contribute significantly to what has been observed. We found that the variation of the volume extinction coefficient as a function of its relative position in the cloud affects the reflectivity efficiently. Additional check of the brightness temperature of each experiment also confirms this conclusion. The cloud microphysical data showed some interesting features. We found that the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid. However, whether the shift of cloud droplet spectrum toward the larger end is not certain. The decrease of number density from cloud center to cloud edges seems to have more significant effects on the optical properties.
NASA Astrophysics Data System (ADS)
Sun, Lin; Liu, Xinyan; Yang, Yikun; Chen, TingTing; Wang, Quan; Zhou, Xueying
2018-04-01
Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct
Measurements of Isoprene and its Oxidation Products during the CLOUD9 Experiment
NASA Astrophysics Data System (ADS)
Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Coburn, Sean; Volkamer, Rainer; Hansel, Armin
2015-04-01
Isoprene (C5H8), being produced and emitted by the biosphere, is by far the dominant biogenic volatile organic compound (BVOC) in the atmosphere. Its complex reaction pathways with OH radicals, O3 and NO3, lead to compounds with lower volatilities and increasing water solubility. The high hydrophilicity allows for easy partitioning between the gas and liquid phase making those compounds good candidates for aqueous phase droplet chemistry that may contribute to particle growth. (Ervens et al., 2008). The CLOUD experiment (Cosmics Leaving Outdoor Droplets) at CERN allows the studying the evolution of particles originating from precursor gases in, in our case isoprene, in an ultraclean and very well controlled environmental chamber. Gas phase concentrations of isoprene and its first reaction products were measured in real-time with a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS, Graus et al., 2010) and Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS, Thalman and Volkamer, 2010). PTR-ToF-MS was calibrated using gas standards with known VOC concentrations. The PTR-ToF-MS was operated with H3O+ and NO+ as primary ions, continuously switching between both operating modes throughout the experiments. The use of different primary ions allows the discrimination of isomeric compounds like the main high NOx oxidation products methyl vinyl ketone (MVK) and methacroleine (MACR). The experiment was conducted at high isoprene concentrations and a constant level of O3. The highly water soluble gas phase oxidation products from the reaction of isoprene with O3 and OH radicals (from isoprene ozonolysis) were investigated and compared for two temperatures (+10 °C and -10 °C) and different NOx concentrations during cloud formation experiments. Here we will present first results of isoprene oxidation products observed with PTR-ToF-MS and CE-DOAS. References Ervens et al. (2008), Geophys. Res. Lett., 35, L02816 Graus et al. (2010), J. Am
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarquhar, Greg
We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign,more » over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.« less
Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning
2017-09-01
The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners
El-Amhir, Sh-hoob; Lamont, Byron B.; He, Tianhua; Yan, George
2017-01-01
Six Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size. Partial removal of cotyledons caused a significant delay in the emergence of the first leaf, and reduction in root and shoot growth of the large-seeded species. The growth of seedlings of small-seeded species was less impacted by cotyledon damage. The rate of survival, root and shoot lengths and dry biomass of the seedlings were determined after 90 days. When seedlings were treated with balanced nutrient solutions following removal of the cotyledons, survival was 95–98%, but 0% when supplied with nutrient solutions lacking N or P or with water only. The addition of a balanced nutrient solution failed to restore complete growth of any species, but the rate of root elongation for the small-seeded species was maintained. Cotyledons provide nutrients to support early growth of Hakea seedlings, but other physiological roles for the cotyledons are also implicated. In conclusion, small-seeded Hakea species can tolerate cotyledons loss better than large-seeded species. PMID:28139668
Efficient proof of ownership for cloud storage systems
NASA Astrophysics Data System (ADS)
Zhong, Weiwei; Liu, Zhusong
2017-08-01
Cloud storage system through the deduplication technology to save disk space and bandwidth, but the use of this technology has appeared targeted security attacks: the attacker can deceive the server to obtain ownership of the file by get the hash value of original file. In order to solve the above security problems and the different security requirements of the files in the cloud storage system, an efficient and information-theoretical secure proof of ownership sceme is proposed to support the file rating. Through the K-means algorithm to implement file rating, and use random seed technology and pre-calculation method to achieve safe and efficient proof of ownership scheme. Finally, the scheme is information-theoretical secure, and achieve better performance in the most sensitive areas of client-side I/O and computation.
Seeding and planting upland oaks
T. E. Russell
1971-01-01
Upland oaks can be established by seeding or planting, but additional experience is needed before these methods become economical alternatives to natural regeneration. Recently forested sites are generally more favorable than abandoned fields. Lack of repellents to protect acorns from animals severely limits direct seeding, but oaks can be planted readily by...
NASA Astrophysics Data System (ADS)
Wang, Weiqin; Chen, Qian; Hussain, Saddam; Mei, Junhao; Dong, Huanglin; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao
2016-01-01
Double direct-seeding for double rice cropping is a simplified, labor saving, and efficient cropping system to improve multiple-crop index and total rice production in central China. However, poor crop establishment of direct-seeded early rice due to chilling stress is the main obstacle to wide spread of this system. A series of experiments were conducted to unravel the effects of pre-sowing seed treatments on emergence, seedling growth and associated metabolic events of direct-seeded early rice under chilling stress. Two seed priming treatments and two seed coating treatments were used in all the experiments. A non-treated control treatment was also maintained for comparison. In both the field and growth chamber studies, seed priming with selenium or salicylic acid significantly enhanced the emergence and seedling growth of rice compared with non-treated control. Nevertheless, such positive effects were not apparent for seed coating treatments. Better emergence and vigorous seedling growth of rice after seed priming was associated with enhanced α-amylase activity, higher soluble sugars contents, and greater respiration rate in primed rice seedlings under chilling stress. Taking together, these findings may provide new avenues for understanding and advancing priming-induced chilling tolerance in direct-seeded early rice in double rice cropping system.
Oxygen requirement of germinating flax seeds.
Kuznetsov, Oleg A; Hasenstein, K H
2003-01-01
Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.
Oxygen requirement of germinating flax seeds
NASA Technical Reports Server (NTRS)
Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)
2003-01-01
Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.
Teaching Cybersecurity Using the Cloud
ERIC Educational Resources Information Center
Salah, Khaled; Hammoud, Mohammad; Zeadally, Sherali
2015-01-01
Cloud computing platforms can be highly attractive to conduct course assignments and empower students with valuable and indispensable hands-on experience. In particular, the cloud can offer teaching staff and students (whether local or remote) on-demand, elastic, dedicated, isolated, (virtually) unlimited, and easily configurable virtual machines.…
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.
2017-07-01
Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless
Automatic Generation of Indoor Navigable Space Using a Point Cloud and its Scanner Trajectory
NASA Astrophysics Data System (ADS)
Staats, B. R.; Diakité, A. A.; Voûte, R. L.; Zlatanova, S.
2017-09-01
Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of date. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls and doors, and furniture may be repositioned to the user's preferences. Therefore, new approaches for the quick recording of indoor environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on the analysis of the point cloud and the trajectory of the MLS scanner. This method consists of several steps. First, the point cloud is voxelized. Second, the trajectory is analysing and projecting to acquire seed voxels. Third, these seed voxels are generated into floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be modified so that each region represents a specific navigable space inside a building as a free navigable voxel space. By combining the point cloud and its corresponding trajectory, the walkable space can be identified for any type of building even if the interior is scanned during business hours.
NASA Technical Reports Server (NTRS)
Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven
2008-01-01
Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.
NASA Technical Reports Server (NTRS)
Purgold, Gerald C.; Wheeler, Robert J.; Whitlock, Charles H.
1992-01-01
Tables and figures are presented which show local site observations of cloud fractions, the number of cloud layers, direction of movement, and precipitation data collected during the FIRE (First ISCCP Regional Experiment) Phase 2 Cirrus Intensive Field Observations (IFO) conducted in Coffeyville, Kansas during November and December, 1991. Selected data are also presented at the times of the TIROS Operational Vertical Sounder (TOVS) satellite overpass. Several major scientific projects have used surface-based observations of clouds to compare directly with those being observed from satellites. Characterizing the physical properties of clouds is extremely useful in obtaining a more accurate analysis of the effect of clouds and their movements on weather and climate. It is the purpose of this paper to report data collected during the FIRE Phase 2 IFO experiment and to provide a brief history of such a surface-based system and the technical information required for recording local cloud parameters.
NASA Technical Reports Server (NTRS)
Loeb, N. G.; Varnai, Tamas; Winker, David M.
1998-01-01
Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the
Marine cloud brightening – as effective without clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlm, Lars; Jones, Andy; Stjern, Camilla W.
Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less
Marine cloud brightening – as effective without clouds
Ahlm, Lars; Jones, Andy; Stjern, Camilla W.; ...
2017-11-06
Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less
The EOS CERES Global Cloud Mask
NASA Technical Reports Server (NTRS)
Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.
1996-01-01
To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.
Rodent-Mediated Interactions Among Seed Species of Differing Quality in a Shrubsteppe Ecosystem
Beard, Karen H.; Faulhaber, Craig A.; Howe, Frank P.; Edwards, Thomas C.
2013-01-01
Interactions among seeds, mediated by granivorous rodents, are likely to play a strong role in shrubsteppe ecosystem restoration. Past studies typically consider only pairwise interactions between preferred and less preferred seed species, whereas rangeland seedings are likely to contain more than 2 seed species, potentially leading to complex interactions. We examined how the relative proportion of seeds in a 3-species polyculture changes rodent seed selectivity (i.e., removal) and indirect interactions among seeds. We presented 2 rodent species, Peromyscus maniculatus (deer mice) and Perognathus parvus (pocket mice), in arenas with 3-species seed mixtures that varied in the proportion of a highly preferred, moderately preferred, and least preferred seed species, based on preferences determined in this study. We then conducted a field experiment in a pocket mouse—dominated ecosystem with the same 3-species seed mixtures in both “treated” (reduced shrub and increased forb cover) and “untreated” shrubsteppe. In the arena experiment, we found that rodents removed more of the highly preferred seed when the proportions of all 3 seeds were equal. Moderately preferred seeds experienced increased removal when the least preferred seed was in highest proportion. Removal of the least preferred seed increased when the highly preferred seed was in highest proportion. In the field experiment, results were similar to those from the arena experiment and did not differ between treated and untreated shrubsteppe areas. Though our results suggest that 3-species mixtures induce complex interactions among seeds, managers applying these results to restoration efforts should carefully consider the rodent community present and the potential fate of removed seeds.
Hares promote seed dispersal and seedling establishment after volcanic eruptions
NASA Astrophysics Data System (ADS)
Nomura, Nanae; Tsuyuzaki, Shiro
2015-02-01
Although seed dispersal through animal guts (endozoochory) is a process that determines plant establishment, the behaviour of carriers mean that the seeds are not always dispersed to suitable habitats for germination. The germinable seeds of Gaultheria miqueliana were stored in the pellets of a hare (Lepus timidus ainu) on Mount Koma in northern Japan. To clarify the roles of hares in seed dispersal and germination, field censuses and laboratory experiments were conducted. The field observations were conducted on pellets and seeds in four habitats (bare ground, G. miqueliana shrub patch, Salix reinii patch, and Larix kaempferi understory), and the laboratory experiments were conducted on seed germination with different light, water potential and cold stratification treatments. The laboratory experiments confirmed that seed germination began a few weeks after the sowing of seeds, independent of cold stratification, when light was sufficient and the water potential was low. The seeds did not germinate at high water potential. The pellets were gradually degraded in situ. More seeds germinated from crushed than from intact pellets. Therefore, over the long term, seeds germinated when exposed to light due to the degradation of pellets. The pellets were proportionally dispersed among the four studied habitats. More seeds sown in the field germinated more in shaded habitats, such as in the Gaultheria patch and the Larix understory, and seeds did not germinate on bare ground, where drought often occurred. Thus, the hares had two roles in the dispersal and germination of seeds: (1) the expansion of G. miqueliana populations through seed dispersal to various habitats and (2) the facilitation of delayed seed germination to avoid risks of hazards such as drought. The relationships between small mammals represented by the hare and the shrubs that produce berries are likely to be more mutually evolved than was previously thought.
Automated seed manipulation and planting
NASA Technical Reports Server (NTRS)
Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave
1988-01-01
Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.
Simple Cloud Chambers Using Gel Ice Packs
ERIC Educational Resources Information Center
Kamata, Masahiro; Kubota, Miki
2012-01-01
Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…
Apollo Passive Seismic Experiments: lunar data in SEED format
NASA Astrophysics Data System (ADS)
Nunn, C.; Nakamura, Y.; Igel, H.
2017-12-01
As a part of the Apollo lunar missions, five seismometers were deployed on the near side of the Moon between 1969 and 1972, and four of them operated continuously until 1977. Seismic data were collected on the Moon and telemetered to Earth. The data were recorded on digital magnetic tapes, with timestamps representing the time of signal reception on Earth. The taped data have been widely used for many applications. Data from the tapes had also been transferred to SEED (Standard for the Exchange of Earthquake Data) format and these SEED files were previously available at IRIS (Incorporated Research Institutions for Seismology). However, there were some timing-related problems with the original SEED files. We have re-imported the long period data to SEED format, and will make these data available via IRIS. There are many gaps within the data caused by loss of signal or instrument problems. The signal is reconstructed to be read in as a continuous record, with gaps within the seismic trace where necessary. We also record the ground station which received the signal from the Moon, and we preserve the timestamps within the file. The timestamps indicate that the sampling rate varies by up to 0.01 %. We investigate how much this is a change in the apparent sampling rate (due to the orbital parameters of the Moon and the rotation of the Earth) and how much is due to the instrument not maintaining a constant sampling rate. We also provide response files. The new files will be a valuable resource for analyzing the structure of the Moon.
NASA Astrophysics Data System (ADS)
Lamer, K.; Luke, E. P.; Kollias, P.; Oue, M.; Wang, J.
2017-12-01
The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates a fixed observatory in the Eastern North Atlantic (ENA) on Graciosa Island in the Azores. Straddling the tropics and extratropics, the Azores receive air transported from North America, the Arctic and sometimes Europe. At the ARM ENA site, marine boundary layer clouds are frequently observed all year round. Estimates of drizzle mass flux from the surface to cloud base height are documented using a combination of high sensitivity profiling 35-GHz radar and ceilometer observations. Three years of drizzle mass flux retrievals reveal that statistically, directly over the ENA site, marine boundary layer cloud drizzle rates tend to be weak with few heavy drizzle events. In the summer of 2017, this site hosted the first phase of the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign, which is motivated by the need for comprehensive in situ characterization of boundary layer structure, low clouds and aerosols. During this phase, the 35-GHz scanning ARM cloud radar was operated as a surveillance radar, providing regional context for the profiling observations. While less sensitive, the scanning radar measurements document a larger number of heavier drizzle events and provide domain-representative estimates of shallow precipitation. A best estimate, domain averaged, shallow precipitation rate for the region around the ARM ENA site is presented. The methodology optimally combines the ability of the profiling observations to detect the weak but frequently occurring drizzle events with the scanning cloud radar's ability to capture the less frequent heavier drizzle events. The technique is also evaluated using high resolution model output and a sophisticated forward radar operator.
Arabidopsis seed production limited by CO2 in simulated space experiments
NASA Technical Reports Server (NTRS)
Hoshizaki, T.
1984-01-01
Several generations of Arabidopsis thaliana were grown axenically from seed to seed on nutrient agar medium. The Arabidopsis plants produce seeds within 30 days after seeding, when grown either in containers open to the ambient atmosphere or in large sealed jars, but not in sealed test tubes. Moreover, the plant height was directly proportional to the size of the sealed container. Periodic analyses of the CO2 levels in the sealed containers has shown a decrease during the first week, but a tenfold increase in the following weeks. It is speculated that, by the end of the second week, the cotyledons entering the senescence stage would release ethylene into the culture atmosphere with a concomitant release of CO2, which in turn would induce further release of ethylene, hastening the senescence process in other tissues. Thus, in a controlled ecological life-support system of a space station, various components of the plant atmosphere may have to be maintained within the prescribed limits.
Paczyński; Pindor
2000-04-20
We selected Cepheids from the Optical Gravitational Lensing Experiment database for the Magellanic Clouds in the period range of 101.1=P=101.4 days. There were 33 objects in the LMC and 35 in the SMC. We find that the median amplitude of Cepheids in the LMC is 18% larger than in the SMC, a 4 sigma effect. For a sample of 42 galactic Cepheids in the same period range, the median amplitude is 7% larger than in the LMC, suggesting that the higher the metal content the larger the amplitude. This implies that the period-flux amplitude relation is not universal and cannot be used to measure distances accurately, unless properly calibrated.
GEWEX cloud assessment: A review
NASA Astrophysics Data System (ADS)
Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu
2013-05-01
Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.
Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds
NASA Astrophysics Data System (ADS)
Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.
2017-03-01
A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.
Cloud Technology May Widen Genomic Bottleneck - TCGA
Computational biologist Dr. Ilya Shmulevich suggests that renting cloud computing power might widen the bottleneck for analyzing genomic data. Learn more about his experience with the Cloud in this TCGA in Action Case Study.
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
NASA Astrophysics Data System (ADS)
Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.
2018-03-01
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further
NASA Technical Reports Server (NTRS)
Bacmeister, Julio; Rienecker, Michele; Suarez, Max; Norris, Peter
2007-01-01
The GEOS-5 atmospheric model is being developed as a weather-and-climate capable model. It must perform well in assimilation mode as well as in weather and climate simulations and forecasts and in coupled chemistry-climate simulations. In developing GEOS-5, attention has focused on the representation of moist processes. The moist physics package uses a single phase prognostic condensate and a prognostic cloud fraction. Two separate cloud types are distinguished by their source: "anvil" cloud originates in detraining convection, and large-scale cloud originates in a PDF-based condensation calculation. Ice and liquid phases for each cloud type are considered. Once created, condensate and fraction from the anvil and statistical cloud types experience the same loss processes: evaporation of condensate and fraction, auto-conversion of liquid or mixed phase condensate, sedimentation of frozen condensate, and accretion of condensate by falling precipitation. The convective parameterization scheme is the Relaxed Arakawa-Schubert, or RAS, scheme. Satellite data are used to evaluate the performance of the moist physics packages and help in their tuning. In addition, analysis of and comparisons to cloud-resolving models such as the Goddard Cumulus Ensemble model are used to help improve the PDFs used in the moist physics. The presentation will show some of our evaluations including precipitation diagnostics.
WIND DIRECTIONS ALOFT AND EFFECTS OF SEEDING ON PRECIPITATION IN THE WHITETOP EXPERIMENT*
Lovasich, Jeanne L.; Neyman, Jerzy; Scott, Elizabeth L.; Smith, Jerome A.
1969-01-01
The subdivision of all the experimental days of the Whitetop project into two approximately equal groups, group W with predominantly westerly winds aloft and group E with frequent easterly winds, shows a remarkable difference in the apparent effect of seeding. On W days there was no detectable effect of seeding on rainfall. On E days with seeding, the average 24 hour precipitation in an area of about 100,000 square miles was significantly less than that without seeding by 46 per cent of the latter. The decrease resulted from a “decapitation” of the usual afternoon rise in rainfall. It may be significant that the afternoon maximum of natural precipitation on E days occurs some two hours later than on W days. If the actual cause of the differences in rainfall was seeding, then the loss of water resulting from operational, rather than experimental, seeding would have averaged eight million acre-feet per summer. PMID:16591800
Abscisic Acid Levels and Seed Dormancy
Sondheimer, E.; Tzou, D. S.; Galson, Eva C.
1968-01-01
Dormant seeds from Fraxinus species require cold-temperature after-ripening prior to germination. Earlier, we found that abscisic acid (ABA) will inhibit germination of excised nondormant embryos and that this can be reversed with a combination of gibberellic acid and kinetin. Using Milborrow's quantitative “racemate dilution” method the ABA concentration in 3 types of Fraxinus seed and pericarp were determined. While ABA was present in all tissues, the highest concentration was found in the seed and pericarp of dormant F. americana. During the chilling treatment of F. americana the ABA levels decreased 37% in the pericarp and 68% in the seed. The ABA concentration of the seed of the nondormant species, F. ornus, is as low as that found in F. americana seeds after cold treatment. Experiments with exogenously added ABA solutions indicate that it is unlikely that the ABA in the pericarp functions in the regulation of seed dormancy. However, the ABA in the seed does seem to have a regulatory role in germination. Images PMID:16656935
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, H.; Zuidema, Paquita; Ackerman, Andrew
2011-06-16
An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associatedmore » with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of
Direct seeding in northern forest types
Ralph H. Griffin
1977-01-01
Two direct-seeding experiments were established to determine the effect of time of seeding (spring 1962 versus fall 1962), type of seedbed (prepared versus unprepared), and species (red pine (Pinus resinosa Ait.) versus white spruce (Picea glauca (Moench) Voss)) upon the success attained in the reforestation of a pine-barren site...
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Płóciennik, Marcin; Doutriaux, Charles; Blanquer, Ignacio; Barbera, Roberto; Donvito, Giacinto; Williams, Dean N.; Anantharaj, Valentine; Salomoni, Davide D.; Aloisio, Giovanni
2017-04-01
In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated, such as the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). A case study on climate models intercomparison data analysis addressing several classes of multi-model experiments is being implemented in the context of the EU H2020 INDIGO-DataCloud project. Such experiments require the availability of large amount of data (multi-terabyte order) related to the output of several climate models simulations as well as the exploitation of scientific data management tools for large-scale data analytics. More specifically, the talk discusses in detail a use case on precipitation trend analysis in terms of requirements, architectural design solution, and infrastructural implementation. The experiment has been tested and validated on CMIP5 datasets, in the context of a large scale distributed testbed across EU and US involving three ESGF sites (LLNL, ORNL, and CMCC) and one central orchestrator site (PSNC). The general "environment" of the case study relates to: (i) multi-model data analysis inter-comparison challenges; (ii) addressed on CMIP5 data; and (iii) which are made available through the IS-ENES/ESGF infrastructure. The added value of the solution proposed in the INDIGO-DataCloud project are summarized in the following: (i) it implements a different paradigm (from client- to server-side); (ii) it intrinsically reduces data movement; (iii) it makes lightweight the end-user setup; (iv) it fosters re-usability (of data, final
Interaction of a supernova shock with two interstellar clouds
NASA Astrophysics Data System (ADS)
Hansen, J. F.; McKee, C. F.
2005-10-01
The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon since it can result in stellar and planetary formation. Our experiments attempt to simulate this mass-loading as it occurs when a shock passes through interstellar clouds. We drive a strong shock using a 5 kJ laser into a foam-filled cylinder with embedded Al spheres (diameter D=120 μm) simulating interstellar clouds. The density ratio between Al and foam is ˜9. We have previously reported on the interaction between shock and a single cloud, and the ensuing Kelvin-Helmholtz and Widnall instabilities. We now report on experiments under way in which two clouds are placed side by side. Cloud separation (center to center) is either 1.2xD or 1.5xD. Initial results for 1.2xD show that cloud material merges and travels further downstream than in the single cloud case. For 1.5xD, material does not merge, but the clouds tilt toward each other. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.
Plan and Some Results of "Advanced Study on Precipitation Enhancement in Arid and Semi-Arid Regions"
NASA Astrophysics Data System (ADS)
Murakami, M.
2016-12-01
There are several technologies to secure water resources, including the desalination of seawater, recycling of industrial water and reuse of wastewater. However precipitation enhancement is the only way we can create a large amount of water for industrial use, for example, water for irrigation, provided we find clouds suitable for cloud seeding and apply appropriate and effective methods to increase precipitation. Therefore, rain enhancement research is critical in the quest for new water security options and innovative solutions in the UAE and other arid and semi-arid regions. The main objective of our project is to better evaluate, and ultimately improve, the effectiveness of rain enhancement in the UAE and other arid and semi-arid regions using hygroscopic and glaciogenic seeding techniques. One of the major questions regarding rain enhancement today is the effectiveness of hygroscopic seeding for warm and supercooled convective clouds. Our research will investigate the microphysical processes in seeded and unseeded clouds using a combination of laboratory experiments, numerical simulations and in-situ aircraft measurements in order to decipher the mechanism responsible for precipitation augmentation due to hygroscopic seeding. In our research, major elements of cloud seeding, e.g., assessment of seedability, development of optimal seeding methods and evaluation of seeding effects, will be investigated in the most efficient and realistic way, within three years, using mainly the numerical models with the sophisticated seeding scheme, which is developed on a basis of laboratory experiments and then validated against in-situ and remote sensing observations. In addition to the research plan, the outcomes of the research projects, which will be made available to the public at the end of the project and benefit the broader society, is discussed.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1984-01-01
The present investigation is concerned with results from an initial set of comparative experiments in a project which utilize a three-dimensional convective storm model. The modeling results presented are related to four comparative experiments, designated Cases A through D. One of two scientific questions considered involves the dynamical processes, either near the cloud top or well within the cloud interior, which contribute to organize cloud thermal patterns such as those revealed by IR satellite imagery for some storms having strong internal cloud-scale rotation. The second question is concerned with differences, in cloud-top height and temperature field characteristics, between thunderstorms with and without significant internal cloud-scale rotation. The four experiments A-D are compared with regard to both interior and cloud-top configurations in the context of the second question. A particular strong-shear experiment, Case B, is analyzed to address question one.
Sharing Planetary-Scale Data in the Cloud
NASA Astrophysics Data System (ADS)
Sundwall, J.; Flasher, J.
2016-12-01
On 19 March 2015, Amazon Web Services (AWS) announced Landsat on AWS, an initiative to make data from the U.S. Geological Survey's Landsat satellite program freely available in the cloud. Because of Landsat's global coverage and long history, it has become a reference point for all Earth observation work and is considered the gold standard of natural resource satellite imagery. Within the first year of Landsat on AWS, the service served over a billion requests for Landsat imagery and metadata, globally. Availability of the data in the cloud has led to new product development by companies and startups including Mapbox, Esri, CartoDB, MathWorks, Development Seed, Trimble, Astro Digital, Blue Raster and Timbr.io. The model of staging data for analysis in the cloud established by Landsat on AWS has since been applied to high resolution radar data, European Space Agency satellite imagery, global elevation data and EPA air quality models. This session will provide an overview of lessons learned throughout these projects. It will demonstrate how cloud-based object storage is democratizing access to massive publicly-funded data sets that have previously only been available to people with access to large amounts of storage, bandwidth, and computing power. Technical discussion points will include: The differences between staging data for analysis using object storage versus file storage Using object stores to design simple RESTful APIs through thoughtful file naming conventions, header fields, and HTTP Range Requests Managing costs through data architecture and Amazon S3's "requester pays" feature Building tools that allow users to take their algorithm to the data in the cloud Using serverless technologies to display dynamic frontends for massive data sets
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
NASA Astrophysics Data System (ADS)
Nar, Sevda Yeliz; Cakir, Altan
2018-02-01
Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.
NASA Astrophysics Data System (ADS)
Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina
2015-04-01
Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.
Comparison between SAGE II and ISCCP high-level clouds. 1: Global and zonal mean cloud amounts
NASA Technical Reports Server (NTRS)
Liao, Xiaohan; Rossow, William B.; Rind, David
1995-01-01
Global high-level clouds identified in Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements for January and July in the period 1985 to 1990 are compared with near-nadir-looking observations from the International Satellite Cloud Climatology Project (ISCCP). Global and zonal mean high-level cloud amounts from the two data sets agree very well, if clouds with layer extinction coefficients of less than 0.008/km at 1.02 micrometers wavelength are removed from the SAGE II results and all detected clouds are interpreted to have an average horizontal size of about 75 km along the 200 km transimission path length of the SAGE II observations. The SAGE II results are much more sensitive to variations of assumed cloud size than to variations of detection threshold. The geographical distribution of cloud fractions shows good agreement, but systematic regional differences also indicate that the average cloud size varies somewhat among different climate regimes. The more sensitive SAGE II results show that about one third of all high-level clouds are missed by ISCCP but that these clouds have very low optical thicknesses (less than 0.1 at 0.6 micrometers wavelength). SAGE II sampling error in monthly zonal cloud fraction is shown to produce no bias, to be less than the intraseasonal natural variability, but to be comparable with the natural variability at longer time scales.
Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings
Smalling, Kelly; Hladik, Michelle; Sanders, Corey; Kuivila, Kathryn
2018-01-01
Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms.
USDA-ARS?s Scientific Manuscript database
Although recently introduced, film-coating of agronomic seeds is now widely accepted in modern agriculture as an effective technology for protecting germinating seeds and seedlings. These experiments explored the possibility of using a bioplastic-based formulation to film-coat corn (maize) and cano...
Cloud Computing Technologies in Writing Class: Factors Influencing Students' Learning Experience
ERIC Educational Resources Information Center
Wang, Jenny
2017-01-01
The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS) system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study…
Does Ferocactus wislizeni (Cactaceae) have a between-year seed bank?
Bowers, Janice E.
2000-01-01
Field and laboratory experiments at Tumamoc Hill, Tucson, Arizona, U.S.A., demonstrated that Ferocactus wislizeni, a common perennial cactus in the northern Sonoran Desert, has a between-year seed bank. In laboratory studies, F. wislizeni seeds lost dormancy during storage at room temperature and had a light requirement for germination. Field experiments suggested that as much as 2% of the annual seed crop might escape post-dispersal predation even when unprotected; where suitable safe sites exist, a higher percentage might escape. Germination of seed recovered monthly from above- and below-ground components of an artificial seed bank showed that seeds can survive at least 18 months in and on the soil. Seed banks enable F. wislizeni to take advantage of favorable rains and temperatures throughout the growing season, thus increasing the number of opportunities for germination. Moreover, seed banks enable F. wislizeni to respond hugely when the climate seems especially favorable, thus producing the large cohorts necessary to compensate for high seedling mortality. (C) 2000 Academic Press.
Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.
Observations of marine stratocumulus clouds during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Randall, David A.; Nicholls, Stephen
1988-01-01
The First International Satellite Cloud Climatology Project Regional Experiment (FIRE) to study extensive fields of stratocumulus clouds off the coast of California is presented. Measurements on the regional and detailed local scales were taken, allowing for a wide interpretation of the mean, turbulent, microphysical, radiative, and chemical characteristics of stratocumulus. Multiple aircraft and ground-based remote-sensing systems were used to study the time evolution of the boundary layer structure over a three-week period, and probes from tethered balloons were used to measure turbulence and to collect cloud-microphysical and cloud-radiative data. The observations provide a base for studying the generation maintenance and dissipation of stratocumulus clouds, and could aid in developing numerical models and improved methods for retrieving cloud properties by satellite.
Blattmann, Tamara; Boch, Steffen; Türke, Manfred; Knop, Eva
2013-01-01
Seed dispersal is one of the most important mechanisms shaping biodiversity, and animals are one of the key dispersal vectors. Animal seed dispersal can directly or indirectly be altered by invasive organisms through the establishment of new or the disruption of existing seed dispersal interactions. So far it is known for a few gastropod species that they ingest and defecate viable plant seeds and consequently act as seed dispersers, referred to as gastropodochory. In a multi-species experiment, consisting of five different plant species and four different gastropod species, we tested with a fully crossed design whether gastropodochory is a general mechanism across native gastropod species, and whether it is altered by the invasive alien slug species Arion lusitanicus. Specifically, we hypothesized that a) native gastropod species consume the seeds from all tested plant species in equal numbers (have no preference), b) the voracious invasive alien slug A. lusitanicus--similarly to its herbivore behaviour--consumes a higher amount of seeds than native gastropods, and that c) seed viability is equal among different gastropod species after gut passage. As expected all tested gastropod species consumed all tested plant species. Against our expectation there was a difference in the amount of consumed seeds, with the largest and native mollusk Helix pomatia consuming most seeds, followed by the invasive slug and the other gastropods. Seed damage and germination rates did not differ after gut passage through different native species, but seed damage was significantly higher after gut passage through the invasive slug A. lusitanicus, and their germination rates were significantly reduced.
Ground and space experiments to determine the ability of plant seeds to survive in space
NASA Astrophysics Data System (ADS)
Tepfer, David; Zalar, Andreja; Leach, Sydney
2008-09-01
The EXPOSE consortium seeks to understand the capacity of organisms (including extremophiles) to survive under space conditions, i.e. to withstand a long voyage through space. We have proposed that plant seeds are suited for space travel. In our current SEEDS experiment on the Columbus module of the ISS, Arabidopsis seeds were chosen for their small size (approx. 300 μm) and the availability of mutants lacking UV screens. These mutants should allow us to establish the role of flavonoids and sinapic acid esters in resistance to UV and other stresses encountered during space travel. The importance of these substances is indicated by simulations (manuscripts in preparation) and spectroscopy (Zalar 2004; Zalar et al. 2007; Zalar et al. 2007), the results of which will be discussed. Zalar A, (2004) Résistance des graines d'arabidopsis aux UV et à d'autres conditions néfastes dans l'espace. Journal DESS Zalar A, Tepfer D, Hoffmann SV, Kenney JM, Leach S (2007) Directed exospermia: I. Biological modes of resistance to UV light are implied through absorption spectroscopy of DNA and potential UV screens. International Journal of Astrobiology 6: 229-240 Zalar A, Tepfer D, Hoffmann SV, Kollmann A, Leach S (2007) Directed exospermia: II. VUV-UV spectroscopy of specialized UV screens, including plant flavonoids, suggests using metabolic engineering to improve survival in space. International Journal of Astrobiology 6: 291-301
FSH: fast spaced seed hashing exploiting adjacent hashes.
Girotto, Samuele; Comin, Matteo; Pizzi, Cinzia
2018-01-01
Patterns with wildcards in specified positions, namely spaced seeds , are increasingly used instead of k -mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can provide better sensitivity. Many of these applications require to compute the hashing of each position in the input sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k -mers can be rapidly computed by exploiting the large overlap between consecutive k -mers, spaced seeds hashing is usually computed from scratch for each position in the input sequence, thus resulting in slower processing. The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6[Formula: see text] to 5.3[Formula: see text], depending on the structure of the spaced seed. Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up. This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient. The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.
Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud
NASA Astrophysics Data System (ADS)
Elmsheuser, Johannes; Medrano Llamas, Ramón; Legger, Federica; Sciabà, Andrea; Sciacca, Gianfranco; Úbeda García, Mario; van der Ster, Daniel
2012-12-01
Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion policies. A study of the historical test results for ATLAS, CMS and LHCb will be presented, including comparisons between the experiments’ grid availabilities and a search for site-based or temporal failure correlations. Finally, we will look to future plans that will allow users to gain new insights into the test results; these include developments to allow increased testing concurrency, increased scale in the number of metrics recorded per test job (up to hundreds), and increased scale in the historical job information (up to many millions of jobs per VO).
Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE
NASA Astrophysics Data System (ADS)
Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.
2003-12-01
Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each
Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony
1992-01-01
Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.
Chickpea seeds germination rational parameters optimization
NASA Astrophysics Data System (ADS)
Safonova, Yu A.; Ivliev, M. N.; Lemeshkin, A. V.
2018-05-01
The paper presents the influence of chickpea seeds bioactivation parameters on their enzymatic activity experimental results. Optimal bioactivation process modes were obtained by regression-factor analysis: process temperature - 13.6 °C, process duration - 71.5 h. It was found that in the germination process, the proteolytic, amylolytic and lipolytic enzymes activity increased, and the urease enzyme activity is reduced. The dependences of enzyme activity on chickpea seeds germination conditions were obtained by mathematical processing of experimental data. The calculated data are in good agreement with the experimental ones. This confirms the optimization efficiency based on experiments mathematical planning in order to determine the enzymatic activity of chickpea seeds germination optimal parameters of bioactivated seeds.
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Miller, M. A.; Wang, J.
2017-12-01
The first Intensive Observation Period of the DOE Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) took place from 21 June through 20 July 2017 involving the deployment of the ARM Gulfstream-159 (G-1) aircraft with a suite of in situ cloud and aerosol instrumentation in the vicinity of the ARM Climate Research Facility Eastern North Atlantic (ENA) site on Graciosa Island, Azores. Here we present preliminary analysis of the thermodynamic characteristics of the marine boundary layer and the variability of cloud properties for a mixed cloud field including both stratiform cloud layers and deeper cumulus elements. Analysis combines in situ atmospheric state observations from the G-1 with radiosonde profiles and surface meteorology from the ENA site in order to characterize the thermodynamic structure of the marine boundary layer including the coupling state and stability. Cloud/drizzle droplet size distributions measured in situ are combined with remote sensing observations from a scanning cloud radar, and vertically pointing cloud radar and lidar provide quantification of the macrophysical and microphysical properties of the mixed cloud field.
Casseau, Vincent; De Croon, Guido; Izzo, Dario; Pandolfi, Camilla
2015-01-01
Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an "optimal" state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates.
2015-01-01
Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an “optimal” state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates. PMID:25938765
NASA Astrophysics Data System (ADS)
Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami
2014-10-01
In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.
Additional confirmation of the validity of laboratory simulation of cloud radiances
NASA Technical Reports Server (NTRS)
Davis, J. M.; Cox, S. K.
1986-01-01
The results of a laboratory experiment are presented that provide additional verification of the methodology adopted for simulation of the radiances reflected from fields of optically thick clouds using the Cloud Field Optical Simulator (CFOS) at Colorado State University. The comparison of these data with their theoretically derived counterparts indicates that the crucial mechanism of cloud-to-cloud radiance field interaction is accurately simulated in the CFOS experiments and adds confidence to the manner in which the optical depth is scaled.
Integration of cloud-based storage in BES III computing environment
NASA Astrophysics Data System (ADS)
Wang, L.; Hernandez, F.; Deng, Z.
2014-06-01
We present an on-going work that aims to evaluate the suitability of cloud-based storage as a supplement to the Lustre file system for storing experimental data for the BES III physics experiment and as a backend for storing files belonging to individual members of the collaboration. In particular, we discuss our findings regarding the support of cloud-based storage in the software stack of the experiment. We report on our development work that improves the support of CERN' s ROOT data analysis framework and allows efficient remote access to data through several cloud storage protocols. We also present our efforts providing the experiment with efficient command line tools for navigating and interacting with cloud storage-based data repositories both from interactive sessions and grid jobs.
Yago, Jonar I; Roh, Jae-Hwan; Bae, Soon-do; Yoon, Young-Nam; Kim, Hyun-Ju; Nam, Min-Hee
2011-09-01
The seed-borne mycoflora of sorghum and foxtail millet collected from different growing areas in South Korea were isolated and taxonomically identified using dry inspection, standard blotter and the agar plate method. We investigated the in vitro and in vivo germination rates of disinfected and non-disinfected seeds of sorghum and foxtail millet using sterilized and unsterilized soil. The percent recovery of seed-borne mycoflora from the seed components of sorghum and foxtail millet seeds was determined and an infection experiment using the dominant species was evaluated for seedling emergence and mortality. A higher number of seed-borne fungi was observed in sorghum compared to that of foxtail millet. Eighteen fungal genera with 34 fungal species were identified from the seeds of sorghum and 13 genera with 22 species were identified from the seeds of foxtail millet. Five dominant species such as Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme and Phoma sp. were recorded as seed-borne mycoflora in sorghum and 4 dominant species (Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme) were observed in foxtail millet. The in vitro and in vivo germination rates were higher using disinfected seeds and sterilized soil. More seed-borne fungi were recovered from the pericarp compared to the endosperm and seed embryo. The percent recovery of seed-borne fungi ranged from 2.22% to 60.0%, and Alternaria alternata, Curvularia lunata and 4 species of Fusarium were isolated from the endosperm and embryo of sorghum and foxtail millet. Inoculation of the dominant seed-borne fungi showed considerable mortality of seedlings. All the transmitted seed-borne fungi might well be a primary source of infection of sorghum and foxtail millet crops.
Study of the effect of cloud inhomogeneity on the earth radiation budget experiment
NASA Technical Reports Server (NTRS)
Smith, Phillip J.
1988-01-01
The Earth Radiation Budget Experiment (ERBE) is the most recent and probably the most intensive mission designed to gather precise measurements of the Earth's radiation components. The data obtained from ERBE is of great importance for future climatological studies. A statistical study reveals that the ERBE scanner data are highly correlated and that instantaneous measurements corresponding to neighboring pixels contain almost the same information. Analyzing only a fraction of the data set when sampling is suggested and applications of this strategy are given in the calculation of the albedo of the Earth and of the cloud-forcing over ocean.
Groves, Carol; German, Thomas; Dasgupta, Ranjit; Mueller, Daren; Smith, Damon L
2016-01-01
Soybean vein necrosis virus (SVNV; genus Tospovirus; Family Bunyaviridae) is a negative-sense single-stranded RNA virus that has been detected across the United States and in Ontario, Canada. In 2013, a seed lot of a commercial soybean variety (Glycine max) with a high percentage of discolored, deformed and undersized seed was obtained. A random sample of this seed was planted in a growth room under standard conditions. Germination was greater than 90% and the resulting seedlings looked normal. Four composite samples of six plants each were tested by reverse transcription polymerase chain reaction (RT-PCR) using published primers complimentary to the S genomic segment of SVNV. Two composite leaflet samples retrieved from seedlings yielded amplicons with a size and sequence predictive of SVNV. Additional testing of twelve arbitrarily selected individual plants resulted in the identification of two SVNV positive plants. Experiments were repeated by growing seedlings from the same seed lot in an isolated room inside a thrips-proof cage to further eliminate any external source of infection. Also, increased care was taken to reduce any possible PCR contamination. Three positive plants out of forty-eight were found using these measures. Published and newly designed primers for the L and M RNAs of SVNV were also used to test the extracted RNA and strengthen the diagnosis of viral infection. In experiments, by three scientists, in two different labs all three genomic RNAs of SVNV were amplified in these plant materials. RNA-seq analysis was also conducted using RNA extracted from a composite seedling sample found to be SVNV-positive and a symptomatic sample collected from the field. This analysis revealed both sense and anti-sense reads from all three gene segments in both samples. We have shown that SVNV can be transmitted in seed to seedlings from an infected seed lot at a rate of 6%. To our knowledge this is the first report of seed-transmission of a Tospovirus.
Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration
NASA Astrophysics Data System (ADS)
Grigsby, F.; Peng, D.; Downer, M. C.
2004-12-01
By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.
NASA Technical Reports Server (NTRS)
Petersen, Walter A.; Jensen, Michael P.
2011-01-01
The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde
DeJongh, Matthew; Bockstege, Benjamin; Frybarger, Paul; Hazekamp, Nicholas; Kammeraad, Joshua; McGeehan, Travis
2012-01-01
Summary: CytoSEED is a Cytoscape plugin for viewing, manipulating and analyzing metabolic models created using the Model SEED. The CytoSEED plugin enables users of the Model SEED to create informative visualizations of the reaction networks generated for their organisms of interest. These visualizations are useful for understanding organism-specific biochemistry and for highlighting the results of flux variability analysis experiments. Availability and Implementation: Freely available for download on the web at http://sourceforge.net/projects/cytoseed/. Implemented in Java SE 6 and supported on all platforms that support Cytoscape. Contact: dejongh@hope.edu Supplementary information: Installation instructions, a tutorial, and full-size figures are available at http://www.cs.hope.edu/cytoseed/. PMID:22210867
NASA Astrophysics Data System (ADS)
Flynn, Michael S.; Griffiths, John F.
1980-12-01
An analysis of the possible differences among various rainfall parameters during drought and nondrought periods was undertaken for 12 Texas stations. The division of monthly rainfall amounts into quintiles served as the rainfall classification. Rainfall amounts, number of rains and rainfall intensities were calculated for each quintile for four thresholds of rainfall 0.0254, 0.2540, 0.5080 and 1.2700 cm. The thresholds were applied on a daily and hourly basis. At low rainfall thresholds in nearly every case, numbers of rains in very dry periods proved to be <100% of normal.The possible differences in persistence of rainfall during Very Dry and Very Wet periods were examined by calculating runs of rains of 0.0254 cm or more per hour. Medians of runs of rain hours in Very Dry periods were found to be less than those in Very Wet periods except at Corpus Christi in April and at Waco in February. Probabilities that a run of rain hours would extend to a given length were determined. During Very Dry periods a probability >0.5 that a rain will extend into a second hour during a month of key importance to agriculture (June, July and August) occurs only at Amarillo, Lovelady, Port Arthur and Waco. The probability that a rain will extend into a third hour is never above 0.5 during the key months in Very Dry periods for any of the stations studied.The implications of these findings are discussed in relation to feasibility of cloud seeding and to irrigation management during severe drought.
Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo
NASA Technical Reports Server (NTRS)
Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.
1990-01-01
Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.
Evaluation of AIRS cloud properties using MPACE data
NASA Astrophysics Data System (ADS)
Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry
2005-12-01
Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.
Soil moisture and fungi affect seed survival in California grassland annual plants.
Mordecai, Erin A
2012-01-01
Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.
Coherent forward broadening in cold atom clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, F.
2016-02-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.
Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds
NASA Astrophysics Data System (ADS)
Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel
2014-06-01
The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
NASA Technical Reports Server (NTRS)
Twohy, Cynthia H.; Hudson, James G.
1995-01-01
In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.
NASA Astrophysics Data System (ADS)
Durant, Adam J.
2007-12-01
Volcanic clouds and tephra fallout present a hazard to aviation, human and animal health (direct inhalation or ingestion, contamination of water supplies), and infrastructure (building collapse, burial of roads and railways, agriculture, abrasive and chemical effects on machinery). Understanding sedimentation processes is a fundamental component in the prediction of volcanic cloud lifetime and fallout at the ground, essential in the mitigation of these hazards. The majority of classical volcanic ash transport and dispersion models (VATDM) are based solely on fluid dynamics. The non-agreement between VATDM and observed regional-scale tephra deposit characteristics is especially obvious at large distances from the source volcano. In meteorology, the processes of hydrometeor nucleation, growth and collection have been long-established as playing a central role in sedimentation and precipitation. Taking this as motivation, the hypothesis that hydrometeor formation drives sedimentation from volcanic clouds was tested. The research objectives of this dissertation are: (1) To determine the effectiveness of tephra particles in the catalysis of the liquid water to ice phase transformation, with application to ice hydrometeor formation in volcanic clouds. (2) To determine the sedimentological characteristics of distal (100s km) tephra fallout from recent volcanic clouds. (3) To assess particle fallout rates from recent volcanic clouds in the context of observed deposit characteristics. (4) To assess the implications of hydrometeor formation on the enhancement of volcanic sedimentation and the potential for cloud destabilization from volcanic hydrometeor sublimation. Dissertation Overview. The following chapters present the analysis, results and conclusions of heterogeneous ice nucleation experiments and sedimentological characterization of several recent tephra deposits. The dissertation is organized in three chapters, each prepared in journal article format. In Chapter 1
Statistical properties of a cloud ensemble - A numerical study
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, Joanne; Soong, Su-Tzai
1987-01-01
The statistical properties of cloud ensembles under a specified large-scale environment, such as mass flux by cloud drafts and vertical velocity as well as the condensation and evaporation associated with these cloud drafts, are examined using a three-dimensional numerical cloud ensemble model described by Soong and Ogura (1980) and Tao and Soong (1986). The cloud drafts are classified as active and inactive, and separate contributions to cloud statistics in areas of different cloud activity are then evaluated. The model results compare well with results obtained from aircraft measurements of a well-organized ITCZ rainband that occurred on August 12, 1974, during the Global Atmospheric Research Program's Atlantic Tropical Experiment.
NASA Astrophysics Data System (ADS)
Hong, Yang
Precipitation estimation from satellite information (VISIBLE , IR, or microwave) is becoming increasingly imperative because of its high spatial/temporal resolution and board coverage unparalleled by ground-based data. After decades' efforts of rainfall estimation using IR imagery as basis, it has been explored and concluded that the limitations/uncertainty of the existing techniques are: (1) pixel-based local-scale feature extraction; (2) IR temperature threshold to define rain/no-rain clouds; (3) indirect relationship between rain rate and cloud-top temperature; (4) lumped techniques to model high variability of cloud-precipitation processes; (5) coarse scales of rainfall products. As continuing studies, a new version of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN), called Cloud Classification System (CCS), has been developed to cope with these limitations in this dissertation. CCS includes three consecutive components: (1) a hybrid segmentation algorithm, namely Hierarchically Topographical Thresholding and Stepwise Seeded Region Growing (HTH-SSRG), to segment satellite IR images into separated cloud patches; (2) a 3D feature extraction procedure to retrieve both pixel-based local-scale and patch-based large-scale features of cloud patch at various heights; (3) an ANN model, Self-Organizing Nonlinear Output (SONO) network, to classify cloud patches into similarity-based clusters, using Self-Organizing Feature Map (SOFM), and then calibrate hundreds of multi-parameter nonlinear functions to identify the relationship between every cloud types and their underneath precipitation characteristics using Probability Matching Method and Multi-Start Downhill Simplex optimization techniques. The model was calibrated over the Southwest of United States (100°--130°W and 25°--45°N) first and then adaptively adjusted to the study region of North America Monsoon Experiment (65°--135°W and 10°--50°N) using
Cloud radiative properties and aerosol - cloud interaction
NASA Astrophysics Data System (ADS)
Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw
2015-04-01
The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.
Álvarez-Espino, R; Ríos-Casanova, L; Godínez-Álvarez, H
2017-05-01
To determine seed removal influence on seed populations, we need to quantify pre- and post-dispersal seed removal. Several studies have quantified seed removal in temperate American deserts, but few studies have been performed in tropical deserts. These studies have only quantified pre- or post-dispersal seed removal, thus underestimating the influence of seed removal. We evaluated pre- and post-dispersal seed removal in the columnar cactus Stenocereus stellatus in a Mexican tropical desert. We performed selective exclosure experiments to estimate percentage of seeds removed by ants, birds and rodents during the pre- and post-dispersal phases. We also conducted field samplings to estimate abundance of the most common seed removers. Birds (10-28%) removed a higher percentage of seeds than ants (2%) and rodents (1-4%) during pre-dispersal seed removal. Melanerpes hypopolius was probably the main bird removing seeds from fruits. Ants (62-64%) removed a higher percentage of seeds than birds (34-38%) and rodents (16-30%) during post-dispersal seed removal. Pogonomyrmex barbatus was probably the main ant removing seeds from soil. Birds and ants are the main pre- and post-dispersal seed removers in S. stellatus, respectively. Further studies in other S. stellatus populations and plants with different life forms and fruit types will contribute to evaluate seed removal in tropical American deserts. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Figuerola, Jordi; Charalambidou, Iris; Santamaria, Luis; Green, Andy J.
2010-06-01
Long distance dispersal may have important consequences for gene flow and community structure. The dispersal of many plants depends on transport by vertebrate seed dispersers. The shapes of seed shadows produced by vertebrates depend both on movement patterns of the dispersers and on the dynamics and effects of passage through the disperser’s gut (i.e. the retention time, survival and germination of ingested seeds). A combination of experiments with captive waterbirds and aquatic plant seeds was used to analyse the following: (a) the effects of inter- and intra-specific variation in seed size and duck species on seed retention time in the gut and (b) the relationship between retention time and the percent germination and germination rates of seeds. Among the three Scirpus species used, those with smaller seeds showed higher survival after ingestion by birds and longer retention times inside their guts than those with larger seeds. For Potamogeton pectinatus, only seeds from the smaller size class (<8 mg) survived ingestion. Retention time affected the percent germination and germination rate of Scirpus seeds but in a manner that varied for the different plant and bird species studied. We recorded both linear and non-linear effects of retention time on percent germination. In addition, germination rate was positively correlated with retention time in Scirpus litoralis but negatively correlated in Scirpus lacustris. Small seed size can favour dispersal over larger distances. However, the effects of retention time on percent germination can modify the seed shadows produced by birds due to higher percent germination of seeds retained for short or intermediate periods. The changes in dispersal quality associated with dispersal distance (which is expected to be positively related to retention time) will affect the probability of seedling establishment over longer distances and, thus, the spatial characteristics of the effective seed shadow.
Yago, Jonar I.; Bae, Soon-do; Yoon, Young-Nam; Kim, Hyun-Ju; Nam, Min-hee
2011-01-01
The seed-borne mycoflora of sorghum and foxtail millet collected from different growing areas in South Korea were isolated and taxonomically identified using dry inspection, standard blotter and the agar plate method. We investigated the in vitro and in vivo germination rates of disinfected and non-disinfected seeds of sorghum and foxtail millet using sterilized and unsterilized soil. The percent recovery of seed-borne mycoflora from the seed components of sorghum and foxtail millet seeds was determined and an infection experiment using the dominant species was evaluated for seedling emergence and mortality. A higher number of seed-borne fungi was observed in sorghum compared to that of foxtail millet. Eighteen fungal genera with 34 fungal species were identified from the seeds of sorghum and 13 genera with 22 species were identified from the seeds of foxtail millet. Five dominant species such as Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme and Phoma sp. were recorded as seed-borne mycoflora in sorghum and 4 dominant species (Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme) were observed in foxtail millet. The in vitro and in vivo germination rates were higher using disinfected seeds and sterilized soil. More seed-borne fungi were recovered from the pericarp compared to the endosperm and seed embryo. The percent recovery of seed-borne fungi ranged from 2.22% to 60.0%, and Alternaria alternata, Curvularia lunata and 4 species of Fusarium were isolated from the endosperm and embryo of sorghum and foxtail millet. Inoculation of the dominant seed-borne fungi showed considerable mortality of seedlings. All the transmitted seed-borne fungi might well be a primary source of infection of sorghum and foxtail millet crops. PMID:22783105
SparkClouds: visualizing trends in tag clouds.
Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash
2010-01-01
Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.
Global aerosol effects on convective clouds
NASA Astrophysics Data System (ADS)
Wagner, Till; Stier, Philip
2013-04-01
Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.
Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths
NASA Technical Reports Server (NTRS)
Rind, David; Lonergan, P.; Shah, K.
1999-01-01
The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows
Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2004-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
Field measurements of cloud droplet dynamics
NASA Astrophysics Data System (ADS)
Molacek, Jan; Bagheri, Gholamhossein; Bertens, Augustinus; Xu, Haitao; Bodenschatz, Eberhard
2017-11-01
We present an in-situ experiment investigating the dynamics of cloud droplets and its dependence on the turbulent flow properties. This dynamics plays a major role in the rate of growth of cloud particles by coalescence and the resulting precipitation rate. The experiment takes place at a mountain research station at an altitude of 2650m, and will make use of a movable platform that can travel with the mean wind velocity. Here we present preliminary results using a stationary setup. Simultaneous measurements of other variables such as droplet size distribution and humidity fluctuations are done in order to develop a more complete picture of the microphysical conditions within clouds. We thank the Bavarian State Ministry of the Environment and Consumer Protection for their generous financial support. We also acknowledge funding from European Union Horizon 2020 Programme via the COMPLETE project.
Cloud-Top Entrainment in Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Mellado, Juan Pedro
2017-01-01
Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.
GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems (WG2)
NASA Technical Reports Server (NTRS)
Starr, David
2002-01-01
Status, progress and plans will be given for current GCSS (GEWEX Cloud System Study) WG2 (Working Group on Cirrus Cloud Systems) projects, including: (a) the Idealized Cirrus Model Comparison Project, (b) the Cirrus Parcel Model Comparison Project (Phase 2), and (c) the developing Hurricane Nora extended outflow model case study project. Past results will be summarized and plans for the upcoming year described. Issues and strategies will be discussed. Prospects for developing improved cloud parameterizations derived from results of GCSS WG2 projects will be assessed. Plans for NASA's CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Layers - Florida Area Cirrus Experiment) potential opportunities for use of those data for WG2 model simulations (future projects) will be briefly described.
The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination.
Hasannejad, S; Zad, S Javad; Alizade, H Mohamad; Rahymian, H
2006-01-01
Broomrape (Orobanche aegyptiaca L.), one of the most important parasitic weeds in Iran, is a root parasitic plant that can attack several crops such as tobacco, sunflower, tomato and etc. Several methods were used for Orobanche control, however these methods are inefficient and very costly. Biological control is an additional recent tool for the control of parasitic weeds. In order to study of the fungus Fusarium oxysporum (biocontrol agent) effects on broomrape seed germination, two laboratory studies were conducted in Tehran University. In the first experiment, different concentration of GR60 (0, 1, 2 and 5 ppm) as stimulation factor for Orobanche seeds germination were experimented. Results showed that concentrations of GR60 had a significant effect on seed germination. The highest seed germination percent was obtained in 1 ppm. In the second experiment, the effect of Fusarium oxysporum was tested on O. aegyptiaca seeds germination. The fungus Fusarium oxysporum were isolated from infested and juvenile O. aegyptiaca ower stalks in tomato field in karaj. Fungus spores suspension in different concentrations (0 (Control), 10(5) (T1), 10(6) (T2), 10(7) (T3) and 3 x 10(7) (T4)) from potato dextrose agar (PDA) prepared and together with 1ppm of GR60 concentration were tested on O. aegyptiaca seeds. Results show that the highest inhibition of seed germination obtained in 10(5) spores/ml. With increasing of suspension concentrations, inhibition percent was reduced and mortality of seeds germ tube was increased. In this investigation, Fusarium oxysporum can be used to inhibit seed germination, stimulate the "suicidal germination" of seeds and reduce the Orobanche seed bank.
How much Dillenia indica seed predation occurs from Asian elephant dung?
NASA Astrophysics Data System (ADS)
Sekar, Nitin; Giam, Xingli; Sharma, Netra Prasad; Sukumar, Raman
2016-01-01
Elephants are thought to be effective seed dispersers, but research on whether elephant dung effectively protects seeds from seed predation is lacking. Quantifying rates of seed predation from elephant dung will facilitate comparisons between elephants and alternative dispersers, helping us understand the functional role of megaherbivores in ecosystems. We conducted an experiment to quantify the predation of Dillenia indica seeds from elephant dung in Buxa Reserve, India from December 2012 to April 2013. Using dung boluses from the same dung pile, we compared the number of seeds in boluses that are a) opened immediately upon detection (control boluses), b) made available only to small seed predators (<3 mm wide) for 1-4 months, and c) made available to all seed predators and secondary dispersers for 1-4 months. Using a model built on this experiment, we estimated that seed predation by small seed predators (most likely ants and termites) destroys between 82.9% and 96.4% of seeds in elephant dung between the time of defecation and the median germination date for D. indica. Exposure to larger seed predators and secondary dispersers did not lead to a significant additional reduction in the number of seeds per dung bolus. Our findings suggest that post-dispersal seed predation by small insects (<3 mm) substantially reduces but does not eliminate the success of elephants as dispersers of D. indica in a tropical moist forest habitat.
University of Maryland MRSEC - Research: Seed 3
MRSEC Templates Opportunities Search Home » Research » Seed 3 Seed 3: Modeling Elastic Effects on controlling parameters and variables include temperature, deposition flux, external electric field and elastic simulating the effects of these controlling factors often lead to predictions that guide future experiments
NASA Astrophysics Data System (ADS)
Goldsmith, K. J. A.; Pittard, J. M.
2018-05-01
The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.
Monitor weather conditions for cloud seeding control. [Colorado River Basin
NASA Technical Reports Server (NTRS)
Kahan, A. M. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The near real-time DCS platform data transfer to the time-share compare is a working reality. Six stations are now being automatically monitored and displayed with a system delay of 3 to 8 hours from time of data transmission to time of data accessibility on the computer. The DCS platform system has proven itself a valuable tool for near real-time monitoring of mountain precipitation. Data from Wolf Creek Pass were an important input in making the decision when to suspend seeding operations to avoid exceeding suspension criteria in that area. The DCS platforms, as deployed in this investigation, have proven themselves to be reliable weather resistant systems for winter mountain environments in the southern Colorado mountains.
Coherent Forward Broadening in Cold Atom Clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, Francis
2016-05-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.
A Review Study on Cloud Computing Issues
NASA Astrophysics Data System (ADS)
Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti
2018-05-01
Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.
NASA Astrophysics Data System (ADS)
Schlesinger, Robert E.
1988-05-01
An anelastic three-dimensional model is used to investigate the effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared mature isolated midlatitude thunderstorms. Three comparative experiments are performed, differing only with respect to the stratospheric stability. The assumed stratospheric lapse rate is 0 K km1 (isothermal) in the first experiment, 3 K km1 in the second, and 3 K km1 (inversion) in the third.Kinematic storm structure is very similar in all three cases, especially in the troposphere. A strong quasi-steady updraft evolves splitting into a dominant cyclonic overshooting right-mover and a weaker anticyclonic left-mover that does not reach the tropopause. Strongest downdrafts occur at low to middle levels between the updrafts, and in the lower stratosphere a few kilometers upshear and downshear of the tapering updraft summit.Each storm shows a cloud-top thermal couplet, relatively cold near and upshear of the summit, and with a `close-in' warm region downshear. Both cold and warm regions become warmer, with significant morphological changes and a lowering of the cloud summit, as stratospheric stability is increased, though the temperature spread is not greatly affected.The coldest and highest cloud-top points are nearly colocated in the absence of a stratospheric inversion, but the coldest point is offset well upshear of the summit when an inversion is present. The cold region as a whole in each case shows at least a transient `V' shape, with the arms pointing downshear, although this shape is persistent only with the inversion.In the experiment with a 3 K km1 stratospheric lapse rate (weakest stability), the warm region is small and separates into two spots with secondary cold spots downshear of them. The warm region becomes larger, and remains single, as stratospheric stability increase. In each run, the warm regions are not accompanied by corresponding cloud-top height minima except very
Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments
NASA Astrophysics Data System (ADS)
Thurairajah, Brentha; Thomas, Gary E.; von Savigny, Christian; Snow, Martin; Hervig, Mark E.; Bailey, Scott M.; Randall, Cora E.
2017-09-01
Polar Mesospheric Cloud (PMC) observations from the Solar Occultation for Ice Experiment (SOFIE) and the Cloud Imaging and Particle Size (CIPS) experiment are used to investigate the response of PMCs to forcing associated with the 27-day solar rotation. We quantify the PMC response in terms of sensitivity values. Analysis of PMC data from 14 seasons indicate a large seasonal variability in sensitivity with both correlation and anti-correlation between PMC properties and Lyman-alpha irradiance for individual seasons. However, a superposed epoch analysis reveals the expected anti-correlation between variations in solar Lyman-alpha and variations in PMC ice water content, albedo, and frequency of occurrence. The PMC height is found to significantly correlate with 27-day variations in solar Lyman-alpha in the Southern Hemisphere (SH), but not in the Northern hemisphere (NH). Depending on instrument and property, the time lag between variations in PMC properties and solar Lyman-alpha ranges from 0 to 3 days in the NH and from 6 to 7 days in the SH. These hemispheric differences in PMC height and time lag are not understood, but it is speculated that they result from dynamical forcing that is controlled by the 27-day solar cycle.
Measurement of optical blurring in a turbulent cloud chamber
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.
2016-10-01
Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the
Automatic seed picking for brachytherapy postimplant validation with 3D CT images.
Zhang, Guobin; Sun, Qiyuan; Jiang, Shan; Yang, Zhiyong; Ma, Xiaodong; Jiang, Haisong
2017-11-01
Postimplant validation is an indispensable part in the brachytherapy technique. It provides the necessary feedback to ensure the quality of operation. The ability to pick implanted seed relates directly to the accuracy of validation. To address it, an automatic approach is proposed for picking implanted brachytherapy seeds in 3D CT images. In order to pick seed configuration (location and orientation) efficiently, the approach starts with the segmentation of seed from CT images using a thresholding filter which based on gray-level histogram. Through the process of filtering and denoising, the touching seed and single seed are classified. The true novelty of this approach is found in the application of the canny edge detection and improved concave points matching algorithm to separate touching seeds. Through the computation of image moments, the seed configuration can be determined efficiently. Finally, two different experiments are designed to verify the performance of the proposed approach: (1) physical phantom with 60 model seeds, and (2) patient data with 16 cases. Through assessment of validated results by a medical physicist, the proposed method exhibited promising results. Experiment on phantom demonstrates that the error of seed location and orientation is within ([Formula: see text]) mm and ([Formula: see text])[Formula: see text], respectively. In addition, the most seed location and orientation error is controlled within 0.8 mm and 3.5[Formula: see text] in all cases, respectively. The average process time of seed picking is 8.7 s per 100 seeds. In this paper, an automatic, efficient and robust approach, performed on CT images, is proposed to determine the implanted seed location as well as orientation in a 3D workspace. Through the experiments with phantom and patient data, this approach also successfully exhibits good performance.
Sensitivity to high temperature and water stress in recalcitrant Baccaurea ramiflora seeds.
Wen, Bin; Liu, Minghang; Tan, Yunhong; Liu, Qiang
2016-07-01
Southeast Asia experiences one of the highest rates of deforestation in the tropics due to agricultural expansion, logging, habitat fragmentation and urbanization. As tropical rainforests harbour abundant recalcitrant-seeded species, it is important to understand how recalcitrant seeds respond to deforestation and fragmentation. Baccaurea ramiflora is a recalcitrant-seeded species, widely distributed in Southeast Asian tropical rainforest. In this study, B. ramiflora seeds were sown in three plots, one in a nature reserve and two in disturbed holy hill forests, to investigate seed germination and seedling establishment in the field, while laboratory experiments were conducted to investigate the effects of high temperature and water stress on germination. It was found that seed germination and seedling establishment in B. ramiflora were clearly reduced in holy hills compared to the nature reserve, although the seeds were only moderately to minimally recalcitrant. This was potentially caused by increased temperature and decreased moisture in holy hills, for laboratory experiments showed that seed germination was greatly inhibited by temperatures ≥35 °C or water potentials ≤-0.5 MPa, and depressed by heat treatment at 40 °C when the continuous heating period lasted for 240 h or daily periodic heating exceeded 10 h. Unlike orthodox seeds, which can endure much higher temperatures in the air-dried state than in the imbibed state, both blotted and immersed B. ramiflora seeds lost viability within a narrow temperature range between 50 and 60 °C. As recalcitrant seeds can be neither air-dried nor heated, species producing recalcitrant seeds will suffer more than those producing orthodox seeds in germination and seedling establishment from increased temperature and decreased moisture in fragmented rainforests, which results in sensitivity of recalcitrant-seeded species to rainforest fragmentation.
NASA Astrophysics Data System (ADS)
Christianini, Alexander V.; Galetti, Mauro
2007-11-01
Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels ( Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Key, J. R.; Maslanik, J. A.
1988-01-01
The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.
Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambukkange,M.; Verlinde, J.; Elorante, E.
2006-07-10
Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivitymore » of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.« less
Pacific Northwest forest tree seed zones: a template for native plants?
GR Johnson; Frank C Sorensen; J Bradley St Clair; Richard C. Cronn
2004-01-01
Seed movement guidelines for restoration activities are lacking for most native grasses, forbs, and shrubs. The forestry community has decades of experience in establishing seed zones and seed movement guidelines that may be of value to restoration managers. We review the history of seed zone development in forest trees, with emphasis on the Pacific Northwest, and make...
Šumberová, Kateřina; Ducháček, Michal
2017-01-01
Plant seeds exhibit many species-specific traits, thus potentially being especially helpful for forensic investigations. Seeds of a broad range of plant species occur in soil seed banks of various habitats and may become attached in large quantities to moving objects. Although plant seeds are now routinely used as trace evidence in forensic practice, only scant information has been published on this topic in the scientific literature. Thus, the standard methods remain unknown to specialists in such botanical subjects as plant ecology and plant geography. These specialists, if made aware of the forensic uses of seeds, could help in development of new, more sophisticated approaches. We aim to bridge the gap between forensic analysts and botanists. Therefore, we explore the available literature and compare it with our own experiences to reveal both the potential and limits of soil seed bank and seed dispersal analysis in forensic investigations. We demonstrate that habitat-specific and thus relatively rare species are of the greatest forensic value. Overall species composition, in terms of species presence/absence and relative abundance can also provide important information. In particular, the ecological profiles of seeds found on any moving object can help us identify the types of environments through which the object had travelled. We discuss the applicability of this approach to various European environments, with the ability to compare seed samples with georeferenced vegetation databases being particularly promising for forensic investigations. We also explore the forensic limitations of soil seed bank and seed dispersal vector analyses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gross-Camp, Nicole D.; Kaplin, Beth A.
2011-11-01
We examined the influence of seed handling by two semi-terrestrial African forest primates, chimpanzees ( Pan troglodytes) and l'Hoest's monkeys ( Cercopithecus lhoesti), on the fate of large-seeded tree species in an afromontane forest. Chimpanzees and l'Hoest's monkeys dispersed eleven seed species over one year, with quantity and quality of dispersal varying through time. Primates differed in their seed handling behaviors with chimpanzees defecating large seeds (>0.5 cm) significantly more than l'Hoest's. Furthermore, they exhibited different oral-processing techniques with chimpanzees discarding wadges containing many seeds and l'Hoest's monkeys spitting single seeds. A PCA examined the relationship between microhabitat characteristics and the site where primates deposited seeds. The first two components explained almost half of the observed variation. Microhabitat characteristics associated with sites where seeds were defecated had little overlap with those characteristics describing where spit seeds arrived, suggesting that seed handling in part determines the location where seeds are deposited. We monitored a total of 552 seed depositions through time, recording seed persistence, germination, and establishment. Defecations were deposited significantly farther from an adult conspecific than orally-discarded seeds where they experienced the greatest persistence but poorest establishment. In contrast, spit seeds were deposited closest to an adult conspecific but experienced the highest seed establishment rates. We used experimental plots to examine the relationship between seed handling, deposition site, and seed fate. We found a significant difference in seed handling and fate, with undispersed seeds in whole fruits experiencing the lowest establishment rates. Seed germination differed by habitat type with open forest experiencing the highest rates of germination. Our results highlight the relationship between primate seed handling and deposition site and seed
Cloud computing and validation of expandable in silico livers
2010-01-01
Background In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. Results The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. Conclusions The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide
Cloud computing and validation of expandable in silico livers.
Ropella, Glen E P; Hunt, C Anthony
2010-12-03
In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling
Reflectivities of uniform and broken marine stratiform clouds
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.
1990-01-01
Plane-parallel radiative transfer models are often used to estimate the effects of clouds on the earth's energy budget and to retrieve cloud properties from satellite observations. An attempt is made to assess the performance of such models by using AVHRR data collected during the FIRE MARINE Stratus IFO to determine the reflectivities and, in particular, the anisotropy of the reflected radiances for the clouds observed during the field experiment. The intent is to determine the anisotropy for conditions that are overcast and to compare this anisotropy with that produced by the same cloud when broken. The observations are used to quantify aspects of the differences between reflection by plane-parallel clouds and non-planar clouds expected on the basis of theoretical studies.
Using Clouds for MapReduce Measurement Assignments
ERIC Educational Resources Information Center
Rabkin, Ariel; Reiss, Charles; Katz, Randy; Patterson, David
2013-01-01
We describe our experiences teaching MapReduce in a large undergraduate lecture course using public cloud services and the standard Hadoop API. Using the standard API, students directly experienced the quality of industrial big-data tools. Using the cloud, every student could carry out scalability benchmarking assignments on realistic hardware,…
A statistical data analysis and plotting program for cloud microphysics experiments
NASA Technical Reports Server (NTRS)
Jordan, A. J.
1981-01-01
The analysis software developed for atmospheric cloud microphysics experiments conducted in the laboratory as well as aboard a KC-135 aircraft is described. A group of four programs was developed and implemented on a Hewlett Packard 1000 series F minicomputer running under HP's RTE-IVB operating system. The programs control and read data from a MEMODYNE Model 3765-8BV cassette recorder, format the data on the Hewlett Packard disk subsystem, and generate statistical data (mean, variance, standard deviation) and voltage and engineering unit plots on a user selected plotting device. The programs are written in HP FORTRAN IV and HP ASSEMBLY Language with the graphics software using the HP 1000 Graphics. The supported plotting devices are the HP 2647A graphics terminal, the HP 9872B four color pen plotter, and the HP 2608A matrix line printer.
Turbulent Mixing at the Edge of a Cloud
NASA Astrophysics Data System (ADS)
Shaw, Raymond; Beals, Matthew; Fugal, Jacob; Kumar, Bipin; Lu, Jiang; Schumacher, Joerg; Stith, Jeffrey
2013-11-01
Numerical and field experiments have been brought to bear on the question of how atmospheric clouds respond when they experience turbulent mixing with their environment. Simply put, we ask when a cloud is diluted, do all droplets evaporate uniformly (homogeneous mixing) or does a subset of droplets evaporate completely, leaving the remaining droplets unaffected (inhomogeneous mixing)? First, the entrainment of clear air and its subsequent mixing with a filament of cloudy air is studied in DNS that combine the Eulerian description of the turbulent velocity, temperature and vapor fields with a Lagrangian cloud droplet ensemble. The simulations provide guidance on the proper definition of the thermodynamic response time for the Damkoehler number, and demonstrate the transition from inhomogeneous to homogeneous mixing as mixing progresses within the inertial subrange. Second, an airborne digital holographic instrument (Holodec) shows that cloud edges are inhomogeneous at the centimeter scales. In local cloud volumes the droplet size distribution fluctuates strongly in number density but with a nearly unchanging mean droplet diameter, until the fluctuations finally cascade to the centimeter scale, when the droplet diameter begins to respond.
Spectral absorption of marine stratocumulus clouds derived from in situ cloud radiation measurements
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1990-01-01
A multiwavelength scanning radiometer was used to measure the angular distribution of scattered radiation deep within a cloud layer at discrete wavelengths between 0.5 and 2.3 microns. The relative angular distribution of the intensity field at each wavelength is used to determine the similarity parameter, and hence single scattering albedo, of the cloud at that wavelength using the diffusion domain method. In addition to the spectral similarity parameter, the analysis provides a good estimate of the optical thickness of the cloud beneath the aircraft. In addition to the radiation measurements, microphysical and thermodynamic measurements were obtained from which the expected similarity parameter spectrum was calculated using accepted values of the refractive index of liquid water and the transmission function of water vapor. An analysis is presented for the results obtained for a 50 km section of clean marine stratocumulus clouds on 10 July 1987. These observations were obtained off the coast of California from the University of Washington Convair C-131A aircraft as part of the First ISCCP Regional Experiment (FIRE). A comparison of the experimentally-derived similarity parameter spectrum with that expected theoretically from the cloud droplet size distribution measured simultaneously from the aircraft is presented. The measurements and theory are in very close agreement for this case of clean maritime clouds.
Direct Observations of Excess Solar Absorption by Clouds
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Valero, Francisco P. J.
1995-01-01
Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.
Cumulus cloud model estimates of trace gas transports
NASA Technical Reports Server (NTRS)
Garstang, Michael; Scala, John; Simpson, Joanne; Tao, Wei-Kuo; Thompson, A.; Pickering, K. E.; Harris, R.
1989-01-01
Draft structures in convective clouds are examined with reference to the results of the NASA Amazon Boundary Layer Experiments (ABLE IIa and IIb) and calculations based on a multidimensional time dependent dynamic and microphysical numerical cloud model. It is shown that some aspects of the draft structures can be calculated from measurements of the cloud environment. Estimated residence times in the lower regions of the cloud based on surface observations (divergence and vertical velocities) are within the same order of magnitude (about 20 min) as model trajectory estimates.
NASA Astrophysics Data System (ADS)
Farrah, S.; Al Yazidi, O.
2016-12-01
The UAE Research Program for Rain Enhancement Science (UAEREP) is an international research initiative designed to advance the science and technology of rain enhancement. It comes from an understanding of the needs of countries suffering from scarcity of fresh water, and its will to support innovation globally. The Program focuses on the following topics: Climate change, Climate modelling, Climatology, Atmospheric physics, Atmospheric dynamics, Weather modification, Cloud physics, Cloud dynamics, Cloud seeding, Weather radars, Dust modelling, Aerosol physics , Aerosol chemistry, Aerosol/cloud interactions, Water resources, Physics, Numerical modelling, Material science, Nanotechnology, Meteorology, Hydrology, Hydrogeology, Rocket technology, Laser technology, Water sustainability, Remote sensing, Environmental sciences... In 2015, three research teams from Japan, Germany and the UAE led by Prof. Masataka Murakami, Volker Wulfmeyer and Linda Zou have been respectively awarded. Together, they are addressing the issue of water security through innovative ideas: algorithms and sensors, land cover modification, and nanotechnologies to accelerate condensation. These three projects are undergoing now with extensive research and progresses. This session will be an opportunity to present their latest results as well as to detail the evolution of research in rain enhancement. In 2016 indeed, the Program saw a remarkable increase in participation, with 91 pre-proposals from 398 scientists, researchers and technologists affiliated to 180 institutes from 45 countries. The projects submitted are now focusing on modelling to predict weather, autonomous vehicles, rocket technology, lasers or new seeding materials… The science of rain enhancement offers considerable potential in terms of research, development and innovation. Though cloud seeding has been pursued since the late 1940s, it has been viewed as a relatively marginal field of interest for scientists. This benign neglect
HNSciCloud - Overview and technical Challenges
NASA Astrophysics Data System (ADS)
Gasthuber, Martin; Meinhard, Helge; Jones, Robert
2017-10-01
HEP is only one of many sciences with sharply increasing compute requirements that cannot be met by profiting from Moore’s law alone. Commercial clouds potentially allow for realising larger economies of scale. While some small-scale experience requiring dedicated effort has been collected, public cloud resources have not been integrated yet with the standard workflows of science organisations in their private data centres; in addition, European science has not ramped up to significant scale yet. The HELIX NEBULA Science Cloud project - HNSciCloud, partly funded by the European Commission, addresses these points. Ten organisations under CERN’s leadership, covering particle physics, bioinformatics, photon science and other sciences, have joined to procure public cloud resources as well as dedicated development efforts towards this integration. The HNSciCloud project faces the challenge to accelerate developments performed by the selected commercial providers. In order to guarantee cost efficient usage of IaaS resources across a wide range of scientific communities, the technical requirements had to be carefully constructed. With respect to current IaaS offerings, dataintensive science is the biggest challenge; other points that need to be addressed concern identity federations, network connectivity and how to match business practices of large IaaS providers with those of public research organisations. In the first section, this paper will give an overview of the project and explain the findings so far. The last section will explain the key points of the technical requirements and present first results of the experience of the procurers with the services in comparison to their’on-premise’ infrastructure.
Seed dormancy in alpine species
Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta
2011-01-01
In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after cold-wet storage, and scarification. We also tested the light requirement for germination in some species. Germination behavior was characterized using the final germination percentage and the mean germination time. Considering the effects of the pretreatments, a refined classification of the prevailing dormancy types was constructed based on the results of our pretreatments. Only two out of the 28 species that we evaluated had predominantly non-dormant seeds. Physiological dormancy was prevalent in 20 species, with deep physiological dormancy being the most abundant, followed by non-deep and intermediate physiological dormancy. Seeds of four species with underdeveloped embryos were assigned to the morphophysiologial dormancy class. An impermeable seed coat was identified in two species, with no additional physiological germination block. We defined these species as having physical dormancy. Light promoted the germination of seeds without storage in all but one species with physiological dormancy. In species with physical dormancy, light responses were of minor importance. We discuss our new classification in the context of former germination studies and draw implications for the timing of germination in the field. PMID:24415831
Physiology and biochemistry of recalcitrant Guarea guidonia (L.) Sleumer seeds
Kristina F. Connor; F.T. Bonner
1998-01-01
Investigations of recalcitrant, or desiccation-sensitive, seeds have as yet failed to identify the causes of this phenomenon. Experiments with Guarea guidonia (L.) Sleumer (American muskwood) were initiated to determine the effects of desiccation on the physiology and biochemistry of the seeds of this tropical tree species. Seeds were air-dried at...
Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Ackerman, Andrew; Menon, Surabi
2005-01-01
The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.
Seed dispersal potential of Asian elephants
NASA Astrophysics Data System (ADS)
Harich, Franziska K.; Treydte, Anna C.; Ogutu, Joseph O.; Roberts, John E.; Savini, Chution; Bauer, Jan M.; Savini, Tommaso
2016-11-01
Elephants, the largest terrestrial mega-herbivores, play an important ecological role in maintaining forest ecosystem diversity. While several plant species strongly rely on African elephants (Loxodonta africana; L. cyclotis) as seed dispersers, little is known about the dispersal potential of Asian elephants (Elephas maximus). We examined the effects of elephant fruit consumption on potential seed dispersal using the example of a tree species with mega-faunal characteristics, Dillenia indica L., in Thailand. We conducted feeding trials with Asian elephants to quantify seed survival and gut passage times (GPT). In total, 1200 ingested and non-ingested control seeds were planted in soil and in elephant dung to quantify differences in germination rates in terms of GPT and dung treatment. We used survival analysis as a novel approach to account for the right-censored nature of the data obtained from germination experiments. The average seed survival rate was 79% and the mean GPT was 35 h. The minimum and maximum GPT were 20 h and 72 h, respectively. Ingested seeds were significantly more likely to germinate and to do so earlier than non-ingested control seeds (P = 0.0002). Seeds with the longest GPT displayed the highest germination success over time. Unexpectedly, seeds planted with dung had longer germination times than those planted without. We conclude that D. indica does not solely depend on but benefits from dispersal by elephants. The declining numbers of these mega-faunal seed dispersers might, therefore, have long-term negative consequences for the recruitment and dispersal dynamics of populations of certain tree species.
Formative Assessment Probes: Seeds in a Bag
ERIC Educational Resources Information Center
Keeley, Page
2014-01-01
Many young children come to school with prior experiences planting seeds in a garden or in a pot, watering them, and seeing them grow. These early scientific investigations are designed to help children understand that seeds need water, something to grow in (such as soil), and the right temperature to sprout--if these conditions are met, a seed…
Lidar cloud studies for FIRE and ECLIPS
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James
1990-01-01
Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.
NASA Technical Reports Server (NTRS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.;
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation
The effect of clouds on the earth's radiation budget
NASA Technical Reports Server (NTRS)
Ziskin, Daniel; Strobel, Darrell F.
1991-01-01
The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.
Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L
2013-05-01
The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.
Evaluating the Usage of Cloud-Based Collaboration Services through Teamwork
ERIC Educational Resources Information Center
Qin, Li; Hsu, Jeffrey; Stern, Mel
2016-01-01
With the proliferation of cloud computing for both organizational and educational use, cloud-based collaboration services are transforming how people work in teams. The authors investigated the determinants of the usage of cloud-based collaboration services including teamwork quality, computer self-efficacy, and prior experience, as well as its…
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
NASA Astrophysics Data System (ADS)
Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.
2018-03-01
The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.
Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests
NASA Astrophysics Data System (ADS)
Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.
2007-05-01
Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.
Petkar, Aparna; Ji, Pingsheng
2017-07-01
Fusarium wilt incited by Fusarium oxysporum f. sp. niveum is a seed-transmitted disease that causes significant yield loss in watermelon production. The pathogen may infect watermelon seeds latently, which can be an important inoculum source and contribute to severe disease outbreak. However, information regarding infection courts of F. oxysporum f. sp. niveum leading to infestation of watermelon seeds is limited. To determine how seeds in watermelon fruit can be infested by F. oxysporum f. sp. niveum during the watermelon growing season, greenhouse and field experiments were conducted in 2014 and 2015 where watermelon flowers and immature fruit were inoculated with F. oxysporum f. sp. niveum. Seeds were extracted from mature watermelon fruit, and infestation of watermelon seeds was determined by isolation of F. oxysporum f. sp. niveum and further confirmed by real-time polymerase chain reaction (PCR) analysis. Inoculation of the pericarp of immature fruit resulted in 17.8 to 54.4% of infested seeds under field conditions and 0.6 to 12.8% of infested seeds under greenhouse conditions when seeds were not surface disinfested prior to isolation. Seed infestation was also detected in 0 to 4.5% of the seeds when seeds were surface disinfested prior to isolation. Inoculation of pistil resulted in 0 to 7.2% and 0 to 18.3% of infested seeds under greenhouse and field conditions when seeds were surface disinfested or not disinfested before isolation, respectively. Inoculation of peduncle resulted in 0.6 to 6.1% and 0 to 10.0% of infested seeds in the greenhouse and field experiments when seeds were surface disinfested or not disinfested before isolation, respectively. Seed infestation was also detected in all the experiments using real-time PCR assay when pericarp or pistil was inoculated, and in three of four experiments when peduncle was inoculated, regardless of whether seeds were surface disinfested or not disinfested. Pericarp and peduncle of immature watermelon fruit
Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
Investigating Seed Longevity of Big Sagebrush (Artemisia tridentata)
Wijayratne, Upekala C.; Pyke, David A.
2009-01-01
The Intermountain West is dominated by big sagebrush communities (Artemisia tridentata subspecies) that provide habitat and forage for wildlife, prevent erosion, and are economically important to recreation and livestock industries. The two most prominent subspecies of big sagebrush in this region are Wyoming big sagebrush (A. t. ssp. wyomingensis) and mountain big sagebrush (A. t. ssp. vaseyana). Increased understanding of seed bank dynamics will assist with sustainable management and persistence of sagebrush communities. For example, mountain big sagebrush may be subjected to shorter fire return intervals and prescribed fire is a tool used often to rejuvenate stands and reduce tree (Juniperus sp. or Pinus sp.) encroachment into these communities. A persistent seed bank for mountain big sagebrush would be advantageous under these circumstances. Laboratory germination trials indicate that seed dormancy in big sagebrush may be habitat-specific, with collections from colder sites being more dormant. Our objective was to investigate seed longevity of both subspecies by evaluating viability of seeds in the field with a seed retrieval experiment and sampling for seeds in situ. We chose six study sites for each subspecies. These sites were dispersed across eastern Oregon, southern Idaho, northwestern Utah, and eastern Nevada. Ninety-six polyester mesh bags, each containing 100 seeds of a subspecies, were placed at each site during November 2006. Seed bags were placed in three locations: (1) at the soil surface above litter, (2) on the soil surface beneath litter, and (3) 3 cm below the soil surface to determine whether dormancy is affected by continued darkness or environmental conditions. Subsets of seeds were examined in April and November in both 2007 and 2008 to determine seed viability dynamics. Seed bank samples were taken at each site, separated into litter and soil fractions, and assessed for number of germinable seeds in a greenhouse. Community composition data
NASA Astrophysics Data System (ADS)
Rusch, D. W.; Thomas, G. E.; McClintock, W.; Merkel, A. W.; Bailey, S. M.; Russell, J. M., III; Randall, C. E.; Jeppesen, C.; Callan, M.
2009-03-01
The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include [`]ice rings', spatially small but bright clouds, and large regions ([`]ice-free regions') in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC ([`]whirls' in the standard World Meteorological Organization (WMO) nomenclature).
Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation.
Giorio, Chiara; Monod, Anne; Brégonzio-Rozier, Lola; DeWitt, Helen Langley; Cazaunau, Mathieu; Temime-Roussel, Brice; Gratien, Aline; Michoud, Vincent; Pangui, Edouard; Ravier, Sylvain; Zielinski, Arthur T; Tapparo, Andrea; Vermeylen, Reinhilde; Claeys, Magda; Voisin, Didier; Kalberer, Markus; Doussin, Jean-François
2017-10-12
Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.
Glucosinolate pattern in Isatis tinctoria and I. indigotica seeds.
Mohn, Tobias; Hamburger, Matthias
2008-06-01
The glucosinolate patterns in seeds of five ISATIS TINCTORIA and two ISATIS INDIGOTICA accessions were assessed with a recently developed and validated LC-MS assay for direct analysis of glucosinolates without prior desulfatation. Glucosinolate peaks were identified with in-source fragmentation and detection of the sulfate anion ( M/Z = 97), and by MS/MS experiments. The glucosinolate patterns of the seeds showed characteristic differences compared to leaves. Glucoisatisin and epiglucoisatisin were diagnostic of seed samples. Qualitative and quantitative differences in glucosinolate patterns between both ISATIS species were found for seed samples, enabling a differentiation of the two medicinal plants at the level of seed material.
Observational and Modeling Studies of Clouds and the Hydrological Cycle
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.
1997-01-01
Our approach involved validating parameterizations directly against measurements from field programs, and using this validation to tune existing parameterizations and to guide the development of new ones. We have used a single-column model (SCM) to make the link between observations and parameterizations of clouds, including explicit cloud microphysics (e.g., prognostic cloud liquid water used to determine cloud radiative properties). Surface and satellite radiation measurements were used to provide an initial evaluation of the performance of the different parameterizations. The results of this evaluation will then used to develop improved cloud and cloud-radiation schemes, which were tested in GCM experiments.
SEEDS: A Celebration of Science
NASA Technical Reports Server (NTRS)
Melton, Bob
1991-01-01
The major goal of the project of Space Exposed Experiment Developed for Students (SEEDS) was to stimulate interest in science through the active involvement of all participants. Youthful investigators utilized the basic and integrated science process skills as they conducted the research necessary to complete the data reports used in the compilation of this document. Participants described many unique activities designed to promote critical thinking and problem solving. Seeds made a significant impact toward enhancing the teaching, learning, and enjoyment of science for students worldwide.
Revising the Seed Zones for Southern Pines
Ronald C. Schmidtling
1999-01-01
Early foresters had a sense that using local seed sources was the best for afforestation, although this was often based more on intuition than experience. Non-local planting stock has often been used in-the past. In the reforestation carried out by the Civilian Conservation Corps in the 1930's, for instance, an effort was made to use native seed sources, but...
NASA Astrophysics Data System (ADS)
Jensen, Logan; Citizen CATE Experiment 2017 Team
2018-01-01
The Citizen Continental America Telescopic Eclipse (CATE) Experiment was designed to fill in the current data gap for the solar corona from approximately 1 to 2.5 solar radii. Using the total solar eclipse, the project took advantage of the unique opportunity to study this region of the corona from 68 identical sites across the United States. Before the 2017 eclipse, image reduction pipelines and advanced processing techniques were researched and implemented using data that had been collected from the 2016 Indonesian eclipse as a test set. This would speed up the turnaround from data to science after the 2017 eclipse.When processing the 2016 eclipse data, cirrus clouds became apparent moving across the field of view. These would interfere with future processing goals for the data such as coronal filament tracing and polar plume measurements. As the clouds moved across the field they did not completely obscure any part of the image, instead they produced variable, moving absorption across the CATE field of view. This had the effect of creating a noisy signal for each pixel. A noise reduction procedure based on a Kalman filter was developed to effectively remove the clouds from the data. Initial results from the 2016 eclipse data are presented.
Induced Contamination Predictions for JAXA's MPAC&SEED Devices
NASA Technical Reports Server (NTRS)
Steagall, Courtney; Smith, Kendall; Huang, Alvin; Soares, Carlos; Mikatarian, Ron
2008-01-01
Externally mounted ISS payloads are exposed to the induced ISS environment, including material outgassing and thruster plume contamination. The Boeing Space Environments Team developed analytical and semiempirical models to predict material outgassing and thruster plume induced contamination. JAXA s SM/MPAC&SEED experiment provides an unique opportunity to compare induced contamination predications with measurements. Analysis results are qualitatively consistent with XPS measurements. Calculated depth of contamination within a factor of 2-3 of measured contamination. Represents extremely good agreement, especially considering long duration of experiment and number of outgassing sources. Despite XPS limitations in quantifying plume contamination, the measured and predicted results are of similar scale for the wake-facing surfaces. JAXA s JEM/MPAC&SEED experiment will also be exposed to induced contamination due to JEM and ISS hardware. Predicted material outgassing induced contamination to JEM/MPAC&SEED ranges from 44 to 262 (depending on surface temperature) for a 3 year exposure duration.
NASA Astrophysics Data System (ADS)
Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.
2018-01-01
We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Luo, Yali; Morrison, Hugh; Mcfarquhar, G.M.
2008-01-01
Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program Mixed-Phase Arctic Cloud Experiment (M-PACE), are simulated with a cloud resolving model (CRM). The CRM is implemented with either an advanced two-moment (M05) or a commonly used one-moment (L83) bulk microphysics scheme and a state-of-the-art radiative transfer scheme. The CONTROL simulation, that uses the M05 scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), number concentration and effective radius of cloud droplets as suggested by the M-PACE observations. It underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2-3. The OneM experiment, that uses the L83 scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, of those produced by the CONTROL. Its vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in the CONTROL and observations.
NASA Technical Reports Server (NTRS)
2005-01-01
AIRS retrieved total water vapor product as a region of depressed water vapor (brown in the images) migrating slowly Westward toward the Caribbean. The SAL phenomenon inhibits the formation of tropical cyclones and thus has given the West Indies and the East Coast of the US a respite from hurricanes.
The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds
NASA Astrophysics Data System (ADS)
Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.
2008-05-01
CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.
On the remote sensing of cloud properties from satellite infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H. Y. M.
1984-01-01
A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.
NASA Astrophysics Data System (ADS)
Satoh, M.; Noda, A. T.; Kodama, C.; Yamada, Y.; Hashino, T.
2012-12-01
Global cloud distributions and properties simulated by the global nonhydrostatic model, NICAM (Nonhydrostatic Icosahedral Atmospheric Model), are evaluated and their future changes are discussed. First, we evaluated the simulated cloud properties produced by a case study of the 3.5km mesh experiment of NICAM using the satellite simulator package (the Joint-simulator) with cloud microphysics oriented approach (Hashino et al. 2012). Then, we analyzed future cloud changes using various sets of simulations under the present and the future global warming conditions. The results show that the zonal averaged ice water path (IWP) generally decreases or marginally unchanged in the tropics, while IWP in the extra-tropics increases. The upper cloud fraction increases both in the tropics and in the extra-tropics in general. We further analyzed contributions of cloud systems such as cloud clusters, tropical cyclones (TCs), and storm-tracks to these changes. Probability distribution of the larger cloud clusters decreases, while that of the smaller ones increases, consistent with the decrease in the number of tropical cyclones in the future climate. Average liquid water path (LWP) and IWP associated with each tropical cyclone are diagnosed, and it is found that both the associated LWP and IWP increase under the warmer condition. Even though, since the number of the intensive cloud systems decrease, the average IWP decreases. It should be remarked that the change in TC tracks largely contribute to the change in the horizontal distribution of clouds. The NICAM simulations also show that the storm-tracks shift poleward, and the storms become less frequent and stronger in the extra-tropics, similar to the results of other general circulation models. Both LWP and IWP associated with the storms also increase in the warmer climate in the NICAM simulations. This results in increase in the upper clouds under the warmer climate condition, as described by Miura et al. (2005). References
NASA Technical Reports Server (NTRS)
Boehm, Emma
2017-01-01
A closed-loop food production system will be important to gain autonomy on long duration space missions. Crop growth experiments in the Veggie plant chamber aboard the International Space Station (ISS) are helping to identify methods and limitations of food production in space. Prior to flight, seeds are surface sterilized to reduce environmental and crew contamination risks.
PROGRA2 experiment: new results for dust clouds and regoliths
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.
With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
Shupe, Matthew
2013-05-22
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
Cloud rise model for radiological dispersal devices events
NASA Astrophysics Data System (ADS)
Sharon, Avi; Halevy, Itzhak; Sattinger, Daniel; Yaar, Ilan
2012-07-01
As a part of the preparedness and response to possible radiological terror events, it is important to model the evolution of the radioactive cloud immediately after its formation, as a function of time, explosive quantity and local meteorological conditions. One of the major outputs of a cloud rise models is the evaluation of cloud top height, which is an essential input for most of the succeeding atmospheric dispersion models. This parameter strongly affects the radiological consequences of the event. Most of the cloud rise models used today, have been developed according to experiments were large quantities of explosives were used, within the range of hundreds of kilograms of TNT. The majority of these models, however, fail to address Radiological Dispersion Devices (RDD) events, which are typically characterized by smaller amounts of TNT. In this paper, a new, semi-empirical model that describes the vertical evolution of the cloud up to its effective height as a function of time, explosive quantity, atmospheric stability and horizontal wind speed, is presented. The database for this model is taken from five sets of experiments done in Israel during 2006-2009 under the "Green Field" (GF) project, using 0.25-100 kg of TNT.
Clouds and the Earth's Radiant Energy System (CERES)
NASA Technical Reports Server (NTRS)
Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.
1992-01-01
The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.
The Douglas-fir seed-source movement trial yields early results
Constance A. Harrington; Brad St. Clair
2017-01-01
Climate change in the 21st century is likely to dramatically alter the growing conditions that Pacific Northwest tree species experience. It has been suggested that foresters plan for these changes by moving seed sources to locations where the seed-source environment and the future climate will be similar. Some people have called this type of seed-source movement â...
Legal issues in clouds: towards a risk inventory.
Djemame, Karim; Barnitzke, Benno; Corrales, Marcelo; Kiran, Mariam; Jiang, Ming; Armstrong, Django; Forgó, Nikolaus; Nwankwo, Iheanyi
2013-01-28
Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project.
NASA Astrophysics Data System (ADS)
Dimitri, Lindsay A.; Longland, William S.; Vander Wall, Stephen B.
2017-11-01
Seed dispersal in Juniperus is generally attributed to frugivores that consume the berry-like female cones. Some juniper cones are fleshy and resinous such as those of western juniper (Juniperus occidentalis), while others are dry and leathery such as those of Utah juniper (J. osteosperma). Rodents have been recorded harvesting Juniperus seeds and cones but are mostly considered seed predators. Our study sought to determine if rodents play a role in dispersal of western and Utah juniper seeds. We documented rodent harvest of cones and seeds of the locally-occurring juniper species and the alternate (non-local) juniper species in removal experiments at a western juniper site in northeastern California and a Utah juniper site in western Nevada. Characteristics of western and Utah juniper cones appeared to influence removal, as cones from the local juniper species were preferred at both sites. Conversely, removal of local and non-local seeds was similar. Piñon mice (Peromyscus truei) were responsible for most removal of cones and seeds at both sites. We used radioactively labeled seeds to follow seed fate and found many of these seeds in scattered caches (western juniper: 415 seeds in 82 caches, 63.0% of seeds found; Utah juniper: 458 seeds in 127 caches, 39.5% of seeds found) most of which were attributed to piñon mice. We found little evidence of frugivores dispersing Utah juniper seeds, thus scatter-hoarding rodents appear to be the main dispersal agents. Western juniper cones were eaten by frugivores, and scatter-hoarding is a complimentary or secondary form of seed dispersal. Our results support the notion that Utah juniper has adapted to xeric environments by conserving water through the loss of fleshy fruits that attract frugivores and instead relies on scatter-hoarding rodents as effective dispersal agents.
Efficiency of seed production in southern pine seed orchards
David L. Bramlett
1977-01-01
Seed production in southern pine seed orchards can be evaluated by estimating the efficiency of four separate stages of cone, seed, and seedling development. Calculated values are: cone efficiency (CE), the ratio of mature cones to the initial flower crop; seed efficiency (SE), the ratio of filled seeds per cone to the seed potential; extraction efficiency (EE), the...
Entrainment in Laboratory Simulations of Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.
2010-12-01
A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.
An invasive slug exploits an ant-seed dispersal mutualism.
Meadley Dunphy, Shannon A; Prior, Kirsten M; Frederickson, Megan E
2016-05-01
Plant-animal mutualisms, such as seed dispersal, are often vulnerable to disruption by invasive species. Here, we show for the first time how a non-ant invasive species negatively affects seed dispersal by ants. We examined the effects of several animal species that co-occur in a temperate deciduous forest-including native and invasive seed-dispersing ants (Aphaenogaster rudis and Myrmica rubra, respectively), an invasive slug (Arion subfuscus), and native rodents-on a native myrmecochorous plant, Asarum canadense. We experimentally manipulated ant, slug, and rodent access to seed depots and measured seed removal. We also video-recorded depots to determine which other taxa interact with seeds. We found that A. rudis was the main disperser of seeds and that A. subfuscus consumed elaiosomes without dispersing seeds. Rodent visitation was rare, and rodent exclusion had no significant effect on seed or elaiosome removal. We then used data obtained from laboratory and field mesocosm experiments to determine how elaiosome robbing by A. subfuscus affects seed dispersal by A. rudis and M. rubra. We found that elaiosome robbing by slugs reduced seed dispersal by ants, especially in mesocosms with A. rudis, which picks up seeds more slowly than M. rubra. Taken together, our results show that elaiosome robbing by an invasive slug reduces seed dispersal by ants, suggesting that invasive slugs can have profound negative effects on seed dispersal mutualisms.
Molecular Cloud Evolution VI. Measuring cloud ages
NASA Astrophysics Data System (ADS)
Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel; Galván-Madrid, Roberto; Forbrich, Jan
2018-06-01
In previous contributions, we have presented an analytical model describing the evolution of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The cloud's evolution is characterized by an initial increase in its mass, density, and star formation rate (SFR) and efficiency (SFE) as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the cloud's evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25% of their mass had become molecular. We find ages from ˜1.5 to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds (M ˜ 103-104M⊙) end their lives with a mini-burst of star formation, reaching SFRs ˜300-500 M⊙ Myr-1. By this time, they have contracted to become compact (˜1 pc) massive star-forming clumps, in general embedded within larger GMCs.
Integration of end-user Cloud storage for CMS analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez
End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less
Integration of end-user Cloud storage for CMS analysis
Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez; ...
2017-05-19
End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less
Evaluating Cloud Initialization in a Convection-permit NWP Model
NASA Astrophysics Data System (ADS)
Li, Jia; Chen, Baode
2015-04-01
In general, to avoid "double counting precipitation" problem, in convection permit NWP models, it was a common practice to turn off convective parameterization. However, if there were not any cloud information in the initial conditions, the occurrence of precipitation could be delayed due to spin-up of cloud field or microphysical variables. In this study, we utilized the complex cloud analysis package from the Advanced Regional Prediction System (ARPS) to adjust the initial states of the model on water substance, such as cloud water, cloud ice, rain water, et al., that is, to initialize the microphysical variables (i.e., hydrometers), mainly based on radar reflectivity observations. Using the Advanced Research WRF (ARW) model, numerical experiments with/without cloud initialization and convective parameterization were carried out at grey-zone resolutions (i.e. 1, 3, and 9 km). The results from the experiments without convective parameterization indicate that model ignition with radar reflectivity can significantly reduce spin-up time and accurately simulate precipitation at the initial time. In addition, it helps to improve location and intensity of predicted precipitation. With grey-zone resolutions (i.e. 1, 3, and 9 km), using the cumulus convective parameterization scheme (without radar data) cannot produce realistic precipitation at the early time. The issues related to microphysical parametrization associated with cloud initialization were also discussed.
A role for seed storage proteins in Arabidopsis seed longevity
Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie
2015-01-01
Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation. PMID:26184996
Can Clouds replace Grids? Will Clouds replace Grids?
NASA Astrophysics Data System (ADS)
Shiers, J. D.
2010-04-01
The world's largest scientific machine - comprising dual 27km circular proton accelerators cooled to 1.9oK and located some 100m underground - currently relies on major production Grid infrastructures for the offline computing needs of the 4 main experiments that will take data at this facility. After many years of sometimes difficult preparation the computing service has been declared "open" and ready to meet the challenges that will come shortly when the machine restarts in 2009. But the service is not without its problems: reliability - as seen by the experiments, as opposed to that measured by the official tools - still needs to be significantly improved. Prolonged downtimes or degradations of major services or even complete sites are still too common and the operational and coordination effort to keep the overall service running is probably not sustainable at this level. Recently "Cloud Computing" - in terms of pay-per-use fabric provisioning - has emerged as a potentially viable alternative but with rather different strengths and no doubt weaknesses too. Based on the concrete needs of the LHC experiments - where the total data volume that will be acquired over the full lifetime of the project, including the additional data copies that are required by the Computing Models of the experiments, approaches 1 Exabyte - we analyze the pros and cons of Grids versus Clouds. This analysis covers not only technical issues - such as those related to demanding database and data management needs - but also sociological aspects, which cannot be ignored, neither in terms of funding nor in the wider context of the essential but often overlooked role of science in society, education and economy.
NASA Technical Reports Server (NTRS)
Chang, Fu-Lung; Minnis, Patrick; Ayers, J. Kirk; McGill, Matthew J.; Palikonda, Rabindra; Spangenberg, Douglas A.; Smith, William L., Jr.; Yost, Christopher R.
2010-01-01
Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) less than 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs less than 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (+/- 2.1) km from the CPL and 10.7 (+/- 2.1), 12.1 (+/- 1.6), 9.7 (+/- 2.9), and 11.4 (+/- 2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; ...
2017-01-01
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in
Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review
Klein, Stephen A.; Hall, Alex; Norris, Joel R.; ...
2017-10-24
Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less
Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Stephen A.; Hall, Alex; Norris, Joel R.
Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less
Foster, Mercedes S.
2008-01-01
The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.
Proceedings of a Workshop on Polar Stratospheric Clouds: Their Role in Atmospheric Processes
NASA Technical Reports Server (NTRS)
Hamill, P. (Editor); Mcmaster, L. R. (Editor)
1984-01-01
The potential role of polar stratospheric clouds in atmospheric processes was assessed. The observations of polar stratospheric clouds with the Nimbus 7 SAM II satellite experiment were reviewed and a preliminary analysis of their formation, impact on other remote sensing experiments, and potential impact on climate were presented. The potential effect of polar stratospheric clouds on climate, radiation balance, atmospheric dynamics, stratospheric chemistry and water vapor budget, and cloud microphysics was assessed. Conclusions and recommendations, a synopsis of materials and complementary material to support those conclusions and recommendations are presented.
Seed size variability: from carob to carats
Turnbull, Lindsay A; Santamaria, Luis; Martorell, Toni; Rallo, Joan; Hector, Andy
2006-01-01
The seeds of various plants were used as weights because their mass reputedly varies so little. Carob (Ceratonia siliqua), which has given its name to the carat, is particularly famous in this regard. But are carob seeds unusually constant in weight and, if not, how did the myth arise? The variability of seeds sampled from a collection of carob trees (CV=23%) was close to the average of 63 species reviewed from the literature (CV=25%). However, in a perception experiment observers could discriminate differences in carob seed weight of around 5% by eye demonstrating the potential for humans to greatly reduce natural variation. Interestingly, the variability of pre-metrication carat weight standards is also around 5% suggesting that human rather than natural selection gave rise to the carob myth. PMID:17148413
De Haan, David O; Tapavicza, Enrico; Riva, Matthieu; Cui, Tianqu; Surratt, Jason D; Smith, Adam C; Jordan, Mary-Caitlin; Nilakantan, Shiva; Almodovar, Marisol; Stewart, Tiffany N; de Loera, Alexia; De Haan, Audrey C; Cazaunau, Mathieu; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François
2018-04-03
Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS 2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH 3 CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.
Does solar radiation affect the growth of tomato seeds relative to their environment?
NASA Technical Reports Server (NTRS)
Holzer, Kristi
1995-01-01
The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.
Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions
NASA Technical Reports Server (NTRS)
Malavelle, Florent F.; Haywood, Jim M.; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P.; Karset, Inger Helene H.; Kristjansson, Jon Egill; Oreopoulos, Lazaros;
2017-01-01
Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets - consistent with expectations - but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around minus 0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
Strong constraints on aerosol-cloud interactions from volcanic eruptions.
Malavelle, Florent F; Haywood, Jim M; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P; Karset, Inger Helene H; Kristjánsson, Jón Egill; Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Bellouin, Nicolas; Boucher, Olivier; Grosvenor, Daniel P; Carslaw, Ken S; Dhomse, Sandip; Mann, Graham W; Schmidt, Anja; Coe, Hugh; Hartley, Margaret E; Dalvi, Mohit; Hill, Adrian A; Johnson, Ben T; Johnson, Colin E; Knight, Jeff R; O'Connor, Fiona M; Partridge, Daniel G; Stier, Philip; Myhre, Gunnar; Platnick, Steven; Stephens, Graeme L; Takahashi, Hanii; Thordarson, Thorvaldur
2017-06-22
Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds
NASA Astrophysics Data System (ADS)
Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.
2017-12-01
Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP < 50 g m-2), cloud base updraft speeds and cloud top cooling are well-correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.
Cross, Adam T.; Turner, Shane R.; Renton, Michael; Baskin, Jerry M.; Dixon, Kingsley W.; Merritt, David J.
2015-01-01
Background and Aims Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Methods Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. Key Results The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m−2 for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m−2. Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. Conclusions The persistent seed bank in freshwater rock pools is likely to
Trust Model to Enhance Security and Interoperability of Cloud Environment
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Ping, Lingdi
Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.
Japan's research on particle clouds and sprays
NASA Technical Reports Server (NTRS)
Sato, Jun'ichi
1995-01-01
Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.
The seasonal cycle of low stratiform clouds
NASA Technical Reports Server (NTRS)
Klein, Stephen A.; Hartmann, Dennis L.
1993-01-01
The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans. In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6 percent increase in stratus fractional area coverage is associated with each 1 C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.
The Seasonal Cycle of Low Stratiform Clouds.
NASA Astrophysics Data System (ADS)
Klein, Stephen A.; Hartmann, Dennis L.
1993-08-01
The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans.In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6% increase in stratus fractional area coverage is associated with each 1°C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.
2010-04-29
Cloud Computing The answer, my friend, is blowing in the wind. The answer is blowing in the wind. 1Bingue ‐ Cook Cloud Computing STSC 2010... Cloud Computing STSC 2010 Objectives • Define the cloud • Risks of cloud computing f l d i• Essence o c ou comput ng • Deployed clouds in DoD 3Bingue...Cook Cloud Computing STSC 2010 Definitions of Cloud Computing Cloud computing is a model for enabling b d d ku
Diagnosing AIRS Sampling with CloudSat Cloud Classes
NASA Technical Reports Server (NTRS)
Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian
2011-01-01
AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.
Seed Experiments for Students. Tips & Demonstrations for Teachers & Parents.
ERIC Educational Resources Information Center
Tant, Carl
This book provides a short course in the mysteries of seed structure, function, and development. Chapter 1, "Backgrounds, Hints, And Tips For Teachers And Parents," provides a basis for working with the mid-years student. Chapater 2, "Where Do I Start? What Do I Do?" provides procedural tips for science research. Chapter 3,…
NASA Astrophysics Data System (ADS)
Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.
2007-12-01
Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
NASA Astrophysics Data System (ADS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Hélène; Douville, Hervé; Good, Peter; Kay, Jennifer E.; Klein, Stephen A.; Marchand, Roger; Medeiros, Brian; Pier Siebesma, A.; Skinner, Christopher B.; Stevens, Bjorn; Tselioudis, George; Tsushima, Yoko; Watanabe, Masahiro
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing?
and What are the origins and consequences of systematic model biases?
and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in
Thin Ice Clouds in Far IR Experiment: TICFIRE
NASA Astrophysics Data System (ADS)
Blanchet, Jean-Pierre
The TICFIRE mission concept developed with the support of the Canadian Space Agency aims: 1) to improve measurements of water-vapor concentration in the low limit, where cold regions are most sensitive and 2) to determine the contribution of Thin Ice Clouds (TIC) to the energy balance and the role of their microphysical properties on atmospheric cooling. TICFIRE is a process-oriented mission on a micro-satellite platform dedicated to observe key parameters of TIC forming in the cold regions of the Poles and globally, in the upper troposphere. It locates cloud top profiles at the limb and measures at nadir the corresponding upwelling radiance of the atmosphere directly in the thermal window and in the Far Infrared (FIR) spectrum over cold geographical regions, precisely where most of the atmospheric thermal cooling takes place. Due to technological limitations, the FIR spectrum (17 to 50 m) is not regularly monitored by conventional sensors despite its major importance. This deficiency in key data also impacts operational weather forecasting. TICFIRE will provide on a global scale a needed contribution in calibrated radiance assimilation near the IR maximum emission to improve weather forecast. Therefore, TICFIRE is a science-driven mission with a strong operational component.
Efficacy of Selected Insecticides Applied to Hybrid Rice Seed
Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.
2016-01-01
Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671
Atmospheric cloud physics laboratory project study
NASA Technical Reports Server (NTRS)
Schultz, W. E.; Stephen, L. A.; Usher, L. H.
1976-01-01
Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.
Qi, Xiaoli; Wu, Wei; Shah, Farooq; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Liu, Hongyan; Nie, Lixiao
2012-01-01
Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding. PMID:22454611
Trade cumulus clouds embedded in a deep regional haze: Results from Indian Ocean CARDEX experiment
NASA Astrophysics Data System (ADS)
Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.
2013-12-01
During the winter monsoon, trade cumulus clouds over the North Indian Ocean are embedded within a deep regional haze described as an atmospheric brown cloud. While the trade-cu clouds are largely confined to the marine boundary layer, the sooty brown cloud extends from the boundary layer to as high as 3 km; well above the tops of the cumulus. The boundary layer pollution is persistent and limits drizzle in the cumulus over a period of greater than a month at the Maldives Climate Observatory located at Hanimaadhoo Island. The elevated haze from 1 to 3 km altitude is episodic and strongly modulated by synoptic variability in the 700 hPa flow. The elevated plume enhances heating above the marine boundary layer through daytime absorption of sunlight by the haze particles. The interplay between the microphysical modification of clouds by boundary layer pollution and the episodic elevated heating by the atmospheric brown cloud are explored in in-situ observations from UAVs and surface remote sensing during the CARDEX field campaign of winter 2012 and supported by multi-year analysis of satellite remote sensing observations. These observations document the variability in pollution at the surface and above the marine boundary layer and the effects of pollution on the microphysics of the trade-cu clouds, the depth of the marine boundary layer, the liquid water path of trade-cu clouds, and the profile of turbulent moisture flux through the boundary layer. The consequences of these effects for the radiative forcing of regional climate will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chidong
Motivated by the success of the AMIE/DYNAMO field campaign, which collected unprecedented observations of cloud and precipitation from the tropical Indian Ocean in Octber 2011 – March 2012, this project explored how such observations can be applied to assist the development of global cloud-permitting models through evaluating and correcting model biases in cloud statistics. The main accomplishment of this project were made in four categories: generating observational products for model evaluation, using AMIE/DYNAMO observations to validate global model simulations, using AMIE/DYNAMO observations in numerical studies of cloud-permitting models, and providing leadership in the field. Results from this project provide valuablemore » information for building a seamless bridge between DOE ASR program’s component on process level understanding of cloud processes in the tropics and RGCM focus on global variability and regional extremes. In particular, experience gained from this project would be directly applicable to evaluation and improvements of ACME, especially as it transitions to a non-hydrostatic variable resolution model.« less
Lidar Studies of Extinction in Clouds in the ECLIPS Project
NASA Technical Reports Server (NTRS)
Martin, C.; Platt, R.; Young, Stuart A.; Patterson, Graeme P.
1992-01-01
The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS. Two periods for observation were chosen, Sep. - Dec. 1989 and Apr. - Jul. 1992 into which investigators were requested to fit 30 days of observations. These would be either continuous, or arranged to coincide with NOAA satellite overpasses to
Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Skillman, W. C.
1979-01-01
A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.
Cloud Radiative Effect in dependence on Cloud Type
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2015-04-01
Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be
Research on tomato seed vigor based on X-ray digital image
NASA Astrophysics Data System (ADS)
Zhao, Xueguan; Gao, Yuanyuan; Wang, Xiu; Li, Cuiling; Wang, Songlin; Feng, Qinghun
2016-10-01
Seed size, interior abnormal and damage of the tomato seeds will affect the germination. The purpose of this paper was to study the relationship between the internal morphology, seed size and seed germination of tomato. The preprocessing algorithm of X-ray image of tomato seeds was studied, and the internal structure characteristics of tomato seeds were extracted by image processing algorithm. By developing the image processing software, the cavity area between embryo and endosperm and the whole seed zone were determined. According to the difference of area of embryo and endosperm and Internal structural condition, seeds were divided into six categories, Respectively for three kinds of tomato seed germination test, the relationship between seed vigor and seed size , internal free cavity was explored through germination experiment. Through seedling evaluation test found that X-ray image analysis provide a perfect view of the inside part of the seed and seed morphology research methods. The larger the area of the endosperm and the embryo, the greater the probability of healthy seedlings sprout from the same size seeds. Mechanical damage adversely effects on seed germination, deterioration of tissue prone to produce week seedlings and abnormal seedlings.
[Reason for dormancy of Cuscuta chinensis seed and solving method].
Wang, Xuemin; He, Jiaqing; Cai, Jing; Dong, Zhenguo
2010-02-01
To study the reason for the deep dormancy of the aged Cuscuta chinensis seed and find the solving method. The separated and combined treatments were applied in the orthogonal designed experiments. The aged seed had well water-absorbency; the water and ethanol extracts of the seeds showed an inhibition effect on germination capacity of the seeds. The main reason for the deep dormancy of aged C. chinensis seed is the inhibitors existed in seed. There are two methods to solve the problem. The seeds is immersed in 98% of H2SO4 for 2 min followed by 500 mg x L(-1) of GA3 treatment for 60 min, or in 100 mg x L(-1) of NaOH for 20 min followed by 500 mg x L(-1) of GA3 treatment for 120 min.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
A study of surface temperatures, clouds and net radiation
NASA Technical Reports Server (NTRS)
Dhuria, Harbans
1994-01-01
The study is continuing and it is focused on examining seasonal relationships between climate parameters such as the surface temperatures, the net radiation and cloud types and amount on a global basis for the period February 1985 to January 1987. The study consists of an analysis of the combined Earth Radiation Budget Experiment (ERBE) and International Satellite Cloud Climatology Program (ISCCP) products. The main emphasis is on obtaining the information about the interactions and relationships of Earth Radiation Budget parameters, cloud and temperature information. The purpose is to gain additional qualitative and quantitative insight into the cloud climate relationship.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Key, J. R.; Maslanik, J. A.
1988-01-01
The principal objectives of this project are: to develop suitable validation data sets to evaluate the effectiveness of the ISCCP operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers: and to compare synoptic cloud data from a control run experiment of the Goddard Institute for Space Studies (GISS) climate model 2 with typical observed synoptic cloud patterns. Current investigations underway are listed and the progress made to date is summarized.
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2017-11-01
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3 to 5 years. Information on fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud-base height (CBH) data are retrieved from a ceilometer and integrated water vapour (IWV) data from GPS measurements. The longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 oktas has a median value between 59 and 72 Wm-2. For mid- and high-level clouds the LCE is significantly lower. It is shown that the fractional cloud coverage, the CBH and IWV all have an influence on the magnitude of the LCE. These observed dependences have also been modelled with the radiative transfer model MODTRAN5. The relative values of the shortwave cloud radiative effect (SCErel) for low-level clouds and a cloud coverage of 8 oktas are between -90 and -62 %. Also here the higher the cloud is, the less negative the SCErel values are. In cases in which the measured direct radiation value is below the threshold of 120 Wm-2 (occulted sun) the SCErel decreases substantially, while cases in which the measured direct radiation value is larger than 120 Wm-2 (visible sun) lead to a SCErel of around 0 %. In 14 and 10 % of the cases in Davos and Payerne respectively a cloud enhancement has been observed with a maximum in the cloud class cirrocumulus-altocumulus at both stations. The calculated median total cloud radiative effect (TCE) values are negative for almost all cloud classes and cloud coverages.
Interoperating Cloud-based Virtual Farms
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Colamaria, F.; Colella, D.; Casula, E.; Elia, D.; Franco, A.; Lusso, S.; Luparello, G.; Masera, M.; Miniello, G.; Mura, D.; Piano, S.; Vallero, S.; Venaruzzo, M.; Vino, G.
2015-12-01
The present work aims at optimizing the use of computing resources available at the grid Italian Tier-2 sites of the ALICE experiment at CERN LHC by making them accessible to interactive distributed analysis, thanks to modern solutions based on cloud computing. The scalability and elasticity of the computing resources via dynamic (“on-demand”) provisioning is essentially limited by the size of the computing site, reaching the theoretical optimum only in the asymptotic case of infinite resources. The main challenge of the project is to overcome this limitation by federating different sites through a distributed cloud facility. Storage capacities of the participating sites are seen as a single federated storage area, preventing the need of mirroring data across them: high data access efficiency is guaranteed by location-aware analysis software and storage interfaces, in a transparent way from an end-user perspective. Moreover, the interactive analysis on the federated cloud reduces the execution time with respect to grid batch jobs. The tests of the investigated solutions for both cloud computing and distributed storage on wide area network will be presented.
Pre-dispersal predation effect on seed packaging strategies and seed viability.
DeSoto, Lucía; Tutor, David; Torices, Rubén; Rodríguez-Echeverría, Susana; Nabais, Cristina
2016-01-01
An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.
NASA Astrophysics Data System (ADS)
Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.
2015-12-01
Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.
Bellaloui, Nacer; Smith, James R; Mengistu, Alemu
2017-01-01
The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.
NASA Astrophysics Data System (ADS)
Baum, Bryan A.; Wielicki, Bruce A.
1994-01-01
In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.
Temperature characterisation of the CLOUD chamber at CERN
NASA Astrophysics Data System (ADS)
Dias, A. M.; Almeida, J.; Kirkby, J.; Mathot, S.; Onnela, A.; Vogel, A.; Ehrhart, S.
2014-12-01
Temperature stability, uniformity and absolute scale inside the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN are important for experiments on aerosol particle nucleation and ice/liquid cloud formation. In order to measure the air temperature, a comprehensive set of arrays ("strings") of platinum resistance thermometers, thermocouples and optical sensors have been installed inside the 26 m3 chamber. The thermal sensors must meet several challenging design requirements: ultra-clean materials, 0.01 K measurement sensitivity, high absolute precision (<0.1 K), 200 K - 373 K range, ability to operate in high electric fields (20 kV/m), and fast response in air (~1 s) in order to measure rapid changes of temperature during ice/liquid cloud formation in the chamber by adiabatic pressure reductions. This presentation will focus on the design of the thermometer strings and the thermal performance of the chamber during the CLOUD8 and CLOUD9 campaigns, 2013-2014, together with the planned upgrades of the CLOUD thermal system.
2010-09-14
Clouds are common near the north polar caps throughout the spring and summer. The clouds typically cause a haze over the extensive dune fields. This image from NASA Mars Odyssey shows the edge of the cloud front.
NASA Astrophysics Data System (ADS)
Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.
2006-12-01
During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.
NASA Astrophysics Data System (ADS)
Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.
2005-05-01
During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.
NASA Astrophysics Data System (ADS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.
2017-08-01
Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (<1 km) cloud occurrences in CCCM are larger over tropical oceans because the CCCM algorithm uses a more relaxed threshold of cloud-aerosol discrimination score for CALIPSO Vertical Feature Mask product. In contrast, midlevel (1-8 km) cloud occurrences in GEOPROF-LIDAR are larger than CCCM at high latitudes (>40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.
NASA Astrophysics Data System (ADS)
Furht, Borko
In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.
NASA Astrophysics Data System (ADS)
Levin, E. J.; DeMott, P. J.; Suski, K. J.; Boose, Y.; Hill, T. C. J.; McCluskey, C. S.; Schill, G. P.; Duncan, D.; Al-Mashat, H.; Prather, K. A.; Sedlacek, A. J., III; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Pekour, M. S.; Leung, L. R.; Kreidenweis, S. M.
2016-12-01
California is currently under drought conditions and changes in precipitation due to future climate change scenarios are uncertain. Thus, understanding the controlling factors for precipitation in this region, and having the capability to accurately model these scenarios, is important. A crucial area in understanding precipitation is in the interplay between atmospheric moisture and aerosols. Specifically, ice nucleation in clouds is an important process controlling precipitation formation. A major component of CA's yearly precipitation comes from wintertime atmospheric river (AR) events which were the focus of the 2015 Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX) and CalWater 2 campaigns. These two campaigns provided sampling platforms on four aircraft, including the ARM Aerial Facility G-1, as well as the NOAA Ron Brown research vessel and at a ground station at Bodega Bay, CA. Measurements of ice nucleating particles (INPs) were made with the Colorado State University (CSU) Continuous Flow Diffusion Chamber (CFDC) aboard the G-1 and at Bodega Bay, and using aerosol filter collections on these platforms as well as the Ron Brown for post-processing via immersion freezing in the CSU Ice Spectrometer. Aerosol composition was measured aboard the G-1 with the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Both the CFDC and ATOFMS sampled off of an isokinetic inlet when flying in clear air and a counter-flow virtual impactor in clouds to capture ice crystal and cloud droplet residuals. In this presentation we present ice nucleating particle concentrations before, during and after an AR event from air, ground and ocean-based measurements. We also examine INP concentration variability in orographic clouds and in clear air at altitude along the Sierra Nevada range, in the marine boundary layer and through the Central Valley, and relate these INP measurements to other aerosol physical and chemical properties.
Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990
NASA Technical Reports Server (NTRS)
Schweiger, Axel J.; Key, Jeffrey R.
1994-01-01
Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.
NASA Astrophysics Data System (ADS)
Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin
2016-04-01
Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.
NASA Astrophysics Data System (ADS)
Sekelsky, Stephen Michael
1995-11-01
drizzle, which were collected in July, 1993 during the system's first field test in Lincoln, NE. The dissertation also presents cirrus cloud and other measurements collected during the DOE-sponsored Remote Cloud Sensing Intensive Operations Period (RCS-IOP) experiment in April, 1994. Zenith-pointing cirrus measurements show small differences in 33 GHz and 95 GHz reflectivity, as models have predicted (2). Depolarization was also detected in a few cases when ice crystals precipitated from the base of a cloud. On May 29, 1994 CPRS observed a convective storm that produced a cirrus anvil cloud and hail. These storms are one 'engine' producing cirrus clouds and are currently a topic of intensive research by climatologists. Both zenith-pointing and range-height data formats are presented. Measurements of depolarization above the melting/layer are compared to in situ observations of particle size and shape. The RCS-IOP experiment also provided a first opportunity to verify our calibration with aircraft in situ measurements, and to compare our cloud measurements to those collected by other remote sensors. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2010-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.
NASA Astrophysics Data System (ADS)
Sproles, E. A.; Crumley, R. L.; Nolin, A. W.; Mar, E.; Lopez-Moreno, J. J.
2017-12-01
Streamflow in snowy mountain regions is extraordinarily challenging to forecast, and prediction efforts are hampered by the lack of timely snow data—particularly in data sparse regions. SnowCloud is a prototype web-based framework that integrates remote sensing, cloud computing, interactive mapping tools, and a hydrologic model to offer a new paradigm for delivering key data to water resource managers. We tested the skill of SnowCloud to forecast monthly streamflow with one month lead time in three snow-dominated headwaters. These watersheds represent a range of precipitation/runoff schemes: the Río Elqui in northern Chile (200 mm/yr, entirely snowmelt); the John Day River, Oregon, USA (635 mm/yr, primarily snowmelt); and the Río Aragon in the northern Spain (850 mm/yr, snowmelt dominated). Model skill corresponded to snowpack contribution with Nash-Sutcliffe Efficiencies of 0.86, 0.52, and 0.21 respectively. SnowCloud does not require the user to possess advanced programming skills or proprietary software. We access NASA's MOD10A1 snow cover product to calculate the snow metrics globally using Google Earth Engine's geospatial analysis and cloud computing service. The analytics and forecast tools are provided through a web-based portal that requires only internet access and minimal training. To test the efficacy of SnowCloud we provided the tools and a series of tutorials in English and Spanish to water resource managers in Chile, Spain, and the United States. Participants assessed their user experience and provided feedback, and the results of our multi-cultural assessment are also presented. While our results focus on SnowCloud, they outline methods to develop cloud-based tools that function effectively across cultures and languages. Our approach also addresses the primary challenges of science-based computing; human resource limitations, infrastructure costs, and expensive proprietary software. These challenges are particularly problematic in developing
The effect of clouds on the earth's radiation balance
NASA Technical Reports Server (NTRS)
Herman, G. F.; Wu, M. L. C.; Johnson, W. T.
1979-01-01
The effect of global cloudiness on the radiation balance at the top of the atmosphere is studied in general circulation model experiments. Wintertime simulations were conducted with clouds that had realistic optical properties, and were compared with simulations in which the clouds were transparent to either solar or thermal radiation. Clouds increase the net balance by limiting longwave loss to space, but decrease it by reflecting solar radiation. It is found that the net result of cloudiness is to maintain net radiation which is less than would be realized under clear conditions: Clouds cause the net radiation at the top of the atmosphere to increase due to longwave absorption, but to decrease even more due to cloud reflectance of solar radiation.
Seed dispersal and seed fate in Joshua tree (Yucca brevifolia)
Waitman, B.A.; Vander Wall, S.B.; Esque, Todd
2012-01-01
Joshua tree (Yucca brevifolia) is a charismatic symbol of the Mojave Desert. Despite its familiarity, we know little about the reproduction of this species, including mechanisms of seed dispersal. Here we examine mechanisms of seed dispersal and resulting seed fate. We experimentally tracked fruit and seed removal and followed the fates of Joshua tree seeds using radioactive tracers. The majority of Joshua tree fruits monitored were taken directly from the tree canopy by white-tailed antelope squirrels, and seeds and fruits on the soil surface were quickly removed by animals. Rodents given seeds labeled with scandium-46 cached them between 0.1 cm and 4.1 cm deep. Seedling emergence was most common for seeds planted 1 cm deep, whereas seeds placed on the soil surface seldom germinated. Wind dispersal is unlikely because fruits and seeds lack adaptations for wind dispersal; wind speeds required to move Joshua tree seeds and fruits across the soil surface were higher than those typically found in the Mojave Desert. Further, rodents removed most seeds before abiotic burial was possible. We conclude that most Joshua tree seeds are dispersed by scatter hoarding by rodents, and that caches made by rodents are suitable sites for seedling emergence.
[Viability and germination of Hechtia perotensis (Bromeliaceae) seed].
Elizalde, Violeta; García, José Rodolfo; Peña-Valdivia, Cecilia Beatriz; Ybarra, Ma Carmen; Leyva, Otto Raúl; Trejo, Carlos
2017-03-01
Endemic populations of Hechtia perotensis have been described in Puebla and Veracruz, Mexico. Good quality seed collections can be used in conservation, research and ecological restoration. To evaluate seed quality of wild and endemic species, some compounds are used as effective promoters of germination, such as potassium nitrate (KNO3) and gibberellic acid (AG3), because they increase seed germination capacity and reduce latency. The triphenyl tetrazolium chloride (tetrazolium) test correlates seed viability because it is based on the activity of dehydrogenases in live tissues that catalyze mitochondrial respiration. The objective of this study was to obtain information on size and weight of capsules and seeds and seed germination and viability of H. perotensis, collected in Veracruz in the year 2012 and 2015. The hypotheses were 1) that seed germination and viability are independent of the year of collection, 2) that there is a tetrazolium concentration that can identify seed viability better than others, and 3) that pretreatment with KNO3 or AG3 improves seed germination. Seed germination was assessed using a completely randomized design with three treatments (control and the germination promoters 0.2 % KNO3 and 500 mg/L AG3), four treatments for the viability test (control, 0.2, 0.5 and 1.0 % of tetrazolium) and six replicates for each treatment. A total of one hundred seeds for germination experiments, and 25 seeds for the viability test were used. The results between and within years were analyzed with ANOVA and multiple comparison with the Tukey test. The proportion of non-germinated seeds was quantified along with the number of normal and abnormal seedlings, seeds with viable embryo, seeds without embryo, and seeds with low or no viability. On average, for the 2012 collected sample, 36 % had viable embryos, 7 % had low viability, 24 % were not viable and 33 % had no embryo. This result was significantly different from the 2015 sample, for which 87 % of
New particle formation leads to cloud dimming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Ryan C.; Crippa, Paola; Matsui, Hitoshi
New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, is a significant source of atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth's surface. Herein we present one of the first numerical experiments to quantify the impact of NPF on cloud radiative properties that is conducted at a convection permitting resolution and that explicitly simulates cloud droplet number concentrations. Consistent with observations, these simulations suggest that in spring over the Midwesternmore » U.S.A., NPF occurs frequently and on regional scales. However, the simulations suggest that NPF is not associated with enhancement of regional cloud albedos as would be expected from an increase of CCN. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes. This reduction in CCN-sized particles reduces cloud albedo, resulting in a domain average positive top of atmosphere cloud radiative forcing of 10 W m-2 and up to ~ 50 W m-2 in individual grid cells relative to a simulation in which NPF is excluded.« less
Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-01-01
Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313
Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-06-01
Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.
Measurement Comparisons Towards Improving the Understanding of Aerosol-Cloud Processing
NASA Astrophysics Data System (ADS)
Noble, Stephen R.
Cloud processing of aerosol is an aerosol-cloud interaction that is not heavily researched but could have implications on climate. The three types of cloud processing are chemical processing, collision and coalescence processing, and Brownian capture of interstitial particles. All types improve cloud condensation nuclei (CCN) in size or hygroscopicity (kappa). These improved CCN affect subsequent clouds. This dissertation focuses on measurement comparisons to improve our observations and understanding of aerosol-cloud processing. Particle size distributions measured at the continental Southern Great Plains (SGP) site were compared with ground based measurements of cloud fraction (CF) and cloud base altitude (CBA). Particle size distributions were described by a new objective shape parameter to define bimodality rather than an old subjective one. Cloudy conditions at SGP were found to be correlated with lagged shape parameter. Horizontal wind speed and regional CF explained 42%+ of this lag time. Many of these surface particle size distributions were influenced by aerosol-cloud processing. Thus, cloud processing may be more widespread with more implications than previously thought. Particle size distributions measured during two aircraft field campaigns (MArine Stratus/stratocumulus Experiment; MASE; and Ice in Cloud Experiment-Tropical; ICE-T) were compared to CCN distributions. Tuning particle size to critical supersaturation revealed hygroscopicity expressed as ? when the distributions were overlain. Distributions near cumulus clouds (ICE-T) had a higher frequency of the same ?s (48% in ICE-T to 42% in MASE) between the accumulation (processed) and Aitken (unprocessed) modes. This suggested physical processing domination in ICE-T. More MASE (stratus cloud) kappa differences between modes pointed to chemical cloud processing. Chemistry measurements made in MASE showed increases in sulfates and nitrates with distributions that were more processed. This supported
Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields
NASA Astrophysics Data System (ADS)
Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.
1992-12-01
During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards
NASA Technical Reports Server (NTRS)
Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)
2001-01-01
This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.
Challenges and opportunities of cloud computing for atmospheric sciences
NASA Astrophysics Data System (ADS)
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
Confronting Models with Data: The GEWEX Cloud Systems Study
NASA Technical Reports Server (NTRS)
Randall, David; Curry, Judith; Duynkerke, Peter; Krueger, Steven; Moncrieff, Mitchell; Ryan, Brian; Starr, David OC.; Miller, Martin; Rossow, William; Tselioudis, George
2002-01-01
The GEWEX Cloud System Study (GCSS; GEWEX is the Global Energy and Water Cycle Experiment) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications. The strategy of GCSS is to use two distinct kinds of models to analyze and understand observations of the behavior of several different types of clouds systems. Cloud-system-resolving models (CSRMs) have high enough spatial and temporal resolutions to represent individual cloud elements, but cover a wide enough range of space and time scales to permit statistical analysis of simulated cloud systems. Results from CSRMs are compared with detailed observations, representing specific cases based on field experiments, and also with statistical composites obtained from satellite and meteorological analyses. Single-column models (SCMs) are the surgically extracted column physics of atmospheric general circulation models. SCMs are used to test cloud parameterizations in an un-coupled mode, by comparison with field data and statistical composites. In the original GCSS strategy, data is collected in various field programs and provided to the CSRM Community, which uses the data to "certify" the CSRMs as reliable tools for the simulation of particular cloud regimes, and then uses the CSRMs to develop parameterizations, which are provided to the GCM Community. We report here the results of a re-thinking of the scientific strategy of GCSS, which takes into account the practical issues that arise in confronting models with data. The main elements of the proposed new strategy are a more active role for the large-scale modeling community, and an explicit recognition of the importance of data integration.
NASA Astrophysics Data System (ADS)
Oh, D.; Noh, Y.; Hoffmann, F.; Raasch, S.
2017-12-01
Lagrangian cloud model (LCM) is a fundamentally new approach of cloud simulation, in which the flow field is simulated by large eddy simulation and droplets are treated as Lagrangian particles undergoing cloud microphysics. LCM enables us to investigate raindrop formation and examine the parameterization of cloud microphysics directly by tracking the history of individual Lagrangian droplets simulated by LCM. Analysis of the magnitude of raindrop formation and the background physical conditions at the moment at which every Lagrangian droplet grows from cloud droplets to raindrops in a shallow cumulus cloud reveals how and under which condition raindrops are formed. It also provides information how autoconversion and accretion appear and evolve within a cloud, and how they are affected by various factors such as cloud water mixing ratio, rain water mixing ratio, aerosol concentration, drop size distribution, and dissipation rate. Based on these results, the parameterizations of autoconversion and accretion, such as Kessler (1969), Tripoli and Cotton (1980), Beheng (1994), and Kharioutdonov and Kogan (2000), are examined, and the modifications to improve the parameterizations are proposed.
Seed-feeding insects impacting globemallow seed production
Robert Hammon; Melissa Franklin
2012-01-01
Weevils (Anthonomus sphaeralciae Fall [Coleoptera: Curculionidae]), which attack flowers and developing seeds, can significantly impact globemallow Sphaeralcea spp. A. St.-Hil. (Malvaceae) seed production without a grower even noticing there was insect damage. This weevil damaged almost one-quarter of the flowers in a seed production field in Delta County, Colorado,...
Toward a Big Data Science: A challenge of "Science Cloud"
NASA Astrophysics Data System (ADS)
Murata, Ken T.; Watanabe, Hidenobu
2013-04-01
During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science
ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. R.; Prather, K.; Ralph, R.
The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associatedmore » with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.« less
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis.
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard's Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments.
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard’s Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments. PMID:26606388
Cross, Adam T; Turner, Shane R; Renton, Michael; Baskin, Jerry M; Dixon, Kingsley W; Merritt, David J
2015-04-01
Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m(-2) for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m(-2). Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. The persistent seed bank in freshwater rock pools is likely to provide resilience to plant
Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S
2014-01-01
Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1)) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1) in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha(-1) and thereafter, yield decreased slightly beyond 40 kg seed ha(-1). Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1) in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha(-1). In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1). Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.
Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S.
2014-01-01
Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha−1) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha−1 in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha−1 and thereafter, yield decreased slightly beyond 40 kg seed ha−1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0–2.2 and 2.9–3.2 t ha−1 in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha−1. In the partially-weedy plots, weed biomass decreased by 41–60% and 54–56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha−1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition. PMID:25000520
NASA Astrophysics Data System (ADS)
Schneider, Johannes
2014-05-01
Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between < 1 and > 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues
Direct seeding for forestation
Walter H. Davidson
1980-01-01
Direct seeding, an attractive alternative to planting, is not a simple method of forestation. Past experiences show far more failures than successes. Well documented procedures must be followed to insure any degree of success. In general, conifers have given the best results. Black walnut and black locust are notable exceptions. Current research suggests that other...
7 CFR 201.18 - Other agricultural seeds (crop seeds).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...
7 CFR 201.18 - Other agricultural seeds (crop seeds).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...
7 CFR 201.18 - Other agricultural seeds (crop seeds).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...
7 CFR 201.18 - Other agricultural seeds (crop seeds).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...
7 CFR 201.18 - Other agricultural seeds (crop seeds).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...
Why Did the 2010 Eyjafjallajokull Volcanic Eruption Cloud Last So Long?
NASA Astrophysics Data System (ADS)
Jellinek, M.; Carazzo, G.
2013-12-01
The global economic consequences of the relatively small Eyjafjallajokull eruption in the spring of 2010 caught the world off guard. That the eruption cloud lasted for several months rather than weeks, efficiently disrupting air travel and the holiday plans of thousands of tourists, drew arguably more attention and a certainly garnered a highly emotional response. The longevity of this eruption cloud was touted to be "an anomaly". However, this anomaly nearly repeated itself the following year in the form of the 2011 Puyehue-Cordon Caulle eruption cloud. A major reason that the behavior of the 2010 Eyjafjallajokul cloud was surprising is that "standard" models for ash sedimentation (i.e., heavy particles fall out of the cloud faster than light particles) are incomplete. Observations of the 2010 Eyjafjallajokull, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process in addition to particle settling is the production of internal layering. We use analog experiments on turbulent particle-laden umbrella clouds and simple models to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability leading to this layering. This 'particle diffusive convection' strongly influences cloud longevity where volcanic umbrella clouds are enriched in fine ash. More generally, volcanic cloud residence times will depend on ash fluxes related to both individual particle settling and diffusive convection. We discuss a new sedimentation model that includes both contributions to the particle flux and explains the the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. Examples of periodic layering in volcanic clouds compared with experiments in which periodic layering emerges as a result of buoyancy effects related to a particle
Cloud-property retrieval using merged HIRS and AVHRR data
NASA Technical Reports Server (NTRS)
Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay
1992-01-01
A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation
Orchid seed removal by ants in Neotropical ant-gardens.
Morales-Linares, J; García-Franco, J G; Flores-Palacios, A; Valenzuela-González, J E; Mata-Rosas, M; Díaz-Castelazo, C
2018-05-01
Most plants that inhabit ant-gardens (AGs) are cultivated by the ants. Some orchids occur in AGs; however, it is not known whether their seeds are dispersed by AG ants because most orchid seeds are tiny and dispersed by wind. We performed in situ seed removal experiments, in which we simultaneously provided Azteca gnava ants with seeds of three AG orchid species and three other AG epiphyte species (Bromeliaceae, Cactaceae and Gesneriaceae), as well as the non-AG orchid Catasetum integerrimum. The seeds most removed were those of the bromeliad Aechmea tillandsioides and the gesneriad Codonanthe uleana, while seeds of AG orchids Coryanthes picturata, Epidendrum flexuosum and Epidendrum pachyrachis were less removed. The non-AG orchid was not removed. Removal values were positively correlated with the frequency of the AG epiphytes in the AGs, and seeds of AG orchids were larger than those of non-AG orchids, which should favour myrmecochory. Our data show that Azt. gnava ants discriminate and preferentially remove seeds of the AG epiphytes. We report for the first time the removal of AG orchid seeds by AG ants in Neotropical AGs. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions
Hussain, Saddam; Zheng, Manman; Khan, Fahad; Khaliq, Abdul; Fahad, Shah; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao
2015-01-01
Seed priming is a commercially successful practice, but reduced longevity of primed seeds during storage may limit its application. We established a series of experiments on rice to test: (1) whether prolonged storage of primed and non-primed rice seeds for 210 days at 25°C or −4°C would alter their viability, (2) how long primed rice seed would potentially remain viable at 25°C storage, and (3) whether or not post-storage treatments (re-priming or heating) would reinstate the viability of stored primed seeds. Two different rice cultivars and three priming agents were used in all experiments. Prolonged storage of primed seeds at 25°C significantly reduced the germination (>90%) and growth attributes (>80%) of rice compared with un-stored primed seeds. However, such negative effects were not observed in primed seeds stored at −4°C. Beneficial effects of seed priming were maintained only for 15 days of storage at 25°C, beyond which the performance of primed seeds was worse even than non-primed seeds. The deteriorative effects of 25°C storage were related with hampered starch metabolism in primed rice seeds. None of the post-storage treatments could reinstate the lost viability of primed seeds suggesting that seeds become unviable by prolonged post-priming storage at 25°C. PMID:25631923
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
NASA Astrophysics Data System (ADS)
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.
1992-06-25
During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet andmore » every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.« less
NASA Technical Reports Server (NTRS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2009-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.
NASA Astrophysics Data System (ADS)
Halimshah, Syamimi; Ismail B., S.; Ahmad, Wan Juliana Wan
2015-09-01
A study was conducted to determine the allelopathic potential of leaf and seed of Mucuna bracteata on the growth of E. indica through aqueous extract and debris (incorporated into the soil) experiment. Three concentrations of leaf and seed aqueous extract (16.7, 33.3 and 66.7 g/L) and debris (2.5, 5.0 and 10.0 g/500 g soil) of M. bracteata were used in the experiment. Complete randomized design (CRD) with three replications was applied in this experiment which was conducted twice. Results demonstrated that the leaf and seed extracts of M. bracteata exhibited higher suppression effect on the growth and germination of E. indica as the concentration increased. The leaf and seed extracts significantly reduced all measured parameters at all concentrations except for the shoot length and germination of E. indica by seed extract at 16.7 g/L which recorded insignificant reduction by 40.5% and 4% respectively. The leaf and seed debris significantly reduced the root length of E. indica at all treatments. Seed debris also showed significant reduction on the germination at all treatments and other seedling growth parameters (shoot length, fresh weight and dry weight) at 2.5 and 10.0 g/500 g soil. Meanwhile, the leaf debris demonstrated stimulation effect on the seedling growth parameters. As a whole, the leaf showed higher suppression effect in aqueous extract experiment while the seed recorded higher suppression effect in the debris experiment. Further studies need to be conducted to investigate the type of inhibition mechanism involved in both experiments.
Seed set in guayule (Parthenium argentatum, Asteraceae) in relation to insect pollination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamood, A.N.; Waller, G.D.; Ray, D.T.
Guayule (Parthenium argentatum, Asteraceae) is one of two major plant species grown for natural rubber. Studies were conducted to determine the effect of honey bee (Apis mellifera) pollination and season on seed set and total seed yield/ha. The experiments involved four pollination treatments: plants caged with bees; plants caged without bees; plants open pollinated (uncovered); and plants individually covered. Seeds were harvested monthly July-September 1984, and May-September 1985. Plots with bees produced at least 150% more seeds than plots without bees, and there were no qualitative differences in the seed weights among treatments. Highest seed yield was in May andmore » September. Results indicate that (1) insect pollination in guayule increases seed yield and (2) fewer seeds are produced in the warmest months.« less
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, S. T.; Artaxo, P.; Machado, L.
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over themore » city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
The frequency and nature of `cloud-cloud collisions' in galaxies
NASA Astrophysics Data System (ADS)
Dobbs, C. L.; Pringle, J. E.; Duarte-Cabral, A.
2015-02-01
We investigate cloud-cloud collisions and giant molecular cloud evolution in hydrodynamic simulations of isolated galaxies. The simulations include heating and cooling of the interstellar medium (ISM), self-gravity and stellar feedback. Over time-scales <5 Myr most clouds undergo no change, and mergers and splits are found to be typically two-body processes, but evolution over longer time-scales is more complex and involves a greater fraction of intercloud material. We find that mergers or collisions occur every 8-10 Myr (1/15th of an orbit) in a simulation with spiral arms, and once every 28 Myr (1/5th of an orbit) with no imposed spiral arms. Both figures are higher than expected from analytic estimates, as clouds are not uniformly distributed in the galaxy. Thus, clouds can be expected to undergo between zero and a few collisions over their lifetime. We present specific examples of cloud-cloud interactions in our results, including synthetic CO maps. We would expect cloud-cloud interactions to be observable, but find they appear to have little or no impact on the ISM. Due to a combination of the clouds' typical geometries, and moderate velocity dispersions, cloud-cloud interactions often better resemble a smaller cloud nudging a larger cloud. Our findings are consistent with the view that spiral arms make little difference to overall star formation rates in galaxies, and we see no evidence that collisions likely produce massive clusters. However, to confirm the outcome of such massive cloud collisions we ideally need higher resolution simulations.
Experience of Developing Cloud Service for accounting Sales in installments
NASA Astrophysics Data System (ADS)
Barankov, V. V.; Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.
2018-05-01
The paper presents the developed and implemented system of accounting sales in installments using tables as a cloud variant of Google services. The main system requirements and the special features of the program implementation such as the multi user data cleaning, the volume and speed of converting the tables, the mechanisms of conditional formatting of cells, the protection of cells and ranges and the data input check are provided. The paper also discusses the functionality of the system of accounting sales in installments, which is implemented by the formulae in the cells, the formulae in the extra options of Google tables and by programming in Google Apps Script, as a cloud variant of Java Script. The safety and security of the customers’ data, as well as staff members’ accountability and responsibility for the input of data in the system, are provided by a number of information security measures
Gorim, Linda; Asch, Folkard
2017-05-24
Seed coating is a technology to improve germination and homogenize stand establishment. Although coating often results in lower germination rates, seeds that do germinate grow more vigorously and show strongly reduced respiratory losses during reserve mobilization. We hypothesize that the higher mobilization efficiency is due to a shift in the enzymatic cleavage of sucrose from invertase to sucrose synthase in the embryonic tissue caused by a reduced oxygen availability induced by oversaturation with water caused by the coating during early germination. We investigated the effect of coating on barley, rye, and wheat seed imbibition during the first 30 h after seeds were placed in moisture. We profiled oxygen in the embryos and measured sucrose and acid invertase levels as imbibition progressed. We found that seeds within coatings absorbed significantly more moisture than uncoated seeds. Coating resulted in near anoxic oxygen concentrations in the developing embryonic tissues in all three species. In barley, sucrose was not cleaved via the invertase pathway, despite the fact that invertase activity in coated seeds was increased. In rye and wheat, invertase activities were significantly lower in embryos from coated seeds without significantly changing the sugar composition.